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a b s t r a c t 

The aim of this contribution is to formulate equivalent continuum finite element model for two- 

dimensional atomic arrays under plane-stress condition, based on Eringen’s two phase local/nonlocal 

model. The interaction between the atoms is modelled using translational and rotational linear elastic 

springs including both nearest and second nearest neighbor relations. Explicit relations between those 

set of springs and material properties of associated continuum model is looked for by means of equiva- 

lency of potential energy stored in atomic bonds and strain energy of continuum. Possibility of reducing 

computational burden of full atomic models by equivalent continuum models is discussed. This study 

may be regarded as the first step in composing a partitioned-domain multiscale model; with possibly 

smoother transition between coarse and fine scales due to the ability of nonlocal continuum model in 

incorporating long-range interactions. 

© 2019 Published by Elsevier Ltd. 

1. Introduction 1 

In recent years, continuum theories, capable of including the 2 

size effects, have gained considerable attention of researchers 3 

for the investigation of nano and micro sized structures. Among 4 

them, Eringen’s constitutive model is one of the most widely used 5 

non-local theories, as it incorporates a small-scale parameter into 6 

the constitutive equation to capture micro/nano structural effects 7 

in continuous media [1–4] . It is originally formulated in an inte- 8 

gral form, and simplified to a differential counterpart; yet, due to 9 

paradoxical outcomes of the latter for certain mechanical problems 10 

[5–7] , the former form has also been substantially used [8–13] . 11 

This study concentrates on integral form of Eringen’s two-phase 12 

local/nonlocal model [14] to investigate the behaviour of specific 13 

discrete systems. In fact, linking discrete systems to continuum ap- 14 

proaches dates back to early molecular models of 19th century, 15 

through which the first attempts to derive the constitutive equa- 16 

tions of continua was initiated [15,16] . These approaches are still 17 

quite promising in adopting discrete to scale dependent continu- 18 

ous models [17–19] . Here, particularly simple discrete system: 1- 19 
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D atomic chain and 2-D atomic array models are considered. In- 20 

teratomic potentials are modelled using linear elastic translational 21 

and rotational springs, for both the nearest, and second nearest 22 

neighbor relations from which the nonlocality arises. A linear sys- 23 

tem of equations for the atomic models are derived by means of 24 

the principle of minimimum total potential. Finite element formu- 25 

lation of continuum is developed for bar and plane stress prob- 26 

lems, which paves the way to look for equivalent models by link- 27 

ing the strain energy on the continuum level to the energy stored 28 

in atomic bonds, assuming uniform deformation field [20–23] , for 29 

1-D and 2-D atomic structures, respectively. Indeed, explicit rela- 30 

tions of material properties are obtained; albeit some of which re- 31 

quire numerical integration schemes. Their equivalency are tested 32 

by examining same mechanical problem with both approaches. De- 33 

spite some studies focusing on only translational springs and local 34 

elasticity [24,25] , to the best of authorsâ knowledge this study is 35 

the first attempt to provide the closed-form expressions for non- 36 

local material properties in terms of spring constants introducing 37 

all possible interatomic relations. It is thought that the results pro- 38 

vided herein are encouraging for the possibility of modelling tran- 39 

sition zones of partitioned-domain multiscale models; as they in- 40 

dicate that Eringen’s two phase model can capture the displace- 41 

ments of atomic arrays once the material properties ensuring en- 42 

ergy equivalency are used. 43 
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2. Material and methods 44 

In this section, derivation of governing equation for static prob- 45 

lems of 1-D atomic chain and 2-D atomic arrays, and FEM formula- 46 

tion of continuum with Eringen’s two-phase local/nonlocal consti- 47 

tutive relation are presented. Distribution of the atoms/nodes are 48 

considered to be uniform throughout the axes. The nodes and the 49 

atoms in continuum and atomic models, respectively, do not nec- 50 

essarily need to be coincident. In fact, it is aimed to discretize the 51 

continuum models by using very coarse mesh in order to high- 52 

light its superiority in terms of computational cost. Materials in the 53 

continuum models are assumed to be linear, elastic and isotropic, 54 

in agreement with the atomic models which consist of identical 55 

atoms connected via linear elastic springs. Small deformations and 56 

displacements of all structures are considered; hence, linear mod- 57 

els are used. For calculations, an in-house code is developed. 58 

2.1. One-dimensional case 59 

In 1-D case, both atomic and continuum models has one degree 60 

of freedom: translation in longitudinal axis x . In fact, it may not 61 

be of interest in practical applications; however, it is intended to 62 

examine them for the validation of present approach and integrity. 63 

2.1.1. Atomic chain 64 

1-D atomic chain model is composed by equally spaced (with 65 

a distance of l a ), identical atoms. Interatomic potential is repre- 66 

sented using linear elastic translational springs representing both 67 

the nearest ( k 1 ) and the second nearest ( k 2 ) neighbor relations. En- 68 

ergy of i th atom (i.e. E atom 

i 
) with displacement of u i can be written 69 

as follows: 70 

E atom 

i = 

k 1 
4 

[
( u i +1 − u i ) 

2 + ( u i − u i −1 ) 
2 
]

+ 

k 2 
4 

[
( u i +2 − u i ) 

2 + ( u i − u i −2 ) 
2 
]

(1) 

Remark 1. Eq. (1) is valid only for the atoms located at least 2 l a 71 

away from the boundaries for our case in which interactions of 72 

atoms up to their second neighbors are taken into account. Hence, 73 

Eq. (1) must be simplified for the boundary atoms regarding the 74 

non-existing bonds. 75 

Consequently, the internal energy of the atomic chain consisting 76 

of N atoms can be expressed as 77 

E a int = 

N ∑ 

i =1 

E atom 

i (2) 

Each atom must be in equilibrium under the internal forces, 78 

( f i ) int , and external forces, ( f i ) ext : 79 

( f i ) int + ( f i ) ext = 0 , ( f i ) int = −∂E a 
int 

∂ u i 

= −
∂ 
(
E a 

i −2 
+ E a 

i −1 
+ E a 

i 
+ E a 

i +1 
+ E a 

i +2 

)
∂ u i 

. (3) 

(3) provides a formulation similar to classical FEM: 80 

K a d a = f a (4) 

where f a , d a and K a refer to external force vector, displacement 81 

vector, and the stiffness matrix, respectively. 82 

2.1.2. Continuum model 83 

From continuum mechanics point of view, 1-D atomic chain can 84 

be modelled as a bar structure characterized by a total length L , 85 

cross-sectional area, A , elasticity modulus E , and a material param- 86 

eter κ providing the nonlocal small-size effects through a kernel 87 

function, τ ( r , κ). For a bar along a horizontal axis x ∈ [0, L ], the 88 

constitutive relation of Eringen’s two-phase local/nonlocal model 89 

is, 90 

σx = λ D ε x (x ) + ψ 

∫ L 

0 

τ ( | x − x̄ | , κ) D ε x ( ̄x ) d ̄x (5) 

where σ x and εx keep their usual definitions of normal stress and 91 

strain. The weights of the local and nonlocal parts are regulated 92 

through a fraction coefficient, λ∈ [0, 1], and ψ = 1 − λ. λ = 0 and 93 

λ = 1 induce full nonlocal and full local models, respectively. Be- 94 

ing different from local elasticity, in nonlocal models, stress at a 95 

point is linked to the strain of the entire domain through a kernel 96 

function, which is assumed bi-exponential 97 

τ ( r, κ) = e −
r 
κ / ( 2 πn −1 κn ) (6) 

n being the dimension of the structure. Other kernel functions 98 

to represent nonlocal effects are also available [26] . 99 

In natural coordinate system ζ = ( l c + 2 x − 2 x 2 ) / l c , displace- 100 

ment field may be approximated by two-noded linear bar elements 101 

with equal length, l c . 102 

u e (ζ ) = N d e , N (ζ ) = 

[
(1 − ζ ) 

2 

(1 + ζ ) 

2 

]
d e = { d 1 x d 2 x } T e , ε e = B e d e 

B e = 

∂N (ζ ) 

∂ζ

∂ζ

∂x 
= 

[ 
−1 

2 

1 

2 

] 
J e 

−1 (7) 

with d 1 x and d 2 x being longitudinal displacement of the 1st and 103 

the 2nd node, and εe the strain of element e . With those defini- 104 

tions at hand, strain energy of the bar, 105 

U = 

1 

2 

∫ 
V 

ε(x ) σ (x ) dV (x ) (8) 

With L mn = d 

T 
m 

B 

T 
m 

E n B n d n , it may be approximated, by using M 106 

uniform elements, as 107 

U F EM 

= 

A 

2 

( 

λ
M ∑ 

m =1 

∫ 1 

−1 

L mm 

det | J m 

| d ζ

+ ψ 

M ∑ 

m =1 

M ∑ 

n =1 

∫ 1 

−1 

∫ 1 

−1 

e 
| ζ−ζ̄ | 

2 κ

2 κ
L mn det | J n | det | J m 

| d ̄ζd ζ

) 

(9) 

Total potential, �, can be written in terms of strain energy with 108 

FEM approach, U FEM 

, plus external work potential, W FEM 

, and must 109 

be minimum for equilibrium; hence, 110 

� = U F EM 

+ W F EM 

, 
∂�

∂ d i 

= 0 , ( i = 1 , 2 , . . . , M ) (10) 

which requires, d being the global displacement vector. Then, in- 111 

serting (7) into (10) 2 provides 112 

f m 

= λ k m 

d m 

+ ψ k mm 

d m 

+ 2 ψ 

M ∑ 

n =1 ,n � = m 

k mn d n 

k m 

= 

EA 

l c 

[
1 −1 

−1 1 

]

k mm 

= 

EA ( l c + κ( e −
l c 
κ − 1)) 

l 2 c 

[
1 −1 

−1 1 

]

k mn = 

κEA e −
( | m −n | +1) l c 

κ ( e 
l c 
κ − 1) 

2 

4 l 2 c 

[
1 −1 

−1 1 

]
(11) 

k mm 

, stands for the contribution of the m th element to its own 113 

energy, while k mn and k nm 

account for the influence exerted on 114 

the m th element by the remaining elements, and the influence ex- 115 

erted by the m th element to the other elements. Also, it is vital to 116 
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Fig. 1. Illustration of 2-D atomic array model. 

point out that k mn = k 

T 
nm 

in case of homogeneous material prop- 117 

erties. Consequently, global form of the stiffness matrix including 118 

all degrees of freedom is constructed through proper assemblage 119 

of the element stiffness matrices. Based on the minimum potential 120 

energy principle, global form of finite element formulation can be 121 

represented as: 122 

K c d c = f c (12) 

where f c and d c are external force and displacement vector, re- 123 

spectively, and K c is called as the global stiffness matrix with a 124 

dimension of (M + 1) × (M + 1) . To validate FE model, the results 125 

are compared with the analytical expressions given in [27] for 126 

the same boundary conditions. Although slight differences at the 127 

boundaries due to different solution techniques, a very good agree- 128 

ment is achieved. 129 

Finally, regarding the energy equivalency for the uniform defor- 130 

mation field of atomic and continuum models, following relation 131 

between the material properties and the spring constants is ob- 132 

tained. 133 

k 1 + 4 k 2 = 

EA 
l a 

[
ψ 

(
1 + 

κ
l c 

g ( zn ) 
)

+ λ
]

g ( zn ) = 

(
e −

( zn +1 ) l c 
κ − e −

zn l c 
κ

) (13) 

where zn refers to the total number of elements that fall in the 134 

radius of influence zone of an element. Hence, its value should be 135 

increased with the nonlocality. 136 

2.2. Two-dimensional case 137 

To parameterize the position of points, components of forces 138 

and displacements, etc., a Cartesian coordinate system x , y with 139 

unit vectors e 1 , e 2 are used. In 2-D case, atomic and continuum 140 

models possess two translational degree of freedoms: planar dis- 141 

placements, u and v ; the components of displacement vector u . 142 

2.2.1. Atomic array 143 

In the present study, a square 2-D atomic array model is com- 144 

posed using equally spaced (i.e. l ax = l ay = l a ), identical atoms as 145 

illustrated in Fig. 1 a. Linear elastic translational and rotational 146 

springs for the nearest and the second nearest neighbor relations 147 

are utilized to represent the atomic interactions. The translational 148 

springs with constants k x , k y , k α , k β , are oriented along x , y , α149 

and β directions, respectively, while the rotational springs with 150 

constants k r and k ρ connect the atoms positioned along x − y and 151 

α − β axes, accordingly (see Fig. 1 b). 152 

The internal energy can be expressed in terms of bond length 153 

and bond angle variations by specifying each contribution individ- 154 

ually. For brevity, instead of the energy of the atom, contribution 155 

of the rotational springs located at the j th row and i th column of 156 

the array is given below: 157 (
E bond 

ji 

)
rot 

= 

2 ∑ 

n =1 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

k r n 
2 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

[ (
u j+ n,i − u j,i 

l ay 
+ 

v j,i − v j,i −n 

l ax 

)2 

+ 

(
u j−n,i − u j,i 

l ay 
+ 

v j,i −n − v j,i 
l ax 

)2 

+ 

(
u j,i − u j+ n,i 

l ay 
+ 

v j,i − v j,i + n 
l ax 

)2 

+ 

(
u j,i − u j−n,i 

l ay 
+ 

v j,i + n − v j,i 
l ax 

)2 
] 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

+ 

k ρn 

2 � 2 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

[({
u j,i − u j+ n,i −n + v j,i − v j+ n,i + n 

}
c 

+ 

{
u j+ n,i + n − u j,i + v j,i − v j+ n,i −n 

}
s 
)2 ({

u j+ n,i −n − u j,i + v j,i − v j−n,i −n 

}
c 

+ 

{
u j−n,i −n − u j,i + v j+ n,i −n − v j,i 

}
s 
)2 

+ 

({
u j,i − u j−n,i + n + v j+ n,i + n − v j,i 

}
c 

+ 

{
u j,i − u j+ n,i + n + v j,i − v j−n,i + n 

}
s 
)2 

+ 

({
u j−n,i + n − u j,i + v j−n,i −n − v j,i 

}
c 

+ 

{
u j,i − u j−n,i −n + v j−n,i + n − v j,i 

}
s 
)2 
] 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(14) 

where s and c are sin θ and cos θ , respectively, the subscripts 1 and 158 

2 of k correspond to the nearest and second-nearest relations, and 159 

� 2 = l 2 ax + l 2 ay . Energy of an atom due to translations is 160 (
E atom 

j,i 

)
str 

= 

2 ∑ 

n =1 

{ 

k x n 
4 

[ (
u j,i + n − u j,i 

)2 + 

(
u j,i − u j,i −n 

)2 
] 

+ 

k y n 
4 

[ (
v j+ n,i − v j,i 

)2 + 

(
v j,i − v j−n,i 

)2 
] 

+ 

k αn 

4 

[ ({
u j+ n,i + n − u j,i 

}
c + 

{
v j+ n,i + n − v j,i 

}
s 
)2 

+ 

({
u j,i − u j−n,i −n 

}
c + 

{
v j,i − v j−n,i −n 

}
s 
)2 
] 

+ 

k βn 

4 

[ ({
u j,i − u j+ n,i −n 

}
s + 

{
v j+ n,i −n − v j,i 

}
c 
)2 

+ 

({
u j−n,i + n − u j,i 

}
s + 

{
v j,i − v j−n,i + n 

}
c 
)2 
] } 

(15) 

Eventually, total internal energy of a 2-D array of N atoms, is 161 

calculated as follows. 162 

E a int = 

N ∑ 

j=1 

N ∑ 

i =1 

(
E atom 

j,i 

)
str 

+ 

N ∑ 

j=1 

N ∑ 

i =1 

(
E bond 

j,i 

)
rot 

(16) 

Note that the expressions given in Eqs. (14) and (15) are valid 163 

only for the atoms and the bonds located sufficiently away from 164 

the boundaries. For the others, some simplifications are required 165 

to avoid miscalculation. 166 

Equlibrium condition of 2-D array requires 167 

( f i ) int + ( f i ) ext = 0 , ( f i ) int = −∂E a 
int 

∂ u i 

(17) 

which may be represented in an identical form to (4) , where the 168 

components of stiffness matrix are given as, 169 

K 2 i −1 , 2 j−1 = 

∂E a 
int 

∂ u i ∂ u j 

, K 2 i, 2 j = 

∂E a 
int 

∂ v i ∂ v j 
(18) 

2.2.2. Continuum model 170 

From the view of continuum mechanics, 2-D atomic array can 171 

be modelled a continuum occupying 2-D planar region. Constitu- 172 
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tive relation is similar to what is assumed in 1-D case: 173 

σ(x, y ) = λ C : ε (x, y ) + ψ 

∫ ∫ 
τ ( r, κ) C : ε ( ̄x , ȳ ) d ̄A (19) 

where, in case of plane-stress condition, 174 

σ(x, y ) = 

{ 

σxx 

σyy 

σxy 

} 

, ε (x, y ) = 

{ 

ε xx 

ε yy 

2 ε xy 

} 

, 

C = 

E 

(1 − v 2 ) 

[ 

1 ν 0 

ν 1 0 

0 0 

( 1 −v ) 
2 

] 

(20) 

d ̄A is equal to d ̄x d ̄y , differential area element. Kernel function 175 

τ ( r , κ) is given in (6) , obviously for n = 2 [28] , and r is the Eu- 176 

clidean distance between the point of interest and its neighbor 177 

points. 178 

For finite element (FE) approximation to displacement and 179 

strain fields within an element e ; u e and ε e , discretization with 180 

4-noded linear elements with bilinear shape functions (i.e. N ) are 181 

used. In a natural coordinate system: 182 

u e (ζ , η) = N(ζ , η) d e 

ε e = L e N d e = B e d e 

183 

L e = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂ 

∂x 
0 

0 

∂ 

∂y 

∂ 

∂y 

∂ 

∂x 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, J = 

1 

2 

[
l cx 0 

0 l cy 

]
(21) 

The strain energy of a plate with thickness h is known as, 184 

U = 

h 

2 

(
λ

∫ ∫ 
ε (x, y ) 

T 
C ε (x, y ) dA 

+ ψ 

∫ ∫ ∫ ∫ 
τ ( r, κ) ε 

T (x, y ) ̄C ε ( ̄x , ȳ ) d ̄A dA 

)
(22) 

Then, the principle of minimum total potential, similar to what 185 

is done in 1-D case, provides the FE formulation of 2-D continua, 186 

f m 

= λ k m 

d m 

+ ψ k mm 

d m 

+ 2 ψ 

M ∑ 

n =1 ,n � = m 

k mn d n , 

k m 

= h 

∫ 1 

−1 

∫ 1 

−1 

B 

T 
m 

(ζ , η) C m 

B m 

(ζ , η) det | J m 

| d ζ d η, 

k mn = 

h 

2 

∫ 1 

−1 

∫ 1 

−1 

∫ 1 

−1 

∫ 1 

−1 

τ ( r, κ) A mn d ̄ζ d ̄ηd ζ d η, 

r = 

√ 

(ζ − ζ̄ ) 
2 + (η − η̄) 

2 
, 

A mn = B 

T 
m 

(ζ , η) C n B n ( ̄ζ , η̄) det 
∣∣J̄ n ∣∣det | J m 

| . (23) 

In terms of global force vector f c , global displacement vector 187 

d c and global stiffness matrix K c , an identical representation of 188 

(23) to (12) is possible. 189 

Remark 2. The integration operations of the nonlocal part are per- 190 

formed using Gauss Quadrature (GQ) method. The number of GQ 191 

points should be increased depending on the ratio between the 192 

nonlocal parameter and the element length (i.e. κ/ l cx or κ/ l cy ), and 193 

the calculated part of the stiffness matrix (i.e. k mm 

or k mn ). 194 

Despite its capabilities, integral form of nonlocal theory based 195 

FEM formulation has been only conducted by a limited number of 196 

researchers, such as [29–31] . For the validation of the FE model, 197 

the results are compared with the ones given in [30] considering 198 

the same boundary conditions. Slight differences in the strain field 199 

Table 1 

Material properties. 

case λ κ [nm] 

1 1 any value 

2 0.2 0.025 L 

3 0.2 0.050 L 

4 0.7 0.050 L 

is encountered only at the boundaries of the domain due to dif- 200 

ferent element types: in the reference article 8-noded Serendip- 201 

ity element is used, while in the present study the formulation 202 

is derived based on the 4-noded linear elements. In order to ob- 203 

tain material properties in terms of spring constants (i.e. E and κ), 204 

the total energy of the unit cell in the atomic model and the to- 205 

tal energy of the corresponding element in the continuum model 206 

are compared under uniform deformation fields such as; uniaxial, 207 

biaxial, pure shear and simple shear. Considering isotropy, 208 

k x = k y = k l , k α = k β = k s , G = 

E 

2 ( 1 + ν) 
(24) 

following expressions are obtained: 209 

E = 

1 

λ + ψξ

( k E 1 + 2 k E 2 ) 
(
8 k E 3 + k E 1 l 

2 
a 

)
h 

(
4 k E 3 + ( k E 1 + k E 2 ) l 

2 
a 

)
ν = 

−4 k E 3 + k E 2 l 
2 
a 

4 k E 3 + ( k E 1 + 2 k E 2 ) l 
2 
a 

, G = 

1 

λ + ψξ

4 k E 4 + k E 2 l 
2 
a 

h l 2 a 

, 

k r = k ρ + 

(
k l 
8 

− k s 

4 

)
l 2 a 

k E 1 = k l 1 + 4 k l 2 , k E 2 = k s 1 + 4 k s 2 , 

k E 3 = k ρ1 
+ 4 k ρ2 

, k E 4 = k r 1 + 4 k r 2 , (25) 

with ξ , which varies with the value of the nonlocal parameter, be- 210 

ing basically a constant arising from numerical integration; hence, 211 

it depends on zn and the number of GQ points. An explicit expres- 212 

sion for ξ is possible, but too long to be reported within the length 213 

of this article. 214 

3. Numerical examples 215 

In this section, static response of atomic and continuum mod- 216 

els are examined for some benchmark problems of practical im- 217 

portance. 218 

3.1. One-dimensional case 219 

An atomic chain of L = 1 [nm] length, which is thought of con- 220 

sisting 161 atoms, is investigated as an example. 20 finite ele- 221 

ments are used to construct its approximated continuum model. 222 

The spring constants stimulating the interaction with the near- 223 

est and the second nearest neighbor atoms are assumed equal: 224 

k 1 = k 2 = 80 [nN/nm]. Young’s modulus is calculated by Eq. (25) , 225 

assuming A = 1 [nm 

2 ]. The structure is investigated under both 226 

constant and linearly varying normal force, which may be due to 227 

a tip point load, f = 1 nN, and uniformly distributed load q = f/L . 228 

Material properties are provided in Table 1 . Number of elements 229 

inside the radius of influence zone, zn , is set to 9 considering high- 230 

est κ = 0 . 05 L [nm]. Assuming a fixed mid-point, axial displace- 231 

ment fields of atomic and equivalent continuum models are plot- 232 

ted in Fig. 2 , where an excellent agreement is achieved for all 233 

cases. Only appreciable discrepancy is apparent for uniform strain 234 

field around boundaries of the domain; see Fig. 2 a. This is due to 235 

the phenomenon known as boundary effect , as also pointed out by 236 

Remark 1 . However, it also depends on the state of stress around 237 

the corresponding boundary domain. This is also evidenced by 238 

Please cite this article as: M. Tuna, M. Kirca and P. Trovalusci, Deformation of atomic models and their equivalent continuum counterparts 

using Eringen’s two-phase local/nonlocal model, Mechanics Research Communications, https://doi.org/10.1016/j.mechrescom.2019.04.004 

https://doi.org/10.1016/j.mechrescom.2019.04.004


M. Tuna, M. Kirca and P. Trovalusci / Mechanics Research Communications xxx (xxxx) xxx 5 

ARTICLE IN PRESS 

JID: MRC [m5G; April 6, 2019;20:15 ] 

Fig. 2. Displacement values at atoms/nodes under (a) tip point load f, and (b) 

equally distributed axial load, q . x and y axis denote coordinate x [nm] and axial 

displacement u [nm], respectively. 

Fig. 3. The variation of u (40 nm , 50 nm ) and computational time with respect to 

total number of atoms. 

deformation field of uniformly distributed load in which case, a 239 

perfect correspondence between displacement is achieved, as il- 240 

lustrated at Fig 2 b. Nevertheless, minimizing such a discrepancy 241 

looks possible by proper selection of nonlocal material parameters. 242 

3.2. Two-dimensional case 243 

For 2-D case, an evenly spaced atomic array occupying a square 244 

region with edge length L = 100 [nm] is considered. Continuum 245 

approximation of it consists of 21 × 21 nodes, while different num- 246 

ber of atoms are considered. Similar to 1-D problem, spring con- 247 

stants are assumed equal. 248 

There are two important points to be stressed out: 249 

(1) Spring constants can be arbitrarily determined as long as 250 

they satisfy Eqs. (24) and (25) 4 . 251 

(2) Different values of spring constants may yield same material 252 

properties as clearly seen from Eq. (25) . 253 

Regarding these facts, although an infinite number of al- 254 

ternatives exists, only the followings are considered: k l = 1 . 5 255 

[nN/nm], k s = 0 . 91667 [nN/nm], k ρ = 0 . 0625 l 2 a [nN.nm] and k r = 256 

0 . 0208333 l 2 a [nN.nm]. Numerical experiments showed that consid- 257 

eration of different values for spring constants yield practically 258 

identical deformation fields as the number of atoms are increased. 259 

However, for the sake of brevity, results of those numerical exper- 260 

iments paving the way to this conclusion are not reported here. 261 

As a first step, the deformation fields of the atomic array with 262 

different number of atoms are investigated. Fig. 3 shows the dis- 263 

placement along x -axis at a point and the computational time re- 264 

quired, for the different number of atoms, in case of uniaxial load- 265 

ing. In the light of Fig. 3 , 61 × 61 number of atoms looks to be an 266 

optimum choice considering the convergence and computational 267 

burden. 268 

For continuum model, material properties are listed in Table 1 . 269 

Poisson’s ratio is calculated as 0.25 for all cases as it does not de- 270 

pend on either nonlocal parameter or fraction coefficient, while 271 

Fig. 4. Deformed configurations of atomic (red), and continuum (blue) models un- Q2 

der (a) uniaxial, (b) biaxial, (c) pure shear, and (d) point load conditions. (Black: 

undeformed configuration) (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Youngâs modulus is obtained assuming h = 1 [nm]. Following load- 272 

ing cases are investigated: 273 

(a ) constant distributed uniaxial load : 
q x (0 , y ) = −q x (L, y ) = − f/L, 

(b) constant distributed biaxial load : 
q x (0 , y ) = q y (x, 0) = − f/L, 
q x (L, y ) = q y (x, L ) = f/L 

(c) constant distributed shear load : 
q x (x, 0) = f/L, q x (x, L ) = − f/L, 
q y (0 , y ) = f/L, q y (L, y ) = − f/L 

(d) point load applied to midpoint of upper edge : 
f p (L/ 2 , L ) = − f/ 10 , 

where f = 100 [nN]. For the first three loading conditions, the cen- 274 

ter point of the domain is assumed fixed. For the last one, the 275 

displacement of atoms/nodes located at the bottom edge are re- 276 

stricted along y direction only. 277 

Mechanical problems considered in cases (a) –(c) are basically 278 

simple benchmark problems providing uniform strain fields. On the 279 

other hand, case (d) may be regarded as a coarse approximation to 280 

half infinite continuum under point load, also known as Flamant 281 

problem . It is simply examined to test the equivalent models wide 282 

range of deformation gradients to see its capability. 283 

The deformed configurations of the atomic and continuum 284 

models with κ = 0 . 050 L and λ = 0 . 7 are illustrated in Fig. 4 . At the 285 

first glance, a very good agreement in terms of the displacements 286 

are observed. More in detail, slight difference at boundaries, which 287 

are even more pronounced for corner points, are observed due to 288 

the discrete nature of atomic model, in addition to what is said 289 

for 1-D case. Obviously, including additional connections between 290 

atoms and/or considering different distributions of them will en- 291 

rich the atomic model, which will eventually lead to a more similar 292 

behavior. Displacement fields for the first three loading cases ex- 293 

hibit a similar trend to atomic chain with tip point load, while case 294 

(d) deserves more attention. Vertical displacement of nodes/atoms 295 

at y = L/ 4 , 3 L/ 4 are illustrated explicitly at Fig. 5 . As the deforma- 296 
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Fig. 5. Displacement values of atoms/nodes located at (a) y = L/ 4 (b) y = 3 L/ 4 for 

case (d) . x and y axis denote coordinate x [ nm ] and vertical displacement v [ nm ] , 

respectively. 

Table 2 

Comparison of internal energies [nN.nm] of discrete, 

local continuum and nonlocal continuum models for 

2-D problems. 

(a) (b) (c) (d) 

atomic 823.6 1241.8 2116.5 39.443 

case 1 800.0 1200.0 20 0 0.0 24.616 

case 4 832.1 1247.8 2081.0 29.014 

Fig. 6. Contour plots of vertical deformation fields for case (d). Left : Nonlocal con- 

tinuum model (Case 4). Right : Atomic model. 

tion gradients are appreciable, displacements of equivalent contin- 297 

uum models do not overlap with each other for arbitrary selec- 298 

tion of material properties. On the other hand, suitable selection 299 

of them (e.g. λ = 0 . 7 , and κ = 0 . 05 L ) may provide a good match 300 

in terms of not only displacement fields, but also total internal en- 301 

ergy (see Table 2 ). Another important interpretation of Fig. 5 may 302 

be the following: as Eringen’s constitutive relation may be tailored 303 

to match atomic displacements, it may also be used in parititoned- 304 

domain multiscale models where a strong or weak compatibility of 305 

displacement field atomic and continuum models are looked for. 306 

The coherence between models are also pointed out through com- 307 

paring the contour plots illustrated in Fig. 6 , for case (d) . As an in- 308 

evitable outcome of finer discretization, the vertical displacement 309 

field of atomic model is slightly smoother than its continuum ap- 310 

proximation. 311 

4. Conclusion 312 

Present study deals with equivalent continuum finite element 313 

models of 2-D atomic array based on Eringen’s two phase lo- 314 

cal/nonlocal model. To have physically reasonable continuum ap- 315 

proximation to atomic model, material properties of the former 316 

are obtained in closed-form, admitting an energy equivalency un- 317 

der uniform deformation. The advantage and capability of equiv- 318 

alent continuum nonlocal model are highlighted in terms of both 319 

accuracy and computational expense via comparing models under 320 

various loading scenarios. Numerical experiments show that even 321 

though the total number of degree of freedoms is reduced by 90%, 322 

all continuum models are well capable of providing very accurate 323 

solutions, while it becomes dependent on nonlocal material pa- 324 

rameters for increasing deformation gradients. Such a behaviour is 325 

expected due to analogous nature of nonlocal and atomic models, 326 

which may help recovering more accurate solutions. This could be 327 

further investigated by focusing on entire domain in case of gen- 328 

eral deformation fields, and might lead to additional constraints 329 

on nonlocal material properties, even to unique determination 330 

of them. Nevertheless, via exploiting the capability of continuum 331 

models including nonlocal effects, a smoother transition between 332 

atomic and continuum regions of a partitioned-domain multi-scale 333 

model is expected, which is the scope on an ongoing project. 334 

Supplementary material 335 

Supplementary material associated with this article can be 336 

found, in the online version, at doi: 10.1016/j.mechrescom.2019.04. 337 

004 . 338 
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