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Disordered XY model: Effective medium theory and beyond
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We study the effect of uncorrelated random disorder on the temperature dependence of the superfluid stiffness
in the two-dimensional classical XY model. By means of a perturbative expansion in the disorder potential,
equivalent to the T -matrix approximation, we provide an extension of the effective-medium-theory result able
to describe the low-temperature stiffness and its separate diamagnetic and paramagnetic contributions. These
analytical results provide an excellent description of the Monte Carlo simulations for two prototype examples
of uncorrelated disorder. Our findings offer an interesting perspective on the effects of quenched disorder on
longitudinal phase fluctuations in two-dimensional superfluid systems.
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I. INTRODUCTION

Despite its original formulation in terms of planar spins,
the XY model has been extensively investigated in the litera-
ture in the context of superconducting (SC) systems, which
belong to the same universality class. From one side, the
quantum XY model properly describes the Josephson-like
interactions between SC grains in artificial arrays [1]. From
the other side, even for homogeneous superconductors phase
fluctuations at low temperature can be effectively described by
coarse-grained XY-like models [2–6]. Within this context the
equivalent of the Heisenberg interaction J for spins becomes
the energy scale connected to phase fluctuations, i.e., the
superfluid stiffness Js = n2D

s /4m, where n2D
s = n3d

s d is the
effective two-dimensional superfluid density, and the length
scale d is the smallest between the SC coherence length
and the sample thickness. In the specific case of quasi-tow-
dimensional (quasi-2D) systems, as thin SC films, the 2D XY
model allows also for a proper description of the topological
phase transition due to the unbinding of vortexlike excitations,
as described by the Berezinskii-Kosterlitz-Thouless (BKT)
theory [7–9].

While in conventional clean superconductors J is a much
larger energy scale than the SC gap �, making phase-
fluctuation effects usually irrelevant, the suppression of J in
disordered superconductors or in unconventional ones brings
back the issue of their possible role. In particular, it has been
proven experimentally [10–15] that thin films of conventional
superconductors at the verge of the superconductor-insulator
transition (SIT) display a finite gap � above Tc, suggest-
ing that the phase transition is driven by phase coherence
more than pairing [16–21]. Moreover, at strong disorder
the SC ground state itself shows an emergent inhomogene-
ity [11,14,22–25], leading to a granular SC landscape. These
findings suggest a mapping of the SC problem into an effec-
tive disordered bosonic system [26,27], whose phase degrees
of freedom are conveniently described by quantum disor-
dered XY models. The underlying inhomogeneity triggers
interesting effects, such as the contribution of longitudinal

quantum phase modes to the anomalous subgap optical ab-
sorption [28–32] as observed near the SIT [33–39] or in films
of nanoparticles [32,40,41]. The nontrivial space structure of
disorder can also have remarkable effects on the behavior of
transverse (vortexlike) fluctuations in the classical limit, as we
have recently investigated by means of Monte Carlo simula-
tions [42,43]. Indeed, by modeling the emergent granularity of
the SC landscape with space-correlated inhomogeneous local
couplings, we have shown that the anomalous nucleation of
vortices in the bad SC regions can lead to a substantial smear-
ing of the BKT superfluid-stiffness jump at the transition, in
agreement with the systematically broadened jumps observed
experimentally in thin films of both conventional [44–48]
and unconventional [49–51] superconductors. Apart from the
smearing of the BKT jump, in Ref. [42] it was observed
that disorder can affect the low-temperature behavior of the
superfluid stiffness in a nontrivial way, depending both on
the variance of the disorder probability distribution and on its
spatial correlations.

These findings call for a deeper investigation of the general
role of low-temperature phase fluctuations in classical disor-
dered XY models. Here we address this problem by combin-
ing Monte Carlo simulations with an analytical diagrammatic
expansion. We start with the XY Hamiltonian:

HXY = −
∑

i,μ=x̂,ŷ

Jμ
i cos(θi − θi+μ), (1)

where disorder is encoded in the local couplings Jμ
i . We

consider two possible types of spatially uncorrelated disorder.
The first one is the case of a Gaussian distribution, which is
usually employed to mimic relatively weak fluctuations of the
local stiffnesses around a given mean value. The second one
is the diluted model, where a fraction p of the couplings is
taken to be equal to zero, mimicking the local suppression
of the Josephson coupling between neighboring SC regions
due to disorder. Despite being a model without specific
spatial correlations for the disorder, its SC properties are,
nonetheless, ultimately dominated by the global phenomenon
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of percolation [52]. By means of Monte Carlo simulations
we compute the temperature dependence of the superfluid
stiffness for increasing disorder. These results are compared
with the analytical derivation of the low-temperature stiffness
obtained from the calculation of the self-energy corrections
to the phase propagator due to disorder. By resumming in the
disorder, within the on-site T -matrix scheme [53], we derive
a self-consistence equation for the stiffness that is formally
equivalent to the results obtained in the effective-medium-
theory approximation (EMA) [28,52]. This approach allows
us to generalize the EMA result to include finite-temperature
corrections. The derived analytical formulas are in excellent
agreement with the Monte Carlo simulations and allow one to
capture the role played by different disorder models for the
thermal activation of longitudinal phase fluctuations.

The plan of the paper is the following. In Sec. II, we
briefly review the standard results expected for the clean XY
model. In Sec. III, we consider the disordered case. After
reviewing the equivalence with the random-resistor-network
problem, we first solve the zero-temperature case (Sec. III A),
recovering the analogy between the T -matrix resummation in
the disorder potential and the EMA not only for the global
stiffness but also for the separate diamagnetic and paramag-
netic contributions. In Sec. III B, we use the same strategy to
derive a modified EMA equation able to include the finite-
temperature corrections to the stiffness in the presence of
disorder. In Sec. IV, we compare these analytical expressions
with the numerical results obtained by means of Monte Carlo
simulations. Section V contains the closing discussion and
remarks.

II. TEMPERATURE DEPENDENCE OF THE STIFFNESS
IN THE CLEAN CASE

Before discussing the role of disorder, we start by briefly
recalling the standard results expected for the clean XY
model. We will thus consider the model (1) on an L × L = N
two-dimensional square lattice with homogeneous couplings
Jμ

i = J . The superfluid stiffness is the response to a transverse
gauge field, which can be minimally coupled to the SC phase
by the replacement

HXY = −J
∑

i,μ=x̂,ŷ

cos(θi − θi+μ + Aμ). (2)

As usual, due to the periodic boundary conditions, applying
a constant field A along, say, the x direction is equivalent to
considering twisted boundary conditions for the phase, with
a total flux φ = AxL (in units of �0 = hc/2e for the SC
case) through the sample. The current density is defined as
Ix = −N−1∂H/∂Ax, so that at leading order in Ax one has

Ix = − J

N

∑
i

sin(θi − θi+x̂ + Ax )

� − J

N

∑
i

[sin(θi − θi+x̂ ) + cos(θi − θi+x̂ )Ax], (3)

where the first term defines the paramagnetic current and the
second one is the diamagnetic response. By computing the

average current by linear response in Ax and defining the
stiffness as Js = −〈Ix〉/Ax one has

Js = Jd − Jp, (4)

Jd = J

N

〈∑
i

cos(θi − θi+x̂ )

〉
, (5)

Jp = J2

NT

〈[∑
i

sin(θi − θi+x̂ )

]2〉
, (6)

where T is the temperature. In Eq. (3) the second term is
already linear in the external perturbation; thus, in linear
response theory one can directly compute its average value
leading to the diamagnetic contribution Jd of Eq. (5), which
coincides in this case with the average energy density along
the x direction. The first term in Eq. (3) defines instead the
paramagnetic current, whose average value is connected to the
current-current correlation function, leading to the paramag-
netic term in Eq. (6). To estimate their contribution to the ther-
mal suppression of the superfluid stiffness at low temperature
we can approximate the phase difference between neighboring
sites θi+μ − θi with a continuum gradient θi+μ − θi ≈ ∂μθ (ri ),
where we set the lattice spacing a = 1. By expanding also the
cosine of Eq. (2) at leading order in the phase gradient we end
up with a Gaussian model accounting only for spin-wave-like
longitudinal phase fluctuations:

HXY � J

2

∫
dr[∇θ (r)]2. (7)

The approximation (7) allows one to perform analytically the
averages in Eqs. (5) and (6). For the diamagnetic term one
immediately finds:

Jd � J − J

2N

〈∫
dr[∂xθ (r)]2

〉
� J − T

2d
, (8)

where we used that fact that for the Gaussian model (7)
〈∫ dr[∂xθ (r)]2〉 = T/dJ , with d = 2 being the space dimen-
sion. For the paramagnetic contribution, we expand the sine
function in powers of the phase gradient. The correlation
function (6) amounts then to the sum of processes where an
odd number of phase modes (phasons) are excited by the elec-
tromagnetic field. However, in the clean case the first term,
proportional to 〈∫ drdr′∂xθ (r)∂xθ (r′)〉, vanishes because of
periodic boundary conditions. The next nonzero contribution
is then a three-phason processes, which reads explicitly:

Jp � J2

T N

〈∫
drdr′ 1

6 [∂xθ (r)]3 1
6 [∂xθ (r′)]3

〉

= J2 T 2

6d3
. (9)

The analytical expressions (8) and (9) perfectly reproduce the
low-temperature Monte Carlo simulations shown in Fig. 1. In
particular the diamagnetic suppression (8) is the main source
of temperature dependence of the stiffness up to T � 0.6. As
the temperature increases, two effects come into play. From
one side higher-order terms in the phase gradient should be in-
cluded, and more importantly, vortex-antivortex pairs start to
form and unbind at the BKT transition, as shown in the bottom
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FIG. 1. Top: comparison between the Monte Carlo results and
the low-temperature analytical expressions for the three response
functions Js, Jd , and Jp based on Eqs. (8) and (9). Bottom: vortex
density of the system as a function of the temperature. The linear
size of the system simulated is L = 256.

panel of Fig. 1. The latter effect appears predominantly in the
paramagnetic contribution, which includes large-distance cur-
rent correlations, while the diamagnetic one is predominantly
local. As a consequence, Jp sharply increases approaching Tc,
causing the rapid downturn in the superfluid stiffness that is
the signature of the universal BKT jump in simulations on a
finite-size system. It is also worth noting that the dominance
of the spin waves to suppress the low-temperature stiffness
via the correction (8) of the diamagnetic term is also found in
the more general SC (or spin) model where the SC amplitude
(or spin length, set here to the unitary value) is not fixed,
as investigated, e.g., in Ref. [54]. Indeed, at low temperature
the amplitude fluctuations are thermally suppressed, making it
possible only to thermally excite the low-energy longitudinal
phase modes, responsible for the decrease in the diamagnetic
term.

The general expressions (8) and (9) of the diamagnetic
and paramagnetic temperature corrections in powers of the
phase modes hold also for the quantum case. However, in
this case the average value of the phase gradient should
be computed using a quantum phase model, including the
frequency dependence of the phase fluctuations [2–6]. The
main consequence for the present discussion is that, below a
crossover temperature Tcl , the classical (thermal) corrections
to the superfluid stiffness discussed so far turn into quantum
ones, leading finally to a T = 0 value of the stiffness smaller
than J even for clean models. The exact form of the quantum
corrections depends on the dynamics of the phase mode,

which in turn is controlled by the presence of Coulomb in-
teractions and dimensionality (see, e.g., [1,6]). In ordinary SC
systems the quantum phase modes are pushed to the plasma
energy scale, so that Tcl can be larger than the critical tem-
perature itself where quasiparticle excitations destroy the SC
state, hindering the observation of phase-fluctuation effects
on the superfluid stiffness. On the other hand, whenever the
plasma energy scale is suppressed by correlations or disorder,
Tcl can be considerably reduced, making eventually classical
phase-fluctuation corrections to the stiffness experimentally
accessible. This possibility was discussed, for example, in
the context of cuprate superconductors in Ref. [5]. There it
was shown that the spectral function of the phase modes is
modified by a residual absorption at low frequencies, induced
by the sizable fraction of quasiparticle excitations present in
a d-wave superconductor. This extra dissipation suppresses
significantly the crossover temperature Tcl , which is given
in this case by Tcl ∼ J/σ̄ , where J is the T = 0 superfluid
stiffness and σ̄ is a dimensionless measure of the residual
conductivity in the SC state. A similar mechanism can be at
play also in conventional s-wave superconductors at strong
disorder, which also show an extra subgap absorption (see
Ref. [55] and references therein). The anomalous linear-
temperature dependence of the superfluid stiffness measured
in Ref. [11] has been indeed discussed within this context. For
these reasons, the classical XY model studied in the present
paper is not only interesting by itself but could also be relevant
for applications to real systems.

III. DISORDERED CASE

Let us consider now the case where the local couplings
Jμ

i of the model (1) are random variables extracted with a
probability distribution P(J ). In full analogy with the clean
case, the superfluid stiffness is defined via diamagnetic and
paramagnetic terms, which are now also averaged over disor-
der configurations:

Jd = 1

N

〈∑
i

Jμ
i cos(θi − θi+μ)

〉
, (10)

Jp = 1

NT

〈[∑
i

Jμ
i sin(θi − θi+μ)

]2〉
. (11)

In the disordered case the T = 0 value of the stiffness can be
obtained by mapping the SC problem into the random-resistor
network (RRN) one. The starting point is again a Gaussian
approximation for the cosine term in Eq. (1), so that

HXY � −
∑

i,μ=x̂,ŷ

Jμ
i

[
1 − 1

2 (θi − θi+μ)2
]
. (12)

The configuration of the phase variables can be obtained
by the minimization of Eq. (12), giving a set of equations:∑

μ=±x̂,ŷ

Jμ
i (θi − θi+μ) = 0. (13)

In the absence of vortexlike excitations, finding the solutions
θi of the system of Eq. (13) for a given set of Jμ

i values is
equivalent to solving the Kirchhoff equations for the local
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voltages Vi for an array of local random conductances σ
μ
i .

Indeed, by using the condition for the current conservation
at each node between sites i and i + μ one easily gets:∑

μ=±x̂,ŷ

iμi =
∑

μ=±x̂,ŷ

σ
μ
i (Vi − Vi+μ) = 0. (14)

The comparison between Eqs. (13) and (14) establishes the
equivalence between the local conductances σ

μ
i of the RRN

and the local stiffnesses Jμ
i of the XY model. This also means

that finding the global phase stiffness Js is equivalent to
determining the global conductance σ of the RRN problem.
A possible solution for σ was proposed long ago within the
EMA scheme (see [52] and references therein). The basic
idea is that the inhomogeneous system can be mapped into
a homogeneous one characterized by an effective value σ̃

of the conductance such that, on average, the presence of a
single disordered link with σi �= σ̃ has vanishing effects on the
current and voltage distributions of the system. The effective
conductance σ̃ is then obtained as the solution of a self-
consistent equation, which for a cubic lattice in d dimensions
reads: ∑

i

Pi
σi − σ̃

σi + (d − 1)σ̃
= 0, (15)

where Pi is the probability of the occurrence of each possible
σi value. Despite being based on a mean-field argument,
Eq. (15) has been shown to capture very well the transport
properties of disordered arrays of resistors. In the case, for
example, of the diluted systems, where a given fraction p of
the resistors is set to zero, the percolation threshold p = 0.5
obtained with Eq. (15) coincides with the results of numerical
simulations [52].

In this paper we will provide a derivation of Eq. (15)
for the superfluid stiffness based on resummed perturbation
theory. Within our approach we will estimate not only the
T = 0 superfluid stiffness, but also its leading temperature
dependence, giving an excellent description of Monte Carlo
simulations. Moreover, we will derive the effect of disorder
on the two separate diamagnetic and paramagnetic contribu-
tions, which could be relevant for the experiments. Indeed,
thanks to the optical sum rule [28] one knows that the extra
paramagnetic suppression of the stiffness induced by disor-
der transfers into a finite-frequency optical absorption. The
quantum version of this mechanism was recently invoked to
explain the extra subgap microwave absorption measured at
low temperatures in strongly disordered superconductors (see,
e.g., Refs. [30,31,55] and references therein). As mentioned
below, the analogous classical effect investigated here could
be relevant in real materials above the crossover temperature
Tcl .

A. Effective medium theory for the XY model at T = 0

As explained in Sec. II, at low temperature, where the
topological phase excitations (vortices) still do not play a
role, a continuum approximation for the model (1) allows
one to easily describe the longitudinal phase fluctuations. In
the disordered case we will follow the same strategy by also
implementing the basic idea underlying the EMA. We then
introduce a homogeneous effective stiffness J̃ , and we will

require that adding a single impurity with a local stiffness
different from J̃ will have no overall effect on the system. Let
us thus write the XY Hamiltonian as the sum of the two terms:

H = H0 + Hi = J̃

2

∫
dr[∇θ (r)]2 + δJi

2
[∇θ (ri)]

2, (16)

where we put Ji = J̃ + δJi. The second term of Eq. (16) can
be seen as a perturbation with respect to H0. We can then
compute the self-energy correction 	i to the bare Green’s
function G0 = 〈θkθ−k〉H0

due to the presence of the impurity,
so that the total Green’s function G(k) = 〈θkθ−k〉H0+Hi

reads:

G(k) = G0(k) + G0(k)	i(k)G0(k). (17)

By expanding e−βHi in a power series we can compute G(k)
as:

G(k) =
〈
θk

{ ∞∑
n=0

(β )n

n!

(
− δJi

2

)n
[∇θ (ri )]

2n

}
θ−k

〉
H0

. (18)

The first term (n = 0) is nothing but the bare Green’s function
G0(k) = T/J̃k2. The remaining terms can be computed by
means of Wick’s theorem. For example, the second term
(n = 1) reads

G1(k)=
〈
θk

{−βδJi

2
[∇θ (ri )]

2

}
θ−k

〉
H0

=
〈
θk

[
−βδJi

2N

∑
q1,q2

ei(q1+q2 )·ri (iq1) · (iq2)θq1θq2

]
θ−k

〉
H0

=G0(k)

(
−δJi

N

k2

T

)
G0(k) = G0(k)	(1)

i (k)G0(k),

(19)

where the prefactor 1/2 canceled out with the diagram multi-
plicity. The factor 1/N , due to the fact that we are considering
one single impurity, will be omitted in what follows. Indeed,
as soon as one considers the original model with N noninter-
acting possible impurities, the sum over all impurities cancels
out the N prefactor. For higher-order terms this procedure
implements the usual T -matrix approximation [53], where
only noncrossing diagrams with multiple-scattering events by
different impurities are included. It is then easy to verify that
the nth term of the expansion reads:

Gn(k) = G0(k)

[
(−1)n k2

T

(
δJi

dJ̃

)n

dJ̃

]
G0(k)

= G0(k)	(n)
i (k)G0(k). (20)

Therefore, we can write the full local single-impurity
self-energy as:

	i(k) =
∞∑

n=1

	
(n)
i (k) =

∞∑
n=1

(−1)n k2

T

(
δJi

dJ̃

)n

dJ̃, (21)

whose diagrammatic representation is shown in Fig. 2. The
irrelevance of the single-impurity perturbation on the physical
responses of the system translates, in this approach, to the
request of a vanishing local self-energy at all orders in the
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i i
× × + . . .

FIG. 2. Diagrammatic representation of the local self-energy corrections to the bare Green’s function at T = 0. Here the solid line
represents the bare Green’s function G0, the double line is the dressed one G, and each cross accounts for a single-impurity scattering,
contributing with a factor proportional to δJi.

perturbation. This, in turn, is satisfied if:

∑
i

Pi

∞∑
n=1

(−1)n

(
δJi

dJ̃

)n

= 0, (22)

where we also included the average over all the possible
values of δJi, extracted from the probability distribution Pi ≡
P(Ji ). Since δJi = J̃ − Ji, we can rewrite Eq. (22) as:

∑
i

Pi

[ ∞∑
n=0

(−1)n

(
J̃ − Ji

dJ̃

)n

− 1

]
= 0, (23)

which, after simple algebra, is equivalent to:

∑
i

Pi

[
Ji − J̃

Ji + (d − 1)J̃

]
= 0. (24)

By direct comparison with (15) we immediately see that J̃
satisfies the same equation of the effective conductance of
the RRN model within EMA. While this was expected on
the basis of the formal analogy between the two problems
encoded in Eqs. (13) and (14), our derivation of the equiva-
lence between the EMA equation and the perturbative expan-
sion in the disorder potential brings interesting consequences.
Following the same procedure, we can compute separately
the zero-temperature values of the diamagnetic Jd (T = 0) and
paramagnetic Jp(T = 0) contributions in order to understand
how the diagrammatic expansion in Hi affects the clean-limit
results. We start by gradient expansion of Eqs. (10) and (11).
For the diamagnetic contribution the first-order correction in
the cosine expansion already gives a finite-T correction, in full
analogy with Eq. (8) above, so we simply have:

Jd (T = 0) � 1

N

〈∫
drJ (r)

〉
H0+Hi

= J̄, (25)

showing that at all orders in the perturbing potential the zero-
temperature diamagnetic response coincides with the mean
value J̄ of the couplings. For the paramagnetic term disorder
makes different from zero the single-phason process discussed
in the previous section, which then reads:

Jp � 1

NT

〈∫
dr J (r)[∇xθ (r)]

∫
dr′ J (r′)[∇xθ (r′)]

〉
H0+Hi

.

(26)

By using the facts that J (r) = J̃ everywhere except at the
single-impurity site where Ji = J̃ + δJi and that the contri-
bution proportional to the homogeneous stiffness J̃ vanishes
because of periodic boundary conditions, we immediately get:

Jp � 1

NT
〈{(δJi )2[∇xθ (ri)]2} 〉H0+Hi

. (27)

Now, by omitting as before one overall prefactor 1/N , we
proceed with the perturbation expansion in Hi. The first term
(n = 0) is simply:

Jp(n=0) = (δJi )2

NT

〈∑
q1,q2

ei(q1+q2 )·ri
(
iqx

1

)(
iqx

2

)
θq1θq2

〉
H0

= (δJi )2

dJ̃
. (28)

The second term (n = 1) will be, instead,

Jp(n=1) = −(δJi )3

2N2T

〈∑
q1,q2

∑
k1,k2

ei(q1+q2+k1+k2 )·ri ·

× qx
1qx

2k1k2θq1θq2θk1θk2

〉
H0

, (29)

which after the contractions reads:

Jp(n=1) = − (δJi )3

d2J̃2
. (30)

By proceeding analogously at all orders in the perturbative
expansion one can write the zero-temperature value of the
paramagnetic term as:

Jp(T = 0)=
∑

i

Pi

[
dJ̃

∞∑
n=2

(−1)n

(
δJi

dJ̃

)n
]

=
∑

i

Pi

(
dJ̃

{[ ∞∑
n=1

(−1)n

(
δJi

dJ̃

)n
]

−
(

−δJi

dJ̃

)})

=
∑

i

Pi

[
dJ̃

δJi

dJ̃

]
=
∑

i

Pi(Ji − J̃ ) = J̄ − J̃, (31)

where, in the last step, we used the result of Eq. (22). Equa-
tions (25) and (31) clearly satisfy the general relation (4), as
expected. On the other hand, their separate evaluation helps
us understand the different roles of disorder in the two terms.
Indeed, while the diamagnetic term (25) is a measure of
the average disorder distribution, the paramagnetic one is a
measure of its variance, as one immediately sees from the
leading correction (28). This results will help us explain the
difference between Gaussian and diluted disorder in Sec. IV.

B. Effective medium theory for the XY model up
to linear terms in T

Let us now extend the T = 0 results in order to estimate
the leading temperature corrections to Js, Jd , and Jp. As for
the T = 0 case, we will account here only for the longitudinal
spin fluctuations, since the topological excitations are strongly
suppressed in the low-temperature regime considered. To this
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FIG. 3. Diagrammatic representation of the local self-energy corrections to the bare Green’s function up to the linear terms in temperature.
In the diagrammatic expansion, each arrow stands for a bare Green’s function, while the hatched square accounts for two different impurity-
scattering contributions. As shown in the second line, indeed, it corresponds to the sum of the zero-temperature correction, proportional to
δJi, and the linear temperature one, proportional to Ji, arising from the four-leg vertex in H (4)

i . The closed loop appearing in the second
line accounts self-consistently for all the local self-energy corrections, as shown in the last line. As a matter of fact, however, since we are
considering the self-energy corrections up to the linear terms in temperature, in our calculation we will consider the closed loop corrected by
only the zero-temperature contribution; that is, we will replace the hatched square with the bare circle δJi.

aim we need to consider that each G0 carries a power of T . By
power counting it, it is then clear that at finite T it is crucial to
retain in the disorder Hamiltonian Hi also the quartic term in
the expansion of the cosine, since each additional (∇θ )2 term
will contribute with an extra power of T/J in the perturbative
expansion:

Hi = H (2)
i + H (4)

i = δJi

2
[∇θ (ri )]

2 − Ji

4!

∑
μ=x̂,ŷ

[∇μθ (ri)]
4.

(32)

From the diagrammatic point of view, the quartic H (4)
i term in

∇θ (ri) introduces a four-leg vertex in the phase field, whose
combination with the two-leg one in H (2)

i complicates the
calculation of the Green’s function, which will be carried out
along the same lines as Eq. (18). The easiest way to handle this
problem is to follow the same logic as in the zero-temperature
case, as summarized in Fig. 3. When computing the full
Green’s function (double line) we sum up only noncrossing
diagrams with multiple scattering by a single-impurity site.
However, we will replace δJi (crossed circle) with its finite-
temperature value δJi(T ):

δJi → δJi(T ). (33)

In this way, δJi(T ) accounts for scattering events described
both by the H (2)

i two-leg vertex insertions and the H (4)
i four-

leg vertex insertion, which generates a loop diagram with the
full Green’s function, as shown in Fig. 3. The first order of
the new local self-energy is then obtained with the second line
of Fig. 3. The first term is the zero-temperature contribution,
already given in Eq. (19):

G(n=1)(k, O(1)) = G0(k)

(
−δJi

k2

T

)
G0(k). (34)

The second term arises from the four-leg vertex, and it cor-
responds to a loop diagram, as shown in the second line of

Fig. 3:

G(n=1)(k, O(T ))

=
〈
θk

{
β

4!
Ji[∇xθ (ri )]

4 + [∇yθ (ri )]
4

}
θ−k

〉
H0

, (35)

where Ji = J̃ + δJi. We can then rewrite Eq. (35) in
momentum space as:

G(n=1)(k, O(T )) = 2

〈
θk

[
βJi

4!

∑
q1,q2,q3,q4

ei(q1+q2+q3+q4 )·ri

× qx
1qx

2qx
3qx

4θq1θq2θq3θq4

]
θ−k

〉
H0

, (36)

where the prefactor 2 accounts for the gradient along y in
Eq. (35). We then proceed with Wick’s theorem, ending up
with:

G(n=1)(k, O(T ))

= G0(k)

[
βJi

k2

2d

∑
q

q2 〈θqθ−q〉H0

]
G0(k). (37)

The quantity in square brackets in the above equation defines
the Green’s function in the loop, which at first order coincides
with G0. However, higher-order terms in the expansion of Hi

lead to the dressing of this loop by all the possible single-
impurity scattering processes, as shown by the last line of
Fig. 3. The easiest way to sum them up is to replace the
average over H0 in Eq. (37) with an average over H0 + Hi. In
addition, since this is already a finite-temperature correction,
we can restrict ourselves to the terms generated by H (2)

i , as
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done for the T = 0 case. We then have:

G(n=1)(k, O(T ))

=G0(k)

[
βJi

k2

2d

∑
q

q2 〈θqθ−q〉H0+H (2)
i

]
G0(k)

=G0(k)

{
βJi

k2

2d

∑
q

q2G0(q)

[ ∞∑
m=0

(−1)m

(
δJi

dJ̃

)m
]}

G0(k).

(38)

Solving then the geometric series in the last line, we end up
with:

G(n=1)(k, O(T )) = G0(k)

[
k2

2

Ji

dJ̃ + δJi

]
G0(k). (39)

Finally, putting together Eqs. (34) and (39), we obtain the
explicit expression for the single-scattering diagram on the
upper line of Fig. 3:

G(n=1)(k) = G0(k)

[
−k2

T

(
δJi − T

2

Ji

(d − 1)J̃ + Ji

)]
G0(k)

= G0(k)

[
−k2

T
δJi(T )

]
G0(k), (40)

which is the equivalent of Eq. (19) up to linear terms in
temperature. Thus, in perfect analogy with Eq. (22), the new
EMA equation reads:

∑
i

Pi

∞∑
n=1

(−1)n

(
δJi(T )

dJ̃ (T )

)n

=
∑

i

Pi
−δJi(T )

dJ̃ (T ) + δJi(T )
= 0,

(41)

where δJi(T ) is given by:

δJi(T ) = δJi − T

2

Ji

(d − 1)J̃ (T ) + Ji
. (42)

The same strategy can now be used to compute the finite-
temperature corrections to the diamagnetic and paramagnetic
terms. For the diamagnetic response the leading dependence
on temperature is given by the first term in the cosine expan-
sion of Eq. (10), so that:

Jd (T ) = J̄−1

2

〈{∫
drJ̃[∇xθ (r)]2

}
+ {δJi[∇θx(ri )]2}

〉
H0+H (2)

i

,

(43)

where we used again only the two-leg vertex of the impurity
Hamiltonian since this term is already of O(T ), as already
seen in the clean case (8). By means of the same formalism
used so far, it is easy to verify that the first temperature
correction reads:

−1

2

〈∫
drJ̃[∇xθ (r)]2

〉
H0+H (2)

i

= − T

2d

[
1 +

∑
i

Pi

∞∑
n=1

(−1)n

(
δJi

dJ̃

)n
]

= − T

2d
, (44)

where in the last step we used Eq. (22), which accounts for
the vanishing of the local self-energy. For the same reason the

second temperature correction also vanishes:

− 1
2 〈δJi[∇xθ (ri )]2〉H0+H (2)

i

= T

2

[∑
i

Pi

∞∑
n=1

(−1)n

(
δJi

dJ̃

)n
]

= 0. (45)

Hence, at all orders in the perturbative expansion, the diamag-
netic response function, up to the linear terms in temperature,
depends only on the mean value of the random couplings and
on the dimension of the system:

Jd (T ) = J̄ − T

2d
, (46)

showing a very remarkable universality with respect to the
random coupling distribution itself. Finally, the temperature
dependence of the paramagnetic term Jp(T ) = Jd (T ) − J̃ (T )
can be obtained by combining the results (41) and (46) for
J̃ (T ) and for Jd (T ), respectively.

IV. COMPARISON WITH THE MONTE CARLO RESULTS

In this section, we will compare the analytical results,
previously derived, with the numerical solutions obtained by
means of Monte Carlo simulations of the classical XY model
in the presence of random, spatially uncorrelated couplings
Jμ

i . The Monte Carlo simulations have been performed on
systems with linear size L = 128 and periodic boundary con-
ditions. Each Monte Carlo step consists of five Metropolis
spin flips of the whole lattice, needed to probe the correct
canonical distribution of the system, followed by ten overre-
laxation sweeps of all the spins, which help the thermalization.
For each temperature we perform 5000 Monte Carlo steps,
and we compute a given quantity averaged over the last
3000 steps, discarding thus the transient regime which occurs
in the first 2000 steps. Furthermore, the thermalization at
low temperatures is speeded up by a temperature annealing
procedure. Finally, the average over disorder is done on 15
independent configurations for each disorder level considered.
Where not shown, the error bars are smaller than the point
size.

We will consider two different disorder distributions for the
couplings Jμ

i , showing that in both cases the EMA equations
previously obtained are in very good agreement with the
numerical results. We first consider the case of a Gaussian
distribution:

P
(
Jμ

i

) = 1√
2πσ

exp

[
−
(
Jμ

i − J
)2

2σ 2

]
, (47)

where J is set equal to 1 and the standard deviation σ mea-
sures the disorder strength. We also consider the additional
constraint of Jμ

i � 0 to prevent the presence of antiferromag-
netic couplings. The zero-temperature value of the stiffness
can be easily obtained by means of the explicit expressions
for the diamagnetic and paramagnetic contributions derived in
Sec. III A. Indeed, by using Eqs. (25) and (31) we can easily
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estimate

Jd (T = 0) = J̄, (48)

Jp(T = 0) = σ 2
J

dJ̄
, (49)

J̃ (T = 0) = J̄

[
1 − σ 2

J

dJ̄2

]
, (50)

where for the paramagnetic term we just retained the leading
term in δJi, as given by Eq. (28).

Equation (50) could also be obtained [28] by directly
solving the EMA equation (24) at leading order in δJi. At finite
temperature, we will indeed follow this procedure, starting
from the self-consistency equation (41). Since for the Gaus-
sian distribution all the odd momenta are, on average, zero,
it is convenient to express Ji = J̄ + �Ji. We can then rewrite
Eq. (41) as:

∑
i

Pi

⎧⎨
⎩

J̄ + �Ji − J̃ − T
2

J̄+�Ji

(d−1)J̃+J̄+�Ji

dJ̃ + J̄ + �Ji − J̃ − T
2

J̄+�Ji

(d−1)J̃+J̄+�Ji

⎫⎬
⎭ = 0. (51)

By retaining all the terms of orders O(T ) and O((�Ji )2), after
simple algebra we obtain:

J̃

(
1 + T

2d2J̄

)
� J̄

(
1 + T

2d2J̄

)
− σ 2

J

dJ̃
− T

2d
, (52)

so that the effective stiffness reads:

J̃ � J̄

[
1 − σ 2

J

dJ̄2

]
− T

2d
. (53)

Finally, by using the general result (46) for the linear tem-
perature dependence of the diamagnetic term, we can derive
separate expressions for both Jd (T ) and Jp(T ):

Jd (T ) � J̄ − T

2d
, (54)

Jp(T ) � σ 2
J

dJ̄
. (55)

Equations (53)–(55) can now be compared with the numer-
ical simulations. In Fig. 4, we can see that for all values of
σ , the analytical results fit very well the Monte Carlo data.
Notice that for the case of σ = 0.6 the truncation at Jμ

i � 0
shifts the mean value of the couplings to J̄σ=0.6 � 1.06 J > J .
Nevertheless, by using this value in Eqs. (53)–(55), we can
perfectly reproduce the numerical results.

The second kind of spatially uncorrelated disorder investi-
gated is that of random diluted couplings, whose probability
distribution reads:

P
(
Jμ

i

) = p δ
(
Jμ

i

)+ (1 − p) δ
(
Jμ

i − J
)
, (56)

where δ(x) is the Dirac delta function and the dilution param-
eter p will be the measure of the disorder strength. Also in
this case we will set J = 1 in the simulations. In this case, we

FIG. 4. Monte Carlo results on a disordered XY model with
Gaussian distributed random couplings. The three response functions
are plotted: (a) Js, (b) Jd , and (c) Jp as a function of the temper-
ature. The dashed lines correspond to the analytical results (53)–
(55) obtained with the EMA and reproduce perfectly the numerical
simulations.

cannot expect that the leading expansion in δJi holds since for
the diluted model the variance of the distribution has the same
order as its average value. However, in this case the EMA
equation can be explicitly solved. By considering directly the
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finite-temperature case Eq. (41) reads:∑
i

Pi
−δJi(T )

dJ̃ + δJi(T )

= (1 − p)
J̃ − J + T

2
1

(d−1)J̃+J

(d − 1)J̃ + J − T
2

1
(d−1)J̃+J

+ p = 0, (57)

which, after some math, leads to:

J̃ = J (1 − 2p)

(
1 − T

2(J + J̃ )

)

� J (1 − 2p)

(
1 − T

4J (1 − p)

)
, (58)

where in the last step we replaced J̃ in the denominator
with its zero-temperature value. Using again Eq. (46) for
the diamagnetic term, with J̄ = J (1 − p), we have the final
expressions for all three contributions:

Js = J (1 − 2p)

[
1 − T

4J (1 − p)

]
, (59)

Jd = J (1 − p) − T

4
, (60)

Jp = J p − T

4

p

1 − p
. (61)

In Fig. 5 we show the Monte Carlo results for the three
separate contributions. As one can see, the zero-temperature
value of Jp matches reasonably well the analytical estimate
for p = 0.1, while it slightly increases for larger disorder.
Nonetheless, once accounting for this small deviation, by
replacing J p in Eq. (61) with the numerical value of Jp(T =
0), the temperature dependence of the paramagnetic response
function still follows the analytical result, as one can see by
looking at the dashed lines in Fig. 5. In contrast, Jd (T ) follows
closely the analytical estimate (60) up to the largest disorder
level. This suggests that, in analogy with what was mentioned
before for the thermal effects due to vortices, thermal effects
due to longitudinal phase fluctuations also affect the param-
agnetic contribution more strongly than the diamagnetic one.
This is presumably due to the long-range character of the
correlations probed by the current-current response function,
compared to the local nature of the diamagnetic response.
As a consequence, while for the Gaussian distribution the
leading temperature effects due to longitudinal phase fluctua-
tions can be solely ascribed to the diamagnetic correction, for
the diluted model the paramagnetic response is responsible
for a substantial flattening of the thermal suppression of the
superfluid stiffness, causing in turn an increase in the Tc/Js(0)
ratio.

V. CONCLUSIONS

In summary, we analyzed the effect of spatially uncorre-
lated random disorder on the low-temperature behavior of the
superfluid stiffness of the 2D classical XY model. We em-
ployed a perturbative expansion in the disorder potential that
is analogous to the usual T -matrix scheme including only non-
crossing diagrams. We found that this approach allows one to
derive a self-consistency equation for the global stiffness that

0 0.2 0.4 0.6 0.8 1
T

0

0.2

0.4

0.6

0.8

J s(T
)

(a)

0 0.4 0.8 1.2
T

0

0.2

0.4

0.6

0.8

J d(T
)

p=0.1

p=0.2

p=0.3

p=0.4

(b)

0 0.25 0.5 0.75 1 1.25
T

0.2

0.4

0.6

J p(T
)

(c)

FIG. 5. Monte Carlo results for a disordered XY model with
random diluted couplings. The three response functions are plotted:
(a) Js, (b) Jd , and (c) Jp as a function of the temperature. The dashed
lines correspond to the analytical results (59)–(61) obtained with
the EMA. Even close to the percolation threshold at p = 0.5, above
which no superfluidity is possible, the analytical formulas fit very
well the numerical data.

is fully equivalent to the usual EMA, usually discussed within
the context of the RRN model [52]. This result leads to two
interesting consequences. First, it allows one to incorporate
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also the finite-temperature corrections. This leads to the mod-
ified EMA equation (41) for the stiffness, which properly
describes the thermal suppression of the stiffness due to
longitudinal phase modes in the presence of disorder. Sec-
ond, it allows one to compute separately the diamagnetic
and paramagnetic contributions to the stiffness. This is in
turn crucial information in order to establish the fraction of
the total SC spectral weight which is transferred, thanks to
the optical sum rule [28], to the finite-frequency absorption.
These analytical findings offer an excellent description of
the Monte Carlo results for both the Gaussian and diluted
models of disorder. In the latter case the only discrepancy
is a slightly larger paramagnetic suppression of the stiffness
at T = 0 for large disorder, which can presumably be as-
cribed to emerging space-correlation effects, neglected by
the T -matrix scheme. However, it is interesting to note that
the resulting temperature suppression of the stiffness turns
out to be weaker in the diluted model with respect to the
homogeneous case. This result has to be contrasted with the

recent Monte Carlo simulations [42] done with a granular
space-correlated model of disorder. In this case the stronger
thermal suppression of the stiffness with respect to the ho-
mogeneous case had been attributed to a low-temperature
proliferation of vortex-antivortex pairs in the bad SC regions.
These opposite trends suggest that disorder not only affects
the temperature scales where longitudinal (spin-wave like)
and transverse (vortex-like) phase fluctuations become visible
but can also profoundly change their interplay. Understanding
how this interplay evolves as a function of disorder and how
it can be relevant for 2D SC systems is an open question for
future work.
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[38] M. Žemlička, P. Neilinger, M. Trgala, M. Rehák, D. Manca,
M. Grajcar, P. Szabó, P. Samuely, Š. Gaži, U. Hübner, V. M.
Vinokur, and E. Il’ichev, Phys. Rev. B 92, 224506 (2015).

[39] J. Simmendinger, U. S. Pracht, L. Daschke, T. Proslier, J. A.
Klug, M. Dressel, and M. Scheffler, Phys. Rev. B 94, 064506
(2016).

[40] N. Bachar, U. Pracht, E. Farber, M. Dressel, G. Deutscher, and
M. Scheffler, J. Low Temp. Phys. 179, 83 (2014).

[41] U. S. Pracht, N. Bachar, L. Benfatto, G. Deutscher, E. Farber,
M. Dressel, and M. Scheffler, Phys. Rev. B 93, 100503 (2016).

[42] I. Maccari, L. Benfatto, and C. Castellani, Phys. Rev. B 96,
060508(R) (2017).

[43] I. Maccari, L. Benfatto, and C. Castellani, Condens. Matter 3, 8
(2018).

[44] W. Liu, M. Kim, G. Sambandamurthy, and N. P. Armitage,
Phys. Rev. B 84, 024511 (2011).

[45] A. Kamlapure, M. Mondal, M. Chand, A. Mishra, J. Jesudasan,
V. Bagwe, L. Benfatto, V. Tripathi, and P. Raychaudhuri, Appl.
Phys. Lett. 96, 072509 (2010).

[46] M. Mondal, S. Kumar, M. Chand, A. Kamlapure, G. Saraswat,
G. Seibold, L. Benfatto, and P. Raychaudhuri, Phys. Rev. Lett.
107, 217003 (2011).

[47] S. Misra, L. Urban, M. Kim, G. Sambandamurthy, and A.
Yazdani, Phys. Rev. Lett. 110, 037002 (2013).

[48] J. Yong, T. R. Lemberger, L. Benfatto, K. Ilin, and M. Siegel,
Phys. Rev. B 87, 184505 (2013).

[49] I. Hetel, T. R. Lemberger, and M. Randeria, Nat. Phys. 3, 700
(2007).

[50] J. Yong, M. J. Hinton, A. McCray, M. Randeria, M. Naamneh,
A. Kanigel, and T. R. Lemberger, Phys. Rev. B 85, 180507
(2012), and references therein.

[51] P. G. Baity, X. Shi, Z. Shi, L. Benfatto, and D. Popović, Phys.
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