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Abstract—Common implementations of core memory alloca-
tion components, like the Linux buddy system, handle concurrent
allocation/release requests by synchronizing threads via spin-
locks. This approach is not prone to scale with large thread
counts, a problem that has been addressed in the literature by
introducing layered allocation services or replicating the core
allocators—the bottom most ones within the layered architecture.
Both these solutions tend to reduce the pressure of actual
concurrent accesses to each individual core allocator. In this
article we explore an alternative approach to scalability of
memory allocation/release, which can be still combined with those
literature proposals. We present a fully non-blocking buddy-
system, where threads performing concurrent allocations/releases
do not undergo any spin-lock based synchronization. Our solution
allows threads to proceed in parallel, and commit their allo-
cations/releases unless a conflict is materialized while handling
its metadata. Conflict detection relies on conventional atomic
machine instructions in the Read-Modify-Write (RMW) class.
Beyond improving scalability and performance, our solution can
also avoid wasting clock cycles for spin-lock operations by threads
that could in principle carry out their memory allocation/re-
lease in full concurrency. Thus, it is resilient to performance
degradation—in face of concurrent accesses—independently of
the current level of fragmentation of the handled memory blocks.

I. INTRODUCTION

In standard libraries or in an Operating System (OS),
memory allocation is de-facto a shared-data management
problem. In fact, allocators deal with the issue of managing
memory buffers in face of requests that can be concurrently
issued by multiple threads. This requires thread-coordination
mechanisms in order to guarantee the coherence of the state
of the memory allocator at any time.

A classical coordination approach, which is widely used in
allocators, consists in using spin-locks. With this approach,
the manipulation of shared data representing the state of
the memory allocator is implemented as a critical section,
hampering scalability. This is a relevant issue, since the level
of concurrency is increasingly exacerbated because of the
modern-hardware trend towards multi/many-core technologies.

The historical approach for reducing the impact of thread
coordination (and the associated costs) on performance with
concurrent memory allocations/releases is based on either:
(a) pre-reserving arenas, namely memory segments, for each

individual thread—this is what typically happens in user-
space allocators [1], [2]— or

(b) the usage of intermediate allocation services, called
cached allocators—as for the case of OS-kernel alloca-
tion services based on quick-lists [3].

Both approaches aim to reduce the likelihood of inducing
large volumes of concurrent accesses to the core allocator that
is in charge of ultimately delivering memory, either logical
or physical. As for point (a), this is achieved by resorting to
the core allocator only when the thread’s own pre-reserved
arena, which is not accessed by other threads, gets exhausted.
As for point (b), cached allocation diminishes the pressure of
concurrent accesses to the core allocator—e.g. a kernel-level
buddy system—by having upper-level allocators destined to
serve specific memory requests, such as those associated with
a given size and/or memory alignment—this is the classical
case of kernel-level page-table allocations or even SLAB
allocations. In such a case, concurrent threads performing
memory allocations require coordination only when they need
to access the same cached allocator instance or when this
allocator is exhausted and a new memory segment needs to
be taken from the core allocator.

Concurrent allocation/release operations have also been
tackled by creating data separation on the core allocator via
multi-instance approaches, and redirecting the requests to-
wards different instances. This further increases the likelihood
of saving the requests from actual conflicts that may lead
one or more of them to be delayed. For instance, this ap-
proach is used in OS-kernel physical memory management on
large scale NUMA (Non-Uniform-Memory-Access) machines,
where multiple disjoint instances of the buddy system are
included, each one managing physical frames to be allocated
from—or released to—different NUMA nodes.

Generally speaking, literature approaches make memory
management be extremely layered: the upper the layer, the
more it satisfies specific requests. In this context, we can define
back-end and front-end allocators. The former, previously
denoted as core allocators, handle the lowest level of memory
management. The latter are built on top the back-end allocator
with the goal of reducing the pressure of (concurrent) accesses
to it and satisfying more specific purposes.

In this article we tackle the issue of scalability of back-
end memory allocation, which is an orthogonal approach with
respect to reducing the pressure to core allocators by design-
ing front-end allocators, e.g., adopting (a), (b), or multiple-
instance approaches. In particular, our contribution is the
design of a non-blocking back-end allocator instance im-
plementing the buddy-system specification, where concurrent
allocations/releases are not coordinated via spin-locks.

In our approach, coordination and the guarantee of an



always-coherent state of the buddy system are achieved by
only relying on individual Read-Modify-Write (RMW) in-
structions executed along the critical path of allocation/release
operations. These instructions are exploited to detect whether
concurrent requests have conflicted on the same portion of the
allocator metadata. This may lead a few of them to be retried
as in the classical non-blocking algorithmic paradigm devised
in [4]. However, if conflicts do not materialize, then our
proposal saves the latency that would be spent by lock-based
approaches, which temporarily block concurrent operations a-
priori of their execution.

Clearly, our non-blocking solution can be used in combina-
tion with any already existing scheme aimed at diminishing
the pressure of concurrent accesses to the back-end allocator,
e.g. by introducing multiple instances or combining it with
front-end allocators. This is because our unique goal is to
provide a memory allocation system that simply optimizes the
management of those concurrent accesses with respect to lock-
based approaches. On the other hand, having a more efficient
back-end allocator can allow to reduce the impact of, e.g., pre-
allocation on actual memory unavailability in scenarios where
there are skewed memory usages by different threads—so that
the pre-reserved memory for a given thread cannot be used
for serving a more memory-demanding one—or by different
cached allocators.

Our buddy-system implementation has been released as free
software1, and we also provide experimental data demonstrat-
ing the actual scalability of our proposal.

The remainder of this article is structured as follows. In
Section II we discuss related work. The non-blocking buddy
system is presented in Section III. Experimental data are
provided in Section IV. For space constraints the proof of
safety and progress of our non-blocking buddy system has
been removed from this submission. The reader can anyhow
refer to the report in [25], where we included the proof.

II. RELATED WORK

The seminal literature work providing the base-ground for
non-blocking coordination in the management of shared-data
is [4]. This work has opened the path towards the design and
implementation of algorithms that can well fit the scalabil-
ity requirements imposed by modern (large-scale) multi-core
machines. Also, the avoidance of lock-based coordination in
such new algorithmic class has indirectly offered the opportu-
nity to develop coordination algorithms that are more suited
for CPU-stealing contexts such as Cloud-based computing.
In these contexts, the de-schedule of a lock-holding thread
because of CPU-steals can lead to detrimental performance
and waste of energy because of the stretch of the spin-locking
phase by other threads attempting to access the same critical
section. Along this direction, a lot of effort has been spent in
developing non-blocking versions of classical data structures
such as lists or queues [5], [6], hash-tables [7], registers [8], [9]
binary-search trees [10], [11] and priority queues [12], [13].

1https://github.com/HPDCS/NBBS

In any case, while many solutions have been devised in
order to reduce the negative impact of concurrency and syn-
chronization in memory allocation/deallocation by relying on
pre-reserving or caching, no one fully faces the problem of
concurrent accesses to back-end allocators. The work in [14]
provides non-blocking capabilities of memory allocations with
high probability, just depending on the pattern of memory
allocations/releases and overall memory usage. This solution
is in fact based on pre-reserving memory to be delivered to
specific threads (or CPU-cores), and resorts to lock-based
coordination across the threads whenever the pre-reserved
memory is fully used by a thread and the global state of the
memory allocator needs to be changed in order to provide
a new pre-reserved area. Similar approaches where threads
operate on pre-partitioned heaps—hence on different memory-
allocator instances—have been presented in [15], [16], [17].
Similarly to the previous work, these proposal still does not ad-
dress the problem of avoiding blocking allocations/releases in
scenarios where a same allocator instance can be concurrently
accessed by multiple threads. This issue is partially alleviated
in [19], where a non-blocking stack data structure is used to
post memory across different threads within the pre-reserving
scheme.

The solution in [18] is suited for SIMD systems and
exploits worker threads operating in isolation (on different data
portions) in order to deliver memory to a pool of requesting
threads. The workers do not block each other thanks to pre-
partitioned accesses to the allocator data structures—they actu-
ally operate on different allocators. Hence this approach does
not provide a mechanism to perform non-blocking memory al-
location/release on a same shared instance of the allocator. On
the other hand, this solution looks to be a reasonably scalable
approach for devices such as GPUs where multiple threads
typically do the same kind of operations in parallel, such as
requesting memory to the worker in charge of managing the
allocator—which ultimately delivers a unique memory block,
each portion of which is used by a different requesting thread.

We note that our approach is de-facto orthogonal to any
approach that tries to improve the scalability of memory
allocation via pre-reserving, since we optimize the actual
handling of concurrent operations on the core allocator—a
buddy system in our case—on top of which pre-reserving
can be put in place. Furthermore, it allows to cope with
scenarios where pre-reserving or cached allocation could be
not fully adequate. In particular, cached allocators and multi-
instance approaches do not fully cope with skews in memory
utilization of different caches/instances. This is the case of
OS-kernel physical memory allocation, where requests can be
issued by active threads either for the execution of specific
system calls, or because of the materialization into physical
memory of logical pages upon user-space code accesses to a
previously mapped logical memory region—like an mmap-ed
page on Unix systems. In these scenarios, the skew of memory
requests towards a given instance of allocation service—such
as an allocator operating in a given NUMA node selected on
the basis of memory-policies associated with the requesting



threads—can give rise to a peak of requests saturating cached
allocation and requiring coordinated concurrent accesses to the
underlying buddy-system instance.

A solution with goals similar to the ones pointed to by
our proposal can be found in [20]. Here the authors present
a concurrent non-blocking memory allocator relying on the
so called helping strategy—where threads help each other
trying to avoid blocking scenarios. This solution is based on
a kind of conditional atomic dec instruction which is not
currently supported by conventional processors. Conversely,
our proposal only relies on machine instructions offered by
off-the-shelf CPUs. Moreover, as pointed by the same authors,
this solution is not able to early detect memory fragmentation,
thus possibly leading to a large amount of false positives and
unnecessary retries.

III. THE NON-BLOCKING BUDDY SYSTEM

Before introducing our solution, a preliminary notion of
buddy-system specification is given. A buddy system is a
memory allocator that divides a contiguous memory region
into partitions, namely memory blocks, by splitting recursively
it into halves. These partitions are always contiguous in
memory, thus minimizing external fragmentation. In order to
satisfy a memory allocation request, it searches for a memory
block large enough to satisfy the request.

Every memory block has an order, which is an integer
ranging from 0 to a specified upper limit. The size of a block
of order n is proportional to 2n, so that blocks are exactly
twice the size of blocks that are at one order lower.

The peculiarity of a buddy system is that memory allocation
requests can be satisfied by: i) returning a block if already
available; ii) splitting higher-order free blocks into smaller
ones; iii) merging lower-order free blocks into a larger one.
The binary arrangement of blocks allows to simplify the
split/merge of blocks making them very fast thanks to the
exploitation of bit-wise operations. For example, given the
address of a block of a given order, finding the address of
the relative buddy is a simple arithmetic operation and does
not need de-referencing pointers.

In the following four sections, we will discuss the metadata
used in our solution, the non-blocking allocation and release
procedures, and finally a relevant optimization of our proposal.

A. Basics

Our non-blocking buddy system keeps track of the state of
the memory segment used for serving allocations by the means
of a static complete binary tree. The tree has a predefined
depth d and its structure is assumed to be already materialized
in memory. The root of the tree corresponds to (and keeps
track of the state of) the entire memory segment within which
allocations will take place. Each child of a node represents a
portion (a half) of the parent’s chunk of memory, while the
leaves represent the state of the minimum allocatable memory
chunks, called allocation units. In particular, according to the
classical buddy-system structure, if a node at level i has size
s, the children of this node, located at level i + 1, have
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Fig. 1. Node’s status bits.

size s/2, and the union of the blocks of memory associated
with the children form a larger block of memory that exactly
corresponds to the parent. This means that, considering an
overall size of memory managed by the buddy system equal
to total memory, the memory size managed by a node at
level i is equal to total memory/2i, and the allocation units
(corresponding to the leaves of the tree) have size equal to
total memory/2d.

In our non-blocking buddy system, each node in the tree
embeds a bit-mask with 5 relevant bits, organized as in Figure
1. These are used to represent the state of the node itself—thus
of the corresponding memory chunk—and of its sub-trees (if
any) according to the following semantic:

• occupied, this flag indicates whether an allocation op-
eration has targeted exactly that node, meaning that an
allocation request has been served by a memory chunk
corresponding to that node;

• left occupied and right occupied, these flags indi-
cate if the branches (left and right, respectively) covered
by the node are totally or partially occupied. This means
that some allocation request has been served by a node
in these sub-trees;

• left coalescent and right coalescent, these flags
indicate whether a memory release operation is currently
in place in any of the two sub-trees. In other words,
these two flags indicate whether the node is currently in a
transient state because of memory-release modifications
running on the relative sub-trees.

In order to correctly manipulate the status bits while
handling concurrent operations, our solution relies on Read-
Modify-Write (RMW) instructions offered by conventional ar-
chitectures, like x86. These instructions are able to atomically
retrieve a single-word memory value and (conditionally) mod-
ify it contextually to the retrieval. In particular, our operations
are based on the Compare-and-Swap (CAS) RMW instruction.
This instruction updates a given memory location only if
its current value is equal to an input value provided to the
instruction; it then returns the success (or the failure) of the
operation.

As in common buddy-system organizations, each allocation
of a given size s is mapped to its immediately higher size
corresponding to total memory/2i with i ∈ [0, d]. Also,
when a node is allocated, its sub-tree is considered to be fully
occupied—this is exactly what the occupied flag takes care
of signaling. Nevertheless, we do not reflect node occupancy
on the lower-level nodes, which helps us saving atomic RMW
instructions for updating the corresponding status bits.

We represent the tree of nodes keeping track of the buddy-
system state with an array of 2d+1 − 1 elements, which we
refer to as tree[]. We place the root node at index 1 and
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Fig. 2. Array representation of the tree structure.

exploit the conventional rule that, given a node with index
n, the left child of this node is at index n ∗ 2 and the right
child is at index n ∗ 2 + 1. This representation fulfills the
condition that nodes belonging to the same level of the tree are
placed in a contiguous portion of the array, thus simplifying
the search for free chunks of a given size while performing
allocations. In fact, starting from the amount of requested
memory s it is possible to compute the target level—the one
containing nodes useful to serve the request based on its size—
as level = blog2(total memory/s)c upper-bounded by the
value d. The nodes belonging to this level are those with index
n ∈ [2level, 2level+1 − 1].

A graphical representation of this structure is shown in
Figure 2. Denoting with base address the start of the
memory region (either physical or logical) managed by the
allocator, for each node with index n it is possible to compute
the starting address startingn and the size sizen of the
corresponding memory chunk, as well as the level associated
with the node, according to the following rules:

leveln = blog2(n)c (1)

sizen =
total memory

2leveln
(2)

startingn = base address+ (n− 2leveln) ∗ sizen (3)

We couple the tree[] array with another array, called
index[]. This array is used to keep track of the indexes of
the nodes that have been used for serving memory requests,
and which have not yet been released. Given the address,
we can easily retrieve the index of the node and use this
information during a release operation, whose API receives the
base address of the to-be-freed node as its unique parameter.

We present our non-blocking allocation/release algorithms
by relying on a few additional notations. The maximum
reachable level in the tree-based organization is stored in a
variable denoted as depth. Moreover, we denote as min size

the variable keeping the size of the allocation units associated
with the leaves, and as max size the variable that keeps track
of the maximum amount of memory allocatable with a single

request (available at level max level)—clearly, max size ≤
total memory.

To extract and manipulate the status bits within the nodes
of the tree, the following bit-masks are used:

OCC RIGHT = 0x1

OCC LEFT = 0x2

COAL RIGHT = 0x4

COAL LEFT = 0x8

OCC = 0x10

BUSY = (OCC | OCC LEFT | OCC RIGHT)

Each memory allocation/release operation consists in
traversing the tree up to max_level in order to correctly
manipulate the status bits of the traversed nodes. In fact, these
bits need to be (re)aligned to the new state of the buddy
system, depending on the type of operation that is performed.
In particular, a memory release operation starts from the node
to be released, while a memory allocation operation starts from
whichever node at the target level—this depends on the size
of the memory allocation request.

Given a value val of the status bits of a given node
and the index child of the previous node traversed while
moving towards the root, which is a child of the given node,
the following status-bit manipulation functions are offered to
simplify the exposition:
clean coal(val, child) =

val & ¬(COAL LEFT >> mod2(child))
mark(val, child) =

val | (OCC LEFT >> mod2(child))
unmark(val, child) =

val & ¬((OCC LEFT | COAL LEFT) >>
mod2(child))

is coal(val, child) =
val & (COAL LEFT >> mod2(child))

is occ buddy(val, child) =
val & (OCC RIGHT << mod2(child))

is coal buddy(val, child) =
val & (COAL RIGHT << mod2(child))

clean coal(val, child) sets to zero the coalescing bit relative
to the branch of the child. mark(val, child) sets to one the
occupancy bit of the branch of the child. unmark(val, child)
sets to zero both the coalescing and the occupancy bits
relative to the branch of the child. is coal(val, child) returns
true if the coalescing bit relative to the child is set to one.
is occ buddy(val, child) returns true if the occupancy bit
relative to the buddy associated with the child is set to one.
is coal buddy(val, child) returns true if the coalescing bit
relative to the buddy associated with the child is set to one.
In order to capture whether the child is the right or the left
one, all these functions use a two-modulus operation applied
to the index of the child.

We additionally use the following status-bit management
function to detect whether a node, whose status bits are
embedded within the val bit-mask, is currently free:



is free(val) = ¬(val & BUSY)

This condition is verified when the node itself has not been
reserved for some allocation operation (it is not occupied), and
none of its sub-trees (left and/or right) has nodes currently
reserved for allocations—none of the sub-trees is partially or
fully occupied.

Similarly to most common allocators, our non-blocking
buddy system exposes two API functions for either requesting
a chunk of memory of (at least) a given size or for releasing
some previously allocated memory chunk identified by its
address. Both tree[] and index[] are initialized to zero at
start-up. Recall that 0 does not correspond to any node of the
tree since the initial element of tree[] is associated with index
equal to 1. Setting the entries of index[] to zero indicates that
none of the possible memory chunks (and of the corresponding
addresses) managed by the buddy system at any level has been
delivered for usage.

B. Memory Allocation Algorithm

The non-blocking memory allocation operation is divided in
two algorithms, NBALLOC() and TRYALLOC(). The pseudo-
code of NBALLOC(), which represents the memory allocation
API actually exposed to the user, is reported in Algorithm 1.
NBALLOC() takes as input the size of the memory allocation
request and, if such amount of memory is available as a
set of buddies, it returns the address of a memory chunk
big enough to fit the request. If the size exceeds the overall
memory allocatable by a single invocation, the allocation fails.
Differently, if it is smaller than the minimum amount managed
within the buddy system, it is rounded to the allocation unit,
namely the size associated with the leaves. In any case, if
the request size is legitimate, the target level of nodes to be
considered for allocation is obtained by Rule 1 (line A5).
Once identified the right level, thus the range of indexes of
nodes suitable for the allocation, these nodes are scanned
in order to search for a free one. Note that not necessarily
such a search has to start from the first node at that level.
Rather, starting from scattered points will more likely lead
concurrent allocations (bound to that same level) to target
different free nodes, if any. When a free node is found (line
A12), the allocation operation tries to “reserve” it by invoking
the TRYALLOC() procedure. This returns zero upon success.
Otherwise, it returns the index of the node that makes the
allocation fail. In the latter case, the algorithm moves to
the next candidate node by exploiting the index returned
by TRYALLOC() (lines A18-A19) to skip the whole sub-tree
relative to the node causing the failure. If no node at that
level is found to be free, then the allocation operation fails,
indicating that the current usage state of the buddy system is
not compliant with the issued request.

When the TRYALLOC() procedure succeeds at reserving a
node, the relative address with respect to base address is
computed, and the corresponding entry of the index[] array
is updated to store the index of the reserved node (lines A15-
A16). Then, such memory address is returned, indicating a
successful allocation.

Algorithm 1 Allocation - Part A
A1: procedure NBALLOC(size t size) return void *
A2: if size > max size then
A3: return false
A4: end if
A5: level← blog2( total memory

size
) c

A6: if level > depth then
A7: level← depth
A8: end if
A9: starting from← 2level−1

A10: until to← 2level − 1
A11: for i← start from to until to do
A12: if is free(tree[i]) then
A13: failed at← TRYALLOC(i)
A14: if ¬failed at then
A15: index[ startingi−base address

min size
]← i

A16: return startingi
A17: else
A18: d← (1 << (leveli − levelfailed at))
A19: i← (failed at+ 1) ∗ d
A20: end if
A21: end if
A22: end for
A23: return NULL
A24: end procedure

Algorithm 2 Allocation - Part B
T1: procedure TRYALLOC(index n) return index
T2: if ¬ CAS(&tree[n], 0, BUSY) then
T3: return n
T4: end if
T5: current← n
T6: while levelcurrent > max level do
T7: child← current
T8: current← current >> 1
T9: do

T10: curr val← tree[current]
T11: if curr val & OCC then
T12: FREENODE(n, level(child))
T13: return current
T14: end if
T15: new val← clean coal(curr val, child)
T16: new val← mark(new val, child)
T17: while ¬ CAS(&tree[current], curr val, new val)
T18: end while
T19: return 0
T20: end procedure

The pseudo-code of TRYALLOC() is reported in Algorithm
2 and a visual representation of its steps is shown in Figure
3. It takes as input the index of a node (previously observed
as free) and tries to (i) occupy this node, and (ii) propagate
the information about the occupancy up to the ancestor node
belonging to the max_level. The former task is carried
out by relying on the CAS machine instruction (see line T2
corresponding to step 1 in Figure 3), which tries to update
all the occupancy bits in the status bit-mask of that node,
by atomically checking if the status bits are still set to zero.
If the CAS fails, it means that something has concurrently
changed on the state of the buddy system, affecting the
ongoing operation. Therefore, the memory allocation operation
needs to be aborted and retried on a different node just as in
the spirit of non-blocking coordination algorithms. Conversely,
if the CAS instruction succeeds, the procedure continues by
traversing the nodes along the path from the one that has been
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Fig. 3. Visual representation of TRYALLOC operations.

currently occupied towards the max_level. This traversal is
required to update the occupancy bits of the ancestor nodes
so as to reflect that sub-tree has become partially occupied. In
this way the corresponding memory chunk will figure out as
fragmented into lower level buddies, one of which is occupied,
preventing other allocations from occupying an ancestor (a
higher-level node). For each node along the path towards the
max_level, the procedure tries to mark its state as left or
right occupied, depending on what branch we are backward
traversing (e.g. step 2 and 3 in Figure 3).

This operation is still performed via CAS machine instruc-
tions (see line T17) with the peculiarity that, if it fails, it can
be retried since the update we are trying to perform can be
still coherent with respect to the memory allocation operation
we are carrying out and other concurrent operations. As an
example, a CAS on the node we are traversing may fail since
a concurrent operation updates the occupancy bit associated
with the other branch of the tree, or even the same branch.
The only scenario where the failure of the CAS at line T17
indicates that the currently carried out memory operation needs
to be aborted is when another operation updated the (fully)
occupied bit. In this case, another operation has exactly
reserved that node—and the corresponding memory chunk—
for a concurrent (or already-finalized) memory allocation.
Hence, we cannot fragment that chunk to reserve some chunk
at lower levels. We also note that, while attempting to left/right
occupy a node along the traversal, the corresponding left/right
coalescing bit is set to the value 0. As we will clarify while
explaining memory release operations, this needs to be done in
order to make conflicting releases be aware that the branch is
again involved in a new allocation and then cannot be marked
as free.

If the max-level node is reached and updated along the
backward traversal, the node originally targeted when starting
TRYALLOC() can be considered as correctly taken. Conversely,
if some node with the occupied bit set is found along the
path, the alloc fails on the current memory block and nodes
updated along the backward traversal have to be reverted.
This is done by invoking the FREENODE() procedure in
Algorithm 3, which is also used to support non-blocking
memory release operations in our buddy system. In such a
scenario, as aforementioned, the TRYALLOC() procedure ends
returning the index of the node for which the allocation has
failed.

C. Memory Release Algorithm

A memory release operation is composed by three phases.
In the first phase, the ancestors of the node to be released are
marked as coalescing, in order to notify that a free operation
is in place along the corresponding path of the tree. In the
next phase, the node to be released is marked as free by
resetting all its occupancy bits. During the last phase, all the
nodes previously marked as coalescing are updated again to
notify that the sub-tree involving the just released node is ac-
tually free—therefore it can serve again memory requests. As
hinted before, this last update may conflict with a concurrent
allocation operation and fail thanks to the CAS semantic—
left/right occupancy bits remain set since the memory has been
already reused. The first two steps are implemented by the
FREENODE() procedure (see Algorithm 3), while the last one
is carried out by the UNMARK() procedure (see Algorithm 4).

The FREENODE() procedure is not directly exposed to the
user. It is instead encapsulated by the NBFREE() procedure,
which is the actual memory release API in our buddy system.
This procedure receives the memory address corresponding
to the chunk to be released, computes the relative index of
the corresponding node by inspecting the index[] array, and
triggers the execution of the FREENODE() procedure.

FREENODE() takes as input the index of the node to be
released and an upper-bound, which identifies the upper-level
to be reached along the backward traversal associated with
its execution. If the FREENODE() procedure is invoked by
NBFREE(), the upper-bound is set to max_level, making it
traverse the tree up to the level corresponding to the maximum
allocatable size. In this case we are releasing a previously
allocated node and, thus, the status bits need to be reflected
up to the maximum useful level of the tree. Differently, if the
procedure is invoked by a failed TRYALLOC() (see line T12),
the upper-bound is set to the level of the last node updated
by a TRYALLOC(), during an aborted memory allocation.
As discussed before, this execution path is related to the
need for TRYALLOC() to restore the status bits of nodes that
where involved in the traversal towards the maximum level,
which was interrupted because of the discovery of an already
occupied node.

While traversing all the nodes up to the upper-bound,
FREENODE() atomically sets the coalescing bit of the correct
position, via CAS instruction (see line F10 in Algorithm 3).
A visualization of this phase is shown in Figure 4.

If along this path a buddy is detected as occupied by other
allocations, the climb is early arrested, since the corresponding
sub-tree cannot be considered free—this is the case of Figure
4, where the right subtree of the node below the upper-bound
is already fragmented. Once the first phase is concluded,
FREENODE can start to signaling that the interested node
has been released, whose steps are sketched in Figure 5. In
particular, the node to be released can be updated by resetting
its occupancy bits. This takes place by simply writing zero on
its status bits (see line F19 in Algorithm 3 corresponding to
step 1 of Figure 5).
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Fig. 5. Second (line F19) and third (UNMARK) phase of the FREENODE.

The last phase is responsible of propagating the release
of the interested node up to the upper-bound and, possibly,
merging buddies. This is achieved by invoking UNMARK(),
which traverses the nodes, from the one to be released, towards
the upper-bound, cleaning the coalescing and the occupancy
bits of the traversed nodes (see steps 2 and 3 of Figure 5). For
each node met, the first step is to verify whether the coalescing
bit is still set: if it is not, the procedure returns, finishing the
release operation. As hinted before, this scenario is possible
if some allocation/release in the same sub-tree of the target
node has already occupied/released that coalescing sub-tree.

Conversely, if the coalescing bit is still set, the procedure
tries to clean both the coalescing and the occupancy bits
atomically. This operation is done via a CAS in a retry-
cycle in order to manage the case in which the coalescing
bit has been reset by some concurrent operation, meaning
that the resource has already been reused/released. If during
this procedure some nodes in the same sub-tree have been
allocated, the relative occupancy bits have not to be reset.
Then, the procedure checks if the buddy occupancy bit is
set at each step and, in the positive case, it returns. In fact,
similarly to the first phase, if such buddy is occupied, we
cannot propagate node releasing and, thus, merge buddies up
to the higher level, since the chunks associated with higher
level nodes are still fragmented.

Overall, beyond providing non-blocking capabilities while
allocating or releasing memory at a given level, our buddy
system allows fragmenting and merging operations—which
logically move nodes across different levels within the allo-
cation scheme—still in non-blocking fashion. This operation,
that usually has to be explicitly performed, here is carried out
automatically while performing allocations/releases.

Algorithm 3 Memory Release
F1: procedure NBFREE(void *addr)
F2: n ←index[addr−base address

min size
]

F3: FREENODE(n,max level)
F4: end procedure
F1: procedure FREENODE(index n, index upper bound)
F2: current← n >> 1
F3: runner ← n
F4: while levelrunner > upper bound do
F5: or val← COAL LEFT >> (mod2(current))
F6: do
F7: cur val← tree[current]
F8: new val← cur val | or val
F9: old val ←

F10: CAS(&tree[current],cur val,new val)
F11: while old val 6= cur val
F12: if is occ buddy(old val, runner) ∧
F13: ¬is coal buddy(old val, runner) then
F14: break
F15: end if
F16: runner ← actual
F17: current← current >> 1
F18: end while
F19: tree[n]← 0
F20: if n 6= upper bound then
F21: UNMARK(n,upper bound)
F22: end if
F23: end procedure

Algorithm 4 Unmark
U1: procedure UNMARK(index n, index upper bound)
U2: current← n
U3: do
U4: child← current
U5: current← current >> 1
U6: do
U7: curr val← tree[current]
U8: if ¬is coal(curr val, child) then
U9: return

U10: end if
U11: new val← unmark(curr val, child)
U12: while ¬ CAS(&tree[current],curr val, new val)
U13: while (levelcurrent > upper bound) ∧
U14: ¬is occ buddy(new val, child)
U15: end procedure

D. 4-Levels Optimization

In order to execute an atomic RMW instruction, the CPU
core takes an exclusive access to the relative memory cache
line, delaying its access to other cores. Reducing the number
of RMW instructions executed along the critical path of any
thread in a non-blocking algorithm is therefore an important
aspect in terms of further performance improvements.

In the previously presented solution, a thread that performs
a memory allocation or a memory release has to execute a
number of RMW instructions equal to at least the depth of the
node involved in the allocation/release respect the max level

within the tree. However, since the number of status bits
required to represent the state of each node is significantly
smaller than the word size—which is 64-bits on nowaday’s
conventional machines—is possible to reduce such amount
of RMW instructions by packing a bunch, namely a node
and some levels descendant from it, in the same status bit-
mask. With this organization a thread is able to update at one



Fig. 6. Derivation of node state by children’ state.

time the state of multiple levels with only one RMW atomic
instruction. On the other hand, the coherence with the original
specification is guaranteed by the fact that all state-update
operations are performed via CAS, which succeeds only if
the status bit-mask has not changed in the meanwhile.

Another important consideration is that, given a generic
node in the tree, its state can be derived by looking at the
state of its children, as shown in Figure 6. In fact, the partial
occupancy of a node—say its left/right occupancy—can be
computed with a logical OR operation on the (partial and full)
occupancy bits of the children nodes. In the same way, the
coalescing bits can be derived by the ones of the children.

Moreover, when a node is actually set as occupied also
its children can be logically considered to reside in the same
state, since they cannot be seen as individual fragments of
memory some of which considerable as freely available for
allocation. In the same way, occupying two buddies looks to
be the same as fully occupying the parent node. This means
that, similarly to the partial occupancy, the fully occupancy of
a node can be computed with a logical AND operation on the
occupied bits of its children.

Such reasoning can be recursively applied to all the ances-
tors of a node, hence a sub-tree starting from a given node
can be represented by the nodes in its lower level. Then,
considering a word-size equal to w bits, and a status bit-mask
of size s bits, we can pack in a single variable a bunch of
depth equal to d, with 2d ∗ s < w, representing 2d+1 − 1
nodes of the original tree. In our case, we are able to manage
4 levels, namely 15 nodes with 8 nodes in the lower level (40
bits), in a single 64-bit word, reducing the number of atomic
RMW operations by a factor of 4. A representation of this
transformation is shown in Figure 7.

Of course, this means that, when an operation is performed
on a node that is not in a lower level of a bunch, its state has
to be decoupled from its descendant in the same bunch. To
practically implement the operation in this variant of our data
structure, each node in the tree[] array stores a pointer to
its bunch and its position inside it (computed with the same
rule used in the original solution). The algorithms for the 4-
level solution are pretty similar to those shown before, with
two main differences. First, the direct allocation/release of a
node has to check and then set the state of all the nodes in the
sub-tree in the lower level of the bunch. In particular, given a
node n with depth dn and its position inside the bunch bn, the
corresponding bunch-leaf nodes have position p in the bunch

8 9

15 14 13 12 11 10 9 8

4 5 6 7

2 3

1

40 bits

10 11 12 13 14 15

bunch:

Fig. 7. Array representation of a bunch.

equal to:

p ∈ [bn ∗ 23−mod4(dn), (bn + 1) ∗ 23−mod4(dn) − 1]

Second, updates of the bunches up to the root have to be
executed with a step of 4 levels in order to update each time
the relative bunch-node.

IV. EXPERIMENTAL RESULTS

In our experimental evaluation, the compared allocators do
not use pre-reserving, hence they are tested as actual back-end
allocation services. This is compliant with our objective, since
we focus on improving the efficiency of a back-end memory
manager that could be used in combination with any pre-
reserving (and thread binding to pre-reserved memory) policy
taken from the literature. As already hinted, pre-reserving
is an orthogonal technique to improve memory allocation
performance with respect to making a back-end allocator more
scalable, via non-blocking algorithms as in our approach.

We have compared the performance of our non-blocking
buddy system with various alternatives: 1) the buddy allocator
in [21] denoted as buddy-sl, which is still based on a
tree data structure, but synchronizes concurrent accesses using
spin-locks, 2) the Linux buddy system, which is instead based
on a multi-list data structure, and exploits spin-locks for
handling concurrency. Each back-end allocator has been set
up in a single-instance configuration, since we are interested
in evaluating the benefits/shortcomings of our approach when
concurrent requests can actually insist on the same allocation
data structure instance, rather than exploiting data-separation
via multi-instances. In our tests we have assessed both the
original and the 4-level optimized versions of our buddy
system, which we denote as 1lvl-nb and 4lvl-nb, respec-
tively. Also, we include data related to our own data structure
with the variant that, rather than using RMW instructions
to make it non-blocking, we synchronize the accesses in a
blocking manner by using a unique (global) spin-lock. This
configuration, named as 1lvl-sl and 4lvl-sl for the two
different levels’ organizations, respectively, has been included
just to study the effects of non-blocking operations against
a wider set of blocking solutions, each based on a different
implementation.
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Fig. 8. Execution times - Linux Scalability benchmark.
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Fig. 9. Execution times - Thread Test benchmark.
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Fig. 10. Throughput - Larson benchmark.
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Fig. 11. Execution times - Constant Occupancy benchmark.

For the assessment we used 4 different test scenarios,
3 of which have been taken from the literature, and one

has been specially devised for this study. The first is the
Linux scalability test [22], where threads continuously ex-



ecute an allocation/release pattern, with fixed size, for at
least 20 000 000/num_threads times. The second is the
Thread Test presented in [17], where threads carry out
10 000/num_threads allocations of a given size, and then
release the acquired memory, executing this pattern in a cycle
of at least 200 steps. The third is the one by Larson in
[23], where the behavior of a Web server is simulated, by
having a thread reserving memory for (emulated) operations,
and then releasing it for usage by other operations. Accord-
ing to its specification, this test is aimed at assessing the
operations throughput over a time window of 10 seconds.
The fourth—the one we propose—which we call Constant
Occupancy, is based on having each thread initially allocating
a pool of chunks of different sizes, with larger amount of
allocations bound to smaller chunk sizes, and then it per-
forms 20 000 000/num_threads deallocations/allocations by
randomly selecting the element to be deallocated—hence the
corresponding deallocation size—and using this same size
for the subsequent allocation. Compared to the others, this
test more prominently uses allocations/deallocations involving
chunks of different size, and tends to keep constant the factor
of occupancy of the buddy system. All the tests have been
carried out on a 64-bit NUMA HP ProLiant server equipped
with four 2GHz AMD Opteron 6128 processors and 64 GB of
RAM. Each processor has 8 cores, for a total of 32 CPU-cores.
The used operating system is Linux, with kernel version 3.2.

In Figures 8-11 we report data for a comparison among
all the back-end allocators implemented in user-space. Here,
we configured all the tested allocators to manage chunks of
minimal size set to 8 bytes, and maximal size set to 16KB.
Also, we used different allocation/deallocation sizes ranging
from 8 bytes to 1024 bytes. For the Constant Occupancy test
these sizes indicate the minimum ones among those managed,
while the maximum ones are set to be 16 times larger.

The data show a clear gain of the non-blocking approach
when compared to all the other spin-lock-based solutions
especially when increasing the thread count. Also, both the
1-level and 4-level organizations of our non-blocking buddy
system have good performance, with the 4-level organization
providing a few benefits especially in scenarios where a batch
of allocations is interleaved with a batch of releases along the
execution of a thread, as in some settings of the Thread Test.
Rather, in scenarios where a single allocation is followed by
a single release, the lower level of fragmentation of the buddy
system allows for less conflicting operations when working
with RMW instructions at individual levels, as in the 1-level
organization. In any case, when running with 32 threads,
the non-blocking buddy system provides performance gain
ranging from 9% to 95% across all the configurations.

In a second set of experiments, whose results are reported
in Figure 12, we compare the performance of the different
allocators this time including the buddy system from version
3.2 of the Linux kernel—to the best of our knowledge, the
buddy system is essentially the same in later versions of the
Linux kernel. To test with such a kernel level allocator, we
developed Linux external modules implementing the logic
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Fig. 12. Comparison with the Linux buddy system.

for the tests related to Linux Scalability, Thread Test and
Constant Occupancy. This has been done by relying on kernel
level threads which interact with the Linux buddy system via
__get_free_pages and free_pages kernel services.
Given that our target machine has 8 NUMA nodes, and
hence the kernel handles 8 instances of a buddy allocator in
parallel, to test the access performance to the same allocator
instance we set the memory-policy of the threads we activated
within the Linux module so as to bind the allocations towards
the same buddy-system instance (namely, instance 0). We
have configured the user-space allocators to manage the same
amount of memory as the kernel level buddy allocator, and
with the same granularity of minimum and maximum chunk
size. The data in Figure 12 refer to the tests executed when
targeting allocations/releases of 128KB chunks (in Constant
Occupancy this time the value corresponds to the maximum-
size allocatable chunk) with 32 threads. Here, we see that our
non-blocking version has performance which is comparable
with the Linux buddy system in one case—the Constant
Occupancy test—and is definitely better with the other two test
settings. In particular, the non-blocking allocator we propose
has performance gain that ranges from 71% (as in the 1-level
case) to 67% (as in the 4-level case) for Thread Test, and is
of the order of 84% for Linux Scalability.

V. CONCLUSIONS

We have presented a non-blocking approach for back-end
memory allocators based on the well-known buddy-system
specification. To date, this is the first practical implemen-
tation of a buddy system that jointly supports allocation,
deallocation, and coalescing operations, all implemented in
non-blocking fashion. Moreover, we have presented an opti-
mization aimed at reducing the number of executed atomic
instructions. The experimental assessment has shown the ef-
fectiveness of our solution vs both user-space and kernel-
space already-optimized allocators. As future work, we plan
to embed our solution in front-end allocators allowing them to
interact more frequently the back-end allocator, thanks to its
increased scalability, and to reduce the memory consumption
peak.
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