
  

  

Abstract— Methods based on the use of multivariate 
autoregressive models (MVAR) have proved to be an accurate 
tool for the estimation of functional links between the activity 
originated in different brain regions. A well-established method 
for the parameters estimation is the Ordinary Least Square 
(OLS) approach, followed by an assessment procedure that can 
be performed by means of Asymptotic Statistic (AS). However, 
the performances of both procedures are strongly influenced by 
the number of data samples available, thus limiting the 
conditions in which brain connectivity can be estimated. The aim 
of this paper is to introduce and test a regression method based 
on Least Absolute Shrinkage and Selection Operator (LASSO) 
to broaden the estimation of brain connectivity to those 
conditions in which current methods fail due to the limited data 
points available. We tested the performances of the LASSO 
regression in a simulation study under different levels of data 
points available, in comparison with a classical approach based 
on OLS and AS. Then, the two methods were applied to real 
electroencephalographic (EEG) signals, recorded during a 
motor imagery task. The simulation study and the application to 
real EEG data both indicated that LASSO regression provides 
better performances than the currently used methodologies for 
the estimation of brain connectivity when few data points are 
available. This work paves the way to the estimation and 
assessment of connectivity patterns with limited data amount 
and in on-line settings.  

I. INTRODUCTION 

Brain connectivity plays an important role in understanding 
how different brain regions interact. Along the years, different 
approaches were defined, among which those based on 
Granger causality [1] are based on the statistical properties of 
the signals and do not require any a priori knowledge about the 
brain network structure. Such connectivity estimators rely on 
multivariate autoregressive models (MVAR), and their 
application to Electroencephalographic (EEG) data often 
exploits a frequency version of the estimator (e.g, the Partial 
Directed Coherence, PDC [2]). However, in order to provide 
an accurate and reliable estimation, MVAR models require an 
appropriate amount of data points, confining application to 
offline analysis [3]. Unfortunately, overcoming this constraint 
is still a challenging task, since a low amount of data samples 
implies an increase of the mean squared error in MVAR 
parameter estimation, obtained by means of the commonly 
used Ordinary Least Square (OLS) approach. Thus, to ensure 
the accuracy of OLS estimation, the ratio between the number 
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of data samples available and the number of MVAR 
parameters (K-ratio) should be greater than 10 [4].  
When this condition is not fulfilled, the estimation problem 
becomes ill-posed and under-determined and the accuracy in 
estimating MVAR parameters drops dramatically [5]. 
Moreover, the accuracy of the statistical assessment procedure 
(necessary to discard spurious links) is also affected by the 
number of data samples available, as demonstrated for the 
recent method based on Asymptotic Statistics (AS) in [6]. 
A theoretical solution to this problem is represented by 
penalized regression methods. Among the different methods 
available, the Least Absolute Shrinkage and Selection 
Operator (LASSO) represents a viable way to regularize the 
OLS problem with a constraint based on l1 norm applied on the 
MVAR parameters [7]. This procedure has a double effect: i) 
it reduces the mean square error associated with the estimated 
coefficients; ii) it reduces the error in discarding spurious 
links, circumventing the statistical assessment, by means of 
variable selection.  
The use of penalized regression methods for connectivity 
estimation in the case of few data points and real time 
applications were reported in [3], [8] and [9] for BCI purposes, 
and applied to simulated and real data. Furthermore, the 
feasibility of using LASSO regression was demonstrated for 
fMRI data [10]. To our knowledge, a direct comparison 
between a classical approach and LASSO regression for EEG 
data has not yet been performed. 
To this purpose, we firstly performed a simulation study to test 
the performances of the classical OLS/AS approach in 
comparison to LASSO regression, used for the estimation of 
MVAR parameters and for the assessment procedure. 
Secondly, the two methods were compared by means of the 
application to data obtained during a motor imagery task (MI) 
performed by a healthy subject, and already used in previous 
works about real-time connectivity estimation [9]. 

II. METHODS 

A. Ordinary Least Square regression (OLS) 
In the framework of linear signal processing, it is possible 

to represent a multivariate process as follows: 

𝒀𝒀(𝑛𝑛) = �𝑨𝑨(𝑘𝑘)𝒀𝒀(𝑛𝑛 − 𝑘𝑘) + 𝑬𝑬(𝑛𝑛)
𝑝𝑝

𝑘𝑘=1

 (1) 
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where: 
𝑨𝑨(𝑘𝑘) are the M x M coefficients matrix in which the element 
𝑎𝑎𝑖𝑖𝑖𝑖(𝑘𝑘) describes the dependence of 𝑦𝑦𝑖𝑖(𝑛𝑛) on 𝑦𝑦𝑖𝑖(𝑛𝑛 − 𝑘𝑘); 
𝒀𝒀(𝑛𝑛) = [𝑦𝑦1(𝑛𝑛), … , 𝑦𝑦𝑀𝑀(𝑛𝑛)]𝑇𝑇, represents the multivariate 
closed-loop process; M represents the number of time series 
involved in the analysis; p represents the model order; 𝑬𝑬(𝑛𝑛) 
represents the innovation process, assumed to be composed of 
white and uncorrelated noise.  
The OLS approach to the estimation of MVAR coefficients is 
based on the minimization of the residuals E [11]: 

𝑨𝑨� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑨𝑨‖𝒀𝒀 − 𝑨𝑨𝑨𝑨‖22 (2) 

B. Least Absolute Shrinkage and Selection Operator 
(LASSO) 
LASSO differs from OLS because it is based on a penalized 
regression. It solves the following problem [7]: 

𝑨𝑨� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑨𝑨‖𝒀𝒀 − 𝑨𝑨𝑨𝑨‖22 + 𝜆𝜆‖𝑨𝑨‖1 (3) 

where λ is the regularization parameter that controls the 
amount of penalization to be applied during the coefficients’ 
estimation. 

C. Partial Directed Coherence (PDC) 
PDC estimator in its squared version is defined as follows: 

𝜋𝜋𝑖𝑖𝑖𝑖(𝑓𝑓) =
�𝐴𝐴𝑖𝑖𝑖𝑖(𝑓𝑓)�

2

∑ �𝐴𝐴𝑚𝑚𝑖𝑖(𝑓𝑓)�
2𝑀𝑀

𝑚𝑚=1

 (4) 

where 𝐴𝐴𝑖𝑖𝑖𝑖(𝑓𝑓) is the frequency version of the MVAR 
parameters (estimated by means of OLS or LASSO) that relate 
the j-th time series to the i-th one, at the specific frequency f. 

D. Asymptotic Statistics (AS) 
PDC estimation needs to be followed by a statistical 
assessment against the null-case, to avoid the detection of 
spurious causal relationships between signals. Recently, the 
probability distribution of the null-case for PDC was 
theoretically derived and used by the asymptotic statistics (AS) 
assessment method to extract null-case statistical threshold [6]. 
The AS requires a reduced computational time in comparison 
with empirical methods, providing the same accuracy [12]. 

III.  SIMULATION STUDY  
The simulation study consisted of the following steps: 
i. generation of simulated EEG-like datasets, fitting 

predefined ground truth networks of 10 nodes, under 
different conditions of K ratio (factor K: 10, 5, 3, 1, 0.8). 
K ratio is defined as follows: 

𝐾𝐾 =
𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑝𝑝

𝑁𝑁𝐶𝐶𝐶𝐶𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜
 (5) 

where: 
𝑁𝑁𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆  represent the number of data samples available; 
𝑁𝑁𝐶𝐶𝐶𝐶𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜 represents the number of MVAR coefficients to 
be estimated.  

The simulated EEG data were generated by means of 
MVAR filter used as a generator [12]. The structure of the 
ground-truth networks varied across the iterations with an 
imposed density equal to 25%, while the value assigned to 
the non-null connections between signals varied randomly 
between 0 and 0.9 (in absolute value).  

ii. Selection of the optimal regularization parameter (λ) for 
LASSO regression by means of Generalized Cross 
Validation method (GCV) [7].  

iii. Estimation of the autoregressive parameters by means of 
OLS and LASSO regression methods and subsequent 
computation of PDC (factor ALG: OLS, LASSO). 

iv. Assessment of the significant links by means of AS and 
LASSO (factor TYPE: AS, LASSO).  

v. Evaluation of the accuracy in the estimation of non-null 
connection for both OLS and LASSO. We used the Mean 
Absolute Error (MAE) [13]. Let 𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑃𝑃𝑃𝑃𝑃𝑃�  denote 
vectors of the imposed and estimated values of PDC for the 
entire frequency interval between 1 and 40 Hz. The MAE 
is defined as: 

𝑀𝑀𝐴𝐴𝑀𝑀 =
1
𝑁𝑁

1
𝐹𝐹
���

𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓,𝑛𝑛) − 𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓,𝑛𝑛)�
𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓,𝑛𝑛) �

𝐹𝐹

𝑓𝑓=1

𝑁𝑁

𝑛𝑛=1

 (6) 

where N is the number of connections imposed with a 
nonzero value and F is the number of frequency bins 
analyzed. The minimum value that MAE can assumed is 0. 
It does not have an upper limit. 

vi. Evaluation of the performance of AS and LASSO in 
discarding spurious links through the false positive and 
false negative rates, summarized by a ROC curve and the 
related Area Under Curve (AUC) [14]. AUC values are 
between 0.5 (50%) (random classification) and 1 (100%) 
(correct classification).  

The entire procedure was repeated 50 times. The two indices 
(MAE and AUC) were subjected to a two-way repeated 
measures ANOVA considering K and ALG as within main 
factors for MAE and K and TYPE as within main factors for 
AUC.  

IV. APPLICATION TO REAL EEG DATA 

The data used to test the different methods can be found in 
[9]. They were recorded from a healthy volunteer (male, 
under 30 and right-handed) performing a motor imagery task 
(MI). The task consisted in performing 90 trials of right-hand 
MI and 90 trials of foot MI trials. Signals were recorded by a 
45-channels EEG, with electrodes located according to the 
international 10-20 system.  Data were filtered with a 0.5-100 
Hz bandpass and a 50 Hz notch filter. EOG components were 
reduced by means of a regression approach [9]. We further 
resampled the data at 100 Hz. 

A. Single trial analysis 
The single trial analysis consisted of the following steps: 
i. Selection of 11 of the 45 EEG channels available (C5, C3, 

C1, C2, C4, C6, CP3, CP4, Cz, CPz, FCz) to match the 
simulation study conditions. 

ii. Segmentation of the EEG signals, including the 100 
samples between the third and the fourth second of each 
trial for each condition. 

iii. Estimation of the model order for each condition by means 
of Final Prediction Error criterion (as suggested in [15]). 

iv. Estimation of the optimal value for the regularization 
parameter (for each trial and for each condition) by means 
of GCV.  

v. Estimation of the autoregressive parameters (for each trial 
and for each condition), by means of OLS and LASSO 
regression methods, and subsequent computation of PDC. 
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vi. PDC assessment by means of AS and LASSO (for each 
trial and condition).  

V. RESULTS 

A. Simulation study 
Table 1 reports the results of the two-way interaction between 
factor K and ALG for MAE index. 

TABLE I.  ANOVA RESULTS - MAE INDEX 

Parameter 
ANOVA within factors 

ALG K ALG x K 

DoF (1, 49) (4, 196) (4, 196) 

MAE 99.9** 63.4** 29.1** 

Result of the two-way ANOVA for MAE index. Symbol ** means p<0.001 

Table 1 shows a significant effect of all the within factors and 
their interactions to the MAE. Figure 1 shows the related plot 
of means.  

 
Figure 1- Plot of means of MAE index for the interaction ALG x K. The 
diagram shows the mean values of the index for different values of K and 
different methods. The bars represent the 95% confidence interval. 

Regardless the method used for the estimation of PDC, the 
value of K-ratio strongly influences the estimation 
performances, with a decrease of the estimation error with the 
increase of K-ratio. While the performances of the two 
methods are superimposable for values of K equal to 10, in 
the case of small amount of data (K<3) the error level can rise 
up to 2 (200%) for OLS, while LASSO shows a mean value 
of MAE between 0.5 and 1 in the same conditions.  

Table 2 reports the ANOVA results for the two-way 
interaction between factor K and TYPE for AUC, showing a 
significant effect of all the within factors and their interactions 
on the AUC index. Figure 2 shows the plot of means of AUC 
computed after the validation of PDC by means of AS and 
LASSO, suggesting how the AUC index strongly depends on 
all the factors analyzed. In particular, AUC increases with the 
increase of K-ratio, while, with the decrease of K-ratio (i.e. 
when few data samples are used), AS does not represent a 
reliable method for assessing brain connectivity. In fact, when 
K-ratio is lower than 1, the value of AUC is around 50%, 
corresponding to chance level. This is not the case for LASSO 
in the same condition. In fact, when K is equal to 0.8 and 1, 
AUC is still greater than 0.8. Even when K is equal to 10, 

Tukey’s post-hoc test highlights a statistical difference 
between AS and LASSO in discarding spurious links.  

TABLE II.  ANOVA RESUTLS - AUC 

Parameter 
ANOVA within factors 

TYPE K TYPE x K 

DoF (1, 49) (4, 196) (4, 196) 

AUC 3163** 1996** 365** 

Result of the two-way ANOVA on AUC index. Symbol ** means p<0.001 

 
Figure 2- Plot of means of AUC index for the interaction TYPE x K. The 
diagram shows the mean values of the index for different values of K and 
different methods. The bars represent the 95% confidence interval. 

B. Real EEG data application 
Figure 3 shows the plots of the PDC-based connectivity 
patterns obtained by OLS-AS and LASSO, for the Foot and 
Hand experimental conditions (upper and lower part of the 
figure, respectively) at 10 Hz. 

 OLS-AS LASSO 

Foot 

  

Hand 

  
Figure 3- Connectivity patterns obtained for a single trial (randomly 
selected among the 90 available) at 10 Hz. The arrows thickness encodes 
the strength of connections, that range between 0 and 1. Scalp 
representation, nose to the upper part of the page. 
 

Figure 3 shows how in the Foot condition the OLS regression 
followed by the AS only few connections survive the 
assessment procedure (only two connections in the right 
hemisphere for this specific trial). On the other hand, the 
estimation and assessment obtained by LASSO highlights a 
strong involvement of the electrode Cz (which is located 
above the feet primary motor areas) in the network. In the 
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Hand condition, the combination of OLS and AS cannot 
estimate any connection between the analysed signals in a 
single trial. In the same condition, the estimation-assessment 
procedure performed by LASSO shows the presence of strong 
connections in the left hemisphere (contralateral to the MI 
task). Moreover, it is possible to identify a sub-network 
composed by the electrodes: C1, C3, C5, CP3, Cpz and Fcz. 

VI. DISCUSSION AND CONCLUSION 
The aim of the present work was to determine if the LASSO 
regression can be a viable solution for the estimation of PDC-
based brain connectivity when few data samples are available, 
as in EEG single trial analysis.  

Simulation study 
As expected, PDC values estimated with OLS and LASSO 
were strongly influenced by the value of K-ratio. A decrease 
in the accuracy of the estimation with the decrease of K-ratio 
was investigated in previous works, that highlighted a direct 
relationship between the MVAR estimation accuracy (in term 
of MSE) and the number of data samples available [4]. Our 
results (Figure 1) show that, when K≤1, the PDC values 
estimated by OLS exhibit a strong bias (MAE > 1.5), while 
those estimated by means of LASSO regression showed no 
brisk discontinuities in their accuracy, indicating its tolerance 
to the reduction of data samples.  
Since the network structure and the consequent assumptions 
are more influenced by the assessment procedure than by the 
PDC values, we further analysed the performances in term of 
AUC. LASSO regression does not require an assessment 
procedure, due to the automatic selection of the MVAR 
parameters in the time domain (and consequently in the 
frequency domain). Such feature allows to unify the process 
of PDC estimation and the consequent statistical assessment 
in a unique step. As can be seen in Figure 2, LASSO 
regression provided a higher value of AUC than AS, for all 
the conditions analysed. In particular, for low values of K-
ratio, the performances of AS break down to the chance level, 
as expected, since we are operating outside the conditions 
required by the classical estimation of MVAR parameters 
[12]. 
Application on real EEG data 
By applying PDC estimation to a single trial case, we tested 
the methods in a challenging condition. Figure 3 shows how, 
even if K is equal to 1 (which means that we have few data), 
LASSO procedure allowed to recognize two different 
networks, one for each task, showing a strong involvement of 
Cz electrode as a main hub in the Foot condition and a 
network involving the electrodes C1, C3, C5 and CP3 for the 
Hand condition. This is in line with previous knowledge on 
the task. In fact, Hand/Foot motor imagery results in a 
modulation of the power spectral density in the alpha band [8-
12 Hz], detectable in C3 (Hand), Cz and FCz (Foot) [16]. 
Furthermore, previous studies used connections that involve 
the electrodes Cz, FCz, C3, C1 and CP3 to discriminate the 
two MI tasks [15].  

The use of a classical OLS/AS approach, on the other hand, 
had a very different outcome, showing no meaningful patterns 
in any of the two conditions. This was also expected as we 

were operating outside the conditions usually accepted to 
perform an MVAR estimation [4].  

Even if previous works reported the effectiveness of 
LASSO regression when few data samples are available in 
fMRI context [10], to our knowledge this is the first time that 
a classical approach is compared with LASSO regression for 
different conditions of K-ratio on (simulated and real) EEG 
data.  

In summary, the results of this study suggest that the use of 
LASSO regression can improve the accuracy of the entire 
estimation process (including the validation), allowing to 
obtain meaningful results even with a single trial approach. 
Consequently, this approach could open the way to future 
applications ranging from the analysis of single EEG trials 
when the hypothesis of stationarity along trials is not verified, 
to the real time estimation of brain connectivity for Brain 
Computer Interfaces (BCI) applications. 
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