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Abstract The dynamical behavior of a mono-dimensional bar with distributed microcracks is addressed in
terms of free and forced wave propagation. The multiscale model, derived from a generalized continuum
formulation, accounts for the microstructure by means of a microdisplacement variable, added to the standard
macrodisplacement, and of internal parameters representing density and length of microcracks. The influence
of coupling between micro- and macrodisplacement overall response on the system is discussed, as well as
the effect of the damage parameters on the propagating waves.
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1 Introduction

In contemporary technological applications, wide interest is devoted to microstructured materials: e.g., com-
posites, masonry-like and granular materials, and porous and damagedmedia. Suchmaterials are characterized
by the existence of an internal structure represented by material length parameters, which can account for the
distance between particles, the size of a grain, the length, and distance of microcracks, etc., that introduce a
scale dependence in the model governing equations.

The mechanical modeling of microstructured continua meets the main difficulty in accounting for the
microscopic features through suitable constitutive laws, without resorting to the direct description of the
microstructure that would result in the addition of many degrees of freedom. In this respect, a direct description
of these materials in Lagrangian terms is often cumbersome [1,2] and then continuum descriptions that keep
memory of the internal microstructure are often required.

Since many years, several homogenization or coarse-graining methods for deriving equivalent classical
continua have been proposed in the literature also with reference to materials with random microstructure
[3–7]. However, by lacking in material internal length parameters, the simple (Grade 1) classical continuum
does not always seem appropriate for representing the macroscopic behavior of these materials, taking into
account the size, the orientation, and the disposition of the heterogeneities. This often calls for the need of non-
classical (generalized) continuum descriptions [8–12] that can be considered as ‘explicitly’ or ‘implicitly’ non-
local models due to the presence of internal length parameters and dispersion properties in wave propagation
[9,13,14]. In this framework, strain gradient, or non-local models of explicit type [15], have been presented
[16–18], as well as models referable to micromorphic continua, in particular, the micropolar continua, that can
be considered non-local models of implicit type [19–27].
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Within this latter class of implicit non-local models, moreover, a multiscale approach that can be classified
among continua with affine microstructure [8] or continua with configurational forces [10], has been pursued,
as presented and described in [28–33]. The method consists in the description of the mechanical behavior of
a continuum model, i.e., the macromodel, and of a complex lattice model, representing the micromodel. The
field variables at the two material scales are linked via an energy equivalence criterion. The obtained model
is characterized by the presence of more field descriptors than the classical continuum, allowing to retain the
memory of the fine organization of the material.

The presence of the microstructure plays an important role when the dynamical behavior of these materials
is investigated, especially in nowadays applications where high-frequency excitations are commonly used. In
fact, when excitation wavelengths are comparable with microstructure length, dispersion effects due to the
microstructure reveal the multiscale nature of the material [34,35].

Wave propagation in microstructured solids has been investigated with a great variety of approaches aimed
at highlighting the dispersion features due to the presence of heterogeneities. Focusing on the one-dimensional
setting of interest herein, models have been formulated based on homogenization [36,37], gradient-type [38–
41], generalized continua [42,43], or internal variables theories [44,45], as well as lattice theory [46]. The
classical wave equation of linear elastic wave propagation in homogeneous solids has been generalized by
considering space, time, and/or mixed fourth-order derivatives of the macrodisplacement, and by introducing
a microstructure contribution to slowing down the propagation velocity with respect to the one in the medium
without microstructure. An overview of dispersive wave equations has been presented in [47], according to the
unified viewpoint of internal variables. Dispersion properties highlighted by different, and possibly simplified,
models have been compared, among others, in [34,35,43,48], also paying attention to their capability to
reproduce physically realistic behaviors [49].

The present work aims at analytically investigating the dynamical behavior of a multiscale model, in order
to critically discuss the influence of the micromodel descriptors on the overall response. Reference is made
to a model of mono-dimensional bar of elastic material with distributed stationary microcracks, derived from
the generalized continuum formulation in [31,32] and used therein and in [33] for a preliminary numerical
investigation of the features of wave propagation. Microcracks are described by a microdisplacement to be
added to the standard macrodisplacement. The ensuing, coupled, balance equations give rise to a higher-order
dispersion wave equation which includes all fourth-order derivatives of the macrodisplacement variables con-
sidered in the literaturemodels and accounting for the zero-order microdisplacement responsible for dispersion
phenomena [32], however, with no change of the macroscopic velocity in the linear wave operator due to the
presence of the microstructure [47]. Such higher-order dispersion wave equation, to the best of our knowledge,
appears to have been not yet used in the literature for an extensive investigation of the dispersion properties of a
physically based microcracked bar model aimed at determining the overall response, by also accounting for the
influence of the internal parameters which describe cracks density and length. Indeed, the modification of these
parameters entails description of bars under different levels of damage, and proves to be able to meaningfully
alter shape, velocity, and actual occurrence of propagating waves, with also significant distorting effects of the
macrodisplacement response, especially due to coupling.

The paper is organized as follows. A brief description of the reference model for the microcracked bar
is presented in Sect. 2, while wave propagation is addressed in Sect. 3 in analytical terms. The influence of
the coupling between macro- and microdescriptors and of the damage parameters on the system dynamical
behavior is discussed in Sects. 3.1 and 3.2. As a real example, the response of a harmonically excited long bar
is described in Sect. 4, and some final comments are summarized in Sect. 5.

2 Multiscale–multifield model: one-dimensional microcracked bar

The reference system is a microcracked bar characterized by a uniform distribution of fibers and cracks, whose
formulation is derived from the generalized formulation presented in [32], relevant to a multifield continuum
with affine microstructure [8] as well as a continuum with configurational forces [10]. Moving from the 2D
model, whose representative volume is sketched in Fig. 1a, to the mono-dimensional domain shown in Fig. 1b,
the bar is described by two interacting lattice systems, one being the fibers in the matrix represented by a lattice
of rigid particles, the other representing microcracks, modeled as interacting deformable slits with dominant
dimension, localized in between the particles. The two lattices are linked together by nonlinear elastic bonds.
For the sake of simplicity, the fibers are considered ‘frozen’ in such a way that the microrotation and the
work-conjugated microcouple are null [14].
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Dynamical properties of a composite microcracked bar

Fig. 1 2D orthotropic module with particles and slits (a) and corresponding mono-dimensional model with identification of the
periodic cell (b)

The constitutive equations of the multifield continuum are directly derived from a proper micromechanical
description via energy equivalence [31,32]. Following the homogenization formulation presented in [33], to
refer to for all details, and under the above-mentioned assumption of ‘frozen’ fibers, the linearized stress–strain
relationships in the one-dimensional framework read [14]:

S = A ux + D dx
z = M d

Z = O ux + R dx ,

(1)

where u and d represent the macro-, standard, displacement, and the additional microdisplacement, accounting
for the presence of the material microstructure, respectively, S is the standard Cauchy stress, while z is the
internal volume force and Z the microstress related to the presence of the microcracks, the lower suffix
indicating the derivation variable. The constitutive constants A, D, O, R, and M are identified as in [32,33].
In particular, for the considered model, the A component is set equal to the axial stiffness Y As , with Y Young
modulus and As cross-section area of the bar, R = nY/ρmπlc and M = mYρm/πlc, where ρm = 1/ lm is
the linear microcrack density (lm being the unit module length, Fig. 1b), lc is the microcrack length, and n
and m are constants dependent on the number and arrangement of the microcracks in a representative portion
of the material referred as the ‘module’. As far as the coupling terms D and O are concerned, the material
hyperelasticity entails O = D. The identification procedure shows that the coupling term can generally depend
on the microcrack size and arrangement and on the elastic constants of the matrix [50]. However, since the
present work is aimed at studying the influence of coupling and damage on the system response, the coupling
term is assumed to be independent of the damage parameters, in order to clearly distinguish the effects of one
and the others. Consequently, in the following, D is assumed to be proportional to the elastic axial stiffness A,
i.e., D = δA, and the coupling parameter δ is given physically reasonable values equal to a low percentage of
the elastic stiffness.

Balance equations are derived by imposing the equivalence of the external and internal virtual works,
which, in the presence of only inertial actions, leads to:

utt − α2uxx − βdxx = 0

dtt − εuxx − ϕ2dxx + ηd = 0
(2)

where α = A/ρ, β = D/ρ, ε = O/μ, ϕ = R/μ and η = M/μ, ρ and μ being the macro- and micromass
densities, respectively. All details of the relevant identification are also reported in [32]. Due to the hypothesis
of material hyperelasticity (D = O) and to the assumed form for the coupling term (D = δA), the α, β, ε
parameters of Eq. (2) are not independent of each other, holding the following relations: β = δα = εμ/ρ.

It is worth noting that Eq. (2), which ensues from the generalized 3D continuum formulation of [32],
accounts for the one-dimensional coupling between macromotion and micromotion via the correspondingly
exchanged second-order derivatives dxx and uxx . Thus, in the case β = ε considered in the following, the
present model corresponds to the microstructure model II presented in the review article [47], in the framework
of the description of the microstructural effects in 1D continua in terms of internal variables. The fourth-order
space derivative of macromotion appearing in the associated higher-order dispersion wave equation

utt = α2uxx + ϕ2

η

(
utt − α2uxx

)
xx−

1

η

(
utt − α2uxx

)
t t+

β2

η
uxxxx (3)
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does not entail the slowing down of the wave propagation velocity due to coupling which is instead exhibited
by the second-order space derivative occurring in the same equation of the microstructure model I [see Eq. (88)
of [47]]. The latter represents the general model of dispersive wave propagation based on the Mindlin theory
of microstructure [51] proposed in [43]. Although wave dispersion has recently been addressed also with a
somehow richer model in the internal variable perspective (e.g., the unified model in [35]), the latter is the one
more widely considered in the literature for analyzing dispersion curves and the corresponding wave profiles
[34,43]. It is thus worth analyzing the dynamical properties of themicrocracked bar as ensuing from the present
alternative modeling of coupling, in which dispersion effects are only due to the whole set of fourth-order
derivatives entering the wave equation, with no change of macroscopic velocity due to the microstructure
occurring in the linear wave operator.

When analyzing the dynamical properties of the bar, attention is devoted to critically investigate the effects
of themicrocracks represented by themicrocrackdensity,ρm , andmicrocrack length, lc, respectively.Moreover,
the influence of the coupling in the model response is also studied by means of the coupling parameter δ.

3 Wave propagation

To analytically study the free wave propagation inside the microcracked bar, a general harmonic form for both
macro-, u, and micro-, d , displacements is assumed:

u = u0 e
ikxe−iωt

d = d0 e
ikxe−iωt

(4)

as a function of the spatial and temporal variables x and t , respectively. The harmonic waves are characterized
by wave number k and angular frequency ω, while u0 and d0 are the oscillation amplitudes which are assumed
to be constant. Substitution of (4) into (2) allows us to rewrite the system as follows:

(A − ω2I) v = 0 (5)

where I is the identity tensor and the components of the vector v and the tensor A are:

{v} = {u d}T , [A] =
[
k2α2 k2β
k2ε η + k2ϕ2

]
(6)

Solving the system characteristic equation

k4(α2ϕ2 − βε) + k2(α2η − (α2 + ϕ2)ω2) − ηω2 + ω4 = 0 (7)

leads to the expressions for the wavenumbers ki :

k1,2,3,4(ω) = ±
√

−ϕ2ω2 + α2(η − ω2) ± √
4(βε − α2ϕ2)ω2(−η + ω2) + (α2η − (α2 + ϕ2)ω2)2

2βε − 2α2ϕ2 (8)

and, by recalling the definition of phase velocity c = ω/k,

c1,2,3,4(k) = ±

√√√
√α2 + η

k2
+ ϕ2 ±

√
η2+2k2η(ϕ2−α2)+k4(4βε+(α2−ϕ2)2)

k2

2
(9)

Obviously, k1 = −k2 (c1 = −c2) and k3 = −k4 (c3 = −c4) so that only two wavenumbers and phase
velocities are considered.

The spatial formofmicro- andmacrodisplacements is thus determined by the superposition of two harmonic
contributions governed by real k1 and k3 wavenumbers, as follows:

u(x) = u1(x) + u3(x)

d(x) = d1(x) + d3(x)
(10)
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where

u1(x) = φ1u

(
1

2
C1e

ik1x + 1

2
C̄1e

−ik1x
)

u3(x) = φ3u

(
1

2
C3e

ik3x + 1

2
C̄3e

−ik3x
)

d1(x) = φ1d

(
1

2
C1e

ik1x + 1

2
C̄1e

−ik1x
)

d3(x) = φ3d

(
1

2
C3e

ik3x + 1

2
C̄3e

−ik3x
)

(11)

C1, C3 (and the relevant complex conjugate C̄1, C̄3) are unknown amplitudes to be determined by solving the
boundary condition problem, and {φ1u, φ1d} and {φ3u, φ3d} are the components of the two eigenvectors φ1
and φ3 associated with k1 and k3, respectively. Their expression is:

φ1,3 =
{

−α2η + α2ω2 − ϕ2ω2 ± √
4(βε − α2ϕ2)ω2(−η + ω2) + (α2η − (α2 + ϕ2)ω2)2

2εω2 , 1

}

(12)

In the following analyses, eigenvectors are normalized as follows: φ̄1 = {φ1u, φ1,d}/
√

φ2
1u + φ2

1d and φ̄3 =
{φ3u, φ3,d}/

√
φ2
3u + φ2

3d .
It is worth briefly investigating the response of the lattice model when no interactions between particles and

microcracks are taken into account. This corresponds to solve the uncoupled system, obtained when β = ε = 0
in (2), where the macromotion u corresponds to the standard wave equation while the micromotion d remains
dispersive. The relevant wavenumbers of the macro- and microdisplacements read:

ku(ω) = ω

α
, kd(ω) =

√
ω2 − η

ϕ
(13)

while the phase velocities are:

cu = α, cd =
√

ϕ2 + η

k2
(14)

To discuss the influence of coupling and damage parameters on the dynamical behavior of the proposed
model, the results presented in the next sections are nondimensionalized with respect to the length of a single
periodic cell (Fig. 1b). Since, in the mono-dimensional bar, the microcracks are assumed to be orthogonal
to the bar axis, the cell length is determined by the microcrack density ρm through the following relation:
lm = 1/ρm . Accordingly, the nondimensional wavenumber reads k̄ = k lm .

The following numerical analyses are referred to a concrete bar (Y = 31.5 · 106 kN/m2) of cross-section
area As = 10−2 m2, for which m = 1, n = 0.8, μ = 1, ρ = 1.

3.1 Influence of the coupling terms

Starting from the limiting case of uncoupled system, that corresponds to neglect the link between the fibers
and microcracks, the effect of increasing coupling between macro- and microdisplacements is analyzed in
terms of propagation frequency and velocity in Fig. 3. Looking at the response of the uncoupled system (black
lines in Fig. 2), the results show the presence of two separated branches, relevant to macro- (ωu , cu) and
microdisplacements (ωd , cd ), crossing themselves at a specific (nondimensional) wavenumber value k̄cross,
determined by equating Eq. (13) expressed as a function of k (i.e., ωu(k), ωd(k)).

k̄cross =
√

ρ m

lc π μ ρm − ρ n
(15)

Evolution of phase velocities in Fig. 2a shows the presence of two branches, the upper branch cu = c0 = α
and the lower branch cd , the latter being characterized by a dispersive behavior, i.e., the dependence of the
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Fig. 2 Phase velocities (a) and frequency spectra (b) for the uncoupled system (black lines) and for the coupled system (gray
lines) with ρm = 100 m−1 and lc = 0.01 m

propagation velocity on the wavenumber, for low values of the nondimensional wavenumber (k̄ < 4.5). For
higher wavenumbers, both branches become independent of velocity.

As regards the frequency spectra of Fig. 2b, it is possible to identify the cutoff frequency ω0, which
corresponds to the frequency value of the dispersive curve at k = 0, where the spatial variation of the
micromotion is null. The cutoff frequency marks the lower frequency boundary for microwave propagation; in
fact, relevant wavenumbers for frequencies ω < ω0 are imaginary, and the corresponding wave is hyperbolic
(cosh(kx)). As a consequence, only standing microwaves exist and wave propagation is possible only for the
macromotion for frequencies lower than the cutoff frequency. Its expression in terms of physical parameters
of the system is

ω0 =
√
Y m ρm

μ lc π
(16)

It can be observed that the cutoff frequency depends on both the damage parameters ρm and lc, but it is
independent of the coupling parameter δ.

Moving from this scenario, the presence of coupling terms prevents the curves from crossing and induces
the veering phenomenon, as highlighted by the gray lines in Fig. 2. Around the crossing point, the two frequency
(and velocity) curves approach each other and then veer away due to the coupling, with the veering region
which enlarges for increasingly coupled systems, as shown in the enlargements of Fig. 3. So-called acoustic
(optical) curves, corresponding to waves with vanishing (non-vanishing) frequency when the wavenumber k̄
is vanishing [52], are identified.

The effect of veering in the wave form of the system response is analyzed in Figs. 4 and 5. As shown in
Eqs. (10), (11), the spatial form of both micro- and macrodisplacements is defined as linear combination of two
harmonic waves depending on k1 (optical) and k3 (acoustic) wavenumbers, respectively, whose evolution is
reported in Fig. 4a. At equal amplitudes (C1, C3, still unknown), the relative influence of each harmonic wave
on the micro- and macrodisplacement is governed by the (normalized) eigenvectors φ1 and φ3, which strongly
vary around the veering region, as shown in Fig. 4b. It is thus possible to verify the response components before
and after the veering region (Fig. 5), preliminarily observing that the harmonic contributions to the macro- and
micromotion governed by k1 and k3 are in-phase and out-of-phase, respectively.

At about the cutoff frequency (ω ≈ ω0), the k1 wave is associated only with themicrodisplacement d , while
the k3 wave dominates the u response (Fig. 5a). Conversely, at high frequencies (Fig. 5e), themicrodisplacement
d is essentially governed by the k3 wave, with the k1 wave dominating the u response. When approaching the
frequency veering region from below, Fig. 5b (above, Fig. 5d), the k3 (k1) waves switch their role, with the two
exchanges occurring atmirrored frequency values and the twoharmonic contributions of themicrodisplacement
becoming dominant. At the former crossing frequency (ωu/ω0 = ωd/ω0 = 1.16, Fig. 5c), the distribution of
the k1 and k3 components on the two displacements is identical, however, with a marked dominance of those
associated with the microdisplacement d . Thus, the presence of the veering entails a meaningful reduction
in both the k3 and k1 contributions of the macrodisplacement, with a transfer of energy to the corresponding
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Fig. 3 Phase velocities (a) and frequency spectra (b) for δ = 0.0 (i.e., uncoupled system, black), δ = 0.01 (dark gray), δ = 0.05
(gray) and δ = 0.1 (light gray), with ρm = 100 m−1 and lc = 0.01 m
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Fig. 4 Frequency spectra of the uncoupled (black) and coupled system (a); behavior of the eigenvectors components φ̄1u (cyan),
φ̄1d (blue), φ̄3u (orange), φ̄3d (red) (b), for δ = 0.05, ρm = 100 m−1 and lc = 0.05 m (color figure online)

ones of the microdisplacement and an ensuing hybridization of the overall response (see Sect. 4 forward). As
a consequence of the strong interaction between the waves, a rapid and evident change in the group velocity
of the propagating waves can be observed in the veering region, as reported in Fig. 6.

Looking at the response of the uncoupled system (Fig. 6a), the dispersion effect can be recognized in
the behavior of the velocities of the acoustic branch, for which the acoustic phase velocity curve gradually
approaches from above the asymptotic value, while the group velocity branch initially assumes evidently lower
values, and then slowly increases reaching the same regime of the relevant phase velocity curve.When coupling
is added to the model (Fig. 6b), the switching phenomenon causes the involvement of also the optical branch,
and around the veering region the swift exchange of roles of the two curves marks a clear difference between
the corresponding phase and group velocities.
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Fig. 5 Harmonic components of themacro- u andmicro- d displacements atω/ω0 = 1.001 (a),ω/ω0 = 1.13 (b),ω(kcross)/ω0 =
1.16 (c), ω/ω0 = 1.19 (d) and ω/ω0 = 1.3 (e), at δ = 0.05, ρm = 100 m−1 and lc = 0.01 m. Cyan curve: ū1(x), blue curve:
d̄1(x), orange curve: ū3(x), red curve: d̄3(x) (color figure online)
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Fig. 6 Comparison between phase velocity (blue) and group velocity (dashed green) for the uncoupled system (δ = 0) (a) and
for the coupled system (δ = 0.05) (b), for ρm = 100 m−1 and lc = 0.01 m (color figure online)
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Fig. 7 Phase velocity curves for ρm = 10 m−1 (dark gray), ρm = 100 m−1 (gray) and ρm = 1000 m−1 (light gray), with
lc = 0.05 m and δ = 0.05 (a); phase velocity curves for lc = 0.005 m (dark gray), lc = 0.01 m (gray) and lc = 0.05 m (light
gray), with ρm = 100 m−1 and δ = 0.05 (b)

3.2 Influence of the damage parameters

To verify the effects of the microcrack parameters on the free wave propagation, the coupling parameter is
set to δ = 0.05 and the dispersion curves in terms of frequency spectra and phase velocities are obtained
for different values of the microcrack density ρm and of the microcrack length lc. In particular, three set of
values are considered for each parameter, corresponding to low damaged (ρm = 10 m−1), medium damaged
(ρm = 100 m−1) and high damaged (ρm = 1000 m−1) bar, with short (lc = 0.005 m), medium (lc = 0.01 m)
and long (lc = 0.05 m) microcracks.

In Fig. 7 the effects of ρm and lc parameters on the phase velocities are reported, highlighting, as confirmed
by the experience, that damage causes a sensible reduction of the acoustic velocity. Moreover, it can be
noted that the cross-point is moved to lower nondimensional wavenumbers as the damage increases, and the
relevant veering region is reduced. While producing the same effect with respect to the phase velocities, the
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Fig. 8 Frequency spectra for ρm = 10 m−1 (dark gray), ρm = 100 m−1 (gray) and ρm = 1000 m−1 (light gray), with lc = 0.05
m and δ = 0.05 (a); frequency spectra for lc = 0.005 m (dark gray), lc = 0.01 m (gray) and lc = 0.05 m (light gray), with
ρm = 100 m−1 and δ = 0.05 (b)

two parameters have slightly different consequences on the frequency spectra, as shown in Fig. 8. In fact, the
microcrack density is responsible for an increase in the cutoff frequency ω0 (Fig. 8a), while the microcrack
length reduces it, thus widening the range of propagation (Fig. 8b). Such different behavior is likely due to the
choice to consider vertical microcracks, whose length lc does not modify the cell dimension, that is governed
by the microcrack density ρm . Considering horizontal microcrack would likely imply a different influence of
their length on the behavior of the frequency spectra. The presented results are also confirmed by the analytical
expressions (15) and (16), where it is evident the same (inverse) role played by ρm and lc parameters on
the cross-point (cutoff frequency) occurrence. It is interesting to note that the microcrack density affects the
behavior of both frequency curves, for the coupled and the uncoupled system, as well. Indeed, the results
discussed in this section can be entirely extended to the system with δ = 0, apart from considerations on
the veering region which disappears in the latter case. This allows us to assert that the damage parameters
are able to concurrently modify the micro- and the macrodisplacements even when they are not coupled.
However, Eqs. (13)–(14) prove the independence of ku and cu with respect to ρm and lc parameters. This
apparent inconsistency can be explained by remembering that the presented results are nondimensionalized
with respect to the periodic cell length, which is inversely proportional to themicrocrack density. Consequently,
the three curves in Fig. 8a are actually relevant to three different space domains, which reduce as the damage
increases, and the frequency curve of the macrodisplacement (the straight curve of Fig. 2a for the uncoupled
system) is scaled to the cell dimension too. It entails that a change in the scaling length (i.e., a change in the
ρm value) causes a modification of the macroresponse even if it is independent of the damage.

The outcomes are summarized in the behavior charts of Fig. 9, where the concomitant effect of the two
damage parameters can be easily read. The microcrack length strongly modifies the nondimensional cross-
wavenumber and the dimensional cutoff frequency, especially in the short length range, between 0 and 0.02
m. For higher values, the influence of lc is less evident, as somehow expected, being the presence (and not
the length) of the vertical microcrack the actual source of damage. As concerns the microcrack density, the
strongest effect is relevant to the cross-point k̄cross position, which obviously indicates also the location of
the veering region, reported in Fig. 9a. Here, an increase in an order of magnitude of ρm (from 10 to 100
m−1) implies a dramatic decrease in the wavenumber associated with k̄cross, while its effect is less intense in
increasing the cutoff frequency ω0 (Fig. 9b).

Focusing on strongly coupled and highly damaged models, it can be observed that one of the frequency
or velocity curves can possibly fall to zero, as shown in Fig. 10. The critical value k̄lim of the nondimensional
wavenumber corresponding to zero velocity is determined by the following analytical expression:

k̄lim =
√
m

√−n + lc π δ2 ρm
(17)
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Fig. 9 Effect of damage parameters on the nondimensional value of the cross-wavenumber and on the dimensional value of the
cutoff frequency: behavior chart in the lc–k̄cross plane (a) and in the lc–ω0 plane (b)
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Fig. 10 Frequency spectra (a) and phase velocity curves (b) for ρm = 1000 m−1, lc = 0.05 m and δ = 0.1

The point marks a qualitative change in the response of the model. In fact, for k̄ > k̄lim no acoustic curve
can be detected and corresponding wave propagation is precluded. From Eq. (17), it follows that the critical
wavenumber depends on all the control parameters, so that their combined effect is investigated by means
of the behavior charts of Fig. 11. Both charts highlight the major role played by the coupling in determining
the k̄lim occurrence, which is possible, for reasonable values of the physical parameters, only in the strongly
coupled regime.

Focusing on the damage parameters, the critical value of the microcrack density responsible for the occur-
rence of k̄lim can be analytically identified:

ρm,lim = n

lc π δ2
(18)

The effects of positive and negative variations of the microcrack density with respect to ρm,lim on the
frequency spectra are reported in Fig. 12. As already commented, for ρm < ρm,lim (Fig. 12b) the cutoff
frequency ω0 identifies two frequency regions corresponding to different space forms of the propagating wave,
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Fig. 11 Behavior charts in the k̄lim–δ plane for varying values of the microcrack density ρm , with lc = 0.05 m (a) and of the
microcrack length lc, with ρm = 1000 m−1 (b)

i.e., the sole acoustic k3 component for ω < ω0 and the superposition of k1 and k3 harmonic waves described
by Eqs. (10) and (11) when ω > ω0 and both optical and acoustic branches have real wavenumbers. For
increased damaged models, if ρm > ρm,lim, the acoustic branch falls to zero and a band gap (gray region in
Fig. 12c) arises for frequencies belonging to the ω0–ωup range, where the ωup value is achievable by zeroing
the derivative of ω(k) with respect to k, and then calculating the relevant frequency value. The result reads

ωup =

√√√
√η −

√
βεη2

βε−α2ϕ2 + α2η2ϕ2(α2+ϕ2)

α4ηϕ2+βεηϕ2+
√

βεη2(α2+ϕ2)2(βε−α2ϕ2)−α2η(βε+ϕ4)

2
(19)

Inside the band gap, both k1 and k3 wavenumbers are imaginary and the resulting standing waves oscillate
in a confined region of space without propagation [46,52]. Conversely, for frequencies higher than the cutoff
one, the sole optical wave governs the spatial form of the micro- and macrodisplacements, and for ω < ωup
the acoustic curve furnishes two different wavenumbers to be superimposed in order to define the resulting
propagating waves.

4 Forced waves: long bar with harmonic excitation of the free end

The spatial forms of the micro- and macrodisplacements (10) are defined as a function of the unknown C1 and
C3 amplitudes, to be determined by imposing the boundary conditions at the ends of the bar. To this aim, a
model of long bar with harmonic axial force F(t) = F0 ei�t applied to one end (at x = 0) is investigated. In
general, traction on a microcracked bar produces crack-opening displacements, which can be modeled as an
applied microforce to be added to the standard macroboundary condition, to obtain:

S(0, t) = F(t)/As, Z(0, t) = λF(t)/As (20)

where λ represents the ratio between micro- and macroboundary conditions [32]. To identify the microforce,
an energetic equivalence between a damaged bar, simulated by a finite number of longitudinal discontinuities,
and an elastic bar with an additional force is developed: As Z = λF(0, t), with λ � 0. The λ parameter is
assumed to depend on the microstructure parameters, i.e., the crack density ρm and the crack length lc, and it
is obtained by linking the axial microforce As Z to the overall axial displacement of the discontinuities of the
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Fig. 12 For lc = 0.05 m and δ = 0.1, frequency spectra for ρm = ρm,lim (continuous red), ρm < ρm,lim (dotted black) and
ρm > ρm,lim (dashed green) (a); identification of the wave propagation region for the system with ρm < ρm,lim (b) and with
ρm > ρm,lim (c), where dashed curves denote the uncoupled case (color figure online)

bar, each contribution being evaluated as the opening displacement of a microcrack in an elastic string with
tension at infinity. It follows that λ = ρmlcπ/2.

Based on the stress–strain relationships (1), the boundary conditions at x = 0 Eq. (20) can be rewritten in
terms of the micro- and macrodisplacements, as:

u′(0, t) = gue
i�t , d ′(0, t) = gde

i�t , (21)

where

gu = F0(n − lcπδλρm)

A2
s Y (n − lcπδ2ρm)

, gd = F0lcπ(δ − λ)ρm

A2
s Y (lcπδ2ρm − n)

(22)

Due to the linearity of the problem, it can be deduced that the temporal form of the system response has the
same frequency of the forcing term, i.e., ei�t . The long bar under analysis can be modeled as a semi-infinite
body, so that the boundary condition at infinity imposes that only progressive (rightward) waves have to be
considered. Solving the boundary problem allows us to obtain the expressions for C1 and C3 amplitudes:
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Fig. 13 Frequency spectra and micro- and macrodisplacements for ρm = 10 m−1(a)–(c), ρm = 50 m−1(d)–(f), ρm = 100
m−1(g)–(i). Black waves: macrodisplacement u of the damaged system; dashed red waves: microdisplacement d; gray waves:
macrodisplacement u of the undamaged system. δ = 0.05, lc = 0.05 m (color figure online)

C1 = i(guφ3d − gdφ3u)

2k1(φ1uφ3d − φ1dφ3u)

C3 = i(gdφ1u − guφ1d

2k3(φ1uφ3d − φ1dφ3u)

(23)

while the relevant complex conjugates are C̄1 = iC1 and C̄3 = iC3.
Numerical results are obtained for an increasingly damaged bar subjected to an harmonic excitation of

amplitude F0 = 100 kN and frequency � = 80000 rad/s, with δ = 0.05 and lc = 0.05 m.
Figure 13 points out the ability of themultifieldmodel tomodify the shape of the resultingwave propagating

along the bar due to damage. The comparison between undamaged and damaged bar for increasing microcrack
density ρm is reported in the right-hand panels of Fig. 13. Here the macrodisplacement u is seen to undergo
an increasingly evident distortion due to coupling with the microdisplacement d . To interpret the numerical
outcomes, it is worth highlighting that the graphics of Fig. 13 represent the wave spatial evolution in relation
to the length of the periodic cell, which reduces as the microcrack density increases. As a consequence, the
micro- and macrodisplacements refer to a progressively reducing domain moving from the upper to the lower
line of Fig. 13. This aspect explains why the wavelength of the uncoupled macrodisplacement wave (gray
curve in the right panels) appears as larger for more strongly damaged bars, even if it is independent of the
damage parameters.

Finally, it is interesting to verify the interference of the micro- and macrodisplacements due to the pres-
ence of veering, as already observed in terms of wave components in Fig. 5. Differently from the free wave
propagation analysis of Sect. 3, the addition of the boundary conditions allows us to identify the C1 and C3
amplitudes which define the relative contribution of the k1 and k3 waves on the system response. This implies
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Fig. 14 Frequency spectra and micro- and macrodisplacements for � = 32000 rad/s (a), � = ω(kcross) = 36677 rad/s (b),
� = 50000 rad/s (c). Black waves: macrodisplacement u; dashed red waves: microdisplacement d . δ = 0.05, lc = 0.01 m,
ρm = 100 m−1 (color figure online)

the possibility to reconstruct the actual spatial form of the micro- and macrodisplacements. For the sake of
comparison, the parameters are set to the same used to obtain Fig. 5, i.e., ρm = 100 m−1, lc = 0.01 m and
δ = 0.05, while the forcing amplitude is 100 kN. The form of the u and d waves before and after the veering
are presented in Fig. 14. Before the veering region, for � = 32000 rad/s ∼= ω0 (Fig. 14a), the macro-, u, and
micro-, d , waves poorly interfere with each other, despite the presence of coupling, and the u wave is seen to
be characterized by a higher wavenumber (i.e., shorter wavelength) with respect to the d wave. It confirms the
dominance of the k3 (k1) component on the macro- (micro-) displacement before the veering region, as pointed
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out also in the previous section. Moreover, the amplitudes of the two waves are evidently different, with the
relatively high damage associated with the chosen combination of ρm and lc values entailing a much stronger
amplitude of the microwave. For forcing frequency corresponding to the cross-point � = ω(kcross) = 36677
rad/s (Fig. 14b), wavelengths of u and d waves are almost equal and amplitudes tend to become comparable,
highlighting a strong hybridization of the macrodisplacement u which is deeply influenced by the microdis-
placement d . For higher forcing frequencies, after the veering occurrence (� = 50000 rad/s, Fig. 14c), the
microdisplacement d is associated with short wavelength (corresponding to the higher wavenumber branch
k3), while the macrodisplacement is dominated by the k1 component. However, the distortion of the macrodis-
placement waveform due to coupling is still evident. As a minor comment, waves shown in Fig. 14 are studied
with respect to a dimensional unitary domain, differently fromwhat done in Fig. 13. This is admissible because
the relevant analyses are developed for fixed microcrack density, corresponding to fixed length of the periodic
cell, so that the qualitative behavior is not altered by the dimensional representation.

5 Conclusions

The dynamical analysis of a microcracked bar characterized by a uniform distribution of fibers and cracks is
performed in order to discuss the effects of damage on the behavior of propagating waves. The considered
multifield model is derived from a generalized continuum formulation and accounts for the presence of the
microstructure by adding a microdisplacement field, that in a smeared sense represents distribution of micro-
cracks in the bar, to the standard macrodisplacement field. Moreover, a constitutive multiscale description
accounts for the material micromodel organization through internal parameters representing cracks density
and length.

In terms ofwave propagation analysis, themicrostructure presence is revealed by thewell-knowndispersion
effects, which are in turn influenced by the features of the microstructure itself. To examine this relation, the
dispersion properties of a physically based microcracked bar are extensively investigated, considering varying
intensity of coupling between macro- and microdisplacements, as well as different levels of damage.

The outcomes highlight the occurrence of the veering phenomenon associatedwith the presence of coupling,
which entails a strong hybridization of the macrodisplacement, deeply influenced by the microdisplacement.
The behavior can be recognized in free wave propagation regime, with the transfer of energy from the har-
monic wave contributions of the macrodisplacement to the corresponding ones of the microdisplacement.
Moreover, when considering the real sample case of harmonically excited long bar, the evident distortion of
the macrodisplacement waveform confirms the role played by the coupling.

The free and forced wave propagation is seen to be strongly influenced also by the micromodel descrip-
tors representing density and length of the microcracks. Besides sensibly reducing the acoustic velocity, the
damage parameters prove to meaningfully alter shape, velocity, and actual occurrence of propagating waves.
In particular, the influence of damage parameters on the cutoff frequency and on the wavenumbers around the
veering region is analytically described and clearly represented by means of several behavior charts. Inter-
estingly, strongly coupled and highly damaged models can undergo a meaningful qualitative change in the
dynamical response when the acoustic frequency (or velocity) curve falls to zero, corresponding to the arise
of a band gap precluding propagation. From a practical viewpoint, the presented analyses provide an accurate
phenomenological description of the model behavior which can furnish useful hints to interpret the response
of one-dimensional structures with widespread damage.
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