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Abstract

This work is concerned with the study of the adaptivity properties of nonpara-
metric regression estimators over the d-dimensional sphere within the global
thresholding framework. The estimators are constructed by means of a form
of spherical wavelets, the so-called needlets, which enjoy strong concentration
properties in both harmonic and real domains. The author establishes the con-
vergence rates of the Lp-risks of these estimators, focussing on their minimax
properties and proving their optimality over a scale of nonparametric regularity
function spaces, namely, the Besov spaces.
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1. Introduction

The purpose of this paper is to establish adaptivity for the Lp-risk of regres-
sion function estimators in the nonparametric setting over the d-dimensional
sphere Sd. The optimality of the Lp risk is established by means of global
thresholding techniques and spherical wavelets known as needlets.

Let (X1, Y1), . . . , (Xn, Yn) be independent pairs of random variables such
that, for each i ∈ {1, . . . , n}, Xi ∈ Sd and Yi ∈ R. The random variables
X1, . . . , Xn are assumed to be mutually independent and uniformly distributed
locations on the sphere. It is further assumed that, for each i ∈ {1, . . . , n},

Yi = f (Xi) + εi, (1)

where f : Sd 7→ R is an unknown bounded function, i.e., there exists M > 0
such that

sup
x∈Sd
|f (x)| ≤M <∞. (2)

Moreover, the random variables ε1, . . . , εn in Eq. (1) are assumed to be mutually
independent and identically distributed with zero mean. Roughly speaking,
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they can be viewed as the observational errors and in what follows, they will be
assumed to be sub-Gaussian.

In this paper, we study the properties of nonlinear global hard thresholding
estimators, in order to establish the optimal rates of convergence of Lp-risks for
functions belonging to the so-called Besov spaces.

1.1. An overview of the literature

In recent years, the issue of minimax estimation in nonparametric settings
has received considerable attention in the statistical inference literature. The
seminal contribution in this area is due to Donoho et al. [7]. In this paper, the
authors provide nonlinear wavelet estimators for density functions on R, lying
over a wide nonparametric regularity function class, which attain optimal rates
of convergence up to a logarithmic factor. Following this work, the interaction
between wavelet systems and nonparametric function estimation has led to a
considerable amount of developments, mainly in the standard Euclidean frame-
work; see, e.g., [3, 5, 24, 26, 27, 28, 30] and the textbooks [22, 44] for further
details and discussions.

More recently, thresholding methods have been applied to broader settings.
In particular, nonparametric estimation results have been achieved on Sd by us-
ing a second generation wavelet system, namely, the spherical needlets. Needlets
were introduced by Narcowich et al. [39, 40], while their stochastic properties
dealing with various applications to spherical random fields were examined in
[2, 6, 34, 35, 36]. Needlet-like constructions were also established over more
general manifolds by Geller and Mayeli [18, 19, 20, 21], Kerkyacharian et al.
[25] and Pesenson [41] among others, and over spin fiber bundles by Geller and
Marinucci [16, 17].

In the nonparametric setting, needlets have found various applications on
directional statistics. Baldi et al. [1] established minimax rates of convergence
for the Lp-risk of nonlinear needlet density estimators within the hard local
thresholding paradigm, while analogous results concerning regression function
estimation were established by Monnier [38]. The block thresholding framework
was investigated in Durastanti [9]. Furthermore, the adaptivity of nonparamet-
ric regression estimators of spin function was studied in Durastanti et al. [10].
In this case, the regression function takes as its values algebraical curves lying
on the tangent plane for each point on S2 and the wavelets used are the so-called
spin (pure and mixed) needlets; see Geller and Marinucci [16, 17].

The asymptotic properties of other estimators for spherical data, not con-
cerning the needlet framework, were investigated by Kim and Koo [31, 32, 33],
while needlet-like nearly-tight frames were used in Durastanti [8] to establish
the asymptotic properties of density function estimators on the circle. Finally,
in Gautier and Le Pennec [15], the adaptive estimation by needlet thresholding
was introduced in the nonparametric random coefficients binary choice model.
Regarding the applications of these methods in practical scenarios, see, e.g.,
[13, 14, 23], where they were fruitfully applied to some astrophysical problems,
concerning, for instance, high-energy cosmic rays and Gamma rays.
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1.2. Main results

Consider the regression model given in Eq. (1) and let {ψj,k : j ≥ 0, k =
1, . . . ,Kj} be the set of d-dimensional spherical needlets. Roughly speaking,
j and Kj denote the resolution level j and the cardinality of needlets at the
resolution level j, respectively. The regression function f can be rewritten in
terms of its needlet expansion. Namely, for all x ∈ Sd, one has

f (x) =
∑
j≥0

Kj∑
k=1

βj,kψj,k (x) ,

where {βj,k : j ≥ 0, k = 1, . . . ,Kj} is the set of needlet coefficients.
For each j ≥ 0 and k ∈ {1, . . . ,Kj}, a natural unbiased estimator for βj,k is

given by the corresponding empirical needlet coefficient, viz.

β̂j,k =
1

n

n∑
i=1

Yiψj,k (Xi) ; (3)

see, e.g., Baldi et al. [1] and Härdle et al. [22]. Therefore, the global thresholding
needlet estimator of f is given, for each x ∈ Sd, by

f̂n (x) =

Jn∑
j=0

τj

KJn∑
k=1

β̂j,kψj,k (x) , (4)

where τj is a nonlinear threshold function comparing the given j-dependent

statistic Θ̂j(p), built on a subsample of p < n observations, to a threshold based

on the observational sample size. If Θ̂j(p) is above the threshold, the whole
j-level is kept; otherwise it is discarded.

Loosely speaking, this procedure allows one to delete the coefficients corre-
sponding to a resolution level j whose contribution to the reconstruction of the
regression function f is not clearly distinguishable from the noise. Following
Kerkyacharian et al. [30], we consider the so-called hard thresholding frame-
work, defined as

τj = τj(p) = 1{Θ̂j(p) ≥ Bdjn−p/2},

where p ∈ N is even. Further details regarding the statistic Θ̂j(p) will be
discussed in Section 3.4, where the choice of the threshold Bdjn−p/2 will also be
motivated.

For the rest of this section, we consider Θ̂j(p) as an unbiased statistic of
|βj,1|p + · · · + |βj,Kj |p. The so-called truncation bandwidth Jn, on the other

hand, is the higher frequency on which the empirical coefficients β̂j,1, . . . , β̂j,Kj
are computed. The optimal choice of the truncation level is Jn = lnB(n1/d);
for details, see Section 3. This allows the error due to the approximation of f ,
which is an infinite sum with respect to j, to be controlled by a finite sum, such
as the estimator f̂n.
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Our objective is to estimate the global error measure for the regression es-
timator f̂n. For this reason, we study the worst possible performance over a
so-called nonparametric regularity class {Fα : α ∈ A} of function spaces of the
Lp-risk, i.e.,

Rn
(
f̂n;Fα

)
= sup
f∈Fα

E
(
‖f̂n − f‖pLp(Sd)

)
.

Recall that an estimator f̂n is said to be adaptive for the Lp-risk and for the
scale of classes {Fα : α ∈ A} if, for every α ∈ A, there exists a constant cα > 0
such that

E
(
‖f̂n − f‖pLp(Sd)

)
≤ cαRn

(
f̂n;Fα

)
;

see, e.g., [1, 22, 30].
For r > 0 and for p ∈ [1, r], we will establish that the regression estimator

f̂n is adaptive for the class of Besov spaces Bsp,q, where 1 ≤ q ≤ ∞ and d/p ≤
s < r + 1. Finally, let R ∈ (0,∞) be the radius of the Besov ball on which f
is defined. The proper choice of r will be motivated in Section 2.1. Our main
result is described by the following theorem.

Theorem 1.1. Given r ∈ (1,∞), let p ∈ [1, r]. Also, let f̂n be given by Eq. (4),
with Jn = lnB n

1/d. Then, for 1 ≤ q ≤ ∞, d/p ≤ s < r + 1 and 0 < R < ∞,
there exists C > 0 such that

sup
f∈Bsr,q(R)

E
(
‖f̂n − f‖pLp(Sd)

)
≤ Cn

−sp
2s+d .

The behavior of the L∞-risk function will be studied separately in Section 3
and the analogous result is described in Theorem 3.2. Moreover, the details
concerning the choice of r will be presented in Remark 3.1 and other properties
of Lp-risk functions, such as optimality, will be discussed in Remark 3.3.

1.3. Comparison with other results

The bound given in Eq. (12) is consistent with the results of Kerkyacharian
et al. [30], where global thresholding techniques were introduced on R. As far
as nonparametric inference over spherical datasets is concerned, our results can
be viewed as an alternative proposal to the existing nonparametric regression
methods (see, e.g., [1, 9, 10, 38]), related to the local and block thresholding
procedures.

Recall that in local thresholding paradigm, each empirical estimator β̂j,k is
compared to a threshold τj,k and it is, therefore, kept or discarded if its absolute
value is above or below τj,k respectively, i.e., the threshold function is given by

1{|β̂j,k| ≥ τj,k}. Typically, the threshold is chosen such that τj,k = κ (lnn/n),
where κ depends explicitly on two parameters, namely, the radius R of the Besov
ball on which the function f is defined and its supremum M ; see, e.g., Baldi
et al. [1]. An alternative and partially data-driven choice for κ is proposed by
Monnier [38], i.e., here

κ =
κ0

n

n∑
i=1

ψj,k (Xi)
2
.
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Even if this stochastic approach is proved to outperform the deterministic one,
the threshold still depends on both R and M , which control κ0. Also according
to the results established on R (see Härdle et al. [22]), local techniques entail
nearly optimality rates for the Lp-risks over a wide variety of regularity function
spaces. In this case, the regression function f belongs to Bsp,q (R), where s ≥ d/r,
p ∈ {1,∞}, q ∈ {1,∞} and 0 < R <∞ (cf. [1, 10, 22]). However, these adaptive
rates of convergence are achieved on the expense of having an extra logarithmic
term and of requiring explicit knowledge of the radius of the Besov balls on
which f is defined, in order to establish an optimal threshold.

As far as the block thresholding is concerned, for any fixed resolution level
this procedure collects the coefficients β̂j,1, . . . , β̂j,Kj into ` = ` (n) blocks de-
noted Bj,1, . . . , Bj,` of dimension depending on the sample size. Each block is
then compared to a threshold and then it is retained or discarded. This method
has exact convergence rate (i.e., without the logarithmic extra term), although
it requires explicit knowledge of the Besov radius R. Furthermore, the estimator
is adaptive only over a narrower subset of the scale of Besov spaces, the so-called
regular zone; see Härdle et al. [22]. The construction of blocks on Sd can also
be a difficult procedure, as it requires a precise knowledge of the pixelization
of the sphere, namely, the structure of the subregions on which the sphere is
partitioned, in order to build spherical wavelets.

On the other hand, the global techniques presented in this paper do not
require any knowledge regarding the radius of Besov ball and have exact optimal
convergence rates even over the narrowest scale of regularity function spaces.

1.4. Plan of the paper

This paper is organized as follows. Section 2 presents some preliminary
results, such as the construction of spherical needlet frames on the sphere, Besov
spaces and their properties. In Section 3, we describe the statistical methods
we apply within the global thresholding paradigm. This section also includes an
introduction to the properties of the sub-Gaussian random variables and of the
U -statistic Θ̂j(p), which are key for establishing the thresholding procedure.
Section 4 provides some numerical evidence. Finally, the proofs of all of our
results are collected in Section 5.

2. Preliminaries

This section presents details concerning the construction of needlet frames,
the definition of spherical Besov spaces and their properties. In what is to follow
the main bibliographical references are [1, 2, 7, 21, 22, 24, 37, 39, 40].

2.1. Harmonic analysis on Sd and spherical needlets

Consider the simplified notation L2
(
Sd
)

= L2
(
Sd, dx

)
, where dx is the

uniform Lebesgue measure over Sd. Also, let H` be the restriction to Sd of
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the harmonic homogeneous polynomials of degree `; see, e.g., Stein and Weiss
[43]. Thus, the following decomposition holds

L2
(
Sd
)

=

∞⊕
`=0

H`.

An orthonormal basis for H` is provided by the set of spherical harmonics
{Y`,m : m = 1, . . . , g`,d} of dimension g`,d given by

g`,d =
`+ ηd
ηd

(
`+ 2ηd − 1

`

)
, ηd =

d− 1

2
.

For any function f ∈ L2
(
Sd
)
, we define the Fourier coefficients as

a`,m :=

∫
Sd
Y`,m (x) f (x) dx,

such that the kernel operator denoting the orthogonal projection over H` is
given, for all x ∈ Sd, by

P`,df (x) =

g`,d∑
m=1

a`,mY`,m (x) .

Also, let the measure of the surface of Sd be given by

ωd = 2π(d+1)/2
/

Γ

(
d+ 1

2

)
.

The kernel associated to the projector P`,d links spherical harmonics to the

Gegenbauer polynomial of parameter ηd and order `, labelled by C(ηq)
` . Indeed,

the following summation formula holds

P`,d (x1, x2) =

g`,d∑
m=1

Y`,m (x1)Y`,mx2 =
`+ ηd
ηdωd

C(ηd)
` (〈x1, x2〉) ,

where 〈·, ·〉 is the standard scalar product on Rd+1; see, e.g., Marinucci and
Peccati [37].

Following Narcowich et al. [40], K` = ⊕`i=0Hi is the linear space of homo-
geneous polynomials on Sd of degree smaller or equal to `; see also [1, 37, 39].
Thus, there exist a set of positive cubature points Q` ∈ Sd and a set of cubature
weights {λξ}, indexed by ξ ∈ Q`, such that, for any f ∈ K`,∫

Sd
f (x) dx =

∑
ξ∈Q`

λξf (ξ) .

In the following, the notation a ≈ b denotes that there exist c1, c2 > 0 such
that c1b ≤ a ≤ c2b. For a fixed resolution level j and a scale parameter B, let
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Kj = card
(
Q[2Bj+1]

)
. Therefore, {ξj,k : k = 1, . . . ,Kj} is the set of cubature

points associated to the resolution level j, while {λj,k : k = 1, . . . ,Kj} contains
the corresponding cubature weights. These are typically chosen such that

Kj ≈ Bdj and ∀k∈{1,...,Kj} λj,k ≈ B−dj .

Define the real-valued weight (or window) function b on (0,∞) so that

(i) b lies on a compact support
[
B−1, B

]
;

(ii) the partitions of unity property holds, namely,
∑
j≥0 b

2(`/Bj) = 1, for
` ≥ B;

(iii) b ∈ Cρ (0,∞) for some ρ ≥ 1.

Remark 2.1. Note that ρ can be either a positive integer or equal to ∞. In
the first case, the function b(·) can be built by means of a standard B-spline ap-
proach, using linear combinations of the so-called Bernstein polynomials, while
in the other case, it is constructed by means of integration of scaled exponen-
tial functions (see also Section 4). Further details can be found in the textbook
Marinucci and Peccati [37].

For any j ≥ 0 and k ∈ {1, . . . ,Kj}, spherical needlets are defined as

ψj,k (x) =
√
λj,k

∑
`≥0

b

(
`

Bj

)
P`,d (x, ξj,k).

Spherical needlets feature some important properties descending on the struc-
ture of the window function b. Using the compactness of the frequency domain,
it follows that ψj,k is different from zero only on a finite set of frequencies `, so
that we can rewrite the spherical needlets as

ψj,k (x) =
√
λj,k

∑
`∈Λj

b

(
`

Bj

)
P`,d (x, ξj,k),

where Λj =
{
u : u ∈

([
Bj−1

]
,
[
Bj+1

])}
and [u], u ∈ R, denotes the integer part

of u. From the partitions of unity property, the spherical needlets form a tight
frame over Sd with unitary tightness constant. For f ∈ L2

(
Sd
)
,

‖f‖2L2(Sd) =
∑
j≥0

Kj∑
k=1

|βj,k|2 ,

where

βj,k =

∫
Sd
f (x)ψj,k (x) dx, (5)

are the so-called needlet coefficients. Therefore, we can define the following
reconstruction formula (holding in the L2-sense): for all x ∈ Sd,

f (x) =
∑
j≥0

Kj∑
k=1

βj,kψj,k (x) .
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From the differentiability of b, we obtain the following quasi-exponential local-
ization property; for x ∈ Sd and any η ∈ N such that η ≤ ρ, there exists cη > 0
such that

|ψj,k (x)| ≤ cηB
jd/2

{1 +Bjd/2d (x, ξj,k)}η
, (6)

where d (·, ·) denotes the geodesic distance over Sd.
Roughly speaking, |ψj,k (x)| ≈ Bjd/2 if x belongs to the pixel of area B−dj

surrounding the cubature point ξj,k; otherwise, it is almost negligible. The
localization result yields a similar boundedness property for the Lp-norm, which
is crucial for our purposes. In particular, for any p ∈ [ 1,∞) there exist two
constants cp, Cp > 0 such that

cpB
jd( 1

2−
1
p ) ≤ ‖ψj,k‖Lp(Sd) ≤ CpB

jd( 1
2−

1
p ), (7)

and there exist two constants c∞, C∞ > 0 such that

c∞B
j d2 ≤ ‖ψj,k‖L∞(Sd) ≤ C∞B

jd/2.

According to Lemma 2 in Baldi et al. [1], the following two inequalities hold.
For every 0 < p ≤ ∞,∥∥∥∥∥∥

Kj∑
k=1

βj,kψj,k

∥∥∥∥∥∥
Lp(Sd)

≤ cBjd(
1
2−

1
p ) ‖βj,k‖`p , (8)

and for every 1 ≤ p ≤ ∞,

‖βj,k‖`p B
jd( 1

2−
1
p ) ≤ c ‖f‖Lp(Sd) ,

where `p denotes the space of p-summable sequences. The generalization for the
case p =∞ is trivial.

The following lemma presents a result based on the localization property.

Lemma 2.1. For x ∈ Sd, let ψj,k (x) be given by Eq. (2.1). Then, for q ≥ 2,
ki1 6= ki2 , for i1 6= i2 = 1, . . . , q, and for any η ≥ 2, there exists Cη > 0 such
that ∫

Sd

q∏
i=1

ψj,ki (x) dx ≤ Bdj(q−1)

(1 +Bdj∆)
η(q−1)

,

where
∆ = min

i1,i2∈{1,...,q},i1 6=i2
d(ξj,ki1 , ξj,ki2 ).

Remark 2.2. As discussed in Geller and Pesenson [21] and Kerkyacharian et
al. [25], needlet-like wavelets can be built over more general spaces, namely, over
compact manifolds. In particular, let {M, g} be a smooth compact homogeneous
manifold of dimension d, with no boundaries. For the sake of simplicity, we
assume that there exists a Laplace–Beltrami operator on M with respect to the
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action g, labelled by ∆M. The set {γq : q ≥ 0} contains the eigenvalues of
∆M associated to the eigenfunctions {uq : q ≥ 0}, which are orthonormal with
respect to the Lebesgue measure over M and they form an orthonormal basis in
L2 (M); see [20, 21]. Every function f ∈ L2 (M) can be described in terms of
its harmonic coefficients, given by aq = 〈f, uq〉 L2

(M)
, so that, for all x ∈M,

f (x) =
∑
q≥1

aquq (x) .

Therefore, it is possible to define a wavelet system over {M, g} describing a
tight frame over M along the same lines as in Narcowich et al. [40] for Sd; see
also [21, 25, 41] and the references therein, such as Geller and Mayeli [19, 20].
Here we just provide the definition of the needlet (scaling) function onM, given
by

ψj,k (x) =
√
λj,k

Bj+1∑
q=Bj−1

b

(√−γq
Bj

)
uq (x) ū (ξj,k) ,

where in this case the set {ξj,k, λj,k} characterizes a suitable partition of M,
given by a ε-lattice on M, with ε =

√
λj,k. Further details and technicalities

concerning ε-lattices can be found in Pesenson [41]. Analogously to the spherical
case, for f ∈ L2 (M) and arbitrary j ≥ 0 and k ∈ {1, . . . ,Kj}, the needlet
coefficient corresponding to ψj,k is given by

βj,k = 〈f, ψj,k〉L2(Sd) =
√
λj,k

Bj+1∑
q=Bj−1

b

(√−γq
Bj

)
aquq (ξj,k) .

These wavelets preserve all the properties featured by needlets on the sphere: be-
cause, as shown in the following sections, the main results presented here do not
depend strictly on the underlying manifold (namely, the sphere) but rather they
can be easily extended to more general frameworks such as compact manifolds,
where the concentration properties of the wavelets and the smooth approximation
properties of Besov spaces still hold.

2.2. Besov space on the sphere

Here we will recall the definition of spherical Besov spaces and their main
approximation properties for wavelet coefficients. We refer to [1, 10, 22, 39] for
more details and further technicalities.

Suppose that one has a scale of functional classes Gt, depending on the q-
dimensional set of parameters t ∈ T ⊆ Rq. The approximation error Gt (f ; p)
concerning the replacement of f by an element g ∈ Gt is given by

Gt (f ; p) = inf
g∈Gt
‖f − g‖Lp(Sd) .

Therefore, the Besov space Bsp,q is the space of functions such that f ∈ Lp
(
Sd
)

and ∑
t≥0

1

t
{tsGt (f ; p)}q <∞,
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which is equivalent to ∑
j≥0

Bj{GBj (f ; p)}q <∞.

The function f belongs to the Besov space Bsp,q if and only if Kj∑
k=1

{|βj,k| ‖ψj,k‖Lp(Sd)}
p

1/p

= B−jswj , (9)

where wj ∈ `q, the standard space of q-power summable infinite sequences.
Loosely speaking, the parameters s ≥ 0, 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞ of
the Besov space Bsp,q can be viewed as follows: given B > 1, the parameter p
denotes the p-norm of the wavelet coefficients taken at a fixed resolution j, the
parameter q describes the weighted q-norm taken across the scale j, and the
parameter r controls the smoothness of the rate of decay across the scale j. In
view of Eq. (7), the Besov norm is defined as

‖f‖Bsp,q = ‖f‖Lp(Sd) +


∑
j≥0

Bjq{s+d(1/2−1/p)}

 Kj∑
k=1

|βj,k|p
q/p


1/q

= ‖f‖Lp(Sd) +
∥∥∥Bj{s+d(1/2−1/p)} ‖βj,k‖`p

∥∥∥
`q
,

for q ≥ 1. The extension to the case q =∞ is trivial.
We conclude this section by introducing the Besov embedding, discussed in

[1, 29, 30] among others. For p < r, one has

Bsr,q ⊂ Bsp,q and Bsp,q ⊂ Bs−d(1/p−1/r)
r,q ,

or, equivalently,

Kj∑
k=1

|βj,k|p ≤

 Kj∑
k=1

|βj,k|r
K

1−p/r
j ; (10)

Kj∑
k=1

|βj,k|r ≤
Kj∑
k=1

|βj,k|p . (11)

Proofs and further details can be found, for instance, in [1, 10].

3. Global thresholding with spherical needlets

This section provides a detailed description of the global thresholding tech-
nique applied to the nonparametric regression problem on the d-dimensional
sphere. We refer to [12, 22, 30] for an extensive description of global threshold-
ing methods and to [1, 10] for further details on nonparametric estimation in
the spherical framework.
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3.1. The regression model

Recall the regression model given by Eq. (1), i.e., for all i ∈ {1, . . . , n},

Yi = f (Xi) + εi.

While {X1, . . . , Xn} denotes the set of uniformly sampled random directions
over Sd, {Y1, . . . , Yn} is the set of the independent observations which are related
to {X1, . . . , Xn} through the regression function f and affected by {ε1, . . . , εn},
which is the set of the observational errors. The independent and identically
distributed random variables ε1, . . . , εn are such that, for all i ∈ {1, . . . , n},

E (εi) = 0, E
(
ε2
i

)
= σ2

ε <∞,

and they are assumed to be sub-Gaussian. Further details are given in Sec-
tion 3.2. Assume that f ∈ Bsp,q, d/p ≤ s < r + 1, 1 ≤ p ≤ r and 1 ≤ q ≤ ∞,
where r is fixed, and that there exists R > 0 such that ‖f‖Bsp,q ≤ R. As men-

tioned in Section 1.2 and Section 2, the regression function can be expanded in
terms of needlet coefficients as

f (x) =
∑
j≥0

Kj∑
k=1

βj,kψj,k (x) ,

where βj,k are given in Eq. (5).

Remark 3.1. As discussed in Section 1.3, we do not require explicit knowledge
of the Besov radius R. Although it can be difficult to determine r explicitly,
we suggest the following criterion. Consider Remark 2.1; if ρ < ∞, we choose
r = ρ (see again [30]). If ρ =∞, we choose r = Bd(Jn+1) empirically, using the
so-called vanishing moment condition on Sd, properly adapted for the needlet
framework; see, e.g., Schröder and Sweldens [42].

3.2. The observational noise

Following Durastanti et al. [10], we assume that ε1, . . . , εn follow a sub-
Gaussian distribution; see also Buldygin and Kozachenko [4]). A random vari-
able ε is said to be sub-Gaussian of parameter a if, for all λ ∈ R, there exists
a ≥ 0 such that

E(eλε) ≤ ea
2λ2/2.

Sub-Gaussian random variables are characterized by the sub-Gaussian standard,
given by

ζ (ε) := inf
{
a ≥ 0 : E(eλε) ≤ ea

2λ2/2, λ ∈ R
}
,

which is finite. As proved in [4],

ζ (ε) = sup
λ6=0

{
2 ln E

(
eλε
)

λ2

}1/2

; E(eλε) ≤ exp

{
λ2ζ2 (ε)

2

}
.
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Following Lemma 1.4 in [4], for p > 0

E (ε) = 0; E
(
ε2
)
≤ ζ (ε) ; E (|ε|p) ≤ 2

(
p

exp

)p/2
ζp (ε) .

Therefore, sub-Gaussian random variables are characterized by the same mo-
ment inequalities and concentration properties featured by null-mean Gaussian
or bounded random variables.

Remark 3.2. In order to establish the probabilistic bounds described in Sec-
tions 3.3 and 3.4, it would be sufficient for ε1, . . . , εn to be null-mean indepen-
dent random variables with finite absolute pth moment. However, we include
the notion of sub-Gaussianity in order to be consistent with the existing liter-
ature; see [10]. Furthermore, sub-Gaussianity involves a wide class of random
variables, including Gaussian and bounded random variables and, in general,
all the random variables such that their moment generating function has a an
upper bound in terms of the moment generating function of a centered Gaussian
random variable of variance a. Hence the term “sub-Gaussian.”

3.3. The estimation procedure

We note again that the method established here can be viewed as an ex-
tension of global thresholding techniques to the needlet regression function es-
timation. In this sense, our results are strongly related to those presented in
[1, 10, 30], as discussed in Section 1.3.

For any j ≥ 0 and k ∈ {1, . . . ,Kj}, the empirical needlet estimator is given
by

β̂j,k =
1

n

n∑
i=1

Yiψj,k (Xi) ,

and it is unbiased, i.e.,

E(β̂j,k) =
1

n

n∑
i=1

[E{f (Xi)ψj,k (Xi)}+ E(εi)E{ψj,k (Xi)}] = βj,k.

The empirical needlet coefficients are moreover characterized by the following
stochastic property.

Proposition 3.1. Let βj,k and β̂j,k be as in Eq. (5) and Eq. (3), respectively.
Thus, for p ≥ 1, there exists c̃p such that

E(|β̂j,k − βj,k|p) ≤ c̃pn−p/2.

Therefore, we define the global thresholding needlet regression estimator at
every x ∈ Sd by

f̂n (x) =

Jn∑
j=0

τj
∑
k

β̂j,kψj,k (x) ;

see Eq. (4). Recall now the main results, stated in Section 1.
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Theorem 1.1. Given r ∈ (1,∞), let p ∈ [1, r]. Also, let f̂n be given by Eq. (4),
with Jn = lnB n

1/d. Then, for 1 ≤ q ≤ ∞, d/p ≤ s < r + 1 and 0 < R < ∞,
there exists C > 0 such that

sup
f∈Bsr,q(R)

E
(
‖f̂n − f‖pLp(Sd)

)
≤ Cn

−sp
2s+d . (12)

In the nonparametric thresholding settings, the Lp-risk is generally bounded as
follows

E
(
‖f̂n − f‖pLp(Sd)

)
≤ 2p−1

E

∥∥∥ Jn∑
j=0

(β̂j,k − βj,k)ψj,k

∥∥∥p
Lp(Sd)


+

∥∥∥∥∥∥
∑
j≥Jn

βj,kψj,k

∥∥∥∥∥∥
p

Lp(Sd)


= S + B,

where S is the stochastic error, due to the randomness of the observations and
B is the (deterministic) bias error. The so-called truncation level Jn is chosen
so that BdJn = n.

In this case the bias term term does not affect the rate of convergence for
s ∈ (d/p, r + 1). As far as S is concerned, its asymptotic behavior is established
by means of the so-called optimal bandwidth selection, i.e., a frequency Js such

that BdJs = n
1

(2s+d) ; see [12, 30]. Note that trivially, Js < Jn. The meaning
and the relevance of the optimal bandwidth selection is given in Section 5, in
the proof of Theorem 1.1. However, in the next section it will also be crucial
for the construction of the threshold function.

Consider now the case p = ∞. First, we have to modify the threshold
function given in Eq. (13) slightly, in view of the explicit dependence on p.

Hence, in the selection procedure we use the statistic Θ̂∞j = Θ̂j (1) = |β̂j,1|+· · ·+
|β̂j,Kj |, which will be compared to Bdjn−1/2. Further details on the threshold
will also be given in the next section. Under this assumption, we obtain the
following result.

Theorem 3.2. Let f̂n by given by Eq. (4). Given r ∈ (1,∞), for any d < s <
r + 1, there exists C > 0 such that

sup
f∈Bsr,q

E
(
‖f̂n − f‖L∞(Sd)

)
≤ Cn−

s−d
2s+d .

Remark 3.3. As far as optimality is concerned, Eq. (12) given in Theorem 1.1,
achieves the same optimal minimax rates provided on R by Kerkyacharian et al.
[30], where the established optimal rate of convergence was given by n−sp/(2p+1).
Moreover, this rate is consistent with the results provided over the so-called reg-
ular zone by [1, 9, 10, 38] for local and block thresholding estimates by needlets
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on the sphere, where the rates are nearly optimal due to the presence of a loga-
rithmic term.

Regarding the L∞-risk function, according to Theorem 3.2, the rate estab-
lished is not optimal; see, e.g., Baldi et al. [1]. In the global thresholding

paradigm, a straightforward generalization of the thresholding function Θ̂j(p)
given by Eq. (13) is not available (see Remark 3.4). Therefore, the upper bound
for the case p =∞ is established in a different framework, which can be reason-
ably assumed to cause the lack of optimality.

3.4. The threshold

The construction of the threshold function τj is strictly related to Efromovich
[12] and Kerkyacharian et al. [30], where analogous results were established in
the real case. Let

Θj (p) =

Kj∑
k=1

|βj,k|p .

Using Eq. (9), it follows immediately that, if f ∈ Bsp,q,

Θj (p) ≤ CB−jp{s+d( 1
2−

1
p )}.

Consider now the optimal bandwidth selection Js. If j ≤ Js,

B−jp{s+d( 1
2−

1
p )} ≥ Bdj

np/2
.

Thus, even if j ≤ Js doesn’t imply Θj (p) > Bdj/np/2, according to [12, 30], one
has that Θj (p) ≥ Bdj/np/2 implies j ≤ Js.

Clearly, the case
{

Θj (p) ≤ Bdj/np/2, j ≤ Js
}

provides no guarantee of a
better performance if compared to the linear estimate, whose error is of order
Bdj/np/2; see Härdle et al. [22]. Thus, the natural choice is to construct a
threshold function that keeps the level j if and only if

Θj (p) ≥ Bdj

np/2
.

As pointed out in [12, 30], the natural estimator |β̂j,1|p + · · · + |β̂j,Kj |p for
Θj (p) yields an extremely large bias term and, therefore, undersmoothing ef-
fects. Hence, following the procedure as suggested in [12, 30] (see also [22]) but
properly adapted to the needlet framework (see Lemma 2.1), we propose an
alternative method as described below.

Let p ∈ N be even, Σp denoting the set of p-dimensional vectors chosen in
{1, . . . , n}p and also let υ = (i1, . . . , ip) be the generic element belonging to Σp.

Define the U-statistic Θ̂j(p) by

Θ̂j(p) =
1(
n
p

) Kj∑
k=1

∑
υ∈Σp

Ψ⊗pj,k (Xυ, ευ) , (13)
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where

Ψ⊗pj,k (Xυ, ευ) =

p∏
h=1

{f (Xih) + εih}ψj,k (Xih) .

Given that the sets of variables {X1, . . . , Xn} and {ε1, . . . , εn} are independent,
it can be easily seen that

E{Θ̂j(p)} =

Kj∑
k=1

|βj,k|p = Θj . (14)

Remark 3.4. As mentioned in the previous section, if we consider the case
p =∞, we lack a straightforward extension of Θ̂j(p). Hence, we choose

Θ̂∞j =

Kj∑
k=1

|β̂j,k|.

so that the threshold function is given by

τj = 1

{
Θ∞j ≥

Bdj

n1/2

}
.

Our purpose is to establish two probabilistic bounds related to the mth
moment and to the mth centered moment Θ̂j(p), respectively. We have that

E[{Θ̂j(p)}m] =

(
n

p

)−m ∑
υ1,...,υm∈Σp

E
{ ∑
k1,...,km

m∏
`=1

Ψ⊗pj,k` (Xυ` , ευ`)
}
.

For any fixed configuration υ1, . . . , υm, let the sequence c1, . . . , cm denote the
cardinality of the E

(
[{f (X) + ε}ψj,k (X)]`

)
of size ` appearing in E{Θ̂j(p)}.

Observe that
m∑
`=1

`c` = mp.

Following Kerkyacharian et al. [30], the next results hold.

Proposition 3.3. Let Θ̂j(p) be given by Eq. (13). Also, let p be an even integer.

Then, for m ∈ N, there exists C̃1 such that

E[{Θ̂j(p)}m] ≤ C̃1

∑
(c1,...,cm)∈Γm,p

(
Bjd

n

)(mp2 −
∑m
`=1 c`) B−j{c1(s−

d
p )−d(1−γ)}

nmp/2
,

where Γm,p = {c1, . . . , cm :
∑m
`=1 `c` = mp}.

Proposition 3.4. Let Θ̂j(p) and Θj be given by (13) and (14) respectively.

Also, let p,m be even integers. Then, there exists C̃2 such that

E{|Θ̂j(p)−Θj(p)|m} ≤ C̃2

p∑
h=1

(
Bjd

np/2

)mh
p

{Θj (p)}(1−h/p)m.
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Remark 3.5. According to [30], this procedure can be easily extended to the case
of p is not being an even natural number, by means of an interpolation method.
Indeed, by fixing p1, p2 ∈ N, both even, we can rewrite p = δp1 + (1− δ) p2, as

Θ̂j(p) = {Θ̂j (p1)}δ{Θ̂j (p2)}1−δ.

The following lemma is crucial for the application of our interpolation method.
As in [30], we consider for the sake of simplicity just the case p2 − p1 = 2, so
that p0 ≤ p ≤ p′0, p′0 = p0 + 2.

Lemma 3.5. For any even m ∈ N,

E

{∣∣∣∣ 1n Θ̂j (p0)−Θj (p′0)

∣∣∣∣m} ≤ C̃2

p′0∑
h=1

{Θj (p′0 − h)}mn−mh/2.

We conclude this section with a result regarding the behavior of Θ̂∞j .

Proposition 3.6. Let Θ̂∞j and Θ∞j be given by (13) and (14) for p = 1, re-

spectively. Then, there exists C̃∞ such that

E(|Θ̂∞j −Θ∞j |2) ≤ C̃∞Bdj/n.

4. Simulations

In this section, we present the results of some numerical experiments per-
formed over the unit circle S1. In particular, we are mainly concerned with
the empirical evaluation of L2-risks obtained by global thresholding techniques,
which are then compared to the L2-loss functions for linear wavelet estimators.

As in any practical situation, the simulations are computed over finite sam-
ples and therefore, they can be considered as a reasonable hint. Furthermore,
they can be viewed as a preliminary study to practical applications on real
data concerning estimation of the power spectrum of the Cosmic Microwave
Background radiation; see, e.g., Faÿ et al. [14].

The needlets over the circle used here are based on a weight function b which,
analogously to Baldi et al. [1], is a properly rescaled primitive of the function

x 7→ e−1/(1−x2);

see also Marinucci and Peccati [37]. Following Theorem 1.1, we fix B = 2 and

n = 26, 27, 28 and Jn = 6, 7, 8, respectively. The U -statistic Θ̂j (2), correspond-
ing to the L2 risk considered here, results in considerable computational effort,
because it is built over 2,016, 8,128 or 32,640 possible combinations of needlet
empirical coefficients for Jn = 6, 7, 8, respectively.

By choosing a test function F and fixing the set of locations X1, . . . , Xn, we
obtain the corresponding Y1, . . . , Yn by adding to F (Xi) a Gaussian noise, with
three different amplitudes, i.e., the noise standard deviation σε is chosen to be
equal to 0.25M , 0.5M or 0.75M , where M is the L∞-norm of the test function.
Therefore, the following three numerical experiments are performed.
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Example 4.2 Global Linear
Jn ↓ \σε → 0.25M 0.50M 0.75M 0.25M 0.50M 0.75M

6 7.82 65.29 108.46 80.23 411.38 889.15
7 1.90 9.38 67.09 26.75 141.41 451.61
8 1.77 18.88 54.03 36.69 96.82 434.80

Table 1: Example 4.2 - Values for L2 risk

Example 4.1. According to Baldi et al. [1], we use the uniform test function
defined, for all x ∈ S1, by

F1 (x) =
1

4π
.

In this case, for every j, k, we get βj,k = 0. The performance of our model can
be roughly evaluated by simply controlling how many resolution levels pass the
selection procedure. For all the choices of n and σ, we get τj = 0 for all j ∈
{1, . . . , Jn}. On the other hand, we consider a finite number of resolution levels
and therefore of frequencies. Thus, it is possible that higher resolution levels,
involving higher frequencies, could be selected by the thresholding procedure.

Example 4.2. In this example, we choose the function defined, for all x ∈ S1,
by

F2 (x) = cos (4x) .

In this case, the test function corresponds to the real part of one of the Fourier
modes over the circle (with eigenvalue 4). This choice allows us to establish
whether the thresholding procedure is able to select only the suitable correspond-
ing resolution levels, as the amplitude of the noise increases. As expected, for
every n and for every σε, we get τj = 1 for j = 2 (containing the frequency
k = 4) and 0 otherwise. Table 1 presents the value for L2-risks for different
values of Jn and σε, while Figure 1 illustrates the graphical results for the case
Jn = 8 and σε = 0.5M .

Example 4.3. A more general function is chosen here, which is defined, for all
x ∈ S1, by

F3 (x) =
{
e−(x−3π/2)2

+ 2e−(x−2)2
}

sin (−2x) ,

depending on a larger set of Fourier modes. In this case, Table 2 gives the
values of L2-risks corresponding to different Jn and σε, while Figure 2 presents
the graphical results for the case Jn = 8 and σε = 0.5M . Table 3 contains, for
every pair Jn, σε, the resolution levels selected by the procedure.

17



0 1 2 3 4 5 6

−
1.

0
0.

0
1.

0

Test function

0 1 2 3 4 5 6

−
2

0
1

2

Test function + noise

0 1 2 3 4 5 6

−
1.

5
0.

0
1.

5

Linear needlet estimator

0 1 2 3 4 5 6

−
1.

0
0.

0

Global thresholding needlet estimator

Figure 1: Example 4.2 — Jn = 8, σε = 0.5M

Example 4.3 Global Linear
Jn ↓ \σε → 0.25M 0.50M 0.75M 0.25M 0.50M 0.75M

6 62.01 208.94 625.02 227.32 1372.64 2296.28
7 58.87 150.73 277.98 150.94 644.31 1294.59
8 51.14 40.65 NA 321.05 1271.31 NA

Table 2: Example 4.3 — Values for L2 risk

Example 4.3 Selected j
Jn ↓ \σε → 0.25M 0.50M 0.75M

6 1 1,2 1,2,3
7 1 1,4 1,2
8 1 1,2 1,3,5

Table 3: Example 4.3 - Values of the function τj

18



0 1 2 3 4 5 6

−
0.

5
0.

5
1.

5

Test function

0 1 2 3 4 5 6

−
3

−
1

1
3

Test function + noise

0 1 2 3 4 5 6

−
4

0
2

4

Linear needlet estimator

0 1 2 3 4 5 6

−
1.

0
0.

5
1.

5

Global thresholding needlet estimator

Figure 2: Example 4.3 - Jn = 8, σε = 0.5M

5. Proofs

In this section, we provide proofs for the main and auxiliary results.

5.1. Proof of the main results

The proofs of Theorem 1.1 and Theorem 3.2 follow along the same lines as
the proof of Theorem 8 in Baldi et al. [1].

Proof of Theorem 1.1. Following, for instance, [1, 7, 9, 10, 22, 30] and as men-

tioned in Section 3.3, the Lp-risk E(‖f̂n − f‖pLp(Sd)
) can be decomposed as the

sum of a stochastic and a bias term. More specifically,

E(‖f̂n − f‖pLp(Sd)
) ≤ 2p−1

E


∥∥∥∥∥∥
Jn∑
j=0

Kj∑
k=1

(τj β̂j,k − βj,k)ψj,k

∥∥∥∥∥∥
p

Lp(Sd)


+

∥∥∥∥∥∥
∑
j>Jn

Kj∑
k=1

βj,kψj,k

∥∥∥∥∥∥
p

Lp(Sd)

 .

Using the definition of Besov spaces, we obtain for the bias term the following
inequality:∥∥∥∥∥∥
∑
j>Jn

Kj∑
k=1

βj,kψj,k

∥∥∥∥∥∥
p

Lp(Sd)

≤
∑
j>Jn

∥∥∥∥∥∥
Kj∑
k=1

βj,kψj,k

∥∥∥∥∥∥
p

Lp(Sd)

≤ CB−spJn ≤ Cn−
ps

2s+d .
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Following Baldi et al. [1], the stochastic term can be split into four terms, i.e.,

E


∥∥∥∥∥∥
Jn∑
j=0

Kj∑
k=1

(τj β̂j,k − βj,k)ψj,k

∥∥∥∥∥∥
p

Lp(Sd)

 ≤ 4p−1(Aa+Au+ Ua+ Ua),

where

Aa = E


∥∥∥∥∥∥
Jn∑
j=0

Kj∑
k=1

(τj β̂j,k − βj,k)ψj,k1

{
Θ̂j(p) ≥

Bdj

np/2

}
1

{
Θj (p) ≥ Bdj

2np/2

}∥∥∥∥∥∥
p

Lp(Sd)

 ,

Au = E


∥∥∥∥∥∥
Jn∑
j=0

Kj∑
k=1

(τj β̂j,k − βj,k)ψj,k1

{
Θ̂j(p) ≥

Bdj

np/2

}
1

{
Θj (p) ≤ Bdj

2np/2

}∥∥∥∥∥∥
p

Lp(Sd)

 ,

Ua = E


∥∥∥∥∥∥
Jn∑
j=0

Kj∑
k=1

(τj β̂j,k − βj,k)ψj,k1

{
Θ̂j(p) ≤

Bdj

np/2

}
1

{
Θj (p) ≥ 2Bdj

np/2

}∥∥∥∥∥∥
p

Lp(Sd)

 ,

Uu = E


∥∥∥∥∥∥
Jn∑
j=0

Kj∑
k=1

(τj β̂j,k−βj,k)ψj,k1

{
Θ̂j(p) ≤

Bdj

np/2

}
1

{
Θj (p) ≤ 2Bdj

np/2

}∥∥∥∥∥∥
p

Lp(Sd)

 .

Following Durastanti et al. [10], the labels A and U denote the regions where

Θ̂j(p) is larger and smaller than the threshold Bdjn−p/2 respectively, whereas a
and u refer to the regions where the deterministic Θj (p) are above and under
a new threshold, given by 2−1Bdjn−p/2 for a and 2Bdjn−p/2 for u. The decay
of Aa and Uu depends on the properties of Besov spaces, while the bounds on
Au and Ua depend on the probabilistic inequalities concerning β̂j,k and Θ̂j(p),
given in Propositions 3.1, 3.3 and 3.4.

Let p ∈ N be even. Then, using the definition of the optimal bandwidth
selection, we have

Aa ≤ C ′1 (Jn + 1)
p−1

Jn∑
j=0

‖ψj,k‖pLp(Sd)

Kj∑
k=1

E
(
|β̂j,k − βj,k|p

)
1

{∣∣∣∣Θj (p) ≥ Bdj

2np/2

∣∣∣∣}

≤ C ′′1


Js∑
j=0

Bjdp/2n−p/2 + n−p/2
Jn∑
j=Js

Kj∑
k=1

Bdj(p/2−1) Θj (p)

Bdjn−p/2


≤ C ′′′1

BJsdp/2n−p/2 +

Jn∑
j=Js

 Kj∑
k=1

|βj,k|p ‖ψj,k‖pLp(Sd)


≤ C1

(
BJsdp/2n−p/2 +B−Jssp

)
= C1n

− sp
2s+d ,
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given that

BJsdp/2n−p/2 = n
dp

2(2s+d)
−p/2 = n−

sp
2s+d . (15)

Similarly, for the region Au we obtain

Au ≤ C ′2 (Au1 +Au2) ,

where

Au1 =

Js∑
j=0

Kj∑
k=1

‖ψj,k‖pLp(Sd) E(|β̂j,k − βj,k|p),

Au2 =

Jn∑
j=Js

Kj∑
k=1

‖ψj,k‖pLp(Sd) E

[
|β̂j,k − βj,k|p1

{
Θ̂j(p) ≥

Bdj

n−p/2

}]
.

Using Eq.s (7) and (15), it is easy to see that

Au1 ≤ C2n
− sp

2s+d .

Regarding Au2, using Hölder inequality with 1/α′ + 1/α = 1, the generalized
Markov inequality with even m ∈ N and Proposition 3.3, we obtain

Au2 ≤ C

Jn∑
j=Js

Kj∑
k=1

‖ψj,k‖pLp(Sd) E

[
|β̂j,k − βj,k|p1

{
Θ̂j(p) ≥

Bdj

np/2

}]

≤ C

Jn∑
j=Js

Kj∑
k=1

Bjd(p/2−1)
{

E
(
|β̂j,k − βj,k|pα

′
)}1/α′

[
Pr

[{
Θ̂j(p) ≥

Bdj

np/2

}]]1/α

≤ C

Jn∑
j=Js

Bjdp/2n−p/2

E
[{

Θ̂j(p)
m
}]

(
Bdj/np/2

)m
1/α

≤ C

Jn∑
j=Js

Bj
dp
2

np/2

 ∑
(c1,...,cm)∈Γm,p

(
Bjd

n

)(mp2 −
∑m
`=1 c`)

B−j{c1(s−
d
p )}Bdj{(1−m)−γ}

1/α

≤ Au2,1 +Au2,2,

where Au2,1 and Au2,2 are defined by splitting Γm,p into two subsets, Γ
(+)
m,p and

Γ
(−)
m,p. These subsets are defined as

Γ(+)
m,p :=

{
c1, . . . , cm :

mp

2
−

m∑
i=i

cm ≥ 0

}
;

Γ(−)
m,p :=

{
c1, . . . , cm :

mp

2
−

m∑
i=i

cm ≤ 0

}
.
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Note that 1− γ ∈ [0, 1]. Hence we choose m,α so that m > 1 +αp/2. It can be
easily verified that

Au2,1 ≤ C ′
Jn∑
j=Js

Bj
dp
2 n−p/2

[ ∑
(c1,...,cm)∈Γ

(+)
m,p

Bdj{(1−m)−γ}
]1/α

≤ C ′′BJs
dp
2 n−p/2


∑

(c1,...,cm)∈Γ
(+)
m,p

BdJs(1−m)


1/α

≤ C ′′′n−
sp

2s+d

On the other hand,

Au2,2 ≤ C ′
∑

(c1,...,cm)∈Γ
(−)
m,p

B−Js
c1(s−d/p)

α

Jn∑
j=Js

Bjdp/2n−p/2


(
Bjd

n

)(mp2 −
∑m
`=1 c`)/α

B
1−m−γ

α dj


≤ C ′′

(
BdJs

n

)p/2 ∑
(c1,...,cm)∈Γ

(−)
m,p

B−Js
c1
α (s− dp )

(
BJsd

n

)(mp2 −
∑m
`=1 c`)/α

B
1−m−γ

α dJs

≤ C ′′
(
BdJs

n

)p/2 ∑
(c1,...,cm)∈Γ

(−)
m,p

n−
c1(s− dp )
α(2s+d) {n

2s
(2s+d)α (mp2 −

∑m
`=1 c`)}n

d(1−m−γ)
α(2s+d)

≤ C ′′′n−
sp

2s+d ,

and therefore,
Au ≤ C2n

− sp
2s+d .

Consider now Ua. We have that

Ua ≤ C ′3

 Js∑
j=0

∥∥∥∥∥∥
Kj∑
k=1

βj,kψj,k

∥∥∥∥∥∥
p

Lp(Sd)

E

[
1

{
Θ̂j(p) ≤

Bdj

np/2

}
1

{
Θj ≥ 2

Bdj

np/2

}]

+

Jn∑
j=Js

∥∥∥∥∥∥
Kj∑
k=1

βj,kψj,k

∥∥∥∥∥∥
p

Lp(Sd)


= Ua1 + Ua2.

It is easy to see that

Ua2 ≤ C ′′3B−Jsps = C ′′3 n
− −sp2s+d .

On the other hand, using the generalized Markov inequality, Proposition 3.4
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with m = p and Eq. (15), we have that

Ua1 =

Js∑
j=0

Bdj(p/2−1)E

[
Θj1

{
Θ̂j(p) ≤

Bdj

np/2

}
1

{
Θj ≥ 2

Bdj

np/2

}]

≤ C

Js∑
j=0

Bdj(p/2−1)Θj Pr
{
|Θ̂j(p)−Θj | ≥

1

2
Θj

}
1

{
Θj ≥ 2

Bdj

np/2

}

≤ C

Js∑
j=0

Bdj(p/2−1)Θ1−m
j E

(
|Θ̂j(p)−Θj |m

)
1

{
Θj ≥ 2

Bdj

np/2

}

≤ C

Js∑
j=0

Bdj(p/2−1)Θj

p∑
`=1

(
Θ−1
j

Bdj

np/2

)m`
p

≤ C

Js∑
j=0

Bdj(p/2−1) B
dj

np/2

≤ Cn
−sp
2s+d ,

and therefore,

Ua ≤ C3n
− −sp2s+d .

Finally, in view of Eq. (7) and Eq. (15), we have that

Uu ≤ C ′4

 Js∑
j=0

Bjd(p/2−1)Θj (p) 1

{
Θj ≤ 2

Bdj

np/2

}
+

Jn∑
j=Js

Kj∑
k=1

|βj,k|p ‖ψj,k‖pLp(Sd)


≤ C ′′4

 Js∑
j=0

Bjdp/2n−p/2 +

Jn∑
j=Js

B−jsp


≤ C4n

−sp
2s+d .

We now need to extend these results to any p ∈ (1, r) using the interpola-
tion method described in Remark 3.5. The two terms that have to be studied
separately are Au and Ua, in particular Au2 and Ua1, since they involve the
probabilistic inequalities described in Propositions 3.3 and 3.4, holding only for
even p ∈ N. According to [30], the generalization in the case of Au2 is obtained
by bounding

E
[{

Θ̂j (p)
}m]

≤ CE
[{

Θ̂j (p1)
}m]δ

E
[{

Θ̂j (p2)
}m]1−δ
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Indeed,

Au2 ≤ C

Jn∑
j=Js

Bj dp1
2 n−

p1
2

 ∑
(c1,...,cm)∈Γm,p1

(
Bjd

n

)(mp1
2 −

∑m
`=1 c`)

×B−jc1
(
s− d

p1

)
Bdj{(1−m)−γ}

]1/α
]δ [

Bj
dp2
2 n−

p2
2

×

 ∑
(c1,...,cm)∈Γm,p2

(
Bjd

n

)(mp2
2 −

∑m
`=1 c`)

B
−jc1

(
s− d

p2

)
Bdj{(1−m)−γ}

1/α


1−δ

.

The result above follows from Eq.s (10) and (11), so that

Bsp,q ⊂Bsp1,q;B
s
p,q ⊂ B

s−d
(

1
p−

1
p2

)
p2,q .

Straightforward calculations lead to the claimed result. On the other hand, in
order to study Ua1, we apply Lemma 3.5 to obtain

Ua1 ≤C
Js∑
j=0

Bdj(p/2−1)E

[
Θj1

{
Θ̂j(p) ≤

Bdj

np/2

}
1

{
Θj (p) ≥ 2

Bdj

np/2

}]

≤C
Js∑
j=0

Bdj(p/2−1)E

[
Θj1

{
Θ̂j (p0) ≤ Bdj

n
p0
2

}
1

{
Θj (p) ≥ 2

Bdj

np/2

}

1

{
Θ̂j (p′0) ≤ Bdj

n
p′0
2

}
1

{
Θj (p) ≥ 2

Bdj

np/2

}]

≤C
Js∑
j=0

Bdj(p/2−1)

[
Pr

{∣∣∣Θ̂j (p′0)−Θj (p′0)
∣∣∣ ≥ Θj (p′0)

2

}

+ Pr

{∣∣∣∣ 1n Θ̂j (p0)−Θj (p′0)

∣∣∣∣ ≥ Θj (p′0)

2

}]
,

because
{

Θj (p) ≥ 2 Bdj

np/2

}
⊂
{

Θj (p′0) ≥ 2 Bdj

n
p′0
2

}
. Finally, by applying Markov
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inequality with m > p, m ∈ N even, we have that

Ua1 ≤C
Js∑
j=0

Bdj(p/2−1)

p′0∑
h=1

{Θj (p′0 − h)}m n−mh2

× {Θj (p′0 − h)}1−m 1

{
Θj (p′0) ≥ 2

Bdj

n
p′0
2

}

≤C
Js∑
j=0

Bdj(p/2−1)

p′0∑
h=1

{Θj (p′0)}
p−mh
p′0 n−

mh
2

×B
dj

(
1− p

p′0
+mh
p′0

)
1

{
Θj (p′0) ≥ 2

Bdj

n
p′0
2

}

≤C
Js∑
j=0

Bdj(p/2−1)

p′0∑
h=1

(
Bdj

n
p′0
2

) p−mh
p′0

n−
mh
2 B

dj

(
1− p

p′0
+mh
p′0

)

≤Cn−
sp

2s+d

Proof of Theorem 3.2. Similarly to the previous proof, note that

E
(
‖f̂n − f‖L∞(Sd)

)
≤C

E


∥∥∥∥∥∥
Jn∑
j=0

Kj∑
k=1

(
τj β̂j,k − βj,k

)
ψj,k

∥∥∥∥∥∥
L∞(Sd)


+

∥∥∥∥∥∥
∑
j>Jn

Kj∑
k=1

(βj,k)ψj,k

∥∥∥∥∥∥
L∞(Sd)

 .

If f ∈ Bs∞,∞, |βj,k| ≤ MB−j(s+
d
2 ) for any k = 1, . . . ,Kj , then by Eq.s (7) and

(8) with p =∞, we get∥∥∥∥∥∥
∑
j>Jn

Kj∑
k=1

βj,kψj,k

∥∥∥∥∥∥
L∞(Sd)

≤
∑
j>Jn

∥∥∥∥∥∥
Kj∑
k=1

βj,kψj,k

∥∥∥∥∥∥
L∞(Sd)

≤ C
∑
j>Jn

sup
k=1,...,Kj

|βj,k| ‖ψj,k‖L∞(Sd)

≤ C
∑
j>Jn

B−js = O
(
n−

s
d

)
= O

(
n−

s
2s+d

)
.

As far as the other term is concerned, following the same procedure as described
in the proof of Theorem 1.1, see also [1, 10], we obtain

E


∥∥∥∥∥∥
Jn∑
j=0

Kj∑
k=1

(
τj β̂j,k − βj,k

)
ψj,k

∥∥∥∥∥∥
L∞(Sd)

 ≤ C (Aa+Au+ Ua+ Uu) ,
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where

Aa=

Jn∑
j=1

E


∥∥∥∥∥∥
Kj∑
k=1

(
τj β̂j,k − βj,k

)
ψj,k1

{∣∣∣Θ̂∞j ∣∣∣ ≥ Bdj

n
1
2

}
1

{
Θ∞j ≥

Bdj

2n
1
2

}∥∥∥∥∥∥
L∞(Sd)


Au=

Jn∑
j=1

E


∥∥∥∥∥∥
Kj∑
k=1

(
τj β̂j,k − βj,k

)
ψj,k1

{∣∣∣Θ̂∞j ∣∣∣ ≥ Bdj

n
1
2

}
1

{
Θ∞j <

Bdj

2n
1
2

}∥∥∥∥∥∥
L∞(Sd)


Ua=

Jn∑
j=1

E


∥∥∥∥∥∥
Kj∑
k=1

βj,kψj,k1

{∣∣∣Θ̂∞j ∣∣∣ ≤ Bdj

n
1
2

}
1

{
Θ∞j ≥

2Bdj

n
1
2

}∥∥∥∥∥∥
L∞(Sd)


Uu=

Jn∑
j=1

E


∥∥∥∥∥∥
Kj∑
k=1

βj,kψj,k1

{∣∣∣Θ̂∞j ∣∣∣ < Bdj

n
1
2

}
1

{
Θ∞j <

Bdj

2n
1
2

}∥∥∥∥∥∥
L∞(Sd)


Now Θ∞j ≥ Bdj/n

1
2 implies j ≤ Js (see Section 3.4) and in view of Eq.s (7) and

(8) with p =∞, we get

Aa ≤C
Js∑
j=1

B
d
2 jE

(
sup

k=1,...,Kj

|β̂j,k − βj,k|

)
≤CB d

2 Js (Js + 1)n−
1
2

=O
(
n−

s
2s+d

)
Consider now Au. Using Js, we split this term into Au = Au1 +Au2, as in the
proof of Theorem 1.1. Trivially, we get

Au1 = O
(
n−

s
2s+d

)
.

On the other hand, using Eq. (8) and Proposition 3.6, we get

Au ≤
Jn∑
j=0

B
d
2 jE

(
sup

k=1,...,Kj

|β̂j,k − βj,k|2
) 1

2

Pr

(∣∣∣Θ̂∞j −Θ∞j

∣∣∣ ≥ Bdj

2n
1
2

) 1
2

≤
Jn∑
j=0

B
d
2 j (j + 1)n−

1
2B−

d
2 j

=O
(
Jnn

− 1
2

)
= o

(
n−

s
2s+d

)
As far as Ua is concerned, again Θ∞j ≥ Bdj/n

1
2 implies j ≤ Js (see Section 3.4),
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so that

Ua ≤
Js∑
j=1

Bj
d
2

∥∥∥∥∥∥
Kj∑
k=1

βj,kψj,k

∥∥∥∥∥∥
L∞(Sd)

Pr

(∣∣∣Θ̂∞j −Θ∞j

∣∣∣ ≥ Bdj

n
1
2

)

≤
Js∑
j=1

Bj
d
2M Pr

(∣∣∣Θ̂∞j −Θ∞j

∣∣∣ ≥ Bdj

n
1
2

)

≤
Js∑
j=1

Bj
d
2M

(
Bdj

n
1
2

)−2

E

(∣∣∣Θ̂∞j −Θ∞j

∣∣∣2)
≤ Jsn−

1
2 ,

where we used Eq. (8) and Proposition 3.6. Finally, we have that

Uu ≤
Jn∑
j=1

E


∥∥∥∥∥∥
Kj∑
k=1

βj,kψj,k1

{∣∣∣Θ̂∞j ∣∣∣ < Bdj

n
1
2

}
1

{
Θ∞j <

Bdj

2n
1
2

}∥∥∥∥∥∥
L∞(Sd)


≤ Uu1 + Uu2,

where

Uu1 ≤
Js∑
j=1

∥∥∥∥∥∥
Kj∑
k=1

βj,kψj,k

∥∥∥∥∥∥
L∞(Sd)

1

{
Θ∞j <

Bdj

2n
1
2

}

≤
Js∑
j=1

B
3d
2 jn−

1
2 = O

(
B

3d
2 Jsn−

1
2

)
and

Uu2 =
∑
j>Js

B
d
2 j sup

k=1,...,Kj

|βj,k| .

Note that

B
3d
2 Jsn−

1
2 = n

d−s
2s+d ,

as claimed.

5.2. Proofs of the auxiliary results

The proof of Lemma 2.1 can be viewed as a generalization of the proof of
Lemma 5.1 in Durastanti et al. [11].

Proof of Lemma 2.1. Using the needlets localization property given in Eq. (6),
we have that∫

Sd

q∏
i=1

ψj,ki (x) dx ≤ CηBjdq
∫
Sd

q∏
i=1

1

{1 +Bjqd (x, ξj,ki)}
η .
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Let S1 =
{
x ∈ Sd : d (x, ξj,k1) ≥ ∆/2

}
, so that Sd ⊆ S1 ∪ S1. Therefore,∫

Sd

q∏
i=1

1

{1 +Bjqd (x, ξj,ki)}
η ≤

∫
S1

q∏
i=1

1

{1 +Bjqd (x, ξj,ki)}
η

+

∫
S1

q∏
i=1

1

{1 +Bjdd (x, ξj,ki)}
η .

From the definition of S1 and following Lemma 5.1 in Durastanti, Marinucci
and Peccati [11], it follows that∫
S1

q∏
i=1

1

{1 +Bjdd (x, ξj,ki)}
η ≤

2η(q−1)

(1 +Bjd∆)
η(d−1)

∫
S1

1

{1 +Bjdd (x, ξj,k1)}η
dx

≤ 2η(q−1)

(1 +Bjd∆)
η(d−1)

∫
Sd

1

{1 +Bjdd (x, ξj,k1
)}η

dx

=
(2π)

d−1
2η(q−1)

(1 +Bjd∆)
η(d−1)

∫ π

0

sinϑ

(1 +Bjdϑ)
η dϑ

≤ (2π)
d−1

2η(q−1)B−dj

(1 +Bjd∆)
η(d−1)

∫ ∞
0

y

(1 + y)
η dy

≤C ′η
(2π)

d−1
2η(q−1)B−dj

(1 +Bjd∆)
η(d−1)

.

On the other hand,∫
S1

q∏
i=1

1

{1 +Bjdd (x, ξj,ki)}
η ≤

2η

(1+Bjd∆)
η

∫
S1

q−1∏
i=1

dx{
1 +Bjdd

(
x, ξj,ki+1

)}η .
Let S2 = {x ∈ S1 : d (x, ξj,k2

) ≥ ∆/2}. Then,

S1 ⊆ S2 ∪ S2 and Sd ⊆ S2 ∪ S2 ∪ S1.

As far as S2 is concerned, we apply the same chain of inequalities as those

used for S1. The integral over S2 can be bound by the factor 2η
(
1 +Bjd∆

)−η
multiplied by the integral of the product of q − 2 localization bounds of the
needlets. By re-iterating the procedure, we obtain, a set of nested Sg ={
x ∈ Sg−1, d

(
x, ξj,kg

)
≥ ∆/2

}
, g = 1, . . . , q so that Sd ⊆ Sq ∪

⋃q
g=1 Sg, which

yields the claimed result.

The proof of Proposition 3.1 is a simple modification of Proposition 6 in Duras-
tanti et al. [10] concerning complex random spin needlet coefficients. Many
technical details are omitted for the sake of brevity.

Proof of Proposition 3.1. For p ≤ 2 we apply the classical convexity inequality
such that for a set of independent centered random variables {Zi} with finite
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p-th absolute moment,

E

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣
p)
≤

E

∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣
2


p/2

.

For p > 2, we apply the Rosenthal inequality (see for instance Härdle et al.
[22]), that is, there exists a constant cp > 0 such that

E

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣
p)
≤ cp

 n∑
i=1

E (|Zi|p) +

{
n∑
i=1

E
(
Z2
i

)}p/2
On the other hand, since Bdj ≤ n, we have that

E {|(f (X) + ε)ψj,k (X)− βj,k|p} ≤2p−1 [E {|f (X)ψj,k (X)− βj,k|p}
+E {|εψj,k (X)|p}]

≤c′p {Mp + E (|ε|p)} ‖ψj,k‖pLp(Sd)

≤c′′pBjd(p/2−1) ≤ c′′′p np/2−1

Hence,

E
(
|β̂j,k − βj,k|p

)
≤c̃p

(
np/2−1

np−1
+ n−p/2

)
= c̃pn

−p/2

The proof of Proposition 3.3 can be considered as the counterpart in the needlet
framework of the proof of Lemma 2 in Kerkyacharian et al. [30].

Remark 5.1. Any element c` can be decomposed as the sum of integers ci1,...,i`;`,
where the `-dimensional vector {i1, . . . , i`} ⊂ {1, . . . ,m} specifies the spherical
needlets involved in each configuration (of size `) given by

E
[
{f (X) + ε}` ψj,ki1 (X) . . . , ψj,ki` (X)

]
.

The notation [i1, . . . , i`] denotes the set of all the possible combinations of {i1, . . . , i`}
such that ∑

[i1,...,i`]

ci1,...,i`;` = c`.

Proof of Proposition 3.3. Note that

E
[{

Θ̂j(p)
}m]

=

(
n

p

)−m ∑
υ1,...,υm∈Σp

E

 ∑
k1,...,km

m∏
`=1

Ψ⊗pj,k` (Xυ` , ευ`)

 (16)
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where

E

 ∑
k1,...,km

m∏
`=1

Ψ⊗pj,k` (Xυ` , ευ`)


=

∑
k1,...,km

m∏
`=1

∏
[i1,...,i`]

E

[
{f (X) + ε}`

∏̀
h=1

ψj,kih (X)

]ci1,...,i`;`

=
∑

k1,...,km

m∏
h=1

E

{
f (X)

∏̀
h=1

ψj,kh (X)

}ch;1

m∏
`=2

∏
[i1,...,i`]

E

[
{f (X) + ε}`

∏̀
h=1

ψj,kih (X)

]ci1,...,i`;`
.

Using Eq. (2) and the independence of the noise ε, for any ` ≥ 2 we have that

∏
[i1,...,i`]

E

[
{f (X) + ε}`

∏̀
h=1

ψj,kih (X)

]ci1,...,i`;`
≤ CM,p,`E

{∏̀
h=1

ψj,kh (X)

}ci1,...,i`,`
,

where CM,p,` = 2p−1
{
M ` + E

(
ε`
)}

. In view of Lemma 2.1, we obtain

m∏
`=2

∏
[i1,...,i`]

E

{∏̀
h=1

ψj,kh (X)

}ci1,...,i`,`
≤C ′

m∏
`=2

∏
[i1,...,i`]

‖ψj,k‖
`ci1,...,ı`;`

L`(Sd)

1{k=ki1 = . . .=ki`}

≤C ′
m∏
`=2

‖ψj,k‖
`
∑

[i1,...,i`]
ci1,...,ı`;`

L`(Sd)
∆ (k, `)

≤C ′′Bjd
(∑m

`=2

`c`
2 −

∑m
`=2 c`

)
∆ (k,m)

=C ′′B
jd
(∑m

`=1

`c`
2 −

∑m
`=1 c`

)
Bjd

c1
2 ∆ (k,m) ,

Note that
∏

[i1,...,i`]
1{k=ki1 = . . .=ki`} implies that al least ` kh indexes are

equal. Thus, using Eq. (10), we obtain

∑
k1,...,km

m∏
h=1

E {f (X)ψj,kh (X)}ch,1 =
∑
k

β
∑m
h=1 ch,1

j,k

≤ CB−j
∑m
h=1 ch,1{s+d( 1

2−
1
p )}B

jd

{
1−

min(p,∑mh=1 ch;1)
p

}

= CB−jc1{s+d(
1
2−

1
p )}Bjd(1−γ)
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where γ = min (p, c1) /p. Hence,

∏
[i1,...,i`]

E

[
{f (X) + ε}`

∏̀
h=1

ψj,kih (X)

]ci1,...,i`;`
≤C ′′′Bjd(

mp
2 −

∑m
`=1 c`)

B−jc1(s−
d
p )Bjd(1−γ)

Finally, for any fixed configuration c1, . . . , cm, the number of possible combina-
tions is bounded by

C?
(
n

cm

)(
n− cm
cm−1

)
. . .

(
n−

∑m
`=2 c`

c1

)
,

where C? denotes the possible choices of {ci1,...,i`;`} for any ` and does not
depend on n. In view of the Stirling approximation,

(
n
p

)
≈ np, the number

of possible combinations is bounded by Cn−
∑m
`=1 c` . Using the aforementioned

results, Eq. (16) is bounded by

E
[{

Θ̂j(p)
}m]

≤ C̃1

∑
(c1,...,cm)∈Γm,p

(
Bjd

n

)
(mp2 −

∑m
`=1c`)B

−j{c1(s− dp )−d(1−γ)}

n
mp
2

,

as claimed.

The proof of Proposition 3.4 can be viewed as the counterpart of the proof
of Lemma 3 in Kerkyacharian et al. [30] in the needlet framework.

Proof of Proposition 3.4. Following Kerkyacharian et al. [30], note that

p∏
i=1

xi − βp =

p∑
h=1

βp−h
∑

1≤t1<...,<th≤p

h∏
i=1

(xti − β) .

Let
Ψ̃j,k (X, ε) := {f (x) + ε}ψj,k (x)− βj,k.

so that
E
{

Ψ̃j,k (X, ε)
}

= 0. (17)

We therefore obtain

Θ̂j(p)−Θj (p) =

(
n

p

)−1 Kj∑
k=1

∑
υ∈Σp

p∑
h=1

βp−hj,k

∑
ι⊂υ,ι∈Σh

Ψ̃⊗hj,k (Xι, ει) ,

and, reversing the order of integration, we have that

Θ̂j(p)−Θj (p) =

Kj∑
k=1

p∑
h=1

(
n−h
p−h
)(

n
p

) βp−hj,k

∑
ι∈Σh

Ψ̃⊗hj,k (Xι, ει) ,
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Hence, we can rewrite

E
{(

Θ̂j(p)−Θj (p)
)m}

≤pm−1

p∑
h=1

{(
n−h
p−h
)(

n
p

) }m ∑
k1,...,km

∣∣∣∣∣
m∏
`=1

βj,k`

∣∣∣∣∣
p−h

∑
ι1,...,ιm∈Σh

E

{
m∏
`=1

Ψ̃⊗hj,k` (Xι` , ει`)

}
.

Similar to the proof of Proposition 3.3, we fix a configuration of indexes ι1, . . . , ιm ∈ Σh,
corresponding to the set of coefficients {c1, c . . . , ch}. Because, in this case, the
considered U-statistic is degenerate, we discard all the combinations with c1 6= 0,
in view of (17). On the other hand, following Lemma 2.1, we have that∑
ι1,...,ιm∈Σh

E
{

Ψ̃⊗hj,k1
(X1, ε1) . . . Ψ̃⊗hj,kh (Xh, εh)

}
≤ Cn

∑h
`=1 c`Bdj{

∑h
`=2( `2−1)c`}

= Cn
∑h
`=1 c`Bdj(

mh
2 −

∑m
`=2 c`).

(18)

Furthermore, mh =
∑m
`=2 `c` > 2

∑
`=2 c` implies that the exponent in the last

term of (18) is positive, so that∑
ι1,...,ιm∈Σh

E
{

Ψ̃⊗hj,k1
(X1, ε1) . . . Ψ̃⊗hj,kh (Xh, εh)

}
≤ Cnmh2 ,

because Bdj ≤ n. Finally, using the Stirling approximation and Eq. (10) we
have that

E
[{

Θ̂j(p)−Θj (p)
}m]

≤C ′
p∑

h=1

nm(p−h)

nmp

(∑
k

|βj,k|p−h
)m

n
mh
2

≤C ′′
p∑

h=1

n−
mh
2

Bjdhp
(∑

k

|βj,k|p
)1−hp


m

≤C̃2

p∑
h=1

(
Bjd

np/2

)mh
p

{Θj (p)}(1−hp )m ,

as claimed.

The proof of Lemma 3.5 is the counterpart of the proof of Lemma 6 in
Kerkyacharian et al. [30] in the needlet framework.

Proof of Lemma 3.5. Following Kerkyacharian et al. [30] and the results ob-
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tained in the previous proof, we have that

Θ̂j (p0)−Θj (p0) =

(
n

p0

)−1 Kj∑
k=1

∑
υ∈Σp0

p′0∑
h=1

β
p′0−h
j,k

 ∑
ι⊂υ,ι∈Σh

Ψ̃⊗hj,k (Xι, ει)

+
1

n
1
2

∑
ι⊂υ,ι∈Σh−1

Ψ̃
⊗(h−1)
j,k (Xι, ει)

+
1

n

∑
ι⊂υ,ι∈Σh−2

Ψ̃
⊗(h−2)
j,k (Xι, ει)

 ,

with the convention∑
ι⊂υ,ι∈Σ0

Ψ̃
⊗(0)
j,k (Xι, ει) = 2;

∑
ι⊂υ,ι∈Σh

Ψ̃
⊗(h)
j,k (Xι, ει) = 0 for h < 0.

Reversing the order of integration and applying an analogous procedure to the
one used in the proof of Proposition 3.4, we achieve the claimed result.

Proposition 3.6 is proved by using the general properties of the needlets.

Proof of Proposition 3.6. It is easy to see that

E

{(
Θ̂∞j

)2
}

=
1

n2

Kj∑
k=1

n∑
i=1

E
[
{ψj,k (Xi)Yi}2

]
+

1

n

Kj∑
k=1

n∑
i=1

E{ψj,k (Xi)Yi}

2

≤ Bdj

n

(
M2 + σ2

ε

)
‖ψj,k‖L2(Sd) +

(
Θ∞j

)2
,

as claimed.
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[7] Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D., 1996. Den-
sity estimation by wavelet thresholding. Ann. Statist. 24, 508–539.

[8] Durastanti, C., 2015a. Adaptive density estimation on the circle by nearly-
tight frames. Submitted, arXiv:1504.00595.

[9] Durastanti, C., 2015b. Block thresholding on the sphere. Sankhya A 77,
153–185.

[10] Durastanti, C., Geller, D., Marinucci, D., 2012. Adaptive nonparametric
regression on spin fiber bundles. J. Multivariate Anal. 104, 16–38.

[11] Durastanti, C., Marinucci, D., Peccati, G., 2014. Normal approximations
for wavelet coefficients on spherical Poisson fields. J. Math. Anal. Appl.
409, 212–227.
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