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Preface 
Stroke is defined as a focal lesion in the brain caused by acute ischemia or 

hemorrhage. The events that characterize acute stroke as well as the spontaneous 

recovery process occurring in the subacute phase, demonstrate that the focal 

damage affects remote interconnected areas. On the other hand, interconnected 

areas largely contribute to reorganization of the central nervous system (CNS) 

along the recovery process (plasticity) throughout compensatory or restorative 

mechanisms which can also lead to unwanted effects (maladaptive plasticity). 

Such post-stroke brain reorganization occurring spontaneously or within a 

rehabilitation program, is the object of wide literature in the fields of 

neuroimaging and neurophysiology.  

Brain-Computer Interfaces (BCIs) allow recognition, monitoring and 

reinforcement of specific brain activities as recorded eg. via 

electroencephalogram (EEG) and use such brain activity to control external 

devices via a computer. Sensorimotor rhythm (SMR) based BCIs exploit the 

modulation occurring in the EEG in response to motor imagery (MI) tasks: the 

subject is asked to perform MI of eg. left or right hand in order to control a cursor 

on a screen. In the context of post-stroke motor rehabilitation, such recruitment 

of brain activity within the motor system through MI can be used to harness brain 

reorganization towards a better functional outcome.  

Since 2009 my research activity has been focused mainly on BCI applications 

for upper limb motor rehabilitation after stroke within national (Ministry of 

Health) and international (EU) projects. I conducted (or participated to) several 

basic and clinical studies involving both healthy subjects and stroke patients and 

employing a combination of neurophysiological techniques (EEG, transcranial 

magnetic stimulation – TMS) and BCI technology (De Vico Fallani et al., 2013; 

Kaiser et al., 2012; Morone et al., 2015; Pichiorri et al., 2011). Such studies 

culminated in a randomized controlled trial (RCT) conducted on subacute stroke 

patients in which we demonstrated that a one-month training with a BCI system, 

which was specifically designed to support upper limb rehabilitation after stroke, 

significantly improved functional outcome (upper limb motor function) in the 

target population. Moreover, we observed changes in brain activity and 

connectivity (from high-density EEG recordings) occurring in motor related 
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frequency ranges that significantly correlated to the functional outcome in the 

target group (Pichiorri et al., 2015).  

Following these promising results, my activity proceeded along two main 

pathways during the PhD course.  

On one hand, efforts were made ameliorate the prototypal BCI system used in 

(Pichiorri et al., 2015); the current system (called Promotœr) is an all-in-one BCI 

training station with several improvements in usability for both the patient and 

the therapist (it is easier to use, employs wireless EEG system with reduced 

number of electrodes) (Colamarino et al., 2017a,b). The Promotœr system is 

currently employed in add-on to standard rehabilitation therapy in patients 

admitted at Fondazione Santa Lucia. Preliminary results are available on chronic 

stroke patients, partially retracing those obtained in the subacute phase (Pichiorri 

et al., 2015) as well as explorative reports on patients with upper limb motor 

deficit of central origin other than stroke (eg. spinal cord injury at the cervical 

level). In the last year, I submitted research projects related to the Promotœr 

system to private and public institutions. These projects foresee i) the addition 

of a proprioceptive feedback to the current visual one by means of Functional 

Electrical Stimulation (FES) ii) online evaluation of residual voluntary 

movement as recorded via electromyography (EMG), and iii) improvements in 

the BCI control features to integrate concepts derived from recent advancements 

in brain connectivity. On these themes, I recently obtained a grant from a private 

Swedish foundation. 

On the other hand, I conducted further analyses of data collected in the RCT 

(Pichiorri et al., 2015) to identify possible neurophysiological markers of good 

motor recovery. Specifically, I focused on interhemispheric connectivity (EEG 

derived) and its correlation with the integrity of the corticospinal tract (as 

assessed by TMS) and upper limb function (measured with clinical scales) in 

subacute stroke patients. The results of these analyses were recently published 

on an international peer-reviewed journal (Pichiorri et al., 2018).  

In the first chapter of this thesis, I will provide an updated overview on BCI 

application in neurorehabilitation (according to the current state-of-the-art). The 
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content of this chapter is part of a wider book chapter, currently in press in 

Handbook of Clinical Neurology (Pichiorri and Mattia, in press).  

In the second chapter, I will report on the status of BCI applications for motor 

rehabilitation of the upper limb according to the approach I developed along my 

research activity, including ongoing projects and prliminary findings.  

In the third chapter I will present the results of a neurophysiological study on 

subacute stroke patients, exploring EEG derived interhemispheric connectivity 

as a possible neurophysiological correlate of corticospinal tract integrity and 

functional impairment of the upper limb.  

Overall this work aims to outline the current and potential role of BCI 

technology and EEG based neuroimaging in post-stroke rehabilitation mainly in 

relation to upper limb motor function, nonetheless touching upon possible 

different applications and contexts in neighboring research fields.   
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Brain-Computer Interface in neurologic 
rehabilitation practice 

 

It was about 10 years ago when the first exploratory studies appeared on the potential 

use of Brain-Computer Interface (BCI) technology for rehabilitation goals. Since then, 

this clinical application of BCIs has acquired a substantial scientific ground to 

delineate its transferability to clinical practice and to eventually provide a tool to 

promote the recovery of function after brain injury. 

The evolution of BCI in rehabilitation has occurred in parallel with an emancipatory 

progress of neurologic rehabilitation that from a traditional approach mainly driven by 

teaching compensatory strategy to mitigate the dysfunction is turning into a medical 

discipline driven by evidence-based approaches to restore function. 

The modern neurorehabilitation as a medical discipline has its foundations in the 

principles of neuroplasticity (Dimyan et al., 2008). Neuroplasticity encompasses all 

the modifications that occur in the components of the central nervous system (CNS) 

across the lifespan of an individual (Cramer et al., 2011). As such, it is involved in 

growth, normal aging, learning new skills and adaptation to the environment as well 

as in recovery after acquired brain injury. In the last few years, certain 

neurotechnologies have emerged that offer new routes of inquiry into the basis of 

plasticity occurring in the CNS (Alia et al., 2017; Dimyan and Cohen, 2011). 

Neuroplasticity has been widely demonstrated after acquired brain damage (Nudo, 

2013) and is the fertile ground on which neurorehabilitation strategies intervene.  

The BCIs allow to act on the environment in absence of muscular activity, thus 

providing severely disabled people with an artificial channel to communicate and 

control. This ability resides into a technical pipeline by means of which BCIs directly 

measure brain activity, translate it into an action and provide feedback to the user in 

real time (Wolpaw et al., 2002). The ability to substitute or restore function (e.g. 

control of a neuroprosthesis) defines existing BCIs as assistive as compared to the 

rehabilitative BCIs which are meant to induce recovery of function (e.g. by modifying 

brain activity) (Wolpaw and Wolpaw, 2012).  

The possibility to monitor and eventually modulate (by self-regulation) specific 

patterns of brain activity to induce (long-term) neuroplasticity, is the key element for 



 

7 
 

the design and application of BCIs for therapeutic purposes. Indeed, by re-training the 

brain to specific activities, an ultimate improvement of function is expected (Daly and 

Wolpaw, 2008; Riccio et al., 2016; Soekadar et al., 2015). Other features of BCI 

systems, such as the possibility to control external devices that assist movements (e.g. 

functional electrical stimulation - FES - or robots) further strengthen the BCI role 

among the repertoire of technologies to support neurorehabilitation (Ang et al., 2015a; 

Ramos-Murguialday et al., 2013; Varkuti et al., 2013).  

RATIONALE FOR BCI USE IN MOTOR REHABILITATION 
Stroke is a leading cause of long-term motor disability (Hankey, 2017). Despite the 

efforts of traditional rehabilitation approaches, more than two thirds of survivors are 

left with mild to severe paralysis of the upper/lower limb (Langhorne et al., 2011). For 

these reasons alternative approaches based on advanced technologies are being 

proposed: robot-assisted therapy, virtual reality, FES, non-invasive brain stimulation 

(NIBS) and among these, BCIs (Alia et al., 2017). 

The current knowledge on the mechanisms underlying the activity-dependent brain 

plasticity (Dimyan et al., 2008; Nudo, 2011; Zeiler and Krakauer, 2013) and the brain 

reorganization that naturally occurs earlier after stroke in the motor areas (Cramer, 

2008; Dimyan and Cohen, 2011; Ward, 2017) is instrumental for the use of BCIs to 

promote functional recovery. The majority of the current BCI applications for 

neurorehabilitation have been targeting upper limb motor function and their recovery 

after stroke (Remsik et al., 2016; Riccio et al., 2016; Soekadar et al., 2015). 

Mechanisms underlying functional motor recovery after stroke 
Motor training induces CNS plasticity (Dimyan and Cohen, 2011) and thus, much of 

neurorehabilitation rests on the assumption that motor learning contributes to motor 

recovery after injury (French et al., 2007; Zeiler and Krakauer, 2013). Further evidence 

from animal models and human studies suggest parallels between plasticity 

mechanisms in the developing nervous system and those taking place in the adult brain 

after stroke (Murphy and Corbett, 2009; Ward, 2017). Such innate plastic phenomena 

involve particularly the perilesional tissue in the injured hemisphere, but also the 

contralateral hemisphere, subcortical and spinal regions (Dancause and Nudo, 2011). 

There is now a general consensus that a stroke lesion in the motor cortical areas has 

widespread effects on the brain, involving the ipsilesional and the contralesional 

hemisphere as well as the balance between the two (Di Pino et al., 2014; Silasi and 
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Murphy, 2014). These re-arrangements are conceptualized in a currently accepted 

theory that is schematized in Figure 1 (left panel). Several rehabilitative approaches 

(both traditional and novel) have been recently designed that aim at shaping the post-

stroke motor system reorganization with manipulation of behavior and cortical activity 

to improve functional outcome (Dimyan and Cohen, 2011). The principles behind 

these strategies are schematized in figure 1 (right panel).  

BCIs focus on brain activity and thus, offer a direct and effective way to induce 

plasticity resulting from a task-specific training (see below). Moreover, the BCI can 

recognize and reinforce motor related brain activity, resulting in an increase in the 

corticospinal excitability, as measured with Transcranial Magnetic Stimulation – TMS 

(Hallett, 2007), that is specific to the trained movement/limb (Kraus et al., 2016b; 

Pichiorri et al., 2011). For this ability to modify brain activity itself, BCI can been 

considered as a form of endogenous neuromodulation through which plastic re-

modeling of brain activity can be induced (see Figure 1). 

 
Figure 1: Schematic overview of the functional motor system reorganization after stroke and the 
neuromodulation strategies to promote recovery of (hand) function. Left panel: After the acute stroke 
event (red star over the left hemisphere), a reduction of activity is observed in the ipsilesional 
hemisphere as opposed to an overactive contralesional hemisphere (Dimyan and Cohen, 2011) 
(arrows aside the brain). Depending on the size of lesion (Kantak et al., 2012), the interhemispheric 
cross-talking becomes unbalanced (Perez and Cohen, 2009) (arrows above the brain). According to 
a currently accepted theory the overactivity of the contralesional hemisphere inhibits the restoration 
of activity in the ipsilesional with negative effects on functional recovery (Furlan et al., 2016). This 
abnormal inhibitory activity coming from the contralesional hemisphere towards the ipsilesional is 
one example of maladaptive plasticity. Right panel: Several rehabilitative approaches (both 
traditional and novel) have been recently designed according to this functional reorganization model, 
that aim at: i) stimulating the lesioned hemisphere such as facilitatory Non-Invasive Brain 
Stimulation (NIBS), distal upper limb training, ii) downregulating the contralesional hemisphere such 
as inhibitory NIBS, constraint induced motion therapy – CIMT (Kwakkel et al., 2015) in order to 
favor a re-establishment of the interhemispheric balance (e.g. bimanual training) (Furlan et al., 2016; 
Plow et al., 2009). The cartoon illustrates how NIBS and BCI can serve as neuromodulation strategies 
to manly contrast the abnormal unbalance between lesioned and non-lesioned cortical motor areas 
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and thus to improve motor function recovery. The facilitatory NIBS (yellow thunder) is applied to 
stimulate the ipsilesional hemisphere while inhibitory NIBS (blue thunder) is applied to inhibit the 
contralesional hemisphere. By enabling the manipulation of brain activity, Brain Computer Interfaces 
(BCIs) can be considered as a form of endogenous neuromodulation; in particular the BCI-mediated 
(by self-regulation) reinforcement of motor-related brain activity over the stroke hemisphere can 
counteract the abnormal interhemispheric unbalance thus, leading to functional recovery. 

Different strategies have been put forward to exploit BCI as a tool to modulate brain 

reorganization towards improved motor function and against maladaptive changes 

(Daly and Wolpaw, 2008; Riccio et al., 2016). These strategies can be schematized as 

illustrated in Figure 2.  

A first strategy (Figure 2, left panel; “brain-to-function” strategy) promotes the 

reinforcement of “close-to-normal” brain activity that in turn it would improve (motor) 

function (Daly and Wolpaw, 2008). The core of this strategy resides in using BCI 

closed loop not to control external devices (as for communication and control 

purpose), but exquisitely to reinforce those specific patterns of brain activity which 

underlies good recovery. The success of these BCIs requires to take into account 

physiologic motor learning principles to guide BCI “control” feature selection (Naros 

and Gharabaghi, 2015; Pichiorri et al., 2016). 

One exemplary study of this strategy is from Pichiorri and colleagues (2015) wherein 

28 subacute unilateral, first ever stroke patients were randomly assigned to receive (as 

adjunctive to conventional physiotherapy) either a 1-month of motor imagery (MI) -

based BCI training or the same MI training with no (contingent) feedback (ie, with no 

BCI). The aim was to establish the efficacy of the MI-based BCI training in promoting 

the clinical recovery of the paralyzed hand. Control features for BCI training were 

selected at Electroencephalografic - EEG relevant sensorimotor frequency 

(sensorimotor rhythms; SMRs) over the affected hemisphere also by ensuring a 

“correct” execution of kinaesthetic MI (Stinear et al., 2006) of the paralyzed hand 

movement (that is through the use of TMS). The practice of such MI rewarded by the 

contingent enriched visual feedback (see below) induced a significant increase of SMR 

oscillatory activity desynchronization (indicative of a volitional control of motor 

imagination/execution) only over the lesioned hemisphere that was associated with a 

clinically relevant improvement of the upper limb Fugl-Mayer scores (Gladstone et 

al., 2002). In the same study, EEG-derived resting state connectivity of the affected 

hemisphere positively correlated with the post-BCI training functional motor scores 
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and a re-enforcement of interhemispheric connectivity was observed, thus indicating 

a beneficial effect of BCI training on motor cortical plasticity.  

The core of the second strategy (Figure 2, mid panel; “brain-to-limb” strategy) is that 

BCI controls external devices to assist limb movement execution such as FES (Daly 

et al., 2009; Young et al., 2016) or robotic devices (Ang et al., 2015a; Buch et al., 

2008; Ramos-Murguialday et al., 2013). This approach is meant to close the 

sensorimotor loop which has been disrupted by the stroke event (Gomez-Rodriguez et 

al., 2011), and thus re-establish a connection between the CNS and the periphery. 

Representative of this strategy is a randomized controlled study by Ramos-

Murguialday and colleagues (2013) wherein 32 chronic stroke patients underwent a 

training of attempted hand movement supported by a BCI-driven robotic orthosis. The 

2 group interventions differed in the feedback delivery modality (ie, the orthosis 

actuation) that was either contingent (experimental intervention) or random (control 

intervention) with respect to the upregulation of the SMRs over the lesioned 

hemisphere. BCI training was administered as adjuvant to a physiotherapy program. 

Upper limb motor function was significantly increased in the “contingent feedback” 

BCI training with respect to control. Furthermore functional Magnetic Resonance 

Imaging – fMRI performed before and after the interventions revealed a shift of 

activation from the contralesional to the ipsilesional hemisphere only in the 

experimental group, thus indicating a beneficial effect of BCI in promoting brain 

plasticity and recovery of function. 

A third strategy is represented by the possibility to combine BCIs with other 

neuromodulation strategies (Figure 2, right panel; “brain-to-brain” strategy). To boost 

neuroplasticity at the CNS level, BCIs have been employed in combination with NIBS 

techniques such as transcranial direct current stimulation (tDCS) (Ang et al., 2015b; 

Naros and Gharabaghi, 2017). In a randomized controlled trial with 19 chronic stroke 

patients, Ang and colleagues (2015b) tested the effects of facilitatory tDCS on the 

affected hemisphere preceding upper limb MI-based BCI training with robotic 

feedback delivered for 2 weeks. Although, no relevant clinical improvement was 

observed in both groups (tDCS+BCI versus BCI alone), the tDCS+BCI group showed 

a significantly higher SMR reinforcement over the affected hemisphere after training 

as compared to the BCI group. Similar results were obtained in a recent study with 

transcranial alternating current stimulation that was applied in chronic stroke patients 
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before or during BCI-training (specifically during resting inter-trial phases) (Naros and 

Gharabaghi, 2017). The Authors concluded that intermittent stimulation during 

training had a stronger effect on SMR desynchronization with respect to stimulation 

delivered before the session. These results highlight the importance of establishing the 

optimal stimulation modalities and parameters when aiming to boost the BCI effects 

on neuroplasticity. Learning from animal experiments (Jackson et al., 2006) this 

combined neuromodulation approach has been further developed, in such a way that 

the information on brain activity as derived from the BCI can be used to trigger the 

neuromodulation paradigm with optimal timing and parameters (brain state dependent 

stimulation) (Kraus et al., 2016a; Walter et al., 2012).  

Regardless the strategy, the re-enforcement of the motor-related cortical activity has 

been sought mainly if not only, over the lesioned hemisphere. The contribution of the 

ipsilesional and contralesional hemisphere to post-stroke recovery in the subacute 

phase of stroke (that is when most of the neuroplasticity occurs), is however variable 

and strongly depends on the site and size of the lesion (Kantak et al., 2012). In the case 

of vast strokes where the recovery potential of the perilesional areas is limited, the 

contralesional hemisphere participates to motor recovery via uncrossing neural 

pathways, thus the contralesional activity might not be always detrimental for motor 

recovery (Buetefisch, 2015; Kantak et al., 2012; Perez and Cohen, 2009). A recent 

crossover study (Young et al., 2016) included 19 stroke patients who underwent 

training with a BCI-driven FES system for upper limb and were evaluated periodically 

with fMRI during both training and resting periods. No significant differences were 

found between the training and resting period as regards the ipsi- and contra- lesional 

corticospinal tract, the transcallosal motor fibers integrity (as assessed with Fractional 

Anysotropy – FA) (Sotak, 2002) and the behavioural measures. A further correlation 

analysis revealed that the contralesional corticospinal tract FA increase was correlated 

with poor upper limb functional scores thus, suggesting a possible maladaptive role of 

the contralesional motor system. This correlation was inverted during the BCI training 

and was also accompanied by increases in transcallosal FA. These preliminary findings 

suggest that BCI training could harness plasticity in the contralesional corticospinal 

tract from a possible detrimental role to a compensatory role.    



 

12 
 

 
Figure 2: Overview of the Brain Computer Interface (BCI) applicability in poststroke rehabilitation. 
The figure illustrates 3 main strategies according to which most of the current BCIs for motor 
rehabilitation after stroke are designed. To note the 3 approaches are not mutually exclusive and can 
be combined to target specific aspects of rehabilitation. Left panel: in the "brain-to-function" strategy, 
the goal is to reinforce a close-to-normal brain activity to improve the efferent signal and thus, leading 
to better motor function. Mid Panel: in the "brain-to-limb" approach the BCI drives devices that assist 
movement and re-establish the connection between brain and periphery. Right panel: in the "brain-
to-brain" strategy the information on brain activity derived from the BCI triggers/is combined with 
another neuromodulation paradigm (ie, non- invasive brain stimulaton - NIBS) to boost brain 
plasticity and improve motor function. Details are in the text. (Modified from Riccio et al., 2016). 

As currently understood, the clinical and neurophysiologic consequences of a stroke 

are not only due to the focal lesion but also to the disruption of connections with other 

brain areas (Silasi and Murphy, 2014). Thus, several brain areas from the ipsi- and 

contra- lesional hemisphere contribute to the recovery process with positive as well as 

negative effects (Di Pino et al., 2014). Thanks to the advancement of 

theoretic/computational analyses, several signal processing techniques have been 

applied to elucidate the effects produced on distant brain areas by a focal stroke injury 

(Grefkes and Fink, 2014). This type of connectivity-based approach is related to the 

concept of connectome, which is defined by the connections between neurons (Sporns 

et al., 2004). Moreover, a number of studies have demonstrated that non-invasive 

connectivity measures can improve our ability to correlate behavioral (motor) deficits 

to clinical indices of dysfunction (ie, motor functional scales) (Carter et al., 2010, 

2012; Cheng et al., 2015; De Vico Fallani et al., 2013). Such connectivity measures 

have been recently employed to assess the effects of rehabilitation interventions based 

on BCI (Pichiorri et al., 2015; Varkuti et al., 2013).  

Recent studies mainly on healthy subjects are exploring the use of connectivity not 

only as a measure of BCI training induced effects but also as a BCI control feature 

(Billinger et al., 2013, 2015). Such approach by enabling a modulation of connectivity-

based networks that best reflect neuroplasticity principles, could favor a close to-

optimal brain reorganization e.g. in the motor system (Hamedi et al., 2016). In support 

of a connectivity-based as contrasted to activity-based control features (that is based 

on activation/deactivation of a specific brain area), recent neurofeedback literature has 
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shown that the former allows for a better control of the system as well as greater effects 

on brain reorganization (Kim et al., 2015). 

Relevance of tasks in designing BCI for motor rehabilitation  
Motor Imagery (MI) and voluntary movement attempt (MA) represent two main 

categories of tasks that can be exploited in BCIs designed for motor rehabilitation (Ang 

et al., 2015a; Mrachacz-Kersting et al., 2015; Pichiorri et al., 2015; Prasad et al., 2010).  

The MI has long been employed in motor rehabilitation as a strategy to access/engage 

the motor system when the execution even in the form of attempt, is not safe or feasible 

(e.g., high degree of spasticity; severe deficit leading to plegia) (Jeannerod, 1995; 

Malouin and Richards, 2010; Peters and Page, 2015). In stroke patients, MI can engage 

residual pathways that have been spared by the lesion that caused the motor deficit and 

also brain regions other than those with lesions (Sharma et al., 2006, 2009). The actual 

efficacy of MI as a therapeutic strategy is debated, as clinical trials have led to 

contrasting results (Ietswaart et al., 2011; Page et al., 2007). The causes of such 

uncertainty have been mainly attributed to the inhomogeneity of MI training protocols 

and the lack of objective measure of the actual adherence of patients to the required 

mental task. In this scenario, MI-based BCIs offer a tool to monitor and reinforce 

mental practice with motor content, provided that the task design endows the principles 

of task-specific training (ie, consistency between MI content and the rewarding 

feedback; goal-oriented action) which has been shown to induce motor cortical 

plasticity and translate the rehabilitation effects in the real world scenario (Peters and 

Page, 2015). 

It can be argued that stroke might affect the ability of patients to perform MI, 

depending on the lesion side and site (Kemlin et al., 2016) and thus the brain reactivity 

to MI might be altered. Despite the proven ability of stroke patients to master MI-

based BCIs (Buch et al., 2008; Pichiorri et al., 2015; Prasad et al., 2010), the question 

of which sub-group of stroke patients can benefit the most from MI-BCI-based 

interventions deserves further investigation. Buch et al. (Buch et al., 2012) have shown 

that the performance of hand grasping MI after chronic stroke relies on the integrity of 

the parieto-frontal network.  

The ultimate goal of motor rehabilitation is the improvement of motor skills in 

everyday life situations. In stroke patients with residual motor abilities, the voluntary 

motor attempt (MA) is the most direct way to engage the motor system and it forms 
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the base of most of the traditional physical therapy (Nie and Yang, 2017). At the level 

of the brain, MA can be detected from the instants that precede and follow movement 

start (Shibasaki and Hallett, 2006). In BCI contexts, brain activity that is correlated 

with movement preparation and eventually execution can be detected and reinforced 

similarly as in MI-based BCIs for rehabilitation (Niazi et al., 2012). Furthermore, the 

muscular activation generated by MA can be included in the BCI paradigm via 

electromyographic (EMG) recording. 

The so-called hybrid BCIs are characterized by the combination of brain signals with 

muscular activity as recorded by e.g. EMG (Wolpaw and Wolpaw, 2012). Hybrid 

EEG-EMG BCIs have been proposed in several BCI applications for communication 

or substitution where the signals can be fused as one input to the classifiers or used 

independently, to ultimately increase the accuracy of control (Choi et al., 2017; Millán 

et al., 2010; Müller-Putz et al., 2015; Riccio et al., 2015; Rohm et al., 2013). 

In the case of rehabilitative BCIs, hybrid BCIs combine residual EMG activity with 

motor-related brain activation and provide a contingent reward which aims at re-

establishing the link between the CNS and the periphery that is disrupted by the stroke 

(Chaudhary et al., 2016). It has been shown that even in severely paralyzed patients 

the residual EMG activity induced by MA can be reinforced via a MI-based BCI 

training and then reliably used as a control signal in a further stage of rehabilitation 

(Kawakami et al., 2016). Therefore, a modular approach including different biosignals 

(EEG only, EEG combined with EMG) according to the patients’ residual abilities and 

to the stage of recovery could be envisaged. 

The integration of residual EMG activity in rehabilitative BCIs design requires some 

important clinical implications to be considered. Clear examples are the spasticity (ie, 

an abnormal increment of the physiologic muscular resistance to passive/active 

movements) and the abnormal muscular synergies (ie, abnormal functional 

recruitment of patterns of muscles) that are extremely common in post-stroke patients 

(Sunnerhagen, 2016). In this respect, the rehabilitative principle of promoting good 

plasticity and thus efficient recovery of function applies also to the muscular 

training/engagement possible operated by a hybrid BCI. 

Although, a proof of concept of the hybrid approach in BCIs for post stroke 

rehabilitation has been given (Grimm et al., 2016) there is still the need for structured 



 

15 
 

trials with long-term comprehensive evaluation of the many clinical and 

neurophysiologic aspects reflecting the (ab)normal interplay between CNS and 

periphery. In particular, several different EMG features could be theoretically 

employed, eg. amplitude or frequency of EMG activity on the target muscle, ratios of 

amplitudes from different muscles; similarly, several ways of combining EMG activity 

with brain derived activity to drive the BCI system can be hypothesized including e.g. 

a measure of cortico-muscular coherence (von Carlowitz-Ghori et al., 2015). No 

consensus exists yet on these aspects and further studies are needed to define crucial 

aspects such as the  “close-to-normal” EMG patterns to be reinforced or trained while 

discouraging those provoking spasticity and/or pathological synergies to eventually 

ensure a BCI mediated optimal re-establishment of brain-to-periphery connections.  

Relevance of Feedback Modality in designing BCI for motor 
rehabilitation 
Within the BCI loop, the feedback is the means through which the subject receives 

real-time information about his own brain activity, and it is crucial for the instrumental 

learning occurring along the training (for a review see (Sitaram et al., 2017)). Feedback 

modality (e.g. visual, auditory, tactile) influences the subject’s engagement in the 

training and it has an effect on BCI performances (Kaufmann et al., 2013; McCreadie 

et al., 2013).  

In rehabilitative BCIs aiming to re-establish the link between the brain and the 

periphery and to favor motor re-learning (Gomez-Rodriguez et al., 2011), the choice 

of the appropriate feedback is evident. In addition, participation and engagement of 

patients are factors of utmost importance in rehabilitation outcome (Paolucci et al., 

2012). 

Visual feedbacks such as arrows or cursor-target have been long employed in SMR-

based BCI applications (Pfurtscheller and Neuper, 2001; Pichiorri et al., 2011; Schalk 

et al., 2004). Such abstract feedbacks might not be the best to facilitate patients’ 

engagement and even more importantly, to cope with the content of a BCI-mediated 

task-specific training for motor rehabilitation. The BCI feedback design in (Cincotti et 

al., 2012) and subsequently in (Pichiorri et al., 2015) was implemented as visual 

representation of the patients’ own hands characteristics and position, to optimize the 

adherence of patients to perform the MI task and to provide the best match between 

the content of MI task and the contingent visual feedback (Vargas et al., 2004).  



 

16 
 

Visually enriched feedback and virtual reality environment represent a valid 

instrument when other types of feedback (i.e. proprioceptive) may be hazardous, too 

bulky or too expensive. That is the case of e.g., walking rehabilitation for patients with 

severe lower limb motor deficit (Luu et al., 2016), or home-based rehabilitation 

programs with no direct assistance of professionals (Vourvopoulos and Bermúdezi 

Badia, 2016). 

Proprioceptive feedback, i.e. feedback via activation of sensory terminations in the 

target limb, has the main objective to artificially link the brain activation related to 

motor intent with the peripheral activation of muscles and nerve terminations. Such 

objective may be obtained with several devices like robots or exoskeletons (passively 

moving the target limb), (Ang et al., 2015a; Buch et al., 2008; Ramos-Murguialday et 

al., 2013) or via electrical stimulation (FES) (Bhattacharyya et al., 2016). The effects 

of peripheral electrical stimulation on neuroplasticity have been attributed to the 

activation of afferent fibers inducing changes at the brain level (Quandt and Hummel, 

2014). 

In the so-called associative BCIs (Mrachacz-Kersting et al., 2012), the sensory afferent 

and the brain signals generated by an attempted movement are timely coupled, and 

thereby, the effects on brain plasticity subserving motor outcome are marked and occur 

quite rapidly. This BCI approach (Mrachacz-Kersting et al., 2012, 2015; Niazi et al., 

2012; Xu et al., 2014) is based on the real-time detection of motor related cortical 

potential, MRCP (generated by the voluntary imagination/attempt of foot dorsiflexion) 

which triggers a peripheral nerve stimulation of the lower limb. This coupling of 

movement intention (MRCPs) with peripheral stimulation induced plasticity in the 

motor cortex (i.e. an increase in the corticospinal excitability as measured with TMS) 

that occurred after one training session (30-50 task repetitions) of healthy participants 

(Mrachacz-Kersting et al., 2012; Niazi et al., 2012; Xu et al., 2014). A RCT carried 

out with chronic stroke patients showed BCI-related functional improvements in 

walking speed and foot tapping on the paretic side after only one week of training 

(Mrachacz-Kersting et al., 2015).  

BCI-based motor rehabilitation in SCI: beyond neuroprosthetics 
control 
Disability following SCI is virtually permanent and affects people of any age (Ackery 

et al., 2004) representing a major challenge in neurorehabilitation worldwide. The long 



 

17 
 

history of BCI research in SCIs have been substantially devoted to develop systems to 

control external devices with the purpose of restoring permanently lost hand function 

(Collinger et al., 2013; Hochberg et al., 2012; Kreilinger et al., 2013; Müller-Putz et 

al., 2006; Pfurtscheller et al., 2003) or mobility (Leeb et al., 2013). 

SCI rehabilitation beyond neuroprosthetics is apparently at a turning point. Optimism 

is fostered by impressive research in animals combining pharmacological 

interventions with electrical stimulation delivered invasively via spinal implants 

(Capogrosso et al., 2016). Promising results are also coming from the field of 

regenerative medicine i.e. stem cell therapy (Anna et al., 2017). In this fervent 

scenario, recent findings in the non-invasive BCI field can potentially change the way 

BCI can be beneficial to SCI patients. 

In a recent study (Donati et al., 2016), 8 chronic SCI patients participated In a long-

term BCI-based gait rehabilitation training. Training protocol was based on lower limb 

MI and foresaw the use of different feedbacks with progressively increasing 

complexity: virtual reality, virtual reality during standing, robot-supported gait system 

on treadmill and overground walking with an exoskeleton. Enriched tactile feedback 

was also provided across all training stages. At the end of the 1-year protocol, all 

patients showed partial regain of sensation and of some motor function below the level 

of the lesion. The functional improvement was paralleled by changes in the EEG 

reactivity to MI suggesting a possible role of brain plasticity in the observed 

improvements. Although, all patients were clinically diagnosed as complete SCIs (ie 

no active movement below the level of the lesion), it can not ruled out that some 

surviving axon crossing the lesion might partially account for the reported clinical 

recovery. 

In another pilot study, a BCI training in combination with FES of the upper limbs in 

tetraplegic SCI patients was compared with FES training alone. Following the 

treatment, functional improvements (increased muscle strength) and neurophysiologic 

changes were observed in the BCI-FES group only (Osuagwu et al., 2016).  

These results, together with anecdotal reports on pain reduction in SCI patients after 

BCI training (Yoshida et al., 2016) are definitely changing the BCI approach to SCI 

rehabilitation from an exclusively long-term assistive device to a rehabilitation 

strategy. Further controlled studies with larger numbers are needed to explore such 
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potential especially in the subacute phase in which brain and spinal plasticity is at its 

climax. 

FUTURE PERSPECTIVES 
Along with the increasing knowledge of the mechanisms underlying neuroplasticity, 

neurorehabilitation is turning into an evidence-based discipline (Bernhardt and 

Cramer, 2013). Exemplary of this evolving scenario is the post-stroke 

neurorehabilitation. In this context, BCIs possess the essential properties to become 

not only a therapeutic intervention but also an instrument to complement the evaluation 

of recovery outcome over time (Pichiorri et al., 2016). As yet, the unanticipated results 

on lower limb recovery in SCI patients (Donati et al., 2016) are pushing further the 

rehabilitative expectations on these systems. 

Despite the growing number of clinical studies providing evidence to advance the 

clinical transfer of BCI, a number of basic and clinical research issues still needs to be 

solved- if not even addressed for an exhaustive deployment of this technology to 

neurologic rehabilitation practice. 

From a clinical standpoint, the current studies of BCIs in post-stroke 

neurorehabilitation have provided some encouraging evidence of their efficacy in 

promoting upper (Pichiorri et al., 2015; Ramos-Murguialday et al., 2013) and lower 

(Mrachacz-Kersting et al., 2015) limb functional motor recovery. Nevertheless, the 

issue of treatment efficacy requires new clinical trials to i) confirm the efficacy and 

safety (i.e. definition of intervention duration/frequency) of BCI on a larger scale; ii) 

identify patients who best benefit from BCI intervention (i.e., predictor of response; 

definition of relevant outcome measures); iii) verify the long-term maintenance of 

clinical benefit and effects on neuroplasticity (i.e., follow-up studies). Upon the 

success of clinical trials in demonstrating the effectiveness of BCI-based interventions, 

it will still be necessary to obtain regulatory approval. 

This body of clinical research has to be paralleled by a better understanding of the 

neurophysiological mechanisms behind BCI use for motor recovery.  

A peculiarity of BCI systems for neurorehabilitation is represented by the selection of 

the control features that should not be not simply to enable maximum accuracy (i.e. 

the best signals to discriminate classes as in control applications) but rather because of 

the relevance of a given signal in subserving motor (or cognitive) learning principles 
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and related function (Naros and Gharabaghi, 2015; Pichiorri et al., 2016). In this 

regards, a better understanding of the mechanisms underlying recovery and plasticity 

from a network perspective (Grefkes and Fink, 2014; Silasi and Murphy, 2014) might 

shape more effective control feature extraction for rehabilitation purpose. The design 

of connectivity-based BCIs (Billinger et al., 2015; Hamedi et al., 2016) appears a 

promising future research path to be undertaken. 

As compared to other strategies aiming to favor CNS reorganization (e.g. NIBS) or to 

stimulate the periphery (e.g. FES or robotics devices), BCIs have the potential to 

combine these two aspects in a unique manner to serve neurorehabilitation purposes. 

The combination of endogenous neuromodulation (i.e., BCI) with peripheral 

activation mediated by FES or robotics effectors might be a key element in successful 

BCIs (Donati et al., 2016; Mrachacz-Kersting et al., 2015; Ramos-Murguialday et al., 

2013). In this regard, hybrid EEG-EMG BCIs (Grimm et al., 2016; von Carlowitz-

Ghori et al., 2015) are promising rehabilitative BCIs but further development in terms 

of optimal combination of brain and peripheral signals are needed. 

In light of combined approaches to allow recovery of motor function, available 

findings are in favor of the integration of the BCI training in a comprehensive 

rehabilitative program i.e. with physical and occupational therapy (Donati et al., 2016; 

Ramos-Murguialday et al., 2013). Such integration could facilitate the generalization 

of the BCI induced improvements in motor function to daily life activities. 

Furthermore, BCI could act as a primer by posing the brain in an optimal state to boost 

the functional gains obtained with conventional physical therapy. The recent 

achievements in SCI patients (Donati et al., 2016) represent a further confirmation that 

a BCI training instantiated in a comprehensive rehabilitation program can boost CNS 

plasticity at the level of the motor system thus, leading to functional recovery far 

beyond the expected (i.e. in chronic SCI patients with stabilized sensorimotor 

impairment below the level of the lesion). 

The likelihood that BCI systems will be adopted in clinical practice calls up for a 

reimbursement planning and thus, for a relevant role of policy makers such as 

insurance companies and/or health care systems (Roadmap BNCI Horizon 2020: The 

future in brain/neural-computer interaction, 2015). The pre-requisite step to address 

this factor in the BCI transferability is represented by the industrial take-up of research 

products. Technology-supported interventions such as BCI aim to reduce the costs of 
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rehabilitation by optimizing the ratio between a successful rehabilitation outcome and 

the required (human) resources to be involved. Home-based rehabilitation in this sense 

represents an attracting perspective of future BCI-based interventions. 

To conclude, the successful clinical transfer of BCIs and the ultimate establishment of 

their value as neurorehabilitation tools is on its way. The accomplishment of such 

transfer relies on further multidisciplinary synergy between different actors in 

medicine, science and industry. 
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BCIs for rehabilitation of the upper limb: a 
multidisciplinary approach 
MOTOR IMAGERY BASED PROTOTYPE DESIGN AND CLINICAL 
VALIDATION 
Motor Imagery (MI) has been used extensively for rehabilitation in stroke 

patients that have little or no residual motor function (Braun et al., 2006), since 

kinaesthetic MI and actual movement performance activate common neural 

structures. However, divergent results have been reported as to the success of 

applying MI to stroke rehabilitation (Ietswaart et al., 2011; Zimmermann-

Schlatter et al., 2008). There may be several reasons for this including 

differences in study design and methodology of the various RCTs, as well as a 

lack of adherence to the imagery task as the patient does not receive any 

immediate feedback on the purely mental exercise. To cope with this latter issue, 

as part of the EU project TOBI (www.tobi-project.org) and of a Ministry of 

Health project (RF-2010-2319611) we developed a non-invasive 

electroencephalographic (EEG) based BCI system to support MI training, by 

providing monitoring and feedback (Cincotti et al., 2012). The EEG data is 

continuously recorded while the patient imagines grasping or finger extension 

with their paretic hand. The SMR are extracted and classified in real time and 

used to trigger movements of a virtual image of the patient’s paretic arm and 

hand, thus providing for contingent and ecological visual feedback. In this way, 

the patient learns to associate their imagery with the corresponding movement 

of the virtual hand. Concomitantly the therapist is provided with BCI feedback 

of the patients MI performance on a separate screen. This allows the therapist to 

monitor the patient’s success in imagining the task and provide additional 

feedback via verbal instructions/encouragement, resembling the setting of a 

traditional motor rehabilitation session. The underlying hypothesis for the initial 

study was that by supporting MI training with the BCI, MI related activity in the 

affected motor cortex would be reinforced with the aim to improve motor 

function. Following the initial design of the prototype, a proof of principle study 

was conducted involving eight stroke patients that received the treatment as an 

add on to their conventional therapy across 12 sessions within four weeks, as 

well as 15 therapists (Morone et al., 2015). Visual analogue scales and the 

National Aeronautics and Space Administration Task load index (NASA-TLX) 
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were administered to monitor the satisfaction and motivation of the patients. 

Results revealed that all patients were able to tolerate and conduct the training 

and at completion, four patients had attained clinically significant improvements 

in the arm section of the Fugl-Meyer scale. Furthermore, BCI performance 

correlated significantly with interest and motivation. The therapists reported as 

one advantage that the system provided a quantitative measure of the patients’ 

adherence to the MI. However there were also concerns with regards to the 

technical skill required to operate the BCI, a need for more goal directed 

feedback (activities of daily living) and the possibility of an increase in arm 

spasticity during the MI. Overall, there was a high compliance and adherence to 

the training. The active involvement of the rehabilitation professionals in this 

type of BCI is a key component to its successful implementation in the clinic. 

The study further underlines the importance of feedback and thus positive 

reinforcement, which significantly influenced the patient satisfaction. 

As a next step, we conducted a randomised controlled trial in 28 subacute 

patients (Pichiorri et al., 2015). Fourteen patients received the BCI supported MI 

training across four weeks, while 14 performed the MI without the BCI support. 

At completion of training, the BCI group had a significantly greater 

improvement in FMA scores that were clinically relevant. This was 

accompanied by a significant increase of EEG motor-related oscillatory activity 

over the lesioned hemisphere only in the target group. The correlation between 

functional improvements with changes in resting state brain network 

organization further supported the use of our BCI technology to promote early 

post-stroke functional motor recovery.  

THE PROMOTŒR: BCI TECHNOLOGY FROM LABORATORY TO 
CLINICAL PRACTICE 
 

Following the successful RCT, a further translational effort at Fondazione Santa 

Lucia (FSL) (Morone et al., 2016) led to the implementation of an all-in-one 

BCI-supported MI training station, called the Promotœr, which is currently 

employed in add-on to standard therapy in patients admitted for rehabilitation 

with upper limb motor impairment due to central nervous system injury of 

different etiology. Approximately 70 patients have been treated until now, 

according to a protocol that was approved by the local ethics board 
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(Prot.CE/PROG.604). The Promotœr is an all-in-one training station that 

comprises a computer, a screen for the therapist feedback (EEG and EMG 

activity monitoring) and a screen for the ecological feedback to the patient (a 

virtual hand performing the imagined movement in successful trials); these 

components are mounted on a wheeled table (Figure 3). A commercial wireless 

EEG/EMG system is used to record brain and muscular activity from the patient: 

BCI control features are selected among electrodes placed above the affected 

sensorimotor area, EMG from forearm muscles is visualized online to ensure 

relaxation during MI training. 

 
Figure 3: The Promotœr comprises a computer, a screen for the therapist feedback (EEG and EMG 
activity monitoring) and a screen for the ecological feedback to the patient (a virtual hand performing 
the imagined movement in successful trials). A commercial wireless EEG/EMG system (gTec, 
Austria) is used to record brain and muscular activity from the patient.   

During training, the patient is seated on a chair (or wheelchair) with arms resting 

on a pillow. A visual representation of the forearms and hands is given on a 

dedicated screen, adjusted in size, shape and position as to resemble the patient’s 

own hands. The patient is asked to perform MI of affected hand (timing of 

exercise is provided via a spotlight on the screen enlightening the target hand 

and reinforced verbally by the therapist). During MI, the therapist is provided 

with continuous feedback of the patient’s brain activity on a dedicated screen; in 

brief, desynchronization occurring on electrodes placed above the affected 

sensorimotor area at sensorimotor relevant frequencies (BCI control features) is 

represented by a cursor moving towards a target (with speed proportional to the 

desynchronization). In successful trials (i.e. when the cursor reaches the target) 

the patient receives a positive reward represented by the visual representation of 

the affected hand moving accordingly with the imagined movement; otherwise, 

no visual feedback is represented on the patient’s screen. Along the whole 

session, the therapist is allowed to monitor the patient’s EEG and EMG activity 
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(recorded from forearm muscles) in order to ensure complete relaxation and to 

guide/encourage him/her during the exercise. 

Preliminary results on chronic stroke patients (n=12) partially retrace those 

obtained in the RCT with subacute patients. Clinical improvements were 

observed (FMA) together with a significant decrease in muscle tone (as assessed 

by Modified Ashworth Scale, MAS) which is extremely relevant in chronic 

patients as spasticity represents a limiting factor in functional recovery during 

this phase (Pichiorri et al., 2019).  

The Promotœr-guided MI training is now fully integrated in the specific 

rehabilitation program of each patient, involving therapists and doctors working 

at FSL (Figure 4). While the feedbacks from the patients have been enthusiastic 

as they are extremely motivated to complete the training with the Promotœr, this 

close interaction with both the clinical team and the patients has fostered 

important feedback as to possible novel applications of the device in the daily 

clinic. As an example, we are currently recruiting SCI patients with lesions at 

the cervical level, also with extremely positive feedback from patients and 

professionals. 

 
Figure 4:  A patient during a BCI session with the Promotœr (centre of the picture) in a room 
dedicated to technologically supported motor and cognitive rehabilitation at Fondazione Santa Lucia. 

Alongside with the improvements described in the hardware and software 

components, advancements were made also regarding the process of BCI 

features selection.  

EEG features to be used in BCIs for rehabilitation should be selected according 

to neurophysiological principles, thus specific expertise in the field is needed. 

We are currently implementing a procedure based on a semiautomatic method 

that combines physiological and machine learning approaches, with the twofold 

aim of reducing the operator variability and facilitate users without direct 

experience with BCI technology (usability). In a preliminary study we compared 

classification performances obtained using features selected manually by an 
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expert user and a semiautomatic procedure based on a priori neurophysiological 

principles; no significant differences were found between the two. The proposed 

physiologically-driven semi-automatic procedure could boost the transferability 

of BCI technology to support motor rehabilitation after stroke even in context 

without direct experience with BCIs, and altogether reduce the operator related 

variability putting the basis for a larger multicentric trial (Colamarino et al., 

2017a,b, 2019).  

 

HYBRID EEG-EMG BCI PROTOTYPE: ONGOING PROJECTS 
 

In the context of stroke rehabilitation, MI practice offers a unique opportunity to 

access the motor system in severely affected patients; MI training, in our case 

BCI-supported via the Promotœr, is meant to improve actual motor recovery by 

boosting brain plasticity. Along the recovery process, therapists encourage and 

reinforce residual (or recovered) execution of the MI-trained movements. This 

practical approach is what we aim to incorporate in a second version of the 

Promotœr. For the development and preliminary testing of this updated 

prototype, the candidate recently received a grant from a private Swedish 

foundation (www.promobilia.se). 

This enriched version of the Promotœr pursues a compensation of the lost 

physiological ability to perform a movement, by recognizing the motor attempt 

(mental pattern and related muscular activity) and producing an actual muscular 

contraction via Functional Electrical Stimulation (FES). The resulting device 

will be flexible and adaptable to different patients with variable degrees of 

impairment, as well as capable to follow each patient along the motor recovery 

process. We will provide the patient with a real proprioceptive feedback of his 

mental activity (EEG) related to motor attempt and reinforce the residual or 

recovered voluntary muscular activity (recorded via EMG) throughout the FES. 

The aim is to provide a proprioceptive experience as close as possible to the 

natural movement, artificially controlled by the same brain-muscle circuitry that 

controls the natural movement. To note, FES alone has been employed as a 

rehabilitative intervention after stroke for its capability to assist movement and 

has been shown to induce changes in the brain bearing witness of brain plasticity 

modulation (Quandt and Hummel, 2014).  
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The shift from MI to attempted movement and from visual feedback to FES 

feedback has several implications from the clinical point of view. Our approach 

will take into account solid rehabilitative principles, which partially overlap 

those already covered in the available version of the Promotœr. As for the brain 

patterns elicited by motor attempt (from EEG recordings) we will reinforce 

patterns collected from the affected hemisphere, with specific spatial and 

spectral characteristics (sensorimotor rhythms, resembling “physiological” 

activation in the healthy hemisphere during movement executed with the healthy 

upper limb). As for the residual muscular activity (from EMG recordings) and 

FES feedback, we will reinforce voluntary contraction reflecting correct muscle 

activation and discourage pathological synergies, co-contraction of antagonist 

muscles, leading to spasticity. Indeed, development of spasticity and abnormal 

synergies is a determinant factor along the recovery process of stroke patients. 

For these reasons, we will predominantly focus on finger and wrist extension, 

contrasting pathological flexion spasticity. Continuous EMG monitoring as well 

as extensive clinical evaluation and the constant presence of a therapist 

throughout the training will guarantee that possible unwanted effects are 

promptly recognized and corrected. 

The system will be tested in a proof-of-concept framework in stroke patients 

already familiar with the previous version, with the assistance of rehabilitation 

professionals familiar with novel technologies for rehabilitation including BCI. 

This approach will provide a solid evaluation of feasibility and acceptability and 

put the basis for a subsequent clinical trial of efficacy. The updated version of 

the Promotœr will increase the currently available BCI-based opportunities for 

upper limb stroke rehabilitation in order to follow patients along the process of 

regaining motor abilities.   
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An EEG Index of Sensorimotor Interhemispheric 
Coupling after unilateral stroke: clinical and 
neurophysiological study 
 
INTRODUCTION 
In physiological conditions, activation of the primary motor cortex (M1) on one 

side induces inhibitory effects on the contralateral M1. Such phenomenon is 

known as interhemispheric inhibition and it has been extensively reported as 

altered after unilateral stroke (Perez and Cohen, 2009). The neuroanatomical 

substrate of interhemispheric inhibition resides in the corpus callosum. This is 

the largest white matter structure of the brain whose topographical organization 

has been widely demonstrated (Huang et al., 2005) to reflect the respective 

interconnected cortical areas. Structural and functional changes in 

interhemispheric coupling after stroke have been related to the extent of damage 

in the corticospinal tract (CST), and thus, to the extent of the motor impairment 

(Li et al., 2015).  

The clinical consequences of a stroke are not only due to the effect of the focal 

lesion, but also to the disruption of connections with other areas (Silasi and 

Murphy, 2014). On the other hand, interconnected areas contribute to the 

recovery process, with positive as well as detrimental effects. For these reasons, 

brain connectivity seems a particularly apt instrument to provide insights on 

post-stroke recovery mechanisms (Grefkes and Fink, 2014), as well as to 

eventually assess the extent of damage and the effects of rehabilitation 

interventions. 

In a recent study, we have provided evidence that interhemispheric connectivity 

(IHC) in subacute stroke patients is modulated by different rehabilitation 

interventions: specifically a Brain-Computer Interface (BCI)-based motor 

imagery training of the paretic upper limb in which ipsilesional 

electroencephalograpic (EEG) sensorimotor rhythms were reinforced, lead to an 

increase in IHC at rest, specific to the EEG frequency ranges engaged in the 

training (Pichiorri et al., 2015).  

In this study, we aim at defining an EEG-derived index of IHC correlated with 

CST integrity and severity of clinical impairment. The Motor Evoked Potential 
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(MEP) as assessed by Transcranial Magnetic Stimulation (TMS) will be used as 

indicator of CST integrity and excitability, as an already established predictor of 

clinical outcome after stroke (Bembenek et al., 2012).  To corroborate the 

possible clinical relevance of the identified index, we will seek for correlations 

between such index and the degree of motor impairment in a population of 

subacute stroke patients undergoing rehabilitation. 

METHODS 
Patients and Corticospinal Tract Integrity Assessment 
Thirty stroke patients (of which 19 already participated in a previous study 

(Pichiorri et al., 2015)) were consecutively enrolled among those admitted for 

rehabilitation in our rehabilitation hospital at Fondazione Santa Lucia, IRCCS. 

The study was approved by the local ethics board (Prot.CE/AG4-PROG.244-

105), and written informed consent was obtained from each patient. Inclusion 

criteria were: age between 50 and 80 years; first ever unilateral stroke (cortical, 

subcortical or mixed) occurred no longer than 6 months before enrollment and 

causing hemiparesis or hemiplegia. Upon enrollment, patients were evaluated by 

means of the European Stroke Scale (ESS) (Hantson et al., 1994) and the upper 

limb section of the Fugl-Meyer Assessment (FMA) (Gladstone et al., 2002).  The 

ESS is a 14-item scale to assess neurological deficit derived from stroke 

(including motor and non-motor functions), ranging from 0 (most affected) to 

100 (least affected) (Lyden and Hantson, 1998). The FMA is a functional scale 

to assess limb motor function; the upper limb section (motor domain) is often 

used separately and it ranges from 0 (most affected) to 66 (least affected) 

(Gladstone et al., 2002). 

Corticospinal tract integrity and excitability was determined bilaterally by means 

of TMS as follows. Single-pulse magnetic stimuli were delivered through a 

round coil that was connected to a Magstim 200 (Magstim Company, Whitland, 

UK) over the motor cortex in the optimal position to elicit MEPs in the First 

Dorsal Interosseus (FDI) muscle. The electromyographic (EMG) activity from 

FDI was recorded through Ag/AgCl surface electrodes in a belly-tendon 

montage (Galileo-NT; Italy). The amplified and bandpass-filtered (0.1 Hz to 2 

kHz) raw EMG signal was digitized at a 20-kHz sampling rate and stored for 

offline analysis.  
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Corticospinal tract integrity was tested at 100% of output stimulator intensity. 

The presence/absence of a MEP of at least 50 μV was determined by averaging 

10 EMG traces. If the MEP was not inducible at rest, patients were instructed to 

attempt voluntary contraction.  The presence or absence of MEP on affected side 

allowed us to divide the sample into two groups which will be labeled YES/NO, 

respectively. The motor threshold at rest (RMT) was defined as the lowest 

intensity that produced MEPs greater than 50 μV in at least 5 of 10 consecutive 

trials in the FDI muscle and was determined bilaterally (affected side, AS and 

unaffected side, US) in the YES patients and on the US only in NO patients.   

EEG Data Acquisition and Analysis 
EEG data was acquired in a separate session (within one week from clinical 

evaluation and TMS assessment). During the EEG data acquisition patients were 

comfortably seated in an armchair in a dimly lit room with their upper limbs 

resting on a desk. Scalp EEG potentials were collected from 61 positions, 

assembled on an electrode cap (according to an extension of the 10-20 

International System; bilateral earlobe reference), band pass-filtered between 0.1 

and 70 Hz, digitized at 200 Hz, and amplified by a commercial EEG system 

(BrainAmp, Brainproducts GmbH, Germany). Five minutes of EEG recordings 

at rest (relaxed, eyes closed) were acquired. EEG data were down-sampled at 

100 Hz (with anti-aliasing low-pass filter) and band pass-filtered (1-45 Hz). 

Artifact rejection was performed using a semiautomatic procedure, based on the 

definition of a voltage threshold (± 80μV). EEG traces were then segmented in 

1s-epochs and, after relation to the average reference (Common Average 

Reference, CAR), spectral analysis was performed for all the 61 electrodes: at 

least 100 artifact-free trials were used for each subject for fast Fourier 

transformation and power spectral analysis (PSD) within the 5 frequency bands 

of interest. These latter were individually defined according to the Individual 

Alpha Frequency (IAF) (Klimesch, 1999) as determined by means of the Fast 

Fourier Transform spectra over posterior leads (parietal, parieto-occipital, and 

occipital). The band filtering parameters were: theta (IAF-6/IAF-2), alpha (IAF-

2/IAF+2), lower beta (IAF+2/IAF+11), upper beta (IAF+11/IAF+20) and 

gamma (IAF+20/IAF+35). IAF range in our patients was 9.45±0.54 Hz. 
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To investigate the brain network properties under resting conditions, we 

estimated the statistical dependencies between EEG data (preprocessed as 

described above, except for CAR), applying methods that have been detailed 

elsewhere (Pichiorri et al., 2015).  

In brief, the full multivariate spectral measure Partial Directed Coherence (PDC) 

(Astolfi et al., 2006; Baccalá and Sameshima, 2001; Toppi et al., 2016) was used 

to estimate causality in the statistical sense (expressed as PDC matrices) in each 

patient. The patterns significance against the null case was assessed by means of 

an asymptotic statistic method (Takahashi et al., 2007) and the obtained 

estimations were averaged within the 5 frequency bands as described above.  

The index called normalized Inter-Hemispheric Strength (nIHS) was defined as 

the sum of weights of inter-hemispheric links (ihwi) normalized by the total 

weight of the network (wTOT):  

𝑛𝐼𝐻𝑆 =  
∑ 𝑖ℎ𝑤௜

ே಺ಹ಴
௜ୀଵ

𝑤்ை்
 (1) 

with: 

𝑤்ை் = ෍ 𝑤௜

ே

௜ୀଵ

 (2) 

where NIHC in equation (1) is the number of non null inter-hemispheric links, wi 

is the weight of i-th connection and N the total number of connections in the 

network. For each patient, nIHS was computed and extracted considering the 

inter-hemispheric connections in the whole scalp area (global nIHS – 44 

electrodes) and in three different scalp subareas (12 electrodes each): central 

zone (corresponding to sensorimotor cortices) occipital and frontal zones (see 

Figure 5 for the complete list of electrodes). 

This subdivision was performed in order to investigate the possibility to isolate 

sensorimotor interhemispheric coupling from anterior and posterior areas on the 

scalp; i.e. to investigate the macroscopic topographical specificity of the 

proposed index.  

Statistical Analysis 
All results are expressed as mean ± standard deviation unless otherwise stated.  
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Statistical comparisons were performed to evaluate differences between 

YES/NO groups in demographical and clinical characteristics (age, time from 

event, ESS, FMA), RMT on US (unpaired-two tailed Welch test).  Moreover, 

differences in RMT between AS and US were tested in YES patients (paired t-

test).  

To evaluate between-group (YES/NO) differences in the spectral activity at rest, 

we performed unpaired two-tailed Welch t-tests between PSD values for each 

channel (electrode) and frequency band. For this group analysis we flipped the 

functional (EEG time series) and anatomical (scalp electrode positions) data of 

patients with right-sided lesions along the midsagittal plane, so that the 

ipsilesional side was common to all patients (De Vico Fallani et al., 2013; 

Pichiorri et al., 2015). 

For brain network characteristics, statistical analysis was performed (unpaired 

two-tailed Welch t-tests) to identify differences between groups for the whole 

scalp ("global"), each scalp area ("sensorimotor", "frontal" and "occipital") and 

EEG frequency band.  

A correlation analysis (two tailed Spearman correlation) between nIHS and 

clinical scales (ESS and FMA) was performed to further investigate the potential 

of the proposed effective connectivity index as a neurophysiological descriptor 

of stroke derived impairment. 

Significance level was set at p<0.05. False Discovery Rate correction for 

multiple comparisons was applied to avoid the occurrence of type I errors.   

RESULTS 
Table 1 shows demographics, clinical characteristics and RMT values of 

patients, classified as YES or NO groups. Ten patients had inducible MEPs on 

the affected FDI muscle (YES).  

No significant between-group differences were observed for age and time from 

the stroke event (p > .05). As expected, the YES group had significantly higher 

ESS and FMA scores than the NO group (p < 10-6 for both ESS and FMA).  
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Table 1: Demographical, Clinical and TMS parameters of patients upon enrollment. L/R (Left/Right). 
C/SC/M (Cortical/Subcortical/Mixed). ESS: European Stroke Scale; FMA: Fugl-Meyer Assessment; 
RMT: resting motor threshold; UH: unaffected hemisphere; AH: Affected Hemisphere. FMA data is 
missing for P4,5 and 23; TMS data is missing for P4 and 5. 

 
Group ID Age 

Lesion 
Side/Site 

Months from 
Event 

ESS 
Score 

FMA 
Score 

RMT 
UH 

RMT 
AH 

NO P1 58 L/SC 3 66 21 58 n/a 

NO P2 70 L/M 1 48 6 45 n/a 

NO P3 54 R/C 1 46 6 33 n/a 

NO P4 63 R/M 3 65 - - n/a 

NO P5 51 L/C 2 57 - - n/a 

NO P6 82 R/C 2 63 20 35 n/a 

NO P7 66 R/M 3 63 17 40 n/a 

NO P8 52 L/SC 1 49 12 42 n/a 

NO P9 61 R/M 1 63 15 48 n/a 

NO P10 64 R/SC 1 56 10 42 n/a 

NO P11 72 L/SC 5 55 9 35 n/a 

NO P12 66 R/M 1 56 6 45 n/a 

NO P13 54 L/M 3 59 4 50 n/a 

NO P14 87 R/SC 2 87 52 43 n/a 

NO P15 58 L/M 2 50 7 35 n/a 

NO P16 75 L/SC 1 65 31 50 n/a 

NO P17 62 L/SC 1 63 15 50 n/a 

NO P18 51 R/SC 1 69 8 35 n/a 

NO P19 52 R/SC 3 69 10 40 n/a 

NO P20 62 L/SC 2 60 18 54 n/a 

Avg ± SD 66±8 
10R/10L 

3C/10SC/7M 
1.8±1.5 60.4±9.2 15±12 43±7 - 

YES P21 54 R/M 2 90 49 55 60 

YES P22 57 R/SC 2 78 44 45 55 

YES P23 79 R/SC 6 83 - 45 75 

YES P24 70 R/C 1 96 60 57 50 

YES P25 71 R/SC 1 92 59 40 48 

YES P26 71 L/SC 1 76 61 58 60 

YES P27 58 R/SC 1 79 35 48 52 

YES P28 65 L/M 1 85 57 33 35 

YES P29 75 L/M 2 75 44 47 38 

YES P30 64 L/C 1 82 37 42 35 

Avg ± SD 63±10 
6R/4L 

2C/5SC/3M 
1.9±1 83.6±7.1 50±10 47±7 49±12 

 

As for the TMS data analysis, no significant differences in RMT values were 

observed between groups on US, neither between AS and US in the YES group 

(p > .05).  
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Furthermore, no significant differences were observed in the PSD at rest 

between YES and NO group, except for the whole scalp PSD in theta range of 

frequency which showed significantly higher value in the NO group (with a 

prevalence of the affected hemisphere and midline, see Table 2).  

The index nIHS "global" was significantly higher in the YES group in lower 

beta, higher beta and gamma bands (respectively p = .0044, p = .0088, p= .0111 

(Figure 5, panel a). The same index estimated for the 3 scalp areas showed 

significant differences between the YES and NO group only in the 

"sensorimotor" area, in the lower beta band (p=  .01) (Figure 5, panel b). 

The Spearman correlation showed a significant positive correlation between the 

nIHS relative to the sensorimotor area in lower beta and the clinical scores ESS 

and FMA, respectively (FMA, Rs= 0.56, p=.002 ESS, Rs= 0.45 p= .01; Figure 

6). 

 
Figure 5: Panel a) box-plot diagram of global nIHS statistical comparison between YES and NO 
groups in the five frequency bands (lower beta p = .0044, higher beta p = .0088, gamma p= .0111); 
scalp EEG electrodes used to assess normalized interhemispheric strength in the whole head (global): 
Fp1-2, Af3-4, F1-2, F3-4, F5-6, F7-8, Fc1-2, Fc3-4, Fc5-6, C1-2, C3-4, C5-6, T7-8, Cp1-2, Cp3-4, 
Cp5-6, P1-2, P3-4, P5-6, P7-8, Po3-4, O1-2. Panel b) box-plot diagram of sensorimotor nIHS 
statistical comparison between YES and NO groups in the five frequency bands (lower beta p=  .01); 
scalp EEG electrodes used to assess normalized interhemispheric strength in the three areas: frontal 
- F1-2, F3-4, F5-6, Fc1-2, Fc3-4, Fc5-6; sensorimotor - C1-2, C3-4, C5-6, Cp1-2, Cp3-4, Cp5-6; 
occipital - P1-2, P3-4, P5-6, P7-8, Po3-4, O1-2 (color-coded: green, red and violet respectively). 
Statistical significance is marked by *.   
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Table 2: The table reports Power Spectral Density (PSD) values on scalp electrodes relative to the 
affected/unaffected hemispheres* and midline in the theta band in the two groups (YES vs NO). Only 
significant contrasts (i.e. electrodes) are reported with the respective p-values (unpaired two-tailed 
Welch t-test). *Please note that for this analysis EEG data from patients with right-sided lesions was 
flipped along midsagittal plane, so that the ipsilesional side was common to all patients (i.e. left 
hemisphere). 

         

 Electrodes PSD values (µV2/Hz) 
p 

values 
    YES group NO group   

A
ff

ec
te

d 
H

em
is

ph
er

e 

'AF3' 1,31 ± 0,45 2,12 ± 1,18 0,0121 
'F1' 0,76 ± 0,23 1,50 ± 0,78 0,0006 
'F3' 0,96 ± 0,49 1,61 ± 0,71 0,0070 
'F5' 1,23 ± 0,49 2,20 ± 1,30 0,0064 

'FC3' 0,68 ± 0,40 1,15 ± 0,65 0,0209 
'FC5' 0,93 ± 0,48 1,89 ± 1,21 0,0047 
'FT7' 1,36 ± 0,78 3,28 ± 2,59 0,0055 
'C1' 0,54 ± 0,17 0,92 ± 0,45 0,0027 
'C3' 0,57 ± 0,22 0,89 ± 0,51 0,0227 
'C5' 0,75 ± 0,33 1,56 ± 1,01 0,0030 
'T7' 1,19 ± 0,63 3,04 ± 2,44 0,0040 

'CP1' 0,61 ± 0,23 1,20 ± 0,72 0,0031 
'CP5' 0,91 ± 0,42 1,81 ± 1,49 0,0189 
'TP7' 1,21 ± 0,47 2,62 ± 1,96 0,0056 
'P1' 0,68 ± 0,32 1,59 ± 1,32 0,0079 
'P7' 1,31 ± 0,61 3,11 ± 3,20 0,0241 
'O1' 1,23 ± 0,58 3,40 ± 3,44 0,0119 

M
id

li
ne

 

'AFz' 1,00 ± 0,35 2,01 ± 1,04 0,0006 
'Fz' 0,74 ± 0,22 1,45 ± 0,66 0,0002 

'FCz' 0,70 ± 0,25 1,31 ± 0,60 0,0005 
'Cz' 0,61 ± 0,22 1,05 ± 0,54 0,0043 

'CPz' 0,60 ± 0,27 1,08 ± 0,56 0,0031 
'Pz' 0,80 ± 0,30 1,41 ± 0,82 0,0064 

U
na

ff
ec

te
d 

H
em

is
ph

er
e 

'POz' 0,94 ± 0,36 1,94 ± 1,58 0,0127 
'AF4' 1,28 ± 0,57 2,23 ± 1,34 0,0108 
'F2' 0,82 ± 0,41 1,48 ± 0,70 0,0031 
'F4' 1,00 ± 0,45 1,66 ± 1,04 0,0206 

'FC2' 0,69 ± 0,28 1,28 ± 0,82 0,0083 
'C2' 0,61 ± 0,30 0,98 ± 0,53 0,0195 

'CP2' 0,67 ± 0,27 1,07 ± 0,61 0,0165 
'CP4' 0,64 ± 0,23 1,15 ± 0,81 0,0161 
'P2' 0,73 ± 0,34 1,30 ± 0,74 0,0075 
'P4' 0,83 ± 0,32 1,80 ± 1,28 0,0039 
'P6' 0,98 ± 0,50 2,01 ± 1,72 0,0202 

'PO4' 0,98 ± 0,28 1,97 ± 1,27 0,0031 
'PO8' 1,28 ± 0,45 3,06 ± 2,71 0,0092 
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Figure 6: Scatter plots of the correlation analysis between sensorimotor nIHS index (in lower beta 
band) and European Stroke Scale (ESS, panel a) and Fugl-Meyer Assessment (FMA, panel B) scores. 

DISCUSSION 
In this study, we found that the CST integrity defined as the presence/absence of TMS-

induced MEP in a sample of subacute stroke patients was associated with a significant 

difference in EEG-derived IHC magnitude. As such, this difference in favor of YES 

group was both topographically and spectrally specific, i.e. it involved scalp electrodes 

relative to the sensorimotor area and occurred in a motor related EEG frequency range 

(lower beta).  

We also observed that the higher magnitude of IHC in the YES group regarded the 

overall spectrum of EEG high frequency range (beta and gamma) when the global 

nIHS index was considered (Figure 5, panel a). We argue that such phenomenon is 

mainly accounted for by the contribution of non-homologous IHC to the global nIHS 

index estimation. Such non-homologous cross- connections are excluded when 

computing the same index over the scalp subareas. Coherent networks in beta and 

gamma frequency bands are indeed part of the whole brain functional connectivity at 

rest (Neuner et al., 2014). 

Furthermore, the specificity of the IHC magnitude in favor of the YES group is 

corroborated by the finding of no significant between group differences in the baseline 

PSD values at the frequency ranges relevant for IHC differences. Indeed, we only 

found a higher power in slow EEG bands (theta) at baseline in the NO group 

(especially over the lesioned hemisphere), a finding which can be expected in more 

severe stroke patients.  

The topographical and spectral specificity of the nIHS differences as a function of CST 

integrity makes it likely that the observed phenomenon reflects an alteration at the 
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level of the motor system. In line with previous hemodynamic neuroimaging findings 

(Radlinska et al., 2012), the index nIHS was higher in patients with preserved CST 

integrity. We hypothesize that such index may reflect and quantify interhemispheric 

inhibition, which is known to be impaired after a stroke at the CST level (Perez and 

Cohen, 2009). Such hypothesis however remains speculative, awaiting further studies 

in which the observation is not limited to the resting state condition (as in our study) 

and includes extensive neurophysiological assessment (eg. TMS measures of 

intracortical inhibition and facilitation, transcallosal inhibition) with stratification of 

patients according to the size of the stroke lesion (as already done in animal models) 

(van Meer et al., 2012).  

With respect to other techniques currently employed to assess post-stroke connectivity 

(Grefkes and Fink, 2014), EEG has some advantages: it is non-invasive, low cost and 

portable (thus virtually ubiquitous), and has a high temporal resolution. These 

advantages are already valuable if we consider connectivity as a possible 

neurophysiological indicator of recovery outcome. However, they become even more 

valuable if we have in mind recent approaches in which connectivity itself can be 

employed to drive a neurophysiological based design of neurorehabilitation 

interventions (Silasi and Murphy, 2014).  

Indeed, we already know that different rehabilitation interventions target different 

post-stroke reorganization patterns: examples are represented by constraint induced 

motion therapy and bimanual training that favor interhemispheric balance, or distal 

upper limb training that promotes perilesional reorganization in the ipsilesional 

hemisphere (Plow et al., 2009).  

EEG can be recorded during rehabilitation interventions allowing the monitoring of 

brain activity (and connectivity) along the rehabilitation process. An initial step in this 

direction was taken in our previous work in which EEG-based BCI technology was 

used to monitor motor imagery practice after stroke (Pichiorri et al., 2015). 

Advancements in signal processing methods may allow to estimate connections in 

real-time and eventually reinforce specific connectivity patterns in a BCI setting 

(Billinger et al., 2013). Such approaches are extremely bound to the peculiarities of 

EEG, i.e. its non-invasiveness, portability, and temporal resolution.  
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The abovementioned advantages are of course paralleled by some disadvantages, with 

low spatial resolution in the frontline. Albeit with the caution intrinsic to any study 

applying scalp EEG-based connectivity analysis (i.e. impact of volume conduction on 

estimation methods/approaches) (Brunner et al., 2016; Palva and Palva, 2012; 

Schoffelen and Gross, 2009; Van de Steen et al., 2016), our study provided evidence 

that essential (i.e. macroscopic) spatial characteristics consistent with the 

topographical organization of interhemispheric structures (i.e. the corpus callosum) 

can be maintained. The observed changes in IHC involved sensorimotor scalp 

electrodes, not the frontal or occipital areas. As such this finding partially retraces what 

obtained with hemodynamic neuroimaging techniques (Radlinska et al., 2012). 

Despite the speculative nature of the neurophysiological interpretation of the nIHS 

index, the relevance of its correlation with clinical impairment is remarkable. The 

lower beta sensorimotor nIHS index was found to positively correlate with scales of 

general and upper limb motor impairment, i.e. the higher the nIHS index on 

sensorimotor areas in the lower beta range the better the clinical and functional motor 

states as measured by ESS and upper limb FMA.  Objective measures of post-stroke 

impairment and subsequent recovery are extremely up-to-date in the context of 

evidence-based neurorehabilitation (Dimyan et al., 2008). In a recent study in subacute 

stroke patients (Pichiorri et al., 2015), we showed that IHC could be modulated in 

response to different rehabilitation interventions, leading to significantly different 

recovery outcomes. The present study further corroborates the possible role of EEG-

derived effective connectivity indices as objective neurophysiological indicator of 

rehabilitation outcomes, which relevance must be established in future studies 

including follow-up evaluations (a limitation of our study is that all evaluations were 

performed upon enrollment).  

Although with caution, we can conclude that our study provides initial evidence for an 

EEG-based index which is a measure of the interhemispheric cross-talking and 

correlates with functional motor impairment in subacute stroke patients. The identified 

index could be employed to evaluate the effects of training aimed at re-establishing 

interhemispheric balance and eventually drive the design of future connectivity-driven 

rehabilitation interventions.  
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Overall Conclusions and Next Steps 
 

The presented results sprout from a fruitful integration of multidisciplinary 

expertise and various technologies within the field of technology supported 

neurorehabilitation. In this scenario, I was allowed to instantiate my research 

work in a large translational effort which involved the institution in which I 

practice both as a clinician and as a researcher, Fondazione Santa Lucia IRCCS 

in Rome. Along the course of my studies (residency in Neurology and PhD) I 

had the unique opportunity to see the results of my research activity translated 

into everyday clinical practice (Morone et al., 2016).  

In rehabilitation applications as those described in this thesis, a solid 

neurophysiological background is crucial. It has been demonstrated that specific 

rehabilitation interventions promote specific patterns of brain reorganization 

which can be depicted via neurophysiologic techiques: as an example, distal 

upper limb training promotes ipsilesional reorganization while bimanual training 

favors the re-establishment of interhemispheric communication (Plow et al., 

2009). The results of the RCT as well as the subsequent analyses that were 

performed on collected data allowed us to define the effects of BCI training in 

post-stroke rehabilitation both at the clinical level and at the level of brain 

reorganization (Pichiorri et al., 2015). We were also able to suggest a possible 

EEG-derived marker of rehabilitation outcome (Pichiorri et al., 2018). This latter 

approach is extremely up-to-date in neurorehabilitation which is only recently 

moving towards an evidence-based discipline and in need of objective measures 

of functional recovery (eg. changes in the brain which underlie good or bad 

outcome). 

Ongoing projects and submitted proposals will hopefully prosecute based on the 

achievements that are presented in this thesis, regarding improvements to the 

current BCI system, implementation of larger clinical trials to confirm the 

promising results already obtained and better understanding of the 

neurophysiological phenomena which underlie positive motor outcome after 

stroke.  
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