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Abstract. Visual search of relevant targets in the environment is a crucial robot
skill. We propose a preliminary framework for the execution monitor of a robot
task, taking care of the robot attitude to visually searching the environment for tar-
gets involved in the task. Visual search is also relevant to recover from a failure.
The framework exploits deep reinforcement learning to acquire a common sense
scene structure and it takes advantage of a deep convolutional network to detect ob-
jects and relevant relations holding between them. The framework builds on these
methods to introduce a vision-based execution monitoring, which uses classical
planning as a backbone for task execution. Experiments show that with the pro-
posed vision-based execution monitor the robot can complete simple tasks and can
recover from failures in autonomy.

Keywords. Artificial Intelligence, Computer Vision and Pattern Recognition,
Robotics

1. Introduction

One of the main problems in robot task execution is the interplay between perception
and execution. Indeed, it is not clear what information a robot should collect from the
environment to be able to continuously interact with it.

So far, 3D reconstruction, 3D reconstructed scene segmentation and SLAM seemed
the best way to provide an effective and convenient representation of the environment for
task execution. Several scientific contributions have focused on solving these problems
in compelling real-world scenes. Once the system is aware of both the complete environ-
ment and the robot pose, it provides to the execution monitor adequate instructions for
both the planning and the required continuous updates.

A major problem in 3D reconstruction and SLAM approaches is that they do not
consider the robot gaze direction. They create scene reconstructions designed for the
human user and not in order to facilitate the robot reasoning about the environment.
Indeed, this lack of connection between the scene and where the robot looks at creates
an unsound reasoning process: the map guides the robot searching according to a global
view (the human user view) and not on a saliency-based view, [1,2].

As a matter of fact, most of a 3D map reconstructions are full of unnecessary details
for a robot to keep in memory, in relation to its job. It has also to be said that a represen-
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Figure 1. The execution monitor framework combining classical planning, detection and localization of ob-
jects together with visual search. Best seen on screen.

tation of the world needs to cope with frame and qualification problems [3,4] and when
it comes to a full 3D map a huge amount of details can be very hard to deal with. In
fact, humans learn to search and move in any complex environment essentially relying
on foveated vision and on what they have learned, to limit waste of their own resources.

Basing on the human ability to hold partial representations and to fill the gap be-
tween what the robot can denote and the complexity of the world, we introduce a par-
simonious representation, which we call mental map. Mental maps are scene snapshots
keeping only objects and relations that the robot can detect and supporting the learning
process for the visual search: they are the robot cartoon representation of its environment.
Learning where to look at solves the problems related to both global and local maps, as
it can help to assess a low cost, yet effective, representation of the environment.

Here we propose a novel perspective to execution monitor, which is based on the
interplay between execution and perception. Our idea (see Figure 1 for an overview)
combines deep learning, which is able to develop a quite mature cognitive approach to
perception, with classical planning and monitoring. The proposed framework is centered
on the robot execution monitor. The execution monitor is supported by the planner, see
[5,6,7], by the vision system processing visual data with Faster R-CNN [8], and by the
learned ability to direct the robot gaze in a plausible direction for searching the environ-
ment, via a modified version of DQN [9]. Planning is the backbone, in the sense that it
provides the properties of the world that are expected to be true before and after the ex-
ecution of a robot action. The planner, however, does not decide actions sequences since
it cannot verify whether the prescribed requirements are true. The planner provides a sort
of prior knowledge about the space of action execution, but not of their realizations. That
is why the planner is enriched by a query-answering process with the execution moni-
tor to validate whether the requirements are satisfied in the environment. The execution
monitor resorts to visual search to activate the choice of next plan, which is crucial in
case of failure (e.g. the loss of an object). To infer policies the execution monitor builds
states representations of the scene out of the visual stream results, formed by mental
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Figure 2. Execution monitoring of the task take the spray bottle and hand it to Person. Actions written in
blue are provided by the planner and those in red by the visual search policy, once a failure is detected. The
post-conditions are shown below the images, in orange if not verified. Inside the images, the bounding boxes
of the detected objects are shown in blue and in red the detected relations calculated by the perception system.

maps, see Figure 1. Mental maps incorporate the essential knowledge for a robot to com-
plete a task. To learn the search ability, we adapted the Deep Q-Network, [9], to receive
RGB input and we train it on a virtual environment. Policies learned on the virtual en-
vironments, though displaying a good ability to deal with the robot representation via
mental maps, can be improved by learning in real environments, and this is the objective
of future work. The execution monitor is finally able to control the loop between action
and perception without the need to keep the structure of the entire environment in mem-
ory, but updating its perception with what is required/asked by the planner to complete
the action.

The robot operates in a laboratory environment and a schematic overview of a task
execution is given in Figure 2.

2. Related Work

Visual Search  Visual search is not a novel topic in robotics and a large body of work
has been done so far to approach the problem, though it has been faced mainly in terms
of global navigation.

Some of the approaches based on map navigation require a prior knowledge of the
environment to make decisions (see for example [10,11,12,13]), all based on 3D map



reconstruction, as in [14,15]. Other methods do not actually rely on pre-saved maps but
on a map reconstruction which is done either on the fly (see [16,17,18,19]) or during an
initial human guided training phase as in ([20,21]). Other approaches instead face the
search in terms of obstacle avoidance using input images in so not relying on any kind of
map (see, [22,23,24,25]). However, all of the above-mentioned methods depend in one
way or another on the navigation of a reconstructed environment. To be able to properly
explore the environment in this way, the process needs to store the collected information
in memory.

Differently from previous works our approach aims at updating the perception with
only what is necessary at the very moment in which the information is needed to the robot
to perform and complete what it is doing. This approach is more similar to a human-like
behavior and it is realized with a neural network trained with reinforcement learning.

Earlier approaches to reinforcement learning (RL) (see, for example, [26,27] made
the effort to extend this technique to a very large set of actions and to make it a robust
method. Despite that, the breakthrough started with the work described in [9] who intro-
duced a new amazing research area, the deep RL [28,29]. The main difficulty with this
approach is the need to simulate the environment to perform the required huge collection
of experiments. Hence a certain amount of research has been devoted creating new simu-
lation environments such as [30,31]. Here we contribute with the above mentioned men-
tal map representation of the environment to be distinguished from the V-REP [32] simu-
lation used for training. A similar approach has been proposed by [31]. Differently from
their work, which uses an auxiliary target image as input to the network, here we only
provide the robot’s onboard camera pictures as an input to the visual search, allowing us
to search for objects regardless of their orientation.

Execution Monitoring Managing the execution of actions involve facing several dif-
ficult challenges. A great number of researchers tackled the non-deterministic response
of the environment to robot actions for high-level robot tasks [33,34]. Some introduced
the role of perception in execution monitoring [35], others focused on the recovery from
errors that could occur at execution time [36] and on relations recognition, which re-
cently raised much interest in computer vision community [37,38,39] though related to
2D images. However, many problems remain to be addressed and there is still a lack
of a comprehensive approach to address all the problems concerning the interleaving of
perception and actions in a coherent way.

The first definitions of execution monitoring in non-deterministic environments have
been presented in [40,41]. Recovery from errors that could occur at execution time was
already faced by [36] and equally the role of perception in execution monitoring was al-
ready anticipated in the work of [35]. Due to the difficulties in dealing with scene recog-
nition the efforts have been directed toward models, such as in [27,26], that manages the
effects of actions allowing the execution in partially observable environments [42]. In
high level monitor several authors, among which [43,44], have been recently addressing
the integration of observations. Still, the most important development has been achieved
with deep learning for perception and in particular with DCNN[37], deep Reinforcement
Learning (RL) [9,28] and visual planning [45].

Nevertheless, despite the great number of contributions [37,38,39] for 2D images,
an appropriate relations recognition method for robot execution is still not available. For
this reason, we exploit the robot RGBD vision and a simple rough segmentation method



within the bounding box delivered by Faster R-CNN to obtain a more detailed object
region, in so ensuring a better approximation of relations.

3. The Execution Monitor

The robot execution monitor drives the interplay between the action space, defined by
actions, relations, and objects in a first order typed language and the perception space
that specifies objects and relations in terms of features and measures. Figure 1 provides
a schematic representation of the interplay between the two spaces.

The action space addresses the current knowledge required by the robot in order to
perform a specific action, whether this is an action not affecting the world, or an action
changing the state of the world. The execution monitor, given a goal in terms of a task,
has a strategy to segment it into sub-goals. This strategy is not described here. For each
sub-goal, according to the terms appearing in it, the execution monitor uses naive Bayes
to ask to the plan library the plan matching the sub-goal, according to the current state.
The current state is verified by assessing what is available to the robot perception in
terms of objects positions and relations holding at the specific time. Plans are defined in
the classical PDDL framework [5,46], see Section 5. The inference of a sub-goal by the
chosen plan results in an ordered list of actions, objects, and relations that the planner
tells to the execution monitor. The execution monitor, in turn, asks the vision process
to verify the list of actions while they are executed. If the list is verified the execution
monitor triggers the next sub-goal. Otherwise, this component activates the visual search
to focus on the validation of the plan requirements, and eventually repeats the current
plan from the specific state. An example of a failure is given in Figure 2 where in sub
figure 5 the robot hand accidentally drops the spray bottle.

4. The Perception system

The perception space is defined by features extracted from the DCNN and by the mental
maps. Two processes live in this space: the object detection and localization and the
visual search.

4.1. Object detection and localization

Object detection uses the well-known Faster R-CNN deep convolutional neural networks
[8] and a statistic estimation of the object boundary within the bounding box detected
by the trained DCNN, using the active features of the VGG-16 5.3 layer, which is a
component of Faster R-CNN.

The combination of segmented depth and object labels allows inferring visual rela-
tions from the robot point of view.

Specifically, to detect both objects and relations we have trained Faster R-CNN [8]
on ImageNet [47], Pascal-VOC [48] dataset, and on images taken on site. We have trained
5 models to increase the accuracy of the detection obtaining good results. The detection
accuracy is based on a confidence value measured on a batch of 10 images, taken at
30 fps, computing the most common value in the batch and returning the sampling mean
accuracy for that object.



Predicate | Full BB GT masks | no prior | noshape | no depth feat.
CloseTo 82% | 79% 89% 79% 72% 49%
Found 88% | 85% 95% 85% 80% 61%
Free 91% | 86% 91% 86% 83% 68%
Holding 79% | 72% 88% 75% 74% 56%
Inside 69% | 64% 87% 71% 65% 57%
On 85% | 77% 96% 79% 78% 65%
InFront 88% | 81% 95% 84% 83% 63%
Left 90% | 81% 95% 85% 86% 72%
Right 83% | 79% 91% 79% 80% 61%
Under 80% | 76% 88% 79% 76% 59%
Behind 85% | 78% 81% 76% 79% 61%
Clear 82% | 75% 80% 73% 73% 60%
Empty 83% | 72% 78% 79% 68% 61%
Average 84% | 78% 92% 80% 78 % 61%

Table 1. Accuracy and ablation study of predicate grounding. Legend: BB: bounding boxes, GT masks: ground
truth segmentations masks, no prior: without use of VGG-features no shape: without use of statistics. no depth
feat.: without use of depth features.

For each object ob; detected by the DCNN we estimate a statistics of the active fea-
tures with dimension 38 x 50 x 512, taken before the last (5.3) convolution layer, at each
pixel inside the recognized object bounding box bb(ob;). With this features set we esti-
mate the probability that features with the highest frequency in the feature volume, fall
within the object. Then reprojecting the location of maximum probability on the object
cropped by the bounding boxes we obtain regions within the object. It is interesting to
note, indeed, that the features (the weights learned by the convolution network) of the
5.3 convolution layer of the VGG-16, behaves like saliency in identifying the object in-
teresting parts. Then, using nearest neighbor we find more accurate regions within the
object. Since the images/videos available to robot perception are RGBD images, from
this process we obtain a quite accurate segmentation of the depth map of the object.
Note that this step is necessary to recognize relations between objects since we are talk-
ing about spatial relations where distance and location are crucial. Considering only the
bounding boxes would hinder spatial relations: some of the objects involved in the robot
tasks, such as a table, ladder, spray bottle and so on, have bounding boxes containing
also other parts of the environment (see Figure 2). Without an accurate segmentation, the
detection of an object returns incoherent depth and the decision for execution monitoring
on controlling actions, such as grasp, hand-over, place, open, close and so on, cannot
take place. Instead with the segmentation easily obtained via the significance of the last
convolutional layer of VGG-16, we are able to define spatial relations such as Holding,
On, Below and so on, just using relations derived by the center of mass of the objects,
in close connection to the qualitative spatial relations framework [49] extended to 3D,
see also [50]. A set of relations used in the framework are shown in Table 1 evaluating
accuracy and ablation study. Evaluation of objects detection and localization is reported
in the result Section 6.



Algorithm 1: Deep Q-Learning with Mental Maps and Experience Replay
input : Faster R-CNN network
Simulated Environment
output: Trained DQN network

1 Load Simulated environment ;

2 Load Faster R-CNN network ;

3 Initialize replay memory D;

4 Initialize action-value function () with random weights w;

5 Initialize first state s; and Mental Map 6; with random values;

6 for t = 1, maxSteps do

7 Calculate e-greedy probability e(t) = 0.9/t., . *t+1;

8 With probability €(¢) select a random action

a; otherwise select a; = maaxQ(G(st), w);

9 Execute action a; and observe image ¢ 1;

10 Elaborate image 7,41 with Faster R-CNN ;

11 Produce processed picture 7}, ; and reward ry;

12 Set state sy 11 = S, Gt, 15115

13 Create mental map 611 = 0(s¢41);

14 Store transition (0¢, az, r¢, 0¢41);

15 if r > startTraining then

16 Sample random minibatch of transition (0;, a;,7;,6;11) from D;
17 Set

T for terminal 6;,
Yj i + vm:?wa (fj+1,w) fornon terminal 64
Perform gradient descent on loss (y; — Q(6;,w))?

18 end
19 end

4.2. Visual Search

As introduced above, visual search is triggered both to check the current state and to
recover from a failure. Visual search is modeled by deep reinforcement learning to focus
the robot toward the items of interest. This step is necessary for the robot to find out
whether the preconditions of the action to be executed are satisfied or to search a starting
point for a recovery action.

The reinforcement learning method allows learning by trial and error how to choose
the best action to locate the target object. The visual search does not have to rely on pre-
vious knowledge of the environment but it only uses the images returned by the onboard
robot camera suitably elaborated into mental maps. To achieve this result, the Deep Q-
Network (DQN) proposed in [9] is used, adapted to receive as input a collection of pre-
processed RGB-D camera frames called Mental Maps. We recall that the target of the
DQN learning process is to learn an approximation of the reward function for each pos-



sible action: the Q-value. The final policy will be, therefore, the one created by selecting
the action with the highest Q prediction.

Since the field of vision of the agent returns only a partial observation of the envi-
ronment, the states are only partially observable. To treat this setting as a fully observable
one, the current state is composed of a history of the previous frames. However, due to
memory limitations, only the last 15 states are used. Together they form the Mental Map,
which is the input of the DQN.

The raw frames that compose the Mental Map are preprocessed with Faster R-CNN
as explained in Section 4.1. Using the output of the network we draw a colored mask for
each detected object. The color is assigned in relation to the object class. A visualization
of the framework can be found in Figure 3.

The creation of the mental maps is done for a variety of reasons. The strong visual
clue introduced by the segmentation of the objects detach the learned behavior from the
specific textures of the images. This property makes it possible to use the same DRL
model in scenarios which have the same objects but different textures by just fine tuning
the object detection network. In this way, it is possible to use a robot trained in a simu-
lated environment directly in a real-world application. Strong visual clues allow also to
analyze the situation regardless of the specific object orientation. This is a crucial step,
in particular during the failure recovery scenario when the object orientation and posi-
tion are unknown. Without this step, the DRL method would need to be trained not only
on a wide variety of target object positions but also on a wide variety of target object
orientations making the training process longer.

The mental maps generation process produces the reward used to calculate the train-
ing loss. This reward is calculated in relation to whether or not the robot has found the
target object. In those steps in which the target is recognized a positive reward is as-
signed in proportion to the classification score of Faster R-CNN. Instead, the reward of
any action not leading to the localization of the target is set to a fixed negative value.

At training time the policy used is e-greedy. The value €, which is the probability
that the training process chooses a random action instead of the one calculated by the
network, starts from an €,,,,, value and linearly descends to an €,,;, value. In this way,
the agent is able to explore the environment and to focus on optimizing the policy as
the training goes on. An important feature of our training process is that the episode has
a fixed step size. The sequence is not interrupted even when the robot sees the target
object with a confidence score higher than the decision threshold. This is done in order
to choose the action that maximizes the classification score and the consequent reward.
In this way, if the robot sees the target object classified with a low score, it learns to
investigate on the situation trying to increase the classification score by getting closer
or looking at the object from a different position. Furthermore, with such investigating
approach, if the classification score is the result of a false positive, the score would drop
down prompting the robot to change the search behavior. Algorithm 1 illustrates the main
steps of the training process.

5. Action space and the plan library

We focus here on the deterministic part of the visual execution space: the action space and
the plan library. The action space is defined by a domain D formed by objects, predicates



and real numbers, which are represented in the robot language L. A term of L can be
an object ob; of the domain D, a variable or a function f : D™ — D, such as actions.
Predicates are the counterpart of relations in the perception space and are here assumed
to be only binary. Predicates are defined exclusively for the specified set of objects of the
domain and are interpreted essentially as spatial relations such as On, CloseTo, Inside,
Holding.

A robot task is defined by a list of plans (Ps, ..., P, ); a plan P; is defined as usual
by an initial state and a set of rules (axioms) specifying the preconditions H (a;) and
postconditions K (a) of action a(t), where ¢ € N is a discrete time index. To simplify
this presentation we assume that preconditions and postconditions are conjunctions of
ground atoms (binary relations), hence a state s;=H (a;) U K (az).

In our settings robot actions can be of two types: (1) transforming actions, which are
actions changing the state of the world, affecting some object in the world, such as grasp,
hand-over, place; (2) ecological actions, which are actions changing the state of the
robot, such as move-Forward, approach ob; along a direction, or look-Up, look-Down.

According to these definitions, a robot plan specifies at most one transformation-
action. This action is a durable action, defined by an action start and by an action end.
Any other action in the plan is an ecological action. In particular, given the initial state,
each plan introduces at most a new primal object the robot can deal with and the relations
of this object with the domain. An example is as follows: the robot is holding an object,
as a result of a previous plan, and it has to put it away on a toolbox. This ensures that
recovery from a failure is circumscribed for each plan to a single transformation action.

The task goal is unpacked into an ordered list of goals G=(G1, . .., G,,) such that
each G, is the goal of plan P; in the list of plans forming a task. Given a goal G, if a
plan P; leading from the initial state to the goal exists, then a sequence of actions leading
to the goal is inferred by the search engine [46]. Here plans are defined in PDDL [51].

We extend the parser introduced in [46] to infer plans so as to obtain the initial state,
the sequence of actions (ag,...,a,) leading to the goal, and the set of states Sp, for
each plan P;. This list forms the set of deterministic states and transitions.

6. Results

6.1. Experiments setup

The framework has been tested under different conditions, in order to evaluate different
aspects of the model. To begin with, all experiments have been performed with a custom-
made robot. A Pioneer 3 DX differential-drive robot is used as a compact mobile base.
To interact with the environment we mounted a Kinova Jaco 2 arm with 6 degrees of
freedom and a reach of 900mm and finally, for visual perception, we used an Asus Xtion
PRO live RGB-D camera mounted on a Direct Perception PTU-46-17.5 pan-tilt unit. We
ran the experiments on two computers mounted on the robot. One was dedicated to the
planning and management of the execution and another one, equipped with a Nvidia
GPU, to run the perception system.

For training and testing our system, we used different objects and all the relations
needed to correctly execute and monitor different tasks. A list of those elements can be
seen in Table 2.



Table 2. Subset of Objects, relations, transformation actions and ecological actions of the robot language £

Relations | Objects Transformation actions | Ecological actions
CloseTo Brush Close Look-down
Found Chair Grasp Look-left

Free Cup Open Look-right
Holding Floor Hand-over Look-up

Inside Hammer Place Move-forward
On Person Lift Move-backward
InFront Spray Bottle | Push Turn-left

Left Screwdriver | Spin Turn-right
Right Shelf Dispose Localize

Under Toolbox Rise-arm
Behind TV-Monitor Lower-arm
Clear Table Close-Hand
Empty Door Open-Hand

6.2. Results for Object detection, localization and relations recognition

We trained the visual system with images taken from ImageNet and Pascal VOC datasets
as well as images collected with the RGB-D camera of the robot, and using predicates
for the execution of the tasks. To train the DCNN models we divided the images into
training and validation sets with a proportion of 80%-20%. We have chosen five different
models for the objects, performing 70000 training iterations for each model on a PC
equipped with 2 GPUs. The visual system has been tested under different conditions,
in standalone tests and during the execution of different tasks. The accuracy has been
computed considering the batch of 10 images, see in Section 2.

6.3. Results for Visual Search

Simulation in V-REP: The training phase of the visual search component requires a
huge amount of steps and episodes in order to perform well at testing time. Training the
robot in a real environment is not an efficient option. To address this problem we created
a virtual environment using the V-REP simulation software [52], that allows training the
robot in a setting similar to a real scenario. The simulation only generates camera images
at the end of the chosen action since this is the only information available to a robot in
a real scenario. In this way, the training process can be easily extended also for a real
robot and the learned policy can be fine-tuned in a real scenario after a long training in a
simulated environment. The robot can perform several actions, it can move backward or
forward, turn right or left and it can also move the camera upward or downward and to
the right or to the left. The policy chooses the action and when it is performed, the image
from the real or simulated camera is given to the Mental Maps creation process as shown
in Figure 3.

Training Details: To train the robot in a wide variety of situations, the target object,
camera position and orientation are changed at every episode. Further, before starting an
episode, a random number (between 1 and 3) of random actions are performed. In this
way, we have 46720 different combinations of initial settings to prevent the overfitting
problem for training.
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The Deep reinforcement learning is implemented with a modified version of the
DQN implementation, see [9]. The network is adapted to take as input the last 15 RGB-D
frames with a resolution of 640 x 480 pixels. The network has 3 convolutional layers each
followed by a ReLu layer. The first one has 15 x4 x4 x4 x 8filtersand 1 x4 x2x2x 1
stride. The second layer has 1 x8x8x 8x 64 filters and 1 x 1 x4 x4 x 1 stride and the third
and final layer has 1 x 4 x 4 x 64 x 128 filters and 1 X 1 X 2 X 2 x 1 stride. The returning
feature map from the convolutional layers is reshaped and passed to 2 fully connected
layers. The performances reached are the results of more than 4 million iterations on a
machine with 16 Gb of RAM, processor Intel Core i7-3770 and graphics card Geforce
GTX 1080. The first 160 steps are used to fill enough the replay memory to allow a
correct sampling of 32 steps sized mini-batches. The maximum replay memory size is set
to 1000 steps and the weight update is done every 4 steps. The mental maps length is set
to 15 steps and the e is linearly decreased from 1 to 0.1 over the first half of the training
steps. Different episode settings have been tested, changing essentially the condition to
stop the episode and the reward function. The final solution is to assign a positive reward
to frames in which the object is detected with both a high or low classification score,
proportionally to the magnitude of the score itself. The final reward function is set to
R(score) = 50 * score® for scores higher than 0.3 and -0.1 for smaller scores. The
episode length is set to a fixed size of 50 steps.

Evaluating results: An accurate evaluation of the robot performances is a quite chal-
lenging task. There is no specific output value and the metrics that can be used tend to be
very noisy. To better evaluate the results of the training phase, the visual search policy
has been tested in different ways. 100 thousand training steps have been done, at first by
following a random policy and subsequently by following the policy returned from the
trained network. In this setting, if the target is found in fewer than 50 steps the episode is
ended and considered successful. In the case of random action choices, the success rate
was of only 2.97% with an average of 41 steps. With the trained network instead, the



Random Policy | Trained Policy
Successful Episodes 59 3919
Unsuccessful Episodes 1950 510
Total episodes in 100k Steps 1562 4429
Success Rate 2.97% 88.47%
Average Needed Success Step | 41 19

Table 3. Visual Search test results

success rate has risen up to 88.47% with an average of 19 steps as shown in Table 3. To
analyze the network behavior we tested the policy in the lab environment. The pictures
returned from the camera and elaborated by the object detection network were collected
together, with the action done and the reward received. Figures 4 and Figure 5 show
some successful episode from the trained network. The trained network has learned an
important principle: to look at the height at which the object is supposed to be found
and then to look around. Figure 5 also shows that sometimes the policy fails because the
object detection network fails to correctly classify the target object.
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Figure 4. Successful Episode example of the Visual Search.
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Figure 5. Object Detection failure in the Visual Search.

6.4. Experiments with the whole framework

We evaluated two classes of tasks: (1) collect an object (spray bottle, screwdriver, ham-
mer, cup) from the table or from the shelf to a subject; (2) put-away an object (screw-
driver, hammer, spanner) in the toolbox. Each experiment in a class has been run 35
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Figure 7. On the left, histogram of the recovery success ratios via the visual search policy. On the right,
accuracy of the recognition of objects when handed by the robot or the human and when free.

times. An example is given in Figure 2, despite in a number of circumstances the grasp-
ing action has been manually helped, especially with small objects. Table 2 shows the
main relations, objects, and actions considered in the tasks. The table on the right side
of Figure 7 shows the object detection accuracy achieved by the DCNN models dealing
with the free and held objects during the above mentioned experiments.

Failures We examined the number of failures encountered during the execution of the
tasks described above. A failure is recorded as soon as the state perceived by the visual
stream, via the DCNN, does not match the post conditions of the action executed. The



histogram in Figure 6 shows the probability that a failure is encountered while executing
a particular action in relation to the object being involved. We noticed that, as expected,
more complex actions like grasping and localizing show a higher probability of failure.
Surprisingly, passing an item shows a low failure probability, this is mainly attributed to
the high adaptability of the subject involved in the action.

Recovery The visual search policy is employed as soon as a failure is detected in order
to find the primary objects involved in the action that failed. On the left side of Figure 7
it is shown the success rate of the recovery via the use of a visual search policy for four
different types of actions. Localization and manipulation actions show a higher recovery
success rate while recovering from a failed grasping seems to be the most problematic
one.

7. Conclusions

In this work, we have proposed a new approach to execution monitoring by placing a
strong emphasis on the role of perception to both verify the state of execution and to re-
cover in case of failure. Robot representation relies on DCNNSs to detect both objects and
relations and on Deep Reinforcement Learning to ensure awareness of the environment.
The perception processes are coordinated by the execution monitor, which uses them to
either check the realization of the properties required by the planner or to focus the robot
attention onto the elements of the scene that are needed to complete the robot task. We
have shown that simple tasks can be completed in autonomy and that it is also possible
to recover from failures. For future work, we are plan to explore new ways to complete
the complex training phase for deep reinforcement learning, by directly learning from
the environment in which the robot is operating
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