
Semantic characterization of data services through ontologies∗

Gianluca Cima1 , Maurizio Lenzerini1 , Antonella Poggi1,2
1Dipartimento di Ingegneria Informatica, Automatica e Gestionale

2Dipartimento di Lettere e Culture Moderne
Sapienza Università di Roma

{cima, lenzerini, poggi}@diag.uniroma1.it

Abstract
We study the problem of associating formal se-
mantic descriptions to data services. We base
our proposal on the Ontology-based Data Access
paradigm, where a domain ontology is used to pro-
vide a semantic layer mapped to the data sources
of an organization. The basic idea is to explain the
semantics of a data service in terms of a query
over the ontology. We illustrate a formal framework
for this problem, based on the notion of source-to-
ontology (s-to-o) rewriting, which comes in three
variants, called sound, complete and perfect, re-
spectively. We present a thorough complexity anal-
ysis of two computational problems, namely ver-
ification (checking whether a query is an s-to-o
rewriting of a given data service), and computation
(computing an s-to-o rewriting of a data service).

1 Introduction
The architecture of many modern Information Systems is
based on data services [Zheng et al., 2013], i.e., services
deployed on top of data stores, other services, and/or ap-
plications to encapsulate a wide range of data-centric oper-
ations. Data services are also used to handle the program-
ming logic for data virtualization in a cloud-hosted data stor-
age infrastructure, so as to delegate most administrative tasks
to the cloud infrastructure, and effectively realizing the idea
of Data-As-A-Service. Furthermore, since big data, which is
now imperative in many contexts, may be obtuse, disorga-
nized, and may not make much sense to most potential users,
in order to get value from them, it is reasonable to resort to
data services built on top of massive amount of raw data.

In order to realize the promises of data services, in particu-
lar to foster their reuse, it is of vital importance to well docu-
ment and clearly specify their semantics. While most current
techniques manually associate APIs (Application Program-
ming Interface) to data services, and describe their intended
meaning with ad-hoc methods, often using natural language
or complex metadata [Carey et al., 2012], we propose a new
∗Work supported by MIUR under the SIR project “MODEUS” –

grant n. RBSI14TQHQ, and by Sapienza under the research project
“PRE-O-PRE”.

approach, whose goal is to automatically associate formal se-
mantic descriptions to data services. We base our proposal on
the Ontology-Based Data Access (OBDA) paradigm [Poggi
et al., 2008]. An OBDA specification consists of an ontology
expressed in Description Logic (DL) [Baader et al., 2003],
the schema of the data sources forming the information sys-
tem, and a mapping between the source schema and the ontol-
ogy. The ontology is a formal representation of the underlying
domain, and the mapping specifies the relationship between
the data at the sources and the elements in the ontology. The
semantics of data services can be thus expressed using the
elements of the domain ontology, which is assumed to be fa-
miliar to the consumer of data services.

But how can we automatically produce a semantic char-
acterization of a data service, having an OBDA specification
available? The idea is to exploit a new reasoning task over the
OBDA specification, that works as follows: we express the
data service in terms of a query over the sources, and we aim
at automatically deriving the query over the ontology that best
describes the data service, given the mapping. The following
example illustrates this idea.

Example 1. Let Σ = 〈O,S,M〉 be as follows:
O = { ErasmusStudent v Student,MathStudent v Student,

Student v ¬Professor }
S = { s1, s2, s3, s4, s5 }

M =

{ {(x) | s1(x)} → {(x) | Student(x)},
{(x) | s2(x)} → {(x) | Student(x)},
{(x) | s3(x)} → {(x) | Professor(x)},
{(x) | s1(x), s4(x, y)} → {(x) | ErasmusStudent(x)},
{(x) | s1(x), s5(x, y)} → {(x) | MathStudent(x)} }

One can verify that the query over O that best describes the
data service qS = {(x) | s1(x)} ∨ {(x) | s2(x)} in terms of
O is qO = {(x) | Student(x)}.

Most of (if not all) the literature about managing data
sources through an ontology [Lenzerini, 2018; Xiao et al.,
2018; Ortiz, 2018; Bienvenu, 2016] deals with user queries
expressed over the ontology, and studies the problem of find-
ing an ontology-to-source rewriting, i.e., a query over the
source schema that, once executed over the data, provides the
answers to the original query. Here, the problem is reversed,
because we start with a source query and we aim at deriving
a corresponding query over the ontology, called a source-to-
ontology rewriting (s-to-o rewriting for short). Thus, we deal
with a sort of reverse engineering problem, which is novel in

the investigation of both OBDA and data integration.
The notions introduced in this paper are relevant in a

plethora of scenarios. For the sake of brevity, we mention
only three of them. Following the ideas in [Cima, 2017], it
can be shown that our notions of s-to-o rewriting can be used
to provide the semantics of open datasets and open APIs pub-
lished by organizations, which is a key aspect for unchaining
all the potentials of open data. In [Lutz et al., 2018], the con-
cept of realization of source queries, similar to one of the no-
tions studied here, is used for checking whether the mapping
provides the right coverage for expressing the relevant data
services at the ontology level. Our notions are also useful for
a semantic-based approach to source profiling [Abedjan et al.,
2017], in particular for describing the structure and the con-
tent of a data source in terms of the business vocabulary.

The contributions provided by this paper can be summa-
rized as follows. We propose a formal framework for the
problem of semantically characterizing a data service through
an ontology (Section 3). We introduce the notions of perfect,
sound, and complete s-to-o rewritings, and we define two ba-
sic reasoning tasks, namely verification and computation. The
former checks whether a given query is an s-to-o rewriting of
a data service, whereas the latter computes one such rewrit-
ing. We show that, although the ideal notion is the one of
perfect s-to-o rewriting, there are cases where, with the given
mapping, no query over the ontology can precisely character-
ize the data service at hand. Thus, we introduce maximally
sound and minimally complete s-to-o rewritings, which intu-
itively aim at approximating the perfect s-to-o rewriting of a
data service at best, with the goal of either precision (sound
rewriting), or recall (complete rewriting).

We study both the verification, and the computation prob-
lem for complete (Section 4), sound (Section 5) and per-
fect (Section 6) s-to-o rewritings in one of the most popu-
lar OBDA setting considered in the literature, namely where
the ontology language is DL-LiteR, each mapping assertion
maps a conjunctive query (CQ) over the source to a CQ over
the ontology, and both the data service and the s-to-o rewrit-
ing are expressed as unions of CQs. For perfect and complete
s-to-o rewritings we present algorithms for verification and
computation, and characterize the complexity of both tasks.
For the case of sound s-to-o rewritings, we do the same for
verification, and then we precisely determine the cases where
a maximally sound rewriting is not guaranteed to exist.

We single out a restricted setting for OBDA specifications
that is still meaningful from the point of view of expressive
power, and guarantees the existence of maximally sound s-to-
o rewritings (Section 7). For such restricted setting, we pro-
vide algorithms and complexity results for verification and
computation of maximally sound s-to-o rewritings. Prelimi-
naries (Section 2), and conclusions (Section 8) complete the
paper.

To the best of our knowledge, the problem studied in this
paper has been (partially) addressed only in [Cima, 2017;
Lutz et al., 2018]. The former provides complexity upper
bounds for complete s-to-o rewritings, and the latter focuses
on both DL-LiteR and the EL family of ontology languages,
and studies perfect s-to-o rewritings only, under a slightly dif-
ferent semantics with respect to the one proposed here.

2 Preliminaries
We assume basic knowledge about databases [Abiteboul et
al., 1995] and DLs [Baader et al., 2003]. In what follows, we
use σ(x) to denotes the size of x.
Databases and queries. A database schema is a set of pred-
icate symbols, each with a specific arity, and a set of integrity
constraints. Given a schema S, an S-database D is a set of
facts P (~t) satisfying all integrity constraints in S, where P
is a predicate in S of arity n, and ~t is an n-uple of constants,
each taken from a denumerable infinite set of symbols, where
each such symbol is called an S-constant, or simply constant.

In its general form, an L-query q over a schema S is a
function in a certain class L that can be evaluated over an S-
databaseD to return a set of answers qD, each answer being a
tuple of constants. A conjunctive query (CQ) q over a schema
S is an expression of the form {~t | φ(~t, ~y)}, also denoted q(~t),
where ~t is a tuple of terms, each term being either a constant
or a variable, ~y is a tuple of variables not appearing in~t, called
the existential variables of q, and φ(~t, ~y) is either ⊥ (in this
case we also say that the whole q is⊥), or a finite conjunction
of atoms of the form P (t1, ..., tn), where P is an n-ary predi-
cate symbol of S and each tj is either a constant, or a variable
in ~t ∪ ~y. We call φ and ~t the body and target list of q, respec-
tively, and we sanction that every variable in ~t appears in φ. If
~t is empty, then the query is a boolean query. A union of CQs
(UCQ) is a union of a finite set of conjunctive queries (called
its disjuncts) with same arity. If not otherwise stated, we im-
plicitly assume that all CQs of a UCQ have the same target
list1. If q1, q2 are two queries with the same arity over S, q1

is contained in q2, denoted as q1 v q2 if for every S-database
D, qD1 ⊆ qD2 . Containment of CQs and UCQs is character-
ized in terms of homomorphism [Chandra and Merlin, 1977;
Sagiv and Yannakakis, 1980]. In what follows, we also con-
sider CQs with no existential variables occurring more than
once (CQJFE), and unions thereof (UCQJFE).
DL-LiteR ontologies. We consider ontologies expressed in
DL-LiteR, the member of the DL-Lite family [Calvanese et
al., 2007] that underpins OWL2QL [Motik et al., 2012], i.e.,
the profile of OWL2 especially designed for the OBDA sce-
narios. In DL-LiteR axioms have the following forms:

B1 v B2 R1 v R2 (concept/role inclusion)
B1 v ¬B2 R1 v ¬R2 (concept/role disjointness)

whereB1, B2 are basic concepts, i.e., expressions of the form
A, ∃P , or ∃P−, with A and P atomic concept (atomic con-
cepts include the universal concept >) and atomic role, re-
spectively, and R1 and R2 basic roles, i.e., expressions of the
form P , or P−. We will also consider one sublanguage of
DL-LiteR, namely DL-LiteRDFS, where both disjointness ax-
ioms, and concepts of the forms ∃P or ∃P− in the right-hand
side of the inclusion axioms, are ruled out.
OBDA. An OBDA specification Σ is a triple
〈O,S,M〉 [Poggi et al., 2008], where O is a DL on-
tology, S is a database schema, called the source schema,
andM is a set of mapping assertions (or simply mappings)

1All the results of this paper can be generalized to the case of
UCQs whose disjuncts may have different target lists.

relating S to O, i.e., assertions of the form qS → qO,
where qS and qO are CQs of the same arity over S and O,
respectively.

Mappings of the above form are called GLAV mappings.
Special cases are GAV (Global-as-View) and LAV (Local-as-
Views) mappings [Doan et al., 2012]: in a GAV (resp., LAV)
mapping, qO (resp., qS) is simply an atom without existential
variables. A GAV mapping is called pure if qO does not have
constants or repeated variables, i.e., it is either of the form
A(x), or R(x, y), with x, y different variables.

An interpretation B for O is a model for Σ relative to an
S-database D if (i) it is a model of O, and (ii) for every
mapping qS → qO in M, we have qDS ⊆ qBO , where qBO
denotes the answers of qO over the interpretation B (seen
as a database). The set of models for Σ relative to D is de-
noted by ModD(Σ), and D is said to be consistent with Σ if
ModD(Σ) 6= ∅.

If qS is a CQ, we denote byM(qS) the query obtained by
applying the chase [Maier et al., 1979] w.r.t. M to the so-
called freezing of qS , with the proviso thatM(qS) is ⊥ if qS
is ⊥, and > if its chase is empty. Note that the freezing of qS
is the database obtained by seeing the atoms of qS as facts.

Given an OBDA specification Σ = 〈O,S,M〉, a query
qO over O, and an S-database D, the certain answers of qO
w.r.t. Σ and D are the set of tuples ~t of S-constants such that
~t ∈ qBO , for every B ∈ ModD(Σ). An O-to-S Σ-rewriting
of a query qO over O is a query qS over S of the same arity
as qO such that for every S-database D, qDS is a subset of the
certain answers of qO w.r.t. Σ and D. A perfect O-to-S Σ-
rewriting of qO, denoted by certqO,Σ, is a query over S of the
same arity as qO such that for every S-database D, certDqO,Σ
coincides with the certain answers of qO w.r.t. Σ and D. We
say that query q1 over O is equivalent w.r.t. Σ to query q2

over O if certq1,Σ ≡ certq2,Σ. It is easy to see that, with a
slight modification for taking care of the presence of > and
⊥ in queries, we can use the results in [Levy et al., 1995] to
show that, if O has no axiom, and qO is a UCQ over O, one
can compute a UCQ over S, denoted by REWM(qO), that is
equivalent to certqO,Σ.

We conclude the section with some observations about
the case where the ontology O in Σ is a DL-LiteR ontol-
ogy. In this case, it is well-known (see, e.g., [Poggi et al.,
2008]) that an S-database D is consistent with Σ if and only
if certDVO,Σp = ∅, where Σp is obtained from Σ by elim-
inating the disjointness axioms from O, and VO is the O-
violation query, i.e., the boolean UCQ obtained by includ-
ing a CQ qd for each disjointness axiom, where qd has the
form {()|B1(x) ∧ B2(x)} (resp., {()|R1(x, y) ∧ R2(x, y)})
for the axiom B1 v ¬B2 (resp., R1 v ¬R2). Also, we de-
note by Vt1,...,tnO the UCQ overO with target list (t1, . . . , tn)
obtained by adding >(t1) ∧ . . . ∧ >(tn) (written also as
>(t1, . . . , tn)) to each of the disjuncts of VO.

If qO is a (U)CQ-query over O, we denote by Per-
fRefqO,O the UCQ computed by executing the algorithm
PerfectRef described in [Calvanese et al., 2007] on qO and
O (again, slightly modified to take care of > and ⊥), and
by PerfRefqO,Σ the UCQ REWM(PerfRefqO,O). Note that
PerfectRef ignores the disjointness axioms in O, and if D

is consistent with Σ, then PerfRefDqO,Σ computes exactly
certDqO,Σ. From these observations, and exploiting the results
in [Calvanese et al., 2012; Levy et al., 1995], it is possible to
prove that for an OBDA specification Σ = 〈O,S,M〉, if O
is a DL-LiteR ontology, and qO(~t) is a (U)CQ-query over O,
then certqO,Σ ≡ PerfRefqO,Σ ∨ PerfRefV~tO,Σ

.

3 Framework
We implicitly refer to an OBDA specification Σ =
〈O,S,M〉. Intuitively, given a data service expressed as a
query qS over S, we aim at finding the query over O that
precisely characterizes qS w.r.t. Σ. Since the evaluation of
queries over O is based on certain answers, this means that
we aim at finding a query overO whose certain answers w.r.t.
Σ and D exactly capture the answers of qS w.r.t. D, for ev-
ery S-database D. So, we are naturally led to the notion of
perfect s-to-o rewriting. In what follows, qS refers to a query
over S, and qO to a query over O of the same arity.
Definition 2. qO is a perfect S-to-O Σ-rewriting of qS if for
every S-database D, ModD(Σ) 6= ∅ implies qDS = certDqO,Σ.

The above notion is similar, but not equivalent, to the no-
tion of realization in [Lutz et al., 2018]. Indeed, while the
latter sanctions that qDS = certDqO,Σ for all S-databases, in
our notion the condition is limited to the S-databases that are
consistent with Σ. The difference between the two notions is
highlighted by the following example.
Example 3. Refer to Example 1, and consider again the
query qS = {(x) | s1(x)} ∨ {(x) | s2(x)} over S, and the
query qO = {(x) | Student(x)} over O. For the S-database
D = {s1(a), s3(a), s4(a, b)}, we have that qDS = {〈a〉},
while, since D is inconsistent with Σ, certDqO,Σ contains all
S-constants of D (including, for example, the tuple 〈b〉). It
follows that qO is not a realization of qS in Σ, whereas, since
qDS = certDqO,Σ for every S-databaseD consistent with Σ, qO
is a perfect S-to-O Σ-rewriting of qS .

As noted in [Cima, 2017; Lutz et al., 2018] and illustrated
in the next example, perfect s-to-o rewritings may not exist.
Example 4. Refer again to Example 1, and consider the data
service expressed as the source query qS = {(x) | s1(x)}. By
inspecting the mappings, one can see that, since the certain
answers of Student include the values stored both in s1 and in
s2, such concept is too general for exactly characterizing qS .
On the other hand, both ErasmusStudent and MathStudent
are too specific, and therefore we can conclude that no perfect
S-to-O Σ-rewriting of qS exists.

In order to cope with the situations illustrated in the ex-
ample, we introduce the notions of sound and complete s-to-
o rewritings, which, intuitively, provide sound and complete
approximations of perfect rewritings, respectively.
Definition 5. qO is a sound (respectively, complete) S-to-O
Σ-rewriting of qS if for every S-database D, ModD(Σ) 6= ∅
implies certDqO,Σ ⊆ q

D
S (resp., qDS ⊆ certDqO,Σ).

Example 6. We refer to Example 4, and observe that {(x) |
ErasmusStudent(x)∧MathStudent(x)} is a sound S-to-O Σ-
rewriting of qS = {(x) | s1(x)}, whereas {(x) | Student(x)}
is a complete S-to-O Σ-rewriting of qS .

Obviously, qO is a perfect S-to-O Σ-rewriting of qS if and
only if qO is a sound and complete S-to-O Σ-rewriting of qS .
There are also interesting relationships between the notions
of S-to-O Σ-rewritings introduced here and the usual notions
of rewritings studied in OBDA.
Proposition 7. qO is a complete S-to-O Σ-rewriting of qS
if and only if qS is an O-to-S Σ-rewriting of qO. If qS is a
perfect O-to-S Σ-rewriting of qO, then qO is a perfect S-to-
O Σ-rewriting of qS .

It is easy to see that different sound or complete s-to-o
rewritings of qS may exist, and therefore it is reasonable to
look for the “best” approximations of qS , at least relative to a
certain class of queries.
Definition 8. qO ∈ L is an L-maximally sound (respectively,
L-minimally complete) S-to-O Σ-rewriting of qS if qO is a
sound (respectively, complete) S-to-O Σ-rewriting of qS , and
no q′ ∈ L exists such that (i) q′ is a sound (resp., complete)
S-to-O Σ-rewriting of qS , (ii) certqO,Σ v certq′,Σ (resp.,
certq′,Σ v certqO,Σ), and (iii) there exists an S-database D
s.t. certDqO,Σ ⊂ certDq′,Σ (resp., certDq′,Σ ⊂ certDqO,Σ).
Example 9. We refer again to Example 4, and observe that
while {(x) | Student(x)} is a minimally complete S-to-O Σ-
rewriting of qS = {(x) | s1(x)} in the class of UCQs, both
{(x) | ErasmusStudent(x)}, and {(x) | MathStudent(x)}
are maximally sound S-to-O Σ-rewritings of qS in the class
of CQs, while qO = {(x) | ErasmusStudent(x)} ∨ {(x) |
MathStudent(x)} is so in the class of UCQs.

Given the general framework presented so far, it is natural
to consider the following two basic computational problems,
for classes LS and LO of queries:

• Verification: given Σ = 〈O,S,M〉, qS ∈ LS over S
and qO ∈ LO over O of the same arity as qS , verify
whether qO is a sound (resp., complete, perfect) S-to-O
Σ-rewritings of qS .

• Computation: given Σ = 〈O,S,M〉, and qS ∈ LS
over S compute any LO-maximally sound (resp., LO-
minimally complete, perfect) S-to-O Σ-rewriting of qS ,
if it exists.

In the rest of this paper, if not otherwise stated, we refer
to the most common setting studied in OBDA, i.e., where (i)
the ontology is expressed in DL-LiteR, (ii) S is a relational
database schema without integrity constraints, and (iii) both
LO and LS denote the class of UCQs. Interestingly, in this
case, we have the following.
Proposition 10. If q1 and q2 are UCQ-minimally complete
(resp., UCQ-maximally sound) S-to-O Σ-rewritings of qS ,
then they are equivalent w.r.t. Σ.

4 Complete source-to-ontology rewritings
In this section, we study both the verification and the compu-
tation problem for complete s-to-o rewritings.
Verification. Suppose we want to check whether qO is a com-
plete S-to-O Σ-rewriting of qS . Obviously, if qS is contained
in PerfRefqO,Σ, then for every S-database D consistent with
Σ, we have that qDS ⊆ certDqO,Σ and therefore the answer is

positive. However, if qS is not contained in PerfRefqO,Σ, it
might be that qO is still a complete S-to-O Σ-rewriting of
qS , in particular in the case where the non-emptiness of qS in
D reveals the presence of inconsistencies. From this observa-
tion, we derive the following characterization.

Proposition 11. qO is a complete S-to-O Σ-rewriting of
qS(~t) if and only if qS v PerfRefqO,Σ ∨ PerfRefV~tO,Σ

.

The following theorem characterizes the complexity of ver-
ification for complete s-to-o rewritings.

Theorem 12. The verification problem for complete s-to-o
rewritings is NP-complete.

Proof sketch. As for the upper bound, we show how to
check the containment qS(~t) v PerfRefqO,Σ ∨ PerfRefV~tO,Σ
in NP. For every disjunct q of qS , (i) we guess a query q′
over O with the same arity of qO and size at most the max-
imum between σ(qO) and σ(V~tO), a sequence ρ of ontology
axioms, a query q′′ over S of size σ(M)× σ(q′) and a func-
tion φ from the variables of q′′ to the variables q, and (ii) we
check in PTIME whether we can rewrite either qO or V~tO into
q′ through ρ, q′′ is in REWM(q′), and φ is a homomorphism
from q′′ to q.

As for the lower bound, the proof of NP-hardness is by
a LOGSPACE reduction from the 3-COLOURABILITY
problem, which is NP-complete [Garey et al., 1976].

We point out that the result of NP-hardness holds even
whenO is empty,M is both a pure GAV mapping and a LAV
mapping, and qS , qO are boolean CQs.

Computation. Our algorithm for the computation of mini-
mally complete s-to-o rewritings is below.

Algorithm 1
Input: Σ = 〈O,S,M〉, qS(~t) = q1

S(~t) ∨ . . . ∨ qnS(~t) over S
Output: qO(~t) over O
begin

return qO =
∨n
i=1{~t | M(qiS) ∧ >(~t)}

end

Intuitively, the algorithm computes the output query as
union of CQs obtained by simply applying the mapping M
to each CQ qiS in qS , using > to bind the variables that are
not involved in the application ofM to qiS .

Theorem 13. Algorithm 1 computes the UCQ-minimally
complete S-to-O Σ-rewriting of qS .

The algorithm shows that the UCQ-minimally complete S-
to-O Σ-rewriting of qS always exists. Moreover, if qS is a CQ,
then it is a CQ. Finally, we observe that the complexity of Al-
gorithm 1 does not depend on O and is in PTIME in σ(qS).
Moreover, it is in EXPTIME in σ(M), since it essentially ap-
plies the chase using the queries in the mapping. It can be
shown that an algorithm for computing the UCQ-minimally
complete s-to-o rewritings that is PTIME in the size of all in-
puts would imply a PTIME algorithm for CQ containment.
So, assuming PTIME 6= NP, the computation problem cannot
be solved in PTIME.

5 Sound source-to-ontology rewritings
We now turn to both the verification and the computation
problem for sound s-to-o rewritings.
Verification. We remind the reader that, for an S-database D
consistent with Σ, PerfRefDqO,Σ computes exactly certDqO,Σ.
So, intuitively, checking whether qO is a sound S-to-O Σ-
rewriting of qS means checking whether for all S-databases
D, either ModD(Σ) = ∅ or PerfRefDqO,Σ ⊆ qDS . This obser-
vation leads to the following characterization.

Proposition 14. qO(~t) is a sound S-to-O Σ-rewriting of qS
if and only if PerfRefqO,Σ v qS ∨ PerfRefV~tO,Σ

.

The following theorem characterizes the complexity of the
verification problem for sound s-to-o rewritings.
Theorem 15. The verification problem for sound s-to-o
rewritings is Πp

2-complete.
Proof sketch. As for the upper bound, we show that check-

ing PerfRefqO(~t),Σ 6v qS∨PerfRefV~tO,Σ
can be done in Σp2: we

guess a CQ q1 over S whose size is at most σ(M) × σ(qO),
we check in PTIME whether q1 is a disjunct of PerfRefqO,Σ,
similarly to what described in Theorem 12, and then we use
an NP oracle to check q1 6v qS ∨ PerfRefV~tO,Σ

, again using
the method mentioned in Theorem 12.

As for the lower bound, the proof of Πp
2-hardness is by a

LOGSPACE reduction from the ∀∃-CNF problem, which is
Πp

2-complete [Stockmeyer, 1976].

We point out that the result of Πp
2-hardness holds even

when O is empty, M is both a GAV mapping and a LAV
mapping, and qS , qO are boolean CQs.
Computation. We address the problem of computing UCQ-
maximally sound s-to-o rewritings. Our main result is that
there are many cases where a UCQ-maximally sound s-to-o
rewriting of a query is not guaranteed to exist. To illustrate
the result, we introduce a specific setting for OBDA specifi-
cations, that we call restricted, obtained from the general one
by: (i) limiting the ontology language to DL-LiteRDFS, (ii)
limiting the mapping to pure GAV, and (iii) limiting qS to
UCQJFEs. We now show that, surprisingly, as soon as we try
to extend such setting, we lose the guarantee of the existence
of s-to-o rewritings that are maximally sound in the class of
UCQs.
Theorem 16. UCQ-maximally sound s-to-o rewritings of a
query qS may not exist if we extend the restricted setting with
each of the following features:

1. disjointness axioms in the ontology;
2. inclusion axioms with ∃R as right-hand side in the on-

tology;
3. LAV mapping assertions, even without joins involving

existential variables in the right-hand side;
4. non-pure GAV mapping assertions;
5. qS in a fragment of CQs going beyond CQJFEs.
Proof sketch. We present the proof for case 5. Consider the

OBDA specification Σ = 〈O,S,M〉, whereO has no axiom,
andM consists of the following pure GAV mappings:
{(x, y) | s1(y, y) ∧ s3(x)} → {(x, y) | R(x, y)}
{(x, y) | s1(x, y)} → {(x, y) | R(x, y)}

and let qS be the query {() | s1(x, y) ∧ s1(y, z)}. Observe
that q′O = {() | R(x, y) ∧ R(y, z)} is a complete S-to-O
Σ-rewriting of qS , but is not sound, because the query q′S =
{() | s1(x, y)∧ s1(z, z)∧ s3(y)} is a disjunct of PerfRefq′O,Σ
such that q′S 6v qS . Conversely, one can verify that each of
the following queries is a sound S-to-O Σ-rewriting of qS :

• q0 = {() | R(x, y) ∧R(y, y)},
• q1 = {() | R(x, y) ∧R(y, z1) ∧R(z1, y)},
• q2 = {() | R(x, y) ∧R(y, z1) ∧R(z1, z2) ∧R(z2, y)},
• . . .

More precisely, if we define qn to be {() |R(x, y)∧R(y, z1)∧
R(z1, z2) ∧ . . . ∧ R(zn−1, zn) ∧ R(zn, y)}, for n ≥ 2,,
then it can be shown that every qn is a sound S-to-O Σ-
rewriting of qS , and for no pair (i, j), with i 6= j, i, j ≥ 0,
certqi,Σ v certqj ,Σ. It follows that the infinite union of q0,
q1, and all qn’s can be shown to be the maximally sound S-
to-O Σ-rewriting of qS in the class of positive queries.

It remains to study sound s-to-o rewritings in the restricted
setting. We do so in Section 7.

6 Perfect source-to-ontology rewritings
Both the verification and the computation problem for per-
fect s-to-o rewritings can be addressed by combining the tech-
niques illustrated in the previous sections. As for verification,
we can check whether qO(~t) is a perfect S-to-O Σ-rewriting
of qS(~t′) by checking both PerfRefqO,Σ v qS ∨ PerfRefV~tO,Σ
and qS v PerfRefqO,Σ ∨ PerfRefV ~t′O ,Σ

. As for computation,
we can first compute the query qO that is the UCQ-minimally
complete S-to-O Σ-rewriting of qS , and then check whether
qO is a sound S-to-O Σ-rewriting of qS . If the answer is posi-
tive, we return qO, otherwise we report that no perfect rewrit-
ing exists. From the above observation we derive the follow-
ing: (i) all complexity results illustrated for the case of sound
s-to-o rewritings hold for perfect rewritings as well, and (ii)
if qS is a CQ, then either its perfect S-to-O Σ-rewriting does
not exist, or it is a CQ as well.

Finally, we briefly discuss the case of perfect rewritings un-
der the semantics used in [Lutz et al., 2018], that imposes the
condition qDS = certDqO,Σ for all S-databases. From the re-
sults presented in the previous sections, it follows that qO(~t)

is a perfect S-to-O Σ-rewriting of qS(~t′) under such seman-
tics if and only if qS ≡ PerfRefqO,Σ ∨ PerfRefV~tO,Σ

. This
allows us to easily derive algorithms and complexity bounds
for both verification and computation in this case, too.

7 Restricted setting
We now deal with the restricted setting mentioned at the
end of Section 5. Before delving into the technical part, we
observe that, despite its limitations, the expressive power
of this setting is sufficient for several meaningful applica-
tions. Indeed, several popular ontologies are expressible in
DL-LiteRDFS (e.g., Dublin Core [Weibel et al., 1998] and
SKOS [Miles and Bechhofer, 2009]), and the form of pure
GAV mapping is exactly the one originally defined in the
literature of data integration. Moreover, UCQJFEs captures
data services expressible in the famous USPJ (Union, Select,

Project, Join) fragment of Relational Algebra [Codd, 1970],
with the only limitation that joining variables cannot be pro-
jected out. Note that such fragment is the one needed for all
tasks related to source profiling [Abedjan et al., 2017].
Verification. Let us start with the following crucial definition.
Definition 17. Let q1(~t) and q2(~t) be two CQs, and let F1 =
S(t1,1, . . . , t1,n) and F2 = S(t2,1, . . . , t2,n) be two atoms of
q1 and q2, respectively. We say that F1 instantiates F2, if for
every i = 1, . . . , n, we have that if t2,i is a term of ~t or a
constant, then t2,i = t1,i.

Clearly, given atoms F1 in q1 and F2 in q2, checking
whether F1 instantiates F2 can be done in PTIME. Based on
this observation, the following lemma shows that checking
whether a UCQ is contained in a UCQJFE is tractable.
Lemma 18. Given a UCQ q1 and a UCQJFE q2 of the same
arity, checking whether q1 v q2 can be done in PTIME.

We are now ready to characterize the complexity of verifi-
cation in the restricted setting.
Theorem 19. The verification problem for sound s-to-o
rewritings in the restricted setting is coNP-complete, and can
be solved in PTIME when qS is a CQJFE.

Proof sketch. The coNP upper bound is obtained by notic-
ing that we have to guess a disjunct q1 of PerfRefqO,Σ and
then check whether q1 is not contained in qS , which, by virtue
of Lemma 18, can be done in PTIME. The coNP lower bound
is shown by reduction from VALIDITY. To show that veri-
fication is in PTIME when qS is a CQJFE, we notice that, for
the characteristics on the OBDA setting, for every q(~t) in qO,
PerfRefq,Σ =

∧
α∈q PerfRefqα,Σ, where qα is the query with

body α and target list the tuple of variables that occur both
in ~t and α. Hence, verification can be solved by checking, for
every atom F in qS and every query q in qO, whether there is
an atom G in q such that all disjuncts of PerfRefqG,Σ contain
at least one atom that instantiates F . Clearly, this can be done
in PTIME w.r.t. σ(qS), σ(M), and σ(qO).

We observe that, as long as qS is a UCQJFE, the coNP up-
per bound holds even whenO is expressed in the fragment of
DL-LiteR that does not admit disjointness axioms, andM is
GLAV, while the coNP-hardness holds even whenO is empty,
M is a set of both pure GAV and LAV mappings, qO is a CQ,
and both qS and qO have no existential variables.
Computation. We provide an algorithm to compute the max-
imally sound s-to-o rewritings, thus proving that in the re-
stricted setting, for each query qS , the maximally sound s-to-
o rewriting of qS always exists.

Let γ(M) be the number of mapping assertions inM and
η(qS) the number of distinct atoms appearing in qS . More-
over, let bound(qS) = 1+γ(M)+γ(M)2+. . .+γ(M)η(qS)

if qS is a UCQJFE, and bound(qS) = η(qS) if qS is a CQJFE.
The following lemma shows that we can limit our attention to
queries with at most bound(qS) atoms when we search for
the maximally sound S-to-O Σ-rewriting of qS .
Lemma 20. If a CQ qO(~t) is a sound S-to-O Σ-rewriting
of qS , then there exists a CQ q′O(~t) which is a sound S-to-O
Σ-rewriting of qS whose body is the conjunction of m atoms
appearing in qO, where m ≤ bound(qS).

The following algorithm derives immediately.
Algorithm 2
Input: Σ = 〈O,S,M〉, qS (U)CQJFE over S
Output: qO over O
begin
qO := ⊥
for each query q over O with at most bound(qS)

atoms, involving only constants from qS and M
if q is a sound S-to-O Σ rewriting of qS then qO := qO ∨ q

return qO
end

Note that the disjuncts of query qO computed by Algorithm
2 do not have necessarily the same target list.
Theorem 21. Algorithm 2 computes the UCQ-maximally
sound S-to-O Σ-rewriting of qS .

Proof sketch. It is immediate to verify that the query re-
turned by the algorithm is a sound S-to-O Σ-rewriting of qS .
To show that it is the maximally sound S-to-O Σ-rewriting of
qS , we proceed by contradiction, i.e., by assuming that there
exists a CQ q′ such that PerfRefq′,Σ v qS and PerfRefq′,Σ 6v
PerfRefq′O,Σ, for every disjunct q′O of qO, where qO is the
query computed by Algorithm 2. Let q′′ be obtained by sub-
stituting in q′ each constant neither in qS nor in M (if any)
with a new fresh existential variable. It can be shown that in
the restricted case, q′′ would be such that PerfRefq′′,Σ v qS .
Also, letm be the number of atoms of q′′. Ifm > bound(qS),
by Lemma 20, there exists a query q̄ that is a sound S-to-O
rewriting of qS whose body is the conjunction of m̄ atoms
appearing in q′′, where m̄ ≤ bound(qS). But then, since
q̄ possibly contains only constants in qS or M and since
m̄ ≤ bound(qS), by construction, q̄ would be a disjunct of
qO and we get a contradiction. Finally, if m ≤ bound(qS),
we obtain a contradiction, by a similar argument.

It can be shown that Algorithm 2 (i) computes the unique
(up to equivalence w.r.t. Σ) maximally sound S-to-O Σ-
rewriting of qS in the class of monotone queries, (ii) is
PTIME in σ(O) and σ(M), and EXPTIME in η(qS). Finally,
we can show that (i) assuming PTIME 6= NP, the computa-
tion problem cannot be solved in PTIME, and (ii) there are
cases where the number of atoms of the maximally sound S-
to-O Σ-rewriting of qS is necessarily exponential w.r.t. η(qS).

8 Conclusion
We have presented a framework for semantically characteriz-
ing data services through ontologies, and carried out a com-
prehensive analysis for the most common OBDA setting, in-
cluding a restricted setting, still useful in practice. We plan
to continue this work along several directions. For example,
in the unrestricted setting, it would be interesting to study the
problem of checking for the existence of a UCQ-maximally
sound source-to-ontology rewriting of a query, and comput-
ing it in case it exists. Also, still for the unrestricted setting,
we aim at singling out the minimal class LO of queries that
guarantees the existence of an LO-maximally sound source-
to-ontology rewriting of a query qS . Furthermore, we will ex-
tend our analysis to OBDA settings going beyond the one
based on DL-LiteR, for example by considering DL-LiteA,
the EL family, or other DLs as ontology languages.

References
[Abedjan et al., 2017] Ziawasch Abedjan, Lukasz Golab,

and Felix Naumann. Data profiling: A tutorial. In Proc.
of the ACM SIGMOD Int. Conf. on Management of Data,
pages 1747–1751, 2017.

[Abiteboul et al., 1995] Serge Abiteboul, Richard Hull, and
Victor Vianu. Foundations of Databases. Addison Wesley
Publ. Co., 1995.

[Baader et al., 2003] Franz Baader, Diego Calvanese, Deb-
orah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: The-
ory, Implementation and Applications. Cambridge Univer-
sity Press, 2003.

[Bienvenu, 2016] Meghyn Bienvenu. Ontology-mediated
query answering: Harnessing knowledge to get more from
data. In Proc. of the 25th Int. Joint Conf. on Artificial In-
telligence (IJCAI), pages 4058–4061, 2016.

[Calvanese et al., 2007] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query an-
swering in description logics: The DL-Lite family. J. of
Automated Reasoning, 39(3):385–429, 2007.

[Calvanese et al., 2012] Diego Calvanese, Giuseppe De Gi-
acomo, Maurizio Lenzerini, and Riccardo Rosati. View-
based query answering in description logics: Semantics
and complexity. J. of Computer and System Sciences,
78:26–46, 2012.

[Carey et al., 2012] Michael J. Carey, Nicola Onose, and
Michalis Petropoulos. Data services. Communications of
the ACM, 55(6):86–97, 2012.

[Chandra and Merlin, 1977] Ashok K. Chandra and
Philip M. Merlin. Optimal implementation of con-
junctive queries in relational data bases. In Proc. of the
9th ACM Symp. on Theory of Computing (STOC), pages
77–90, 1977.

[Cima, 2017] Gianluca Cima. Preliminary results on
ontology-based open data publishing. In Proc. of the
30th Int. Workshop on Description Logic (DL), volume
1879 of CEUR Electronic Workshop Proceedings, http:
//ceur-ws.org/, 2017.

[Codd, 1970] E. F. Codd. A relational model of data for
large shared data banks. Communications of the ACM,
13(6):377–387, 1970.

[Doan et al., 2012] AnHai Doan, Alon Y. Halevy, and
Zachary G. Ives. Principles of Data Integration. Morgan
Kaufmann, 2012.

[Garey et al., 1976] Michael R. Garey, David S. Johnson,
and Larry J. Stockmeyer. Some simplified NP-complete
graph problems. Theoretical Computer Science, 1(3):237–
267, 1976.

[Lenzerini, 2018] Maurizio Lenzerini. Managing data
through the lens of an ontology. AI Magazine, 39(2):65–
74, 2018.

[Levy et al., 1995] Alon Y. Levy, Alberto O. Mendelzon,
Yehoshua Sagiv, and Divesh Srivastava. Answering
queries using views. In Proc. of the 14th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Sys-
tems (PODS), pages 95–104, 1995.

[Lutz et al., 2018] Carsten Lutz, Johannes Marti, and Leif
Sabellek. Query expressibility and verification in
ontology-based data access. In Proc. of the 16th Int. Conf.
on the Principles of Knowledge Representation and Rea-
soning (KR), pages 389–398, 2018.

[Maier et al., 1979] David Maier, Alberto O. Mendelzon,
and Yehoshua Sagiv. Testing implications of data depen-
dencies. ACM Trans. on Database Systems, 4(4):455–469,
1979.

[Miles and Bechhofer, 2009] Alistair Miles and Sean Bech-
hofer. SKOS Simple Knowledge Organization Sys-
tem. W3C Recommendation, World Wide Web Consor-
tium, 2009. Available at http://www.w3.org/TR/
skos-reference.

[Motik et al., 2012] Boris Motik, Bernardo Cuenca Grau,
Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten Lutz.
OWL 2 Web Ontology Language profiles (second edi-
tion). W3C Recommendation, World Wide Web Consor-
tium, 2012. Available at http://www.w3.org/TR/
owl2-profiles/.

[Ortiz, 2018] Magdalena Ortiz. Improving data management
using domain knowledge. In Proc. of the 27th Int. Joint
Conf. on Artificial Intelligence (IJCAI), pages 5709–5713,
2018.

[Poggi et al., 2008] Antonella Poggi, Domenico Lembo,
Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenz-
erini, and Riccardo Rosati. Linking data to ontologies. J.
on Data Semantics, X:133–173, 2008.

[Sagiv and Yannakakis, 1980] Yehoshua Sagiv and Mihalis
Yannakakis. Equivalences among relational expressions
with the union and difference operators. J. of the ACM,
27(4):633–655, 1980.

[Stockmeyer, 1976] Larry J. Stockmeyer. The polynomial-
time hierarchy. Theoretical Computer Science, 3(1):1–22,
1976.

[Weibel et al., 1998] Stuart Weibel, John A. Kunze, Carl
Lagoze, and Misha Wolf. Dublin core metadata for re-
source discovery. Request for Comments, 2413:1–8, 1998.

[Xiao et al., 2018] Guohui Xiao, Diego Calvanese, Roman
Kontchakov, Domenico Lembo, Antonella Poggi, Ric-
cardo Rosati, and Michael Zakharyaschev. Ontology-
based data access: A survey. In Proc. of the 27th Int. Joint
Conf. on Artificial Intelligence (IJCAI), pages 5511–5519,
2018.

[Zheng et al., 2013] Zibin Zheng, Jieming Zhu, and
Michael R. Lyu. Service-generated big data and big
data-as-a-service: An overview. In Proc. of the 2013 IEEE
Int. Conf. on Big Data, pages 403–410, 2013.

http://ceur-ws.org/
http://ceur-ws.org/
http://www.w3.org/TR/skos-reference
http://www.w3.org/TR/skos-reference
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/

	Introduction
	Preliminaries
	Framework
	Complete source-to-ontology rewritings
	Sound source-to-ontology rewritings
	Perfect source-to-ontology rewritings
	Restricted setting
	Conclusion

