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Abstract 

Linear dynamic response of simply supported nanobeams subjected to a variable axial force is assessed 
by Galerkin numerical approach. Constitutive behavior is described by three functional forms of elastic 
energy densities enclosing nonlocal and strain gradient effects and their combination. Linear stationary 
dynamics of nanobeams is modulated by an axial force which controls the global stiffness of nanostrucure 
and hence its angular frequencies. Influence of the considered elastic energy densities on dynamical response 
is investigated and thoroughly commented. 
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1. Introduction 

In recent years the use of nanobeams as sensors or actuators in many fields of physics and applied physics has seen 
a remarkable increase, see e.g. [1]-[11]. Going down to such a small length scale, the usual structural models are not 
satisfactory, even in the usual approximation of ‘small’ displacements and strain with respect to the length of the 
considered specimen [12]-[14]. Several models attempting to describe the constitutive response of elastic nanobeams 
have been proposed in the current literature, see e.g. [15]-[25]. Recently, an elastic potential encompassing both the 
effects of the Eringen model of nonlocal elasticity and a reasonable formulation of strain gradient elasticity was 
proposed in [26]. This potential manages to see both effects as additional curvatures and second-order strains in a 
standard quadratic expression. Euler-Bernoulli beam models endowed with elastic energy densities introduced in [26] 
are adopted in the present article. Standard variational techniques provide field equations and boundary conditions for 
the linear dynamic response of simply supported nanobeams under an axial force which modulates the global stiffness 
of the system. Effects of an axial force on natural vibration of beams are known since Woinowsky-Krieger [27] and 
have been investigated also in the more recent contributions by Bishop and Price [28], Bokaian [29, 30] and Stephen 
[31]. Roughly speaking, an axial force adds a geometric contribution to the beam material stiffness, thus affecting its 
natural frequencies. Tensile forces increase the beam total stiffness (compressive forces do the opposite). Vanishing of 
the natural frequencies induces static buckling, see e.g. [32]. The axial force becomes thus a control parameter for the 
structural stiffness and hence for its natural angular frequencies. Such a modulation affects also the response to standard 
disturbances and dynamic loads, which we find by means of Galerkin methodology. Hereafter, essentials of the beam 
model are preliminarily resumed; then, numerical results for the linear dynamic response of selected case studies are 
presented and thoroughly discussed. 
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2. A purely flexible model for nanobeams 

Let us consider a plane straight nanobeam of length l. Axial direction is denoted by x, an axis of a Cartesian 
coordinate system originating at the left end of the beam. Cartesian components of the infinitesimal displacement field 
are described by the triplet 
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ௗ௩(௫,௧)
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, ,ݔ)௬ݑ   ,ݕ ,ݖ (ݐ = ,ݔ)ݒ ,(ݐ ,ݔ)௭ݑ   ,ݕ ,ݖ (ݐ = 0,                    (1) 

t being the time. As expressed by Eq. (1), the beam motion is plane, cross-sections transform rigidly by a rotation 
that coincides with the slope of the deflected axis of centroids. Cross-sections remain thus orthogonal to the beam axis. 
Stretching components are given by the Euler’s formula 
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The non-vanishing axial strain ε(x,y,z,t) := εxx(x,y,z,t) is provided by 
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with χ(x,t) bending curvature at the abscissa x. For the sake of brevity, henceforth the variables on which the given 
fields depend will be omitted when no ambiguity arises. 

Nanobeam constitutive behavior is described by the following elastic energies Ui, i = 1,2,3 [26] 
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with E Young modulus, c Eringen nonlocal parameter, α participation scalar factor of nonlocality and strain gradient, 
A area of the cross-section S and (ݔ)ݍ  =  ݀ଶݔ݀/ܯଶ static loading in equilibrium with the bending moment field M . 

Nonlocal elasticity is simulated in Eq.(4) in terms of a prescribed curvature (third addend); second and fourth 
addends provide a description of strain gradient elasticity. 

Note that for α = 0 we get 

a) U2 = U3, viz. strain gradient elasticity is absent and Eringen nonlocal elasticity is recovered; 

b) U1 provides the simple model of strain gradient elasticity. 

With the further assumption c = 0, all three densities coalesce and take the form of local elasticity. 
To obtain balance equations, Hamilton’s principle over a time interval t ∈ [0,T] 
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is called for, then the usual calculus of variations is employed. In Eq.(5), δU is the variation of potential energy, δW 
is the virtual work spent by the external loads and δK is the variation of kinetic energy. The potential energy is the 
integral sum of the potential energy density over the beam domain D = S× [0,l], thus, with regard to Eq.(4), its variation 
is 
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(6) 

 

The virtual work of the external loads is the sum of two contributions: one is provided by a transverse distributed 
load p(x,t) per unit length; the other is provided by an axial load N0, which is linear in the square of the slope of the 
beam axis [33]. Thus, 
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and this contribution is the same for all three of the δU in Eq.(6). In Eq.(7) N0 is positive if it is a compression, and 
p(x,t) is the sum of a permanent load q(x) and of a load varying with time qe(x,t) 
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where the magnifying multipliers a, ae have dimensions of a force per unit length. The functions f(x), fe(x,t) provide 

the shape of the external load along the beam axis, devoid of physical dimensions. Such a decomposition will be useful 
to derive non-dimensional equations that yield results independent of the particular values for the involved physical 
quantities. The kinetic energy considers both axial and transverse velocities, thus inertia related to the deflection of the 
axis and to the rotation of the cross-sections. The variation of kinetic energy is 
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and this contribution is the same for all three δU in Eq.(6). In Eq.(9) a superimposed dot stands for time derivative, 
ρ is the mass density and I is the second moment of area of the cross-section with respect to the z-axis. The variational 
scheme based on Eqs.(5)-(9), including integration by parts and localisation arguments, yields the field equation for 
the linear dynamics of nanobeams, modulated by N0: 
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The field equation Eq.(10) is equipped with the boundary conditions, either of kinematic type 
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or static nature at the beam ends, i.e. at the abscissae x = 0, x = l we have that 
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(12) 
with T,M shear forces and bending moments. 
The constitutive relation, considering both nonlocal and strain gradient elasticity, turned the usual fourth-order 

Euler’s ‘elastica’ into Eq.(10), a sixth-order ordinary differential equation in space, with only even derivatives with 
respect to space and time (i.e., with the same structure of the ‘elastica’). Thus, similar strategies may be adopted to 
search for a solution in both cases. The external load contributes by the whole quantity p(x,t), coming from the work 
δW, and by its conservative part q(x), entering the elastic densities Eq.(4). When the nonlocality parameter c and the 
participation factor α of strain gradient elasticity vanish, the field equation Eq.(10) reduces to Euler’s ‘elastica’. 

Boundary conditions enlarge those for the ‘elastica’: the kinematical ones for the displacement and the slope of the 
beam axis are extended by one on the second spatial derivative of the transverse displacement, deriving from the strain 
gradient elasticity in the potential densities Eq.(4). When the nonlocal elasticity parameter c and the participation factor 
α of strain gradient elasticity vanish, the boundary conditions Eqs.(11), (12) reduce to those of Euler’s ‘elastica’. 

Let us now introduce the following non-dimensional factors 
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The non-dimensional abscissa ξ spans the interval [0,1]; the transverse displacement and Eringen’s material 
parameter are rescaled with respect to the nanobeam length; the time is rescaled with respect to a characteristic time 
interval depending on the material and geometric properties of the beam; the non-dimensional load amplitudes β, βe 

and modulating force ෡ܰ account for the bending stiffness of the beam in local elasticity; and the slenderness ratio γ 
equals the square of the ratio of the gyration radius of the cross-section to the length of the beam axis. 

Keeping into account the definitions in Eq.(13), the field equation and boundary conditions are reduced to a non-
dimensional form as follows. The field equation Eq.(10) becomes 
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where the load shape functions f, fe of Eq.(8) are now expressed in terms of non-dimensional quantities. Kinematic 

boundary conditions Eq.(11) read 
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Static boundary conditions (12) read 
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where the non-dimensional interactions at the beam ends are defined as 
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The non-dimensional field equation and boundary conditions (14), (15), (16) for a simply supported beam 
subjected to harmonic loads, once only with respect to space, then with respect to both space and time, will be solved 
by a Galerkin approach. The static harmonic load will induce an elastic deformation, and the restoring forces will cause 
a stationary oscillating response. This kind of load equals to place the beam in a given perturbed configuration and then 
to follow its free response. The harmonic load in space and time will induce a non-trivial stationary dynamic response, 
which will provide informations on linear dynamics of the nanobeam. 

3. Linear dynamic response 

Investigation of linear dynamic response for simply supported nanobeams starting from rest is performed, as 
introduced above, according to two forcing loads. The first load is harmonic in space and does not vary with time, but 
its conservative characteristic turns the nonlocal elastic contributions on, as one can see by considering the contribution 
of the term q(x) in the energy densities Ui in Eq.(4). 

This makes it possible to investigate some effects of nonlocal and strain gradient elasticity on free dynamic response 
of the considered nanobeam that would otherwise be hidden. The second load is harmonic both in space and time in 
order to be able to investigate how the nonlocal and strain gradient effects may affect (amplificate, soften, modulate, 
or a combination of these) the forced linear dynamic response in space and time. If the investigation is performed for 
a harmonic load, it is apparent that some general information may be extended to generic regular enough forcing time-
varying loads that admit a harmonic Fourier decomposition. Thus, such a study may provide useful information that 
can be meaningful for more refined dynamical analyses of applicative interest. 

To perform the above described investigations, Galerkin approach is adopted. A limited number of comparison 
functions is chosen, which verify the boundary conditions Eqs.(15)1,3 and (16)2: for a simply supported beam with 
smooth end constraints, sinus functions work well and provide a complete set that can be normalised if necessary. The 
field equation Eq.(10) is then projected onto each comparison function, and this operation, performed by a definite 
integration of the field equation weighted by each comparison function, leads to a set of ordinary differential equations 
in the amplitudes of the comparison functions. Its solutions provide the required approximated linear dynamic response 
to the given load (the main goal of the present investigation). 

3.1 Harmonic conservative load 

When providing a conservative load for the simply supported nanobeam, one must remark that its shape enters 
significantly in the boundary condition Eq.(16)2; if the end supports are smooth, the non-dimensional bending moment 
෡ܯ

 
vanishes. Then, it is immediate to note that a harmonic load, besides being the general term of a Fourier expansion 

for a regular enough load, automatically verifies the above said boundary condition. The following loading condition 
is provided 
(ߦ)݂  = sin (  (18) (ߦߨ

A set of 4 comparison sinus functions (from 1 to 4 half-sine waves in ξ ∈ [0,1]) is chosen, that is, the non-
dimensional infinitesimal transverse displacement is searched for in the approximated form 

,ߦ)ොݒ  (ݐ̂ ≈ ∑ ܾ௛
ସ
௛ୀଵ (ݐ̂) sin ( ℎ(19) (ߦߨ 



   Dario Abbondanza et. al., Vol. 2, No. 2, 2016  

Journal of Applied and Computational Mechanics, Vol. 2, No. 2, (2016), 54-64 

58
Galerkin procedure, i.e., weighting the field equation by each comparison function sin(hπξ) and integrating the 

obtained relations in the non-dimensional space domain, yields three sets of ordinary differential equations with 
constant coefficients in the non-dimensional time amplitudes bh(tˆ),h = 1,...,4. When considering the energy density U1, 
one has 

1
2

ଶ߬ߙଶߨߚ) + (ߚ −
1
2

ସ߬ଶߨଶ൫ߨ + ଶߨ − ෡ܰ൯ܾଵ(̂ݐ) +
1
2

ߛଶߨ−) − 1)ܾଵ
ᇱᇱ(̂ݐ) = 0

ଶߨ2 ቀ ෡ܰ − ସ߬ଶߨ4)4 + ଶ)ቁߨ ܾଶ(̂ݐ) +
1
2

ߛଶߨ4−) − 1)ܾଶ
ᇱᇱ(̂ݐ) = 0

9
2

ଶߨ ቀ ෡ܰ − ସ߬ଶߨ9)9 + ଶ)ቁߨ ܾଷ(̂ݐ) +
1
2

ߛଶߨ9−) − 1)ܾଷ
ᇱᇱ(̂ݐ) = 0

ଶߨ8 ቀ ෡ܰ − ସ߬ଶߨ16)16 + ଶ)ቁߨ ܾସ(̂ݐ) +
1
2

ߛଶߨ16−) − 1)ܾସ
ᇱᇱ(̂ݐ) = 0

 

 

 

 

(20) 

and, here and in the following, apexes stand for the derivatives of the indicated function with respect to the non-
dimensional time ̂ݐ. 

When considering the energy density U2, one has 
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that actually coincide with the set provided by Eqs.(20). 

When considering the energy density U3, one has 
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which is different from the first two sets (20), (21) due to the presence of a different constant term in the first 

equation of the set, strongly depending on the non-dimensional material parameters α,τ. The sets provided by 

Eqs.(20)–(22) were solved by posing 

ߛ = ߚ    ,0.01 = ߙ     ,0.1 = 1,   ෡ܰ = 6                            (23) 

corresponding to a precise physical meaning. To begin with, the assumption Eq.(23)1 implies that a slender 
nanobeam is considered, in that the ratio between the radius of gyration of the cross-section (with respect to the z-axis) 
and the beam length (see Eq.(13) and the relevant comments) is one tenth: this makes Euler-Bernoulli beam model, 
adopted here, reasonable from a physical point of view. Recalling Eq. (13), the assumptions Eq.(23)1,2 give 

 0.1 = ߚ =
௔௟య

ாூ
=

௔௟

ா஺

஺௟మ

ூ
=

௔௟

ா஺ఊ
=

ଵ଴଴௔௟

ா஺
→

௔௟

ா஺
= 10ିଷ (24) 

implying a remarkable average total load, three orders of magnitude less than the beam axial rigidity. The choice 
Eq.(23)3 of a unit participation factor between nonlocal and strain gradient elasticity makes the three energy densities 
in Eq.(4) coincide, thus one faces a unique constitutive model for the nanobeam, where nonlocal and strain gradient 
elasticity equally contribute to the material response. The assumption Eq.(23)4 implies a moderate axial force that can 
actively modulate the first natural angular frequency of the system. This was remarked in [35], from which we extract 
the plot in Fig.1 of the approximated fundamental angular frequency of the simply supported beam vs. the modulating 
force when the participation factor α equals unity. Note how the chosen modulating axial force ෡ܰ may correspond, 
when the Eringen parameter varies, to non-vanishing fundamental angular frequencies. 
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Fig. 1. Fundamental angular natural frequency for a simply supported nanobeam vs. modulating axial force as τ 
varies, if α =1. 

Once chosen the values in Eq.(23), the sets Eqs.(20)–(22) are systems of ordinary differential equations for the 
unknown non-dimensional time amplitudes bh(̂ݐ), h = 1,...,4 with constants coefficients. Their solution is easy to 
provide in the well-known Euler’s form and renders the approximated linear dynamic response Eq.(19) to the 
conservative load Eq.(18). To present some features of the obtained responses, in Fig.2 the time variation of the non-
dimensional transverse displacement at midspan is shown according to this solution for the three energy densities. 
Midspan is chosen because, due to the symmetry of the considered structure and the given load, its response will be 
the maximum for the system. 

 

 (a) U1 (b) U2 

v 

 

(c) U3 

Fig. 2. Time variation of the non-dimensional transverse displacement at midspan for various values of the 
nonlocality parameter τ for the three energy densities Ui, by posing α =1. 

To begin with, we remark that coalescence of the three energetic forms, put into evidence above by the 
considerations on physical meaning of the assumption α = 1, brings, as a first consequence, that, for each value of 
nonlocal parameter τ, the period of the response is the same. This can be easily checked in Fig.2 by observing that the 
half-waves of the response attain zeroes after the same amount of non-dimensional time, for each value of τ and for 
each energy density. This implies that the rigidity of the system, on which the natural angular frequency of the response 
depends, is the same, irrespective of the energetic form, and this is natural if the three energetic forms actually coincide. 
Another interesting remark is that, as the non-dimensional nonlocal parameter grows, the response decreases in 
amplitude and grows in its period, thus implying that the the system is stiffer (the natural frequency grows) and the 
same amount of external energy is distributed on a quicker response, which is physically reasonable. The first two 
graphs are perfectly coincident, while the third, relative to the energy density U3, differs from the preceding two because 
of the already remarked difference in the first equation of the set Eq.(22), which modifies the whole response. Indeed, 
we observe that the response becomes stiffer at first as τ increases, just like in the two preceding cases; on the other 
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hand, immediately after τ = 0.2, the peaks in the response begin increasing again. This is a very interesting phenomenon, 
quite likely due to the increasing contribution of the strain gradient effect, which is seen as an additional nonlocal effect 
because of the value α = 1 (see Eq.(22)1). Such a phenomenon may be interesting from the point of view of the 
applications. 

 

 (a) U1 (b) U2 

 

(c) U3 

Fig. 3. Time variation of the non-dimensional transverse displacement at midspan vs. the nonlocality parameter τ 
for the three energy densities Ui, by posing α =1. 

In order to have a global outlook on the response, the graphs in Fig.3 extend those of Fig.2, since they present a 
three-dimensional view of the phenomenon: that is, the graphs in Fig.2 are actually discrete sections of those in Fig.3. 
Of course, when τ = 0, the three energetic forms Ui collapse into the ordinary local elastic energy density, as one can 
check in Eq.(4), and the corresponding section of the three-dimensional graphs in Fig.3 returns the ordinary response 
of the corresponding ordinary local elastic system. Remark that in general, as τ grows, the response is globally 
decreasing in its peaks and presenting a higher number of half-waves, as noted also above, for the first two energetic 
densities, while it presents a non-monotonic peak, attaining a minimum as τ increases. 

3.2 Harmonic time-varying load 

In order to investigate the linear response to a time-varying load, since in general a more refined approximation is 
required, a set of 6 comparison functions was chosen, i.e., the expansion in Eq.(19) was extended to h = 6. The load 
shape was provided in the form 

 ௘݂(ߦ, (ݐ̂  =  sin(Ω̂ݐ)sin(2ߦߨ) (25) 

with a dynamic load amplification factor βe = 0.01, which implies a more modest total load with respect to the 
conservative one, see Eq.(24) and the following remarks. The load in Eq. (25) is a harmonic disturbance in space 
according to the second comparison function: thus, the maximum nondimensional deflections will be attained at one 
fourth of the span from each end, i.e., ξ = 0.25, 0.75. Since no damping is accounted for in this phase of the investigation, 
dynamic response is stationary. The variation in time in Eq.(25) is chosen so that the non-dimensional angular 
frequency of the forcing load lies within the range of the second non-dimensional natural angular frequencies 
corresponding to the range τ ∈ [0;0.5] of the non-dimensional nonlocality parameter. This was made in order to provide 
a reasonable ‘quick’ variation of the load with time. With reference to Fig. 4, a choice of the non-dimensional 
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modulating axial load ෡ܰ= 10 (which is not enough to cause buckling according to the first critical load, see also Fig.1) 
makes the choice Ωഥ  =  80 reasonable, since it falls well within the considered range. 

 

Fig. 4. Second Ω vs. ෡ܰ 

If this is the chosen frequency of the forcing load, one has that τ = 0.355 provides resonance in the nanobeam, 
while for values of τ near that of resonance (immediately below, or above) one observes beats, as one can see when α 
= 1 in Fig.5 in one of the points with maximum deflection. For 

 

Fig. 5. Non-dimensional time variation of the linear dynamic response at ξ =0.25. 

τ = 0.3, τ = 0.4 (that is, in the neighborhood of the resonance, occurring at τ = 0.355) beats occur, while the other 
responses remain periodic and stationary but their shape is quite far from beats: they are decreasing at the beginning 
as τ increases, exhibiting a stiffer behaviour as the nonlocal parameter grows; they remain limited as long as the 
nonlocality parameter is far from that inducing resonance, while in its neighborhood the response attains the 
characteristic going of beats. The dynamic response is thus strongly influenced by the material parameter τ. We remark 
that, since the participation factor α was chosen equal to unity, both nonlocal and strain gradients effects are expressed 
in terms of τ. 

Fig.6 shows the three-dimensional linear dynamic response of the same point ξ = 0.25 to the same load Eq.(25), as 
a function of both τ and of non-dimensional time ̂ݐ. 

Note how the nonlocality, strain gradient parameter τ strongly affects the response. Indeed, one sees that for very 
low values of τ the response is quite moderate and with a long-time period; as τ increases, both the peak values of the 
response increase, thus evidencing a kind of softening, and the period of the response apparently decreases, thus 
implying a higher frequency and a kind of hardening. 

These two apparently opposite trends account for strain gradient and nonlocal elasticity, respectively, both 
represented in this case by the same parameter τ. In the neighborhood of the value of τ inducing resonance, beats are 
seen, then the behavior returns to a lower amplitude and slower response: the effects of strain gradient and nonlocal 
elasticity seem to be inverted with increasing values of the material non-dimensional parameter τ. 

In the end, an investigation was performed to check how the dynamic load amplitude factor βe affects the response. 
By letting τ = 0.4, α = 1 (that is, once again the non-dimensional material parameter describes both strain gradient and 
nonlocal elasticity, and its value is reasonably far from resonance, yet leading to beats), the response of the point with 
maximum deflection (i.e., ξ = 0.25) as a function of the non-dimensional time ̂ݐ and of the dynamic load amplitude 
factor βe ∈ [0.0001; 0.01] is depicted in Fig.7. 
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Fig. 6. Non-dimensional linear dynamic response at ξ =0.25 as a function of τ,̂ݐ. 

 

Fig. 7. Response at ξ =0.25 as a function of ̂ݐ,  .௘ߚ

It is apparent that the response is linear in the load amplification factor, as it was to be expected. 

4. Final remarks 

Numerical results, obtained by a Galerkin approach, on linear dynamic response of simply supported nanobeams 
have been presented. Three different constitutive models have been adopted by combining effects of nonlocal and 
strain gradient elasticity. The approximated response to static conservative harmonic spatial loads has been 
preliminarily examined. Dynamical effects to a harmonic loading (spatially variable in space and time) have been also 
investigated. All results have been established by selecting non-dimensional geometrical and constitutive parameters 
of interest in nanotechnological applications. In general, dynamic response decreases in both the absolute value of its 
peaks and period, with the exception of one formulation of the energy elastic density for which the peaks have a non-
monotonic variation with nonlocal and strain gradient parameters. Further developments on this matter are in due 
course: linear response to harmonic excitation for other benchmark cases, such as nanoactuators, will be provided in 
forthcoming contributions. 
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