
 

 

 

  

Abstract— Community detection plays a key role in the 

study of brain networks, as mechanisms of modular integration 

and segregation are known to characterize the brain 

functioning. Moreover, brain networks are intrinsically 

multilayer: they can vary across time, frequency, subjects, 

conditions, and meaning, according to different definitions of 

connectivity. Several algorithms for the multilayer community 

detection were defined to identify communities in time-varying 

networks. The most used one is based on the optimization of a 

multilayer formulation of the modularity, in which two 

parameters linked to the spatial (γ) and temporal (ω) resolution 

of the uncovered communities can be set. While the effect of 

different γ-values has been largely explored, which ω-values 

are most suitable to different purposes and conditions is still an 

open issue. In this work, we test the algorithm performances 

under different values of ω by means of ad hoc implemented 

benchmark graphs that cover a wide range of conditions. 

Results provide a guide to the choice of the ω-values according 

to the network features. Finally, we show an application of the 

algorithm to real functional brain networks estimated from 

electro-encephalographic (EEG) signals collected at rest with 

closed and open eyes. The application to real data agrees with 

the results of the simulation study and confirms the conclusion 

drawn from it. 

I. INTRODUCTION 

Modeling the brain as a complex network made of areas 
anatomically and functionally interconnected [1] allows the 
use of graph theory to derive information underlying the 
brain functioning. In this sense, network science becomes a 
powerful instrument to reveal non-trivial brain properties 
such as its modular organization [2]. Modules (communities, 
clusters) are groups of nodes strongly connected, usually 
related to specific functions of the system. Investigating the 
brain community structure is important due to the role it 
plays in regulating segregation and integration mechanisms 
between subsystems. Previous works have already shown 
that functional networks obtained from EEG sensor 
recordings have modular properties that can be related to the 
condition of the subject [3]. Moreover, while most of the 
studies consider nodes linked by static edges, this assumption 
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is simplistic. In fact, brain interactions might vary in time 
(e.g. during the execution of a task, in different conditions or 
at different recording sessions), in frequency (in M/EEG 
acquisitions) or across subjects. Hence, brain networks can be 
studied without either throwing away or combining different 
information, by using a multilayer framework: several 
classical linked networks each one encoding specific 
attributes of the system. Specifically, tracking the network 
modules across the layers can reveal changes in time, as well 
as a stability of the network structure, which could be both 
physiologically meaningful. At the state of the art, several 
methods have been proposed to detect communities in 
multilayer networks. The most used, especially in the field of 
network neuroscience, is based on the optimization of a 
multilayer formulation of the modularity [4]. Modularity is 
an objective function that estimates the quality of a partition 
with respect to a null model. The algorithm that realizes this 
optimization is called genLouvain [5], and is a generalized 
version of the well-known Louvain [6], used for the single 
layer modularity optimization. Such algorithm depends on 
two parameters, γ and ω, which, respectively, determine the 
spatial and temporal resolution of the found communities. 
The effect of γ on (gen)Louvain has been largely explored: γ-
values lower than 1 (default value) entail larger communities 
and vice-versa. Concerning ω, it represents the connection 
between a node and itself in consecutive layers, so that higher 
values mean that the nodes show the same behavior across 
layers. However, an agreement about how to set ω according 
to specific network’s features is missing. With this work we 
aim to provide guidelines about how to correctly set the 
temporal properties of genLouvain to study time-varying 
brain networks. To this purpose, we propose a toolbox to 
generate benchmark graphs whose main advantage is its 
ability to simulate a wide range of conditions. The tools 
already available, such as in [7]-[8] (multilayer version of the 
Girvan and Newman model [9]) show the limitation of 
constraining most of the parameters characterizing the 
network (e.g. number of nodes, number of clusters, etc). In 
[10] a better tool is proposed in which users can set some 
parameters (e.g. number of nodes and clusters). Nevertheless, 
here we present an even more flexible tool, based on the one 
proposed in [11], in which graph density, number of clusters, 
noise level (modeled as a random permutation of a 
percentage of links) and the percentage of nodes changing 
module at a given layer are features that can be set. We then 
propose a comparative analysis between ωs, exploiting the 
introduced tool. The graphs we generated account for a wide 
class of features systematically varied in a range typical of 
EEG-based brain networks. Moreover, we consider two 
cases: one in which the community structure is stationary 
across the layers and one in which it changes dynamically. In 
fact, getting a single partition out from a multilayer network 
can be useful, for example if we are interested in phenomena 
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supposed stationary, or the layers represent subjects of the 
same category and we aim to extract common features. At the 
same time, it is also crucial to be able to track the clusters 
evolution in networks representing non-stationary 
phenomena. In both conditions, we statistically evaluated the 
accuracy of the algorithm under different factors by the 
analysis of variance (ANOVA). Finally, we applied 
genLouvain to brain functional networks estimated from 
EEG signals, obtained in a healthy subject during resting 
state at close-eyes and open-eyes. We report here the 
differences obtained between the community structure 
subtending the two phases by using different ω-values, in 
accordance with the guidelines provided by the simulation 
study. 

II. METHODS 

A. Multilayer Networks Generation 

The tool we present consists of an algorithm implemented 
in Matlab environment (release 2017b). It produces directed 
and unweighted multilayer (ML) adjacency matrices (3D) 
with stationary or evolving community structure. The 
parameters that can be set are: number of nodes (N), graph 
density (D), number of layers (nL), clusters number (CN), 
ratio between intra-cluster and inter-cluster density (dr), 
noise level (no), percentage of nodes shifting community 
across layers (pn). 

To get a stationary community structure, the algorithm 
proceeds through two main steps: (i) creation of a single layer 
network exploiting the algorithm described in [11], used as 
base for every layer; (ii) addition of the no level, set as an 
input, to each layer. With these two steps we obtain a ML 
network in which each slice has the same community 
structure obtained in (i), while the variability between layers 
is due to noise, applied differently to each slice through (ii). 
To simulate ML networks with evolving community structure 
the algorithm still goes through (i), but then it generates the 
following slice so that a certain percentage of nodes (p) 
changes its allegiances to modules. The algorithm acts only 
on the links involving the nodes that change membership, 
maintaining the rest of the network as it was created in (i). 
Similarly, it can also increase or decrease the CN, moving 
some nodes into a new module, or moving all the nodes od 
one module into the others. Thus, one can get controlled 
variation of the community structure, according to p and to 
the possible increase or decrease of the number of 
communities. 

B. Simulation study 

To test and compare the effect of different ω-values on 
the genLouvain performances, we exploited the tool 
described in the previous paragraph, systematically varying 
the networks features according to those experimentally 
detectable in real EEG-based functional brain networks. 
Thus, we generated networks with: 

▪ N = 60 
▪ D = [0.1, 0.3] 
▪ CN = [2, 4, 6] 
▪ dr = 2 
▪ no = [10%, 25%, 50%] 
▪ nL = [2, 10, 50, 100] 

Then, we run the algorithm genLouvain with different ω-
values in the range 0.1-10: 

▪ ω = [0.1, 0.2, 0.5, 1, 2, 5, 10] 

 We performed a repeated measures ANOVA to evaluate 
the effects of the factors ω, CN, no and nL on the accuracy 
of genLouvain, assessed by the Normalized Mutual 
Information (NMI). The NMI is an index of similarity, 
borrowed from information theory, used in this context to 
compare the output of the algorithm with the known 
community structure. The mean NMI over all the layers 
played the role of dependent variable in the statistical 
analysis. 

To test the algorithm on networks with dynamic 
community structure we performed a second simulation study 
in which we also included the parameter pn (previously 
described):  

▪ pn = [10%, 30%, 50%, 70%, 100%] 

The structure was varied for the second half of the layers, 
to simulate the condition in which we want to track modules 
over two different tasks, or two classes of subjects (e.g., 
healthy/patients), when we want a unique partition associated 
to all the layers of the first task/healthy people and a second 
partition associated to the second task/patients. Again, we run 
genLouvain with the same ω-values as before, and we 
performed an ANOVA for repeated measures using the NMI 
as dependent variable and index of accuracy. 

C. Application to EEG data 

EEG data were recorded using 61 electrodes (according 
to the extended 10-20 International System) in a healthy 
subject (female, 33 years old) during rest at close-eyes (CE) 
and open-eyes (OE). The subject gave informed consent prior 
to her participation and the experiments were approved by 
the local Ethics Committee before data acquisition started. 
The session was composed by 26 trials of 200 seconds each. 
In the first 100 seconds, the subject was asked to keep her 
eyes closed (task1) and in the last 100 seconds to keep her 
eyes open (task2). Pre-processing of the data included band 
pass filtering (1-45 Hz), artefact rejection and 2-seconds 
epoch segmentation. For each segment the corresponding 
functional brain network was estimated through Partial 
Directed Coherence (PDC) [12] and mediated in four EEG 
frequency bands, defined according to the Individual Alpha 
Frequency (IAF) [13] (IAF = 10 Hz): theta [IAF-6, IAF-3], 
alpha [IAF-2, IAF+2], beta [IAF+3, IAF+14] and gamma 
[IAF+15, IAF+30]. We assessed the significance of the 
connections through asymptotic statistics [14]. For each 
frequency band and for each task we obtained 50 binary 
networks of dimension 61x61. We used those relative to the 
alpha band for our analysis, as of interest for resting state 
[15]. Then we concatenated them so as to obtain 4 multilayer 
networks, sized 61ch*61ch*[2 10 50 100]nL, in which the 
first half layers derive from task1 (CE) and the second half 
from task2 (OE), similarly to the simulation study. Finally, 
we run genLouvain with all the ω-values under exam to the 4 
multilayer networks. 

III.  RESULTS 

A.  Simulation study 

In the stationary analysis, the ANOVA performed for 
different ω-values on networks with stationary community  



 

 

 

 structure, together with Tuckey’s post-hoc tests, show 
that ω-values ≥1 globally outperform the lower ones (Fig. 
1a). In  
fact, while with low noise level they all perform acceptably 
(NMI between 0.8 and 0.9), as the noise increases values of 
ωs greater than 1 show statistically higher levels of accuracy. 
This is even more true with many layers: genLouvain applied  
with high ωs can recover almost the exact community 
structure, even with very high percentage of noise, if the 
network is composed by several layers.  

In the dynamic analysis, ANOVA results suggest that 
values of ω up to 0.5 are suitable in to detect communities 
that change rapidly (in few layers), while higher ω-values are  
preferable to discriminate two different community 
organizations when they persist across several layers before 
the change happens (Fig 1b). It is worth of note that low ω-
values are insensitive to the factor nL. In very noisy networks 
(no=50%) neither low nor high ω-values can recover the 
exact community structure if it changes rapidly (nL=2), but 
ω≥1 give better performance as nL increases. We found that 
the factor pn does not affect the global performances of the 
algorithm, meaning that it can detect small as well as big 
changes in community structure. Only the case in which 
pn=10% causes a loss of accuracy in networks of D=30%, 
low level of noise and small CN.  

While in figure we show results for D=0.3, this is true also 
for D=0.1, for each value of CN, and for the three cases in 
which CN does not change, increases and decreases.  Finally, 
in both analysis, we observed all the ωs performing globally 
better in denser networks and with more clusters. 

B. Application to EEG data 

The results of the application to resting state EEG are 
shown in Fig. 2. In the network composed by 2 layers (CE 
and OE) the two conditions are better discriminated applying 
genLouvain with ω = 0.2 (fig 2a). In fact, higher values force 
the algorithm to find a unique partition for the two conditions 
(fig 2d). In the network composed by more layers (nL = [50, 
100]) the discrimination in the community structure between 
CE and OE is better identified by ω = [1, 2, 5] (fig 2b). With 
these values we obtain a pretty much stable partition until 
nL/2 (CE) and a different partition from nL/2 on (OE). On 

the contrary, with lower values the variability of the found 
communities is too high even within the same task (fig 2e). 
These findings confirm the results of the simulation study. 

Running genLouvain with the right ω-values we observed 
(fig2c) that during CE there is a cluster that involves the 
occipital electrodes and two clusters composed by electrodes 
from left and right hemispheres, respectively. During OE the 
first cluster is dismembered between left and right 
hemispheres, and one can observe modules becoming more 
hemispheric-specific. Such results are observed both in the 
EEG network made of nL=2 when ω=0.2 and in the ones 
with nL>2 with values of ω>1, suggesting that the choice of 
ω-values is correct. 

IV. DISCUSSION AND CONCLUSION 

This work aimed to provide guidelines for the use of the 
genLouvain algorithm, suggesting a proper setting of its 
temporal resolution parameter ω. To this purpose, we propose 
a tool able to generate multilayer networks with fully settable 
parameters, that helped us in testing the algorithm under a 
variety of conditions. We assessed its performance, by 
systematically varying ω, by an ANOVA in which we 
evaluated the effect of noise level, number of layers, number 
of clusters and percentage of nodes that change modules. We 
also distinguished the case in which communities are 
stationary across layers (a) and the one in which they evolve 
in time (b). For all ωs we tested, the algorithm performs 
better in networks with low noise level, i.e. with clearly 
defined communities, and with high number of clusters. In 
the case (a) ω-values greater or equal to 1 outperform the 
others, especially in noisy networks with many layers. It is 
important to notice that even in network with an almost 
destroyed community structure (no=50%), the algorithm with 
high ω can recover the imposed communities if it has enough 
layers to interpolate. In the case (b) ω-values lower than 0.5 
make genLouvain perform better in networks with few 
layers, because they allow it to recognize fast changes. On 
the other hand, if we expect the network to be noisy or we 
want to recover different but persistent partitions, higher ω-
values (>0.5) are eligible. The factor representing the number 
of nodes that change allegiance to their modules does not 

 

Figure 1.   Plot of means of the ANOVA performed on networks with stationary community structure, panel (a), and evolving community structure, panel (b). 
The effect of the factors ω, number of layers (nL), and noise are shown in each panel in the case in which D=0.3 (similar results were obtained with D=0.1).   



 

 

 

seem to impact the algorithm’s performances, suggesting that 
it can detect small as well as big changes in community 
organization.  

We then validated these results applying such algorithm 
with the same ω-values on EEG-based brain functional 
multilayer networks estimated from a healthy subject during 
resting state at CE and OE.  To reproduce the conditions of 
the previous study we estimated 4 multilayer networks 
composed respectively of [2, 10, 50, 100] layers: the first 
half relative to CE, and the seconds half to OE. Results agree 
with those of the simulation study. In fact, low ω (0.1-0.5) 
are preferable in networks with few layers in which the 
algorithm must recover rapid change from CE to OE. Higher 

values of ω (>1) are better in networks with many layers and 
two conditions, as they allow to recover a unique partition 
for the first one (CE) and another one for the second (OE). 

From the topological comparison between the community 
organization in the two tasks we can say that the closed eyes 
condition gives rise to a cluster involving the occipital 
electrodes/brain areas, while in the open eyes condition the 
clusters are more hemispheric-specific. This result is 
consistent with what one would expect. In fact, it is well 
known that during resting state at closed eyes there is an 
increase of alpha-rhythm coming from the occipital regions, 
that disappears as soon as the subject open his/her eyes. In 
conclusion, we show how an appropriate selection of ω-
parameter can allow to use genLouvain algorithm to 
accurately detect the stationary as well as the dynamic 
properties of brain functional networks. 
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Figure 2.  Results of the application of genLouvain to functional brain 
networks estimated from EEG signals during closed and open eyes. In panel 
(a)-(b) communities obtained with the right setting of ω, according to the 
simulation study, are shown in the two cases in which nL=2 (ω=0.2) and 
nL=100 (ω=5). X-axis and y-axis represent time and nodes, or channels of 
EEG, and clusters are identified by colours. Panel (c) reports a projection of 
the detected communities of panel (a), (nL=2, ω=0.2) on a 2D model of scalp 
(seen from above, with triangles representing noses). The dots are the 61 
electrodes, grouped into clusters displayed with the same colours as in panel 
(a). This topographical representation shows a big cluster involving occipital 
electrodes during CE, that disappears during OE, where the clusters are all 
more hemispheric-specific. Panels (d)-(e) report results obtained with a 
wrong setting of ω, according to the simulation study, in the same two cases 
in which nL=2 (ω=5) and nL=100 (ω=0.2). In the first case the algorithm 
cannot detect a change between CE and OE, while in the second case it 
shows a huge variability (75 total communities) even among layers relative 
to the same condition (CE or OE). 


