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Abstract

We show that any positive energy representation of Diff+(S1) can be extended to a

strongly continuous unitary projective representation of the fractional Sobolev dif-

feomorphisms Ds(S1), with s > 3. For some positive energy representations, i.e for

the positive energy vacuum representations of Diff+(S1) with positive integer central

charge, we can improve the implementation to the group Ds(S1) with s > 2. We

show that a conformal net of von Neumann algebras on the circle is always Ds(S1)-

covariant, s > 3. Furthermore, we show that a given positive energy representation

U of Diff+(S1) cannot be extended to some less-smooth di�eomorphisms, and from

this fact we obtain an uncountable family of proper soliton representations. From

these soliton representations we construct irreducible unitary projective positive en-

ergy representations of ΛG (resp. B0) which do not extend to LG (resp. Diff+(S1)).
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Introduction

Conformal quantum �eld theory (CFT) in (1+1) dimension is a widely studied

subject, with a plenty of physical applications [DMS97]. From the mathematical

point of view, the interest in conformal �led theory is motivated by its connections to

various areas of mathematics [EK98]. In (1 + 1)-dimensional conformal �eld theory,

the symmetry group, i.e. the group of transformations which preserve space-time

causality, is isomorphic to Diff+(S1)×Diff+(S1), where each copy of Diff+(S1) acts

on the respective chiral component.

The group of smooth di�eomorphisms of the circle Diff+(S1) is an object of par-

ticular interest. It is an in�nite-dimensional Fréchet Lie group which is algebraically

(and hence topologically) simple. Its representation theory is widely studied, as

amongst other applications, it plays a pivotal role in conformal �eld theory. In the

algebraic formulation, a chiral conformal �eld theory on S1 is realized as a confor-

mal net, namely an assignment I 7→ A(I) where I is an open proper interval of the

unit circle S1 and A(I) a von Neumann algebra on a �xed Hilbert space, satisfying

axioms dictated by natural physical requirements. From the irreducible positive en-

ergy representations of Diff+(S1) it is possible to construct models which constitute

the building blocks of the theory, the Virasoro nets. In particular every conformal

net is an extension of a Virasoro net. As is often claimed in the physical literature,

the Diff+(S1) symmetry imposes a strong constraint on (1 + 1)-dimensional �eld

theories as is evidenced by the fact that the conformal nets with central charge c in

the discrete series are completely classi�ed [KL04a, KL04b].

A natural question which arises when studying the representation theory of

Diff+(S1) is the following. Given a positive energy representation U of Diff+(S1)

how much can the regularity of the di�eomorphisms be weakened in order to obtain

a representation of a larger group of non-smooth di�eomorphisms? In [CW05] Carpi

and Weiner proved that the stress-energy tensor T associated to a given positive en-

ergy representation of Diff+(S1) can be evaluated on a certain class of non-smooth

functions of S1 retaining its self-adjointness. This fact, besides having remarkable

applications such as uniqueness of conformal covariance [CW05] and positivity of

energy of DHR sectors [Wei06], was an indication that a similar result could be
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Introduction

transposed to the group level.

In Chapter 3 we show that it is possible to extend every positive energy pro-

jective unitary representation U of Diff+(S1) to the group of fractional Sobolev

di�eomorphisms Ds(S1) with s > 3 and in particular to the Ck di�eomorphisms of

the circle with k ≥ 4. It is not clear if the exponent s > 3 is optimal, uniformly on

all projective representations of Diff+(S1), altough it seems that the methods used

therein cannot be undertaken to proceed further. In Chapter 5 we show that for

certain representations, namely the irreducible representations with integral central

charge and with lowest weight zero, the latter result can be improved on, obtaining

Ds(S1) with s > 2.

The reverse problem, which is to understand whether a homeomorphism γ on

the circle is not unitarily implementable in a compatible way with the representation

U of Diff+(S1), is strictly related to the construction of soliton representations in

conformal �eld theory presented in this thesis.

A soliton of a conformal net A is a family of (inclusion-preserving) normal rep-

resentations indexed by open intervals of S1 not containing the point −1. We say

that a soliton is proper (or non-trivial) if does not extend to a representation of A
on S1.

The �rst rigorous approach in QFT to soliton representations is due to Roberts

[Rob74] and Frohlich in [Frö76] gave concrete examples of solitons in many models.

In our context, which is of chiral conformal �eld theory described by conformal nets,

solitons were studied by Fredenhaghen in [Fre93] whilst Henriques had some results

about the covariance of the soliton representations in speci�c models [Hen17a].

Since it is not possible to construct solitons for the Virasoro nets via α-induction

because of their minimality [Car98], the existence of solitons for these models was

unclear. Recently Henriques in [Hen17a] proved that the category of solitons Sol(A)

of a �nite index conformal net A is a bicommutant category whose Drinfel'd center

corresponds to the category of DHR sectors of A. This fact implies the existence

of non-trivial soliton representations for all the conformal nets with central charge

c < 1 and µ-index > 1.

In Chapter 4 we present an explicit construction of a family of proper irreducible

(type I) soliton representations for any conformal nets. We consider a particular class

of functions γ of the circle, namely orientation-preserving homeomorphisms which

are C∞ on S1\{−1} and fail to be di�erentiable in −1, from γ we construct a soliton

representations σγ and we prove that is a proper soliton. The proof follows from

showing that γ is not unitarily implementable, and this is done with the aid of the

modular theory. This type of construction was already presented in [LX04, KLX05]

but for a di�erent class of functions and yielded non irreducible solitons of type III.

In the case of the U(1)-current net and the virasoro net AVirc with c ∈ Z+ all the

x



Introduction

constructed solitons are covariant for B0, the stabilizer subgroup of Diff+(S1) of the

point −1, which contains translations and dilations. More generally we show that

any soliton is translation covariant and has positive energy. The argument depends

once again on the the already mentioned fact that the stress-energy tensor T can be

evaluated on non-smooth functions and on quantum energy inequalities introduced

in [FH05]. As an application, we construct irreducible unitary projective positive-

energy representations of B0 and of ΛSU(N) (the subgroup of LSU(N) consisting of

loops with support not containing the point −1) which do not extend to Diff+(S1)

and LSU(N) respectively. These results can be seen as an application of the Tomita-

Takesaki modular theory of von Neumann algebras to the representation theory of

in�nite-dimensional Lie groups.

The thesis is organized as follows: in Chapter 1 we introduce in�nite-dimensional

Lie Groups, with particular emphasis on the di�eomorphism group Diff+(S1) and

on the loop groups. The last part of the Chapter is devoted to the groups of dif-

feomorphisms of Sobolev class. In Chapter 2 we recall the standard notions of con-

formal net and its representation theory together with examples coming from the

unitary projective representations of the di�eomorphism group Diff+(S1) and loop

groups. In Chapter 3 we extend every positive energy representation of Diff+(S1)

to a strongly continuous projective unitary representation of Ds(S1), s > 3 and

we prove that any conformal net A is Ds(S1)-covariant, s > 3. In Chapter 4 we

prove tha a conformal net (A, U,Ω) is Diff1,∞
+ (S1)-covariant, that every soliton is

translation covariant with positive energy and we exihibit an explicit construction

of proper solitons. Chapter 5 is dedicated to concrete examples: we use the results

in Chapter 4 to prove that there exists irreducible positive energy representations

ΛSU(N) (resp. B0) which do not extend to LSU(N) (resp. Diff+(S1)). Further-

more, we show that the U(1)-current net and the virasoro nets with positive integer

central charge are Ds(S1)-covariant, s > 2.

The original research in Chapter 3 about positive energy representation of Sobolev

di�eomorphism groups is due to a collaboration with Sebastiano Carpi, Simone Del

Vecchio and Yoh Tanimoto, is contained in [CDIT18] and it has been submitted as a

joint work. The results in Chapter 4 and 5 about soliton representations have been

obtained in collaboration with Simone Del Vecchio and Yoh Tanimoto, is contained

in [DIT18] and it has been submitted as a joint work.
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Chapter 1

Groups of di�eomorphisms and Loop

groups

Contents

1.1 In�nite-dimensional Lie groups . . . . . . . . . . . . . . . 1

1.2 The group Diff+(S1) . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 The Virasoro algebra. . . . . . . . . . . . . . . . . . . . . 6

1.2.2 The stress-energy tensor. . . . . . . . . . . . . . . . . . . . 7

1.2.3 The stress-energy tensor on non-smooth vector �elds . . . 8

1.3 Loop groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Groups of di�eomorphisms of Sobolev class Hs . . . . . . 11

1.1 In�nite-dimensional Lie groups

We start this section introducing the fundamental notions that we need to talk about

in�nite-dimensional Lie groups.

De�nition 1.1.1. A family {ρα} of seminorms on a complex vector space V is a

family of maps ρα : V → R+ such that for every α, β ∈ C, v, v1, v2 ∈ V we have that

ρα(v1 + v2) ≤ ρα(v1) + ρα(v2) (subadditivity), ρα(βv) = |β|ρα(v) (homogeneity). If

in addition ρα(v) = 0 for all α implies v = 0, we say that the family }ρα} separates
point. A complex vector space V is a locally convex space if admits a family of

seminorms separating points. The topology considered on V is the weakest topology

such that all ρα are continuous, together with the addition operation in V .

From De�nition 1.1.1, any locally convex space is an Hausdor� topological space.

In addition, the topology is metrizable if and only if the collection of seminorms
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Groups of di�eomorphisms The group Diff+(S1)

{ρα} is countable. A sequence {vi} ⊂ V in a metrizable locally convex space V is

Cauchy if ρm(vi − vj)→ 0 when i, j →∞, for all m. The space V is complete if

every Cauchy sequence converges.

De�nition 1.1.2. A Fréchet space is a complete metrizable locally convex space.

De�nition 1.1.3. Let V,W be Fréchet spaces and U ⊂ V an open set in V . A map

f : U ⊂ V → W is said to be di�erentiable in u ∈ U in the direction v ∈ V if

exists the limit

Df(u, v) := lim
t→0

f(u+ tv)− f(u)

t
, (1.1.1)

and the function f is di�erentiable in U if the limit 1.1.1 exists for all u ∈ U and

Df : U × V → W is continuous. Analogously, we can de�ne the k-th derivative of

f which is the function Dkf : U × V × · · · × V︸ ︷︷ ︸
k times

→ W if it exists. The function f is

said to be smooth (or C∞) if Dkf exists for all k ∈ N and is continuous.

A Fréchet manifoldM is a topological Hausdor� space with an atlas (Uα, ϕα) such

that the coordinate charts ϕα take values in a Fréchet space and all the transition

functions are C∞.

Starting from De�nition 1.1.3, given a Fréchet manifold M we can de�ne tan-

gent space, tangent bundle, vector �elds, etc., as in the case of �nite-dimensional

manifolds.

De�nition 1.1.4. A Fréchet Lie Group G is a Fréchet manifold together with a

group structure such that the multiplication map which sends g1, g2 to g1g2 and the

inversion map which sends g to g−1 are C∞.

De�nition 1.1.5. Let G a Lie Group with identity element e. The Lie algebra g

of G is the tangent space at the identity e, with the usual bracket induced by the

identi�cation with the Lie algebra of left invariant vector �elds of G.

1.2 The group Diff+(S1)

De�nition 1.2.1. We denote by Diff+(S1) the group of orientation preserving,

smooth di�eomorphisms of the circle S1 := {z ∈ C : |z| = 1}.

De�nition 1.2.2. We denote with Vect(S1) the Lie algebra of smooth vector �elds

on S1. We can identify Vect(S1) with C∞(S1,R), since a vector �eld X on the circle

can be written as X(eiθ) = f(eiθ) d
dθ

The group Diff+(S1) is an in�nite dimensional Lie group whose Lie algebra is

Vect(S1)[Mil84]. Given f ∈ Vect(S1) and t ∈ R we de�ne Exp : Vect(S1) →

2



The group Diff+(S1) Groups of di�eomorphisms

Diff+(S1) as the function which maps the �eld tf to the one-parameter group of

di�eomorphism of S1 Exp(tf) ∈ Diff+(S1) satisfying the equation

dz(t)

dt
= f(z(t))

where z(t) = Exp(tf)(z) and Exp(0)(z) = z.

Proposition 1.2.3. The exponential Exp : Vect(S1) → Diff+(S1) is not locally

surjective.

For an element f ∈ C∞(S1,R) we denote by f ′ the derivative of f with respect

to the angle θ,

f ′(z) =
d

dθ
f(eiθ)

∣∣∣∣
eiθ=z

.

We consider a di�eomorphism γ ∈ Diff+(S1) as a map from S1 in S1 ⊂ C. With

this convention, its action on f ∈ Vect(S1) is

(γ∗f)(eiθ) = −ie−iθ
(
d

dθ
γ(eiθ)

) ∣∣∣∣
γ−1(eiθ)

f(γ−1(eiθ)). (1.2.1)

The following is an important fact about the di�eomorphism group Diff+(S1):

Theorem 1.2.4. The group Diff+(S1) is algebraically simple.

Corollary 1.2.5. The group Diff+(S1) is generated by exponentials. Furthermore,

every γ ∈ Diff+(S1) can be written as a �nite product of exponential of localized

�elds, i.e. �elds with support contained in a proper interval of S1.

Proof. Let f ∈ Vect(S1) and γ ∈ Diff+(S1), then γ ◦ Exp(f) ◦ γ−1 = Exp(γ∗f).

De�nition 1.2.6. We denote by Diffk+(S1) the group of Ck-di�eomorphisms of S1.

Note that this is not a Lie group, and indeed, the corresponding linear space

Vectk(S1) of Ck-vector �elds is not closed under the natural Lie bracket (see below).

The universal covering group of Diff+(S1) (resp. Diffk+(S1)), ˜Diff+(S1) (resp.

˜Diffk+(S1)), can be identi�ed1 with the group of C∞-di�eomorphisms (resp. Ck-

di�eomorphisms) γ of R which satisfy

γ(θ + 2π) = γ(θ) + 2π.

If γ ∈ ˜Diff+(S1), its image under the covering map is in the following denoted by

γ̇ ∈ Diff+(S1), where γ̇(eiθ) = eiγ(θ). Conversely, if γ ∈ Diff+(S1), there is an

1The realization of ˜Diffk+(S1) works in the same way as ˜Diff+(S1) as in [TL99, Section 6.1], see

also [Ham82, Example 4.2.6].
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Groups of di�eomorphisms The group Diff+(S1)

element γ̃ ∈ ˜Diff+(S1) whose image under the covering map is γ. Such a γ̃ is unique

up to 2π and called a lift of γ.

The group Diff+(S1) admits the Bott-Virasoro cocycleB : Diff+(S1)×Diff+(S1)→
R (see e.g. [FH05]). The Bott-Virasoro group is then de�ned as the group with el-

ements

(γ, t) ∈ Diff+(S1)× R

and with multiplication

(γ1, t1) ◦ (γ2, t2) = (γ1 ◦ γ2, t1 + t2 +B(γ1, γ2)).

Note that, given a true (not projective) unitary irreducible representation V of the

universal covering of the Bott-Virasoro group, one can obtain a unitary multiplier

representation V (γ) := V (γ, 0) of ˜Diff+(S1) (with respect to the Bott-Virasoro

cocycle B). Then the map V : ˜Diff+(S1)→ U(H) satis�es

V (γ1)V (γ2) = eicB(γ̇1,γ̇2)V (γ2)V (γ1),

where c ∈ R by irreducibility.

The Möbius group

The group SL(2,R) of 2 × 2 real matrices with determinant one acts on the com-

pacti�ed real line R ∪ {∞} by fractional transformations:

g : x→ gx :=
ax+ b

cx+ d
for g =

(
a b

c d

)
∈ SL(2,R).

The Kernel of this action is {±1}.
By identifying the compacti�ed real line R ∪ {∞} with the circle S1 via Cayley

transform

C : S1 \ {−1} → R, z 7→ i
1− z
1 + z

, (1.2.2)

with inverse

C−1 : R→ S1 \ {−1}, t 7→ 1 + it

1− it
, (1.2.3)

the group PSL(2,R) := SL(2,R)/ {±1} can be identi�ed with a subgroup of di�eo-

morphims of the circle S1, the Möbius group. Using again the Cayley transform we

can identify SL(2,R) with SU(1, 1) :=

{(
α β

β̄ ᾱ

)
: |α|2 − |β|2 = 1

}
which acts on

S1 ⊂ C by linear fractional transformation:

g : z → gz :=
αx+ β

β̄x+ ᾱ
for g =

(
α β

β̄ ᾱ

)
∈ SU(1, 1).

4



The group Diff+(S1) Groups of di�eomorphisms

It follows that PSU(1, 1) := SU(1, 1)/ {±1} ' PSL(2,R), and it will be clear from

the context if we are dealing with elements of PSU(1, 1) acting on S1 (circle picture)

or with elements of PSL(2,R) acting on R ∪ {∞} (real line picture).
The following are important subgroups of PSL(2,R):

R(θ) =

(
cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

)
, δ(s) =

(
es/2 0

0 e−s/2

)
, τ(t) =

(
1 t

0 1

)
.

These are the rotation, dilation and traslation subgroup respectively and act in the

following way (using the circle picture for rotations and the compacti�ed real line

for dilations and traslations)

R(θ)z = eiθz on S1,

δ(s)x = esx on R,

τ(t)x = x+ t on R.

(1.2.4)

The generator of translations is by de�nition T (x) := ∂
∂t

(τ(t)x)

∣∣∣∣
t=0

= 1. The

corresponding �eld in angular coordinates, z = eiθ ∈ S1 ⊂ C, is

T (eiθ) = 1 + cos(θ). (1.2.5)

The Stabilizer subgroup of one point in Diff+(S1)

We denote with B0 the subgroup of Diff+(S1) consisting of di�eomorphisms which

�x the point z = −1. It is possible to consider B0 as a Lie subgroup of Diff+(S1)

with Lie algebra given by those vector �elds f ∈ Vect(S1) such that f(−1) = 0. It

is very easy to see, passing to the circle picture, that the dilation and translation

subgroups of Diff+(S1) are in B0

The representation theory of B0 it is not well understood. It possible to say

something about the restriction of representation of Diff+(S1) to B0: for example,

the restriction to B0 of an irreducible unitary projective positive-energy represen-

tation of Diff+(S1) is irreducible [Wei08, Corollary 3.6]. Two di�erent inequivalent

irreducible unitary projective positive-energy representations of Diff+(S1) may be

equivalent when restricted to B0 [Wei08, Corollary 6.4]. The question is wheter there

exist some unitary representation of B0 which don't extend to the whole Diff+(S1).

If we think of B0 as the group consisting of functions ϕ : R→ R which are smooth

and such that ϕ(2π + x) = ϕ(x) + 2π, ϕ(−π) = −π, we know the following result:

[Tan10, Proposition 7.1]

Proposition 1.2.7. If λ ∈ R, the map π : B0 → S1 such that

ϕ 7→ π(ϕ) := eiλ log(ϕ′(0))

5



Groups of di�eomorphisms The group Diff+(S1)

is a unitary (not projective) one-dimensional representation of B0 and cannot be

extended to Diff+(S1).

1.2.1 The Virasoro algebra.

The space Vect(S1) is endowed with the Lie algebra structure with the Lie bracket

given by

[f, g] = f ′g − fg′.

As a Lie algebra, Vect(S1) admits the Gelfand�Fuchs two-cocycle

ω(f, g) =
1

48π

∫
S1

(f(eiθ)g′′′(eiθ)− f ′′′(eiθ)g(eiθ))dθ.

The Virasoro algebra Vir is the central extension of the complexi�cation of the

algebra generated by the trigonometric polynomials in Vect(S1) de�ned by the two-

cocycle ω. It can be explicitly described as the complex Lie algebra generated by

Ln, n ∈ Z, and the central element 1, with brackets

[Ln, Lm] = (n−m)Ln+m + δn+m,0
n3 − n

12
1.

Consider a representation π : Vir → End(V ) of Vir on a complex vector space

V endowed with a scalar product 〈·, ·〉. We call π a unitary positive energy

representation if the following hold

1. Unitarity: 〈v, π(Ln)w〉 = 〈π(L−n)v, w〉 for every v, w ∈ V and n ∈ Z;

2. Positivity of the energy: V =
⊕

λ∈R+∪{0} Vλ, where Vλ := ker(π(L0) − λ1V ).

The lowest eigenvalue of π(L0) is called lowest weight;

3. Central charge: π(1) = c1V ;

There exists an irreducible unitary positive energy representation with central charge

c and lowest weight h if and only if c ≥ 1 and h ≥ 0 (continuous series representation)

or (c, h) = (c(m), hp,q(m)), where c(m) = 1 − 6
(m+2)(m+3)

, hp,q(m) = (p(m+1)−qm)2−1
4m(m+1)

,

m = 3, 4, · · · , p = 1, 2, · · · ,m − 1, q = 1, 2, · · · , p, (discrete series representation)

[KR87][DMS97]. In this case the representation space V is denoted by Hfin(c, h).

We denote by H(c, h) the Hilbert space completion of the vector space Hfin(c, h)

associated with the unique irreducible unitary positive energy representation of Vir

with central charge c and lowest weight h.

In these representations, the conformal Hamiltonian π(L0) is diagonalized, and

on the linear span of its eigenvectors Hfin(c, h) (the space of �nite energy vectors),

the Virasoro algebra acts algebraically as unbounded operators.

6



The group Diff+(S1) Groups of di�eomorphisms

1.2.2 The stress-energy tensor.

LetH(c, h) as above and, with abuse of notation, we denote by Ln the elements of Vir

represented in H(c, h). For a smooth complex-valued function f on S1 with �nitely

many non-zero Fourier coe�cients, the (chiral) stress-energy tensor associated with

f is the operator

T (f) =
∑
n∈Z

Lnf̂n

acting on H(c, h), where

f̂n =

∫ 2π

0

dθ

2π
e−inθf(eiθ).

by the linear energy bounds, yielding a self-adjoint unbounded operator T (f). More-

over it can be extended to a particular class of non-smooth functions [CW05], re-

taining its self-adjointness. This fact will be used in this thesis and will be thus

resumed in some detail in Section 1.2.3.

It is a crucial fact that the irreducible representations H(c, h) of Vir integrate

to irreducible unitary strongly continuous representations of the universal covering

of the Bott-Virasoro group [FH05]. In other words, denoting by q the quotient map

q : U(H(c, h))→ U(H(c, h))/C (we denote by U(K) the group of unitary operators

on K), there is an irreducible, unitary, strongly continuous multiplier representation

U of ˜Diff+(S1), the universal covering of Diff+(S1), such that

q(U(Exp(f))) = q(eiT (f))

for all f ∈ Vect(S1).

For the stress-energy tensor T , we have the following covariance [FH05, Propo-

sition 5.1, Proposition 3.1].

Proposition 1.2.8. The stress-energy tensor T on H(c, h) transforms according to

U(γ)T (f)U(γ)∗ = T (γ̇∗(f)) +
c

24π

∫ 2π

0

{γ̇, z}
∣∣∣∣
z=eiθ

f(eiθ)ei2θdθ

on vectors in Hfin(c, h), for f ∈ Vect(S1) and γ ∈ ˜Diff+(S1). Furthermore the

commutation relations

i[T (g), T (f)] = T (g′f − f ′g) + cω(g, f),

hold for arbitrary f, g ∈ C∞(S1), on vectors ψ ∈ Hfin(c, h).

Here

{γ̇, z} =
d3

dz3 γ̇(z)
d
dz
γ̇(z)

− 3

2

(
d2

dz2 γ̇(z)
d
dz
γ̇(z)

)2

7
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is the Schwarzian derivative of γ̇ and d
dz
γ̇(z) = −iz̄ d

dθ
γ̇(eiθ)

∣∣∣∣
eiθ=z

. Note that

β(γ, f) :=
c

24π

∫
S1

{γ̇, z}izf(z)dz

and ω(·, ·) are related by

d

dt
β(Exp(tf), g)

∣∣∣∣
t=0

= −cω(f, g). (1.2.1)

If we consider the Cayley transform (1.2.2)(1.2.3), a vector �eld f ∈ Vect(S1) in

real line coordinates is given by

C∗(f)(t) =
2

(1 + t2)
f(C−1(t)).

With the Schwarz class functions S (R), the stress energy tensor satis�es the fol-

lowing quantum-energy inequalities [FH05, Theorem 4.1].

Theorem 1.2.9. Let f ∈ Vect(S1) with C∗(f) ∈ S (R) and C∗(f)(t) ≥ 0 ∀t ∈ R.
For ψ ∈ D(L0), it holds that

(ψ, T (f)ψ) ≥ − c

12π

∫
R

(
d

dt

√
C∗(f)(t)

)2

dt,

where the derivative is given by

d

dt

√
C∗(f)(t) =

( d
dt
C∗(f)(t))/(2

√
C∗(f)(t)) if C∗(f)(t) 6= 0

0 if C∗(f)(t) = 0.

1.2.3 The stress-energy tensor on non-smooth vector �elds

Let T be the stress-energy tensor on H(c, h). Given a not necessarily smooth real

function f of S1 it is possible to evaluate the stress-energy tensor on f [CW05,

Proposition 4.5]. First of all we de�ne for a real-valued function f of the circle

‖f‖ 3
2

:=
∑
n∈Z

|f̂n|(1 + |n|
3
2 ),

where f̂n := 1
2π

∫ 2π

0
e−inθf(eiθ)dθ is the nth Fourier coe�cient of f .

De�nition 1.2.10. We denote with S 3
2
(S1,R) the class of functions f ∈ L1(S1,R)

such that ‖f‖ 3
2
is �nite endowed with the topology induced by the norm ‖ · ‖ 3

2
.

The following is [CW05, Proposition 4.2, Theorem 4.4, Proposition 4.5].

8
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Proposition 1.2.11. If f : S1 → C is continuous and such that
∑

n∈Z |f̂n|(1 +

|n| 32 ) <∞ then

a) the operator T (f) =
∑

n∈Z Lnf̂n on the domain Hfin(c, h) is well de�ned, (i.e.

the sum is strongly convergent on the domain);

b) T (f)∗ is an extension of the operator T (f)+ :=
∑

n∈Z Ln
¯̂
fn (this is again

understood as an operator on the domain Hfin(c, h)).

c) T (f) is closable and T (f) = (T (f)+)∗, where T (f) and T (f)+ are considered

as operators on the domain Hfin(c, h). In particular, if f̂n =
¯̂
f−n for all n ∈ Z

(i.e. if f is a real-valued function), then T (f) is essentially self-adjoint on

Hfin(c, h).

d) If f is real, then for every ξ ∈ D(L0) we have the following energy bounds

‖T (f)ξ‖ ≤ r‖f‖ 3
2
‖(1 + L0)ξ‖

where r is a positive constant. Consequently, D(L0) ⊂ D(T (f)).

e) If {fn} (n ∈ N) is a sequence2 of continuous real functions on S1 of �nite ‖·‖ 3
2

norm and ‖f − fn‖ 3
2
converges to 0 as n tends to ∞, then

T (fn)→ T (f)

in the strong resolvent sense.

It has been also shown that the class S 3
2
(S1,R) contains many non-smooth func-

tions [Wei06, Lemma 2.2],[CW05, Lemma 5.3].

Proposition 1.2.12. If a real-valued function f on the circle is piecewise smooth

and once continuously di�erentiable on the whole S1, then f ∈ S 3
2
(S1,R).

1.3 Loop groups

Let G be a �nite dimensional Lie group. The group of smooth maps from S1 to

G is denoted by LG. With ΛG we denote the group of smooth maps R → G with

compact support which is a subgroup of LG by embedding the real line in S1 by

Cayley transform.

The loop group LG is an in�nite dimensional Lie group (see [Mil84]) with Lie

algebra Lg consisting of smooth maps from S1 to g. We want to study central

2This should be distinguished from the Fourier coe�cients f̂n of a single function f .
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extensions of Lg or equivalently 2-cocycles. The important fact about 2-cocycles of

Lg is that if g is semisimple every continuous G-invariant 2-cocycle ω has the form

ω(x, y) =
1

2π

∫ 2π

0

〈x(θ), y′(θ)〉dθ

where 〈·, ·〉 is a symmetric invariant form on g. So the study of 2-cocycles for Lg

reduces to the much simpler analysis of the symmetric invariant forms of g which is

a �nite dimensional Lie algebra.

Theorem 1.3.1. Let G be a compact, connected and simply connected Lie group.

Then

(i) a 2-cocycle ω on Lg gives rise to an extension of LG if and only if [ω/2π] ∈
H2(LG,Z).

(ii) In this case the group extension L̃G is unique.

If G is a simple Lie group, i.e. has a simple Lie algebra g, then all the invariant

inner products are proportional. The smallest one satisfying the integrality condition

〈hα, hα〉 ∈ 2Z for every coroot hα is called basic inner product and we denote it with

the symbol 〈·, ·〉basic. It characterized by the following relation

〈hα, hα〉basic = 2

where α is the highest root and hα is the associated coroot. The associated 2-cocycle

of LG is denoted with ωbasic. Given an extension L̃G, we de�ne the level ` as the

scalar in Z+ such that ω = `ωbasic.

De�nition 1.3.2. A projective unitary representation of LG on a Hilbert space H
is a map U : LG→ U(H) such that

U(g)U(h) = c(g, h)U(gh) (1.3.1)

where c(·, ·) is a 2-cocycle of LG. A projective unitary representation of LG on H
is said to satisfy the positive-energy condition if there exists a strongly continuous

unitary representation R of T on the same Hilbert space with positive generator

such that

R(ϕ)U(g)R(ϕ)∗ = U(R̃(ϕ)g) (1.3.2)

for all g ∈ LG and ϕ ∈ T, where R̃(θ)g(eiθ) := g(ei(θ−ϕ)).

Correspondingly, a representation V of ΛG in U(H) has positive-energy if there

exists a strongly continuous unitary representation T of the one parameter group of

translations which intertwines V , i.e.

T (t)V (f)T (t)∗ = V (T̃ (t)f) (1.3.3)

where T̃ (t)f(x) = f(x+ t).

10
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We have that [PS86][Proposition 9.2.6]

Proposition 1.3.3. The restriction to ΛG of a positive energy representation of

LG is a positive energy representation of ΛG.

The interest in positive energy representations of loop group is partially moti-

vated by the following facts [PS86][Theorem 9.3.1]:

Theorem 1.3.4. A positive energy representation of LG is

(i) completely reducible, i.e. is a direct sum of irreducible representations;

(ii) has an intertwining action of Diff+(S1).

In special cases we have the following classi�cation result about the irreducible

positive energy representations of LG [Was98][Corollary, section 9].

Theorem 1.3.5. If G is a compact, simple and connected Lie Group, an irreducible

positive energy representation of LG is uniquely determined by the level ` determined

by the cocycle in 1.3.1 and by the lowest eigenspace H(0) of L0.

1.4 Groups of di�eomorphisms of Sobolev class Hs

We introduce (see [EK14, Section 2] and [EK14, De�nition 2.2], respectively)

Hs(S1) := {f ∈ L2(S1) : ‖f‖Hs <∞}, where ‖f‖Hs :=

(∑
n∈Z

(1 + n2)s|f̂n|2
) 1

2

Ds(S1) := {γ ∈ Diff1
+(S1) : γ̃ − ι ∈ Hs},

where γ̃ is a lift of γ to R.
It is easy to see that Diffk+(S1) is continuously embedded in Dk(S1). and by the

Sobolev-Morrey embedding [IKT13, Proposition 2.2], it follows thatDs ↪→ Diffk+(S1)

if s > k + 1
2
.

From [IKT13, Lemma 2.3] and [IKT13, Lemma B.4] we have that:

Lemma 1.4.1. Let s > 1
2
. Then Hs(S1) is an algebra and ‖fg‖Hs ≤ Cs‖f‖Hs‖g‖Hs.

If g ∈ Hs(S1) and infθ(1 + g(θ)) > 0, then 1
1+g
∈ Hs(S1).

The following is a special case of [IKT13, Theorem B.2] and an analogue of

[IKT13, Proposition B.7]. According to [Kol13, P.12], Lemma 1.4.2(a) for integer s

has been �rst established in [Ebi68].

Lemma 1.4.2. Let s > 3
2
. Then

11
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a) (γ, f) 7→ f ◦ γ, Ds(S1)×Hs(S1)→ Hs(S1) is continuous.

b) γ 7→ γ−1, Ds(S1)→ Ds(S1) is continuous.

c) Ds(S1) is a topological group.

By applying these results, we obtain the following

Lemma 1.4.3. We have the following.

a) Let s > 2. The embedding Hs(S1) ↪→ S 3
2
(S1) is continuous.

b) Let s > 3
2
. The map

Ds+1(S1)×Hs(S1)→ Hs(S1)

(γ, f) 7→ γ∗(f),

where γ∗(f) is as in (1.2.1), is continuous.

c) Let s > 3. β(γ, f) extends continuously to γ ∈ Ds(S1), f ∈ L2(S1).

Proof. (a) follows from

∑
k 6=0

|f̂k||k|
3
2 =

∑
k 6=0

|f̂k||k|2+ε 1

|k| 12 +ε
≤
√∑

k 6=0

1

k1+2ε

√∑
k 6=0

|f̂k|2|k|4+2ε.

for any ε > 0.

(b) follows from Lemmas 1.4.2 and 1.4.1 and (1.2.1).

(c) Note that, with s > 3, Ds(S1) 3 γ 7→ {γ̇, z} ∈ L2(S1) is continuous. To see

it, in the de�nition

{γ̇, z} =
d3

dz3 γ̇(z)
d
dz
γ̇(z)

− 3

2

(
d2

dz2 γ̇(z)
d
dz
γ̇(z)

)2

,

the maps γ 7→ d3

dz3 γ̇(z) ∈ L2(S1) and γ 7→ 1
d
dz
γ̇(z)
∈ Hs−1(S1) ⊂ L∞(S1) are

continuous, hence their product is continuous in L2(S1). The second derivative

γ 7→ d2

dz2 γ̇(z) ∈ Hs−2(S1) is continuous hence so is γ 7→
(

d2

dz2
γ̇(z)

d
dz
γ̇(z)

)2

∈ Hs−2(S1) (by

Lemma 1.4.1), hence we obtain the continuity of γ 7→ {γ̇, z} by Lemma 1.4.1. Now

the claim is immediate because β(γ, f) = c
24π

∫
S1{γ̇, z}izf(z)dz

12



Chapter 2

Conformal Nets
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2.1 Möbius covariant net

Let I be the set consisting of all open, non-empty, non-dense and connected subsets

of the circle S1. For a given I ∈ I, we denote with I ′ the interior of the complement

of I, namely (S1 \ I)◦.

A Möbius covariant net on S1 is a triple (A, U,Ω) where A := {A(I)}I∈I is
a family of von Neumann algebras on a �xed complex Hilbert space H indexed by

elements of I, U is strongly continuous unitary representation of PSL(2,R) always

on H, and Ω is a vector of H, which together satisfy the following properties:

A.1 Isotony: A(I1) ⊂ A(I2), if I1 ⊂ I2, I1, I2 ∈ I.

A.2 Locality: A(I1) ⊂ A(I2)′, if I1 ∩ I2 = ∅, I1, I2 ∈ I.

A.3 Möbius covariance: for g ∈ PSL(2,R), I ∈ I,

U(g)A(I)U(g)−1 = A(gI)

13
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where PSL(2,R) acts on S1 by Möbius transformations.

A.4 Positivity of the energy: the representation U has positive energy, i.e. the

conformal Hamiltonian L0, which is the generator of the one-parameter group

of rotations and is de�ned by the relation U(Rθ) = eiθL0 , has non-negative

spectrum.

A.5 Existence of the vacuum vector: up to a scalar, there exists a unique

vector Ω ∈ H which is invariant for the action of PSL(2,R), i.e. U(g)Ω = Ω

for all g ∈ PSL(2,R).

A.6 Ciclicity of the vacuum: Ω is cyclic for the algebra generated by all the

local algebras, A(S1) :=
∨
I∈I A(I).

The uniqueness of the vacuum is equivalent to the irreducibility of the net in the

following sense, see [GL96, Proposition 1.2]:

Proposition 2.1.1. The following properties for a Möbius covariant net (A, U,Ω)

are equivalent:

i) CΩ are the only U-invariant vectors.

ii) The local algebras A(I), I ∈ I are type III1 factors.

iii) If In is a family of intervals in I which intersects in one point, then ∧nA(In) =

C.

iv) The net (A, U,Ω) is irreducible, in the sense that the von Neumann algebra

generated by all the local algebras ∨I∈IA(I) is equal to B(H).

Remark 2.1.2. Suppose to have a triple (A, U,Ω) satisfying all the axioms except

for axiom A.6. We can always obtain an irreducible Möbius covariant net taking

the restriction to the space HA := A(S1)Ω.

The following properties are a consequence of the axioms:

Theorem 2.1.3. Let (A, U,Ω) Möbius covariant net. The following properties are

automatic [GF93][Theorem 2.19 ii), Corollary 2.8]

� Additivity: if I ∈ I is an interval and In is a collection of intervals in I
such that I = ∪nIn, then A(I) ⊂

∨
nA(In).

� Haag duality: for every I ∈ I, A(I ′) = A(I)′.

� Semicontinuity: if In ∈ I is a decreasing family of intervals and I = (
⋂
n In)◦

then A(I) =
∧
nA(In).

14
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� Reeh-Schlieder property: the vacuum vector Ω is cyclic and separating for

each A(I).

It must be stressed that if (A, U,Ω) is a Möbius covariant net, using the Reeh-

Schlieder property 2.1.3 we can associate to each local algebra A(I) the modular

operator ∆I using the Tomita-Takesaki modular theory. It is an important fact that

the representation U is completely characterized by the local algebras {A(I)} and
the vacuum vector Ω:

Theorem 2.1.4. Bisognano-Wichmann property: the modular operator ∆I

associated to A(I) with respect to the vacuum vector Ω has a geometrical meaning

in the following sense

U(δI(2πt)) = ∆it

where δI is the one-parameter group of dilations associated to I, i.e. the elements

in PSL(2,R) which preserve the interval I.

2.1.1 Di�eomorphism covariant nets

By a conformal net (or di�eomorphism covariant net) we shall mean a Möbius

covariant net which satis�es the following additional properties:

A.7 There exists a projective unitary representation U of Diff+(S1) onH extending

the unitary representation of PSL(2,R) such that for all I ∈ I we have

U(γ)A(I)U(γ)∗ = A(γI), γ ∈ Diff+(S1),

and

U(γ)xU(γ)∗ = x, x ∈ A(I), γ ∈ Diff+(I ′) (2.1.1)

where Diff+(I ′) denotes the subgroup of di�eomorphisms γ such that γ(z) = z

for all z ∈ I.

2.2 Representation theory

2.2.1 DHR representations

De�nition 2.2.1. A representation (or DHR representation)π of a conformal

net A is a family of maps

I ∈ I → πI ,

where πI ia representation of the von Neumann algebra A(I) on a �xed Hilbert

space Hπ, with the isotony property

πJ |A(I) = πI , I ⊂ J.
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If the representations πI are normal for every I ∈ I we say tha the representation
π il locally normal. The representation π is automatically locally normal if the

Hilbert space Hπ is separable [Tak02, Theorem 5.1].

We say that two representations π and ρ are equivalent if there exists an in-

tertwining unitary operator U from Hπ and Hρ, i.e. UπI(x) = ρI(x)U for every

x ∈ A(I) and I ∈ I. The unitary equivalence class of a representation π of a

net A is denoted with [π] and the unitary equivalence classes of irreducible repre-

sentations are called sectors, where a representation π is irreducible if and only if∧
πI(A(I))′ = C1.
The vacuum representation π0 onHπ0

:= H is π0(x) := x, for every x ∈ A(I), I ∈
I. We say that a representation π on the vacuum Hilbert space H is localized in I ∈
I if π|A(I) = id|A(I). It follows from Haag duality that πJ(A(J)) ⊂ A(J) for every

J ⊂ I, in other words that πJ is and endomorphism of A(J). A representation π of

a net A which is localized in some interval I ∈ I is said a localized endomorphism,

and it turns out that if the representation space Hπ is separable π is always unitary

equivalent to a representation localized in an interval I, for every I ∈ I.
The representation π is said to be Möbius covariant (resp.di�eomorphism

covariant) if there exists a unitary strongly continuous projective representation

Uπ of the universal covering of the Möbius group (resp. of the universal covering of

Diff+(S1)) such that

Uπ(g)πI(x)Uπ(g)∗ = πġI(U(g)xU(g)∗),

for all g ∈ ˜PSL(2,R) (resp g ∈ ˜Diff+(S1)), where ġ is the image of g in PSL(2,R)

(resp. Diff+(S1)) under the covering map.

2.2.2 Soliton representations

Let IR be the class of elements consisting of open, non-empty, connected subsets of

the real line R, identi�ed with S1 \ {−1} via Cayley transform. Namely, IR is the

family of bounded open intervals and of open half-lines of R.

De�nition 2.2.2. A soliton σ of a conformal net A is a map

I ∈ IR → σI

where σI is a normal representation of the von Neumann algebra A(I) on a �xed

Hilbert space Hσ with the isotony property

σJ |A(I) = σI , I ⊂ J.

We say thet the soliton π is proper if there is no representation of the conformal

net A which agrees with π when restricted to the family of intervals IR.
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De�nition 2.2.3. A soliton σ of A on the Hilbert space Hσ is B0-covariant if

there is a unitary projective representation Uσ of B0 (the universal cover of B0) on

Hσ such that

AdUσ(γ)(σI(x)) = σγ(I)(AdU0(γ)(x)) (2.2.1)

with x ∈ A(I) and U0 is the unitary projective representation of Diff+(S1) restricted

to B0. In addition, we say that the soliton σ has positive-energy if the unitary pro-

jective representation Uσ above can be choosen in such a way that the restriction to

the one-parameter subgroup of translations of B0 lifts to a true strongly continuous

representation which has a positive self-adjoint generator.

2.3 Subnets

A conformal subnet of a conformal net (A, U,Ω) on HA consists of a family B =

{B(I)}I∈I of von Neumann algebras always acting on H such that

1. B(I) ⊂ A(I) for every I ∈ I,

2. B(I) ⊂ B(J) if I ⊂ J , I, J ∈ I,

3. U(g)B(I)U(g)∗ = B(gI) if I ∈ I and g ∈ PSL(2,R).

Note that (B, U,Ω) it is not a Möbius covariant net because in general does not

satisfy axiom A.6. We can always obtain a Möbius covariant net from (B, U,Ω).

Consider the Hilbert space HB :=
∨
I B(I)Ω ⊂ HA. We de�ne the family B̂ :=

{B̂(I)}, where with B̂(I) we mean the restriction of all the operators in B(I) to the

subspace HB. In a similar fashion, we de�ne Û := U |HB as the restriction of the

representation U to the subspace HB. The triple (B̂, Û ,Ω) is a Möbius covariant net

on HB, see remark 2.1.2. By the Reeh-Schlieder property 2.1.3 the map B(I) 3 b 7→
b|HB ∈ B̂(I) is an isomorphism of von Neumann algebras.

2.4 The Virasoro net

The Virasoro net with central charge c is the conformal net induced by the Vir

representation H(c, h)

A(Vir,c)(I) = {eiT(c,0)(f) : f ∈ C∞(S1), real-valued, suppf ⊂ I}′′

It enjoys all the listed properties in the de�nition of a conformal net

It's representation theory is completely understood.
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Proposition 2.4.1. If U is a strongly continuous positive energy projective unitary

irreducible representation of Diff+(S1) on a Hilbert space H (which is necessarily

separable) then U is unitarily equivalent to U(c,h) which is the unique unitary projec-

tive representation obtained by the integration of the module L(c, h).

2.5 Loop group conformal net

From the class of irreducible positive energy representations of LG it is possible to

choose a particular subclass, the irreducible vacuum representations, which have a

unique lowest eigenvalue vector for L0 which is invariant for the action of PSL(2,R).

If we �x the level ` we have only one irreducible vacuum representation for LG

[GF93][Section III.8].

De�nition 2.5.1. If U`,0 is the vacuum representation of level ` then the family of

von Neumann algebras

AG,`(I) := {U`,0(f) : supp (f) ⊂ I}′′ (2.5.1)

is a conformal net, where the vacuum vector Ω is the lowest eigenvalue vector of L0

and the di�eomorphism covariance follows from 1.3.4, see [GF93][Theorem 3.2].

In the case of G = SU(N) we mention the following facts [Was98][Theorem B,

Section 17], [Tan18]:

Theorem 2.5.2. Let G = SU(N) and U`1,h1, U`2,h2 be two irreducible positive en-

ergy representations of LSU(N) of level `1 and `2 and lowest weights h1 and h2

respectively. Then `1 = `2 if and only if U`1,h1 and U`2,h2 are locally equivalent,

namely, for every interval I of S1 there exist a unitary operator WI such that

WIU`1,h1(g)W ∗
I = U`2,h2(g)

when supp(g) ⊂ I.

Theorem 2.5.3. Let G = SU(N). There exists a one-to-one correspondence be-

tween the irreducible positive energy representations of level ` of LSU(N) and irre-

ducible representations of the conformal net ASU(N),`.

The one-to-one correspondence is given by

U`,h 7→ π`,h, (2.5.2)

where π`,h(U`,0(g)) := U`,h(g) for supp (g) ⊂ I and π`,h is extended to ASU(N),`(I) by

local equivalence, Theorem 2.5.2.
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Chapter 3

Extension of the Diff+(S1)

representations to Sobolev

di�eomorphisms
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3.1 Irreducible case

Our purpose is to extend the positive energy projective representation U on H(c, h)

of Diff+(S1) to Ds(S1) with s > 3. In the following s > 3 will be always assumed.

An element γ ∈ Ds(S1) acts on f ∈ Vect(S1) via (1.2.1). If T is the energy-

momentum operator associated with a positive energy unitary representation of the

Virasoro algebra Vir with central charge c and lowest weight h, we de�ne a new

class of operators

T γ(f) := T (γ∗f)− β(γ, f),

where f ∈ Vect(S1) and β(γ, f) = c
24π

∫
S1{γ, z}izf(z)dz, which makes sense for

γ ∈ Ds(S1) by Lemma 1.4.3 and Proposition 1.2.11(a)). The fact that γ∗f is

in S 3
2
(S1,R) ensures that T (γ∗f) is an essentially self-adjoint operator on Hfin(c, h)

and so is T γ(f) by Proposition 1.2.11(c)). We denote its closure by the same symbol

T γ(f), so long as no confusion arises.
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Extension of representations of Diff+(S1) Irreducible case

Note that, if γ ∈ Diff+(S1), then we have

T γ(f) = AdU(γ)(T (f)). (3.1.1)

Indeed, by de�nition T γ(f) = T (γ∗f) − β(γ, f) and by Proposition 1.2.8, (3.1.1)

holds on D(L0), and the both operators are essentially self-adjoint there, hence they

must coincide. As they are unitarily implemented, the energy bound holds as well:

‖T γ(f)ξ‖ ≤ r‖f‖ 3
2
· ‖(1 + Lγ0)ξ‖, (3.1.2)

where Lγ0 := T γ(1).

We de�ne for γ1, γ2 ∈ Ds(S1)

(T γ1)γ2(f) := T γ1((γ2)∗f)− β(γ2, f).

Proposition 3.1.1. Let γ1, γ2 ∈ Ds(S1), s > 3, and f ∈ Vect(S1). Then (T γ1)γ2(f) =

T γ1◦γ2(f).

Proof. Using the properties of the Schwarzian derivative [OT05]

{γ1 ◦ γ2, z} = {γ1, γ2(z)}
(
d

dz
γ2(z)

)2

+ {γ2, z}

where y = γ2(z), we infer that

β(γ1 ◦ γ2, f) = − c

24π

∫ 2π

0

{γ1 ◦ γ2, z}
∣∣∣∣
z=eiθ

f(eiθ)ei2θdθ

= − c

24π

∫ 2π

0

{γ1, y}
∣∣∣∣
y=γ2(eiθ)

(
d

dz
γ2(z)

)2 ∣∣∣∣
z=eiθ

f(eiθ)ei2θdθ

− c

24π

∫ 2π

0

{γ2, z}
∣∣∣∣
z=eiθ

f(eiθ)ei2θdθ

= − c

24π

∫ 2π

0

{γ1, y}
∣∣∣∣
y=eiϕ

· (−i) d
dθ

(
γ2(eiθ)

) ∣∣∣∣
eiθ=γ−1

2 (eiϕ)

f(γ−1
2 (eiϕ))eiϕdϕ

− c

24π

∫ 2π

0

{γ2, z}
∣∣∣∣
z=eiθ

f(eiθ)ei2θdθ

= − c

24π

∫ 2π

0

{γ1, y}
∣∣∣∣
y=eiϕ

· (−i)e−iϕ d
dθ

(
γ2(eiθ)

) ∣∣∣∣
eiθ=γ−1

2 (eiϕ)

f(γ−1
2 (eiϕ))ei2ϕdϕ

− c

24π

∫ 2π

0

{γ2, z}
∣∣∣∣
z=eiθ

f(eiθ)ei2θdθ

= β(γ1, γ2∗(f)) + β(γ2, f),

where we used the change of variables eiϕ = γ2(eiθ), hence eiθ dθ
dϕ

dγ2

dz
(eiθ)|γ2(eiθ)=eiϕ =

eiϕ, dγ2

dz
(eiθ) = −ie−iθ d

dθ
γ2(eiθ) and (1.2.1).

So (T γ1)γ2(f) = T ((γ1)∗((γ2)∗f))−β(γ1, γ2∗f)−β(γ2, f) = T ((γ1◦γ2)∗f)−β(γ1◦
γ2, f) = T γ1◦γ2(f).
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Irreducible case Extension of representations of Diff+(S1)

Lemma 3.1.2. D(L0) = D(Lγ0) for every γ ∈ Ds(S1), where Lγ0 := T γ(1) and here

we denote by 1 the constant function with the value 1.

Proof. By Lemma 3.2.2 we can take a sequence {γn} in Diff+(S1) convergent to γ

in the topology of Ds(S1). We observe that 1 = limn γn∗(γ
−1
∗ (1)) in the topology of

S 3
2
(S1). For ξ ∈ D(L0) we know from Proposition 1.2.11(e)) and (3.1.2) that

‖L0ξ‖ = lim
n→∞

‖
(
T γn((γ−1

∗ )(1)) + β(γn, γ
−1
∗ (1))

)
ξ‖

≤
(

lim
n→∞

r‖γ−1
∗ (1)‖ 3

2
· ‖(1 + Lγn0 )ξ‖+ |β(γn, γ

−1
∗ (1))|‖ξ‖

)
= r‖γ−1

∗ (1)‖ 3
2
· ‖(1 + Lγ0)ξ‖+ |β(γ, γ−1

∗ (1))|‖ξ‖,

Recall that we know that D(L0) ⊂ D(Lγ0) from Proposition 1.2.11(d)) and Lγ0 is

essentially self-adjoint on D(L0). From the above inequality, we infer that any

sequence ξn ∈ D(L0) converging to ξ ∈ D(Lγ0) in the graph norm of Lγ0 is also

convergent in the graph norm of L0, and therefore, we have D(Lγ0) = D(L0).

Proposition 3.1.3 (energy bounds for T γ). Let γ ∈ Ds(S1). Then

‖T γ(f)ξ‖ ≤ r‖f‖ 3
2
‖(1 + Lγ0)ξ‖

for all ξ ∈ D(L0).

Proof. Let {γn} a sequence of elements in Diff+(S1) converging to γ ∈ Ds(S1) as in

Lemma 3.2.2. By Proposition 1.2.11(e)) and (3.1.2),

‖T γ(f)ξ‖ = lim
n→∞

‖T γn(f)ξ‖ ≤ lim
n→∞

r‖f‖ 3
2
‖(1 + Lγn0 )ξ‖ =

= r‖f‖ 3
2
‖(1 + Lγ0)ξ‖,

which is the desired inequality.

Theorem 3.1.4. T γ yields an irreducible unitary positive energy representation of

Vir with central charge c and lowest weight h on H(c, h).

Proof. We are going to prove the Virasoro relations on C∞(Lγ0). For this purpose,

we have to take under control the action of various exponentiated operators.

Computations on D(L0). We start by noting that eiT
γ(g)D(L0) ⊂ D(L0). In-

deed, using [FH05, Proposition 3.1] we have, for ξ ∈ D(L0) and γn ∈ Diff+(S1) as

in Lemma 3.2.2,

L0e
iT γn (g)ξ = eiT

γn (g)(T ((γnExp(−g)γ−1
n )∗(1))− β(γnExp(−g)γ−1

n , 1))ξ,
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Extension of representations of Diff+(S1) Irreducible case

and the right-hand side converges as n → ∞ by Proposition 1.2.11(e)). Therefore,

since both eiT
γn (g)ξ and L0e

iT γn (g)ξ are convergent, it follows that eiT
γ(g)ξ ∈ D(L0)

and

L0e
iT γ(g)ξ = eiT

γ(g)(T ((γExp(−g)γ−1)∗(1))− β(γExp(−g)γ−1, 1))ξ.

For vectors ξ ∈ D(L0) and γn ∈ Diff+(S1), by Proposition 1.2.8 we have the

operator equality

eiT
γn (g)T γn(f)e−iT

γn (g) = T γn(Exp(g)∗(f))−
(

c

24π

∫
S1

{Exp(g), z}izf(z)dz

)
,

and we saw above that for ξ ∈ D(L0) and γn ∈ Diff+(S1), it holds that e−iT
γn (g)ξ ∈

D(L0) ⊂ D(T γn(f)), therefore, we have

eiT
γn (g)T γn(f)e−iT

γn (g)ξ = T γn(Exp(g)∗(f))ξ −
(

c

24π

∫
S1

{Exp(g), z}izf(z)dz

)
ξ.

We apply to the operator equality the function

hk : s ∈ R→ sχ(−k,k)

where χ is the characteristic function of the interval (−k, k) ⊂ R. By bounded

functional calculus, we obtain for any ξ ∈ D(L0)

hk(e
iT γn (g)T γn(f)e−iT

γn (g))ξ = eiT
γn (g)hk(T

γn(f))e−iT
γn (g)ξ, (3.1.3)

and the right-hand side tends to eiT
γ(g)hk(T

γ(f))e−iT
γ(g)ξ as n → ∞, because we

have convergence of T γn(f) to T γ(f) and T γn(g) to T γ(g) in the strong resol-

vent sense, and their bounded functional calculus eiT
γn (g), hk(T

γn(f)) converge to

eiT
γ(g), hk(T

γn(f)), respectively. On the other hand, the left-hand side of (3.1.3) can

be rewritten as

hk

(
T γn(Exp(g)∗(f))− c

24π

∫
S1

{Exp(g), z}izf(z)dz

)
ξ

and this converges to

hk

(
T γ(Exp(g)∗(f))− c

24π

∫
S1

{Exp(g), z}izf(z)dz

)
ξ

as n → ∞, again by the convergence of {T γn(Exp(g)∗(f))} in the strong resol-

vent sense and bounded functional calculus with hk. Altogether, we know that the

following equality holds:

eiT
γ(g)hk(T

γ(f))e−iT
γ(g)ξ = hk

(
T γ(Exp(g)∗(f))− c

24π

∫
S1

{Exp(g), z}izf(z)dz

)
ξ.
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Irreducible case Extension of representations of Diff+(S1)

By taking the limit for k →∞, we get for every ξ ∈ D(L0)

eiT
γ(g)T γ(f)e−iT

γ(g)ξ = T γ(Exp(g)∗(f))ξ −
(

c

24π

∫
S1

{Exp(g), z}izf(z)dz

)
ξ.

(3.1.4)

Recall that D(L0) = D(Lγ0). We get in particular

eitL
γ
0T γ(f)e−itL

γ
0 ξ = T γ(ft)ξ, (3.1.5)

where ft(e
iθ) = f(ei(θ−t)).

Computations on C∞(Lγ0). The right-hand side of (3.1.5) is di�erentiable with

respect to t when ξ ∈ D(L0) since for the right hand side we get

lim
t→0

1

t
(T γ(ft)− T γ(f))ξ = lim

t→0
T γ(1

t
(ft − f))ξ = T γ(−f ′)ξ = −T γ(f ′)ξ,

by the continuity of T γ in the topology of S 3
2
(S1) (Proposition 3.1.3). Let us spe-

cialize it to ξ ∈ C∞(Lγ0) :=
⋂
n D((Lγ0)n). For the left-hand side of (3.1.5), we

have

d

dt

∣∣∣∣
t=0

eitL
γ
0T γ(f)e−itL

γ
0 ξ

= lim
t→∞

(
1

t

(
eitL

γ
0T γ(f)e−itL

γ
0 − eitL

γ
0T γ(f)

)
ξ +

1

t

(
eitL

γ
0T γ(f)− T γ(f)

)
ξ

)
.

(3.1.6)

The �rst term converges to −iT γ(f)L0ξ. Indeed, by Proposition 3.1.3,∥∥∥∥1

t

(
eitL

γ
0T γ(f)e−itL

γ
0 − eitL

γ
0T γ(f)

)
ξ + ieitL

γ
0T γ(f)Lγ0ξ

∥∥∥∥
=

∥∥∥∥1

t

(
T γ(f)e−itL

γ
0 − T γ(f)

)
ξ + iT γ(f)Lγ0ξ

∥∥∥∥
≤ r‖f‖ 3

2

∥∥∥∥(1 + Lγ0)

(
e−itL

γ
0 − 1

t
+ iLγ0

)
ξ

∥∥∥∥
= r‖f‖ 3

2

∥∥∥∥(e−itLγ0 − 1

t
+ iLγ0

)
(1 + Lγ0)ξ

∥∥∥∥ .
Since ξ ∈ C∞(Lγ0), by Stone's theorem [RS80, Theorem VIII.7(c)] the above con-

verges to 0 as t→ 0. Thus the limit exists also for the second term of (3.1.6), and by

applying Stone's theorem [RS80, Theorem VIII.7(d)], we get T γ(f)ξ ∈ D(Lγ0), and

the second term converges to iLγ0T
γ(f)ξ. or in other words, T γ(f)C∞(L0) ⊂ D(Lγ0)

(actually, we proved T γ(f)D((Lγ0)2) ⊂ D(Lγ0)). Thus we have established the fol-

lowing commutation relation on C∞(Lγ0):

[Lγ0 , T
γ(f)]ξ = iT γ(f ′)ξ. (3.1.7)
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Extension of representations of Diff+(S1) Irreducible case

It follows that C∞(Lγ0) is an invariant domain for every T γ(f) with f ∈ C∞(S1,R).

Indeed, for T γ(f)ξ, with ξ ∈ C∞(Lγ0) and f ∈ C∞(S1,R), (3.1.7) is equivalent to

Lγ0T
γ(f)ξ = [Lγ0 , T

γ(f)]ξ + T γ(f)Lγ0ξ = iT γ(f ′)ξ + T γ(f)Lγ0ξ. (3.1.8)

Now we go by induction in k. Assume that T γ(f)ξ ∈ D((Lγ0)k) and all f ∈
C∞(S1,R). It then follows from (3.1.8) that Lγ0T

γ(f)ξ ∈ D((Lγ0)k), i.e. T γ(f)ξ ∈
D((Lγ0)k+1). We thus get the desired claim T γ(f)C∞(Lγ0) ⊂ C∞(Lγ0).

The Virasoro relations. Finally we show that the stress-energy tensor T γ indeed

yields a representation of Vect(S1). For ξ ∈ C∞(Lγ0),

d

dt

∣∣∣∣
t=0

eitT
γ(g)T γ(f)e−itT

γ(g)ξ

= lim
t→0

(
1

t

(
eitT

γ(g)T γ(f)e−itT
γ(g) − eitT γ(g)T γ(f)

)
+

1

t

(
eitT

γ(g)T γ(f)− T γ(f)
))

ξ.

(3.1.9)

As for the left-hand side, from (3.1.4), we obtain (T γ(g′f − gf ′) + cω(g, f))ξ by

(1.2.1).

Let us see the right-hand side of (3.1.9) term by term. As for the �rst term, we

have∥∥∥∥1

t

(
eitT

γ(g)T γ(f)e−itT
γ(g) − eitT γ(g)T γ(f)

)
ξ + eitT

γ(g) · iT γ(f)T γ(g)ξ

∥∥∥∥
=

∥∥∥∥1

t

(
T γ(f)e−itT

γ(g) − T γ(f)
)
ξ + iT γ(f)T γ(g)ξ

∥∥∥∥
≤ r‖f‖ 3

2

∥∥∥∥(1 + Lγ0)
1

t

(
e−itT

γ(g) − 1
)
ξ + (1 + Lγ0) · iT γ(g)ξ

∥∥∥∥
≤ r‖f‖ 3

2

(∥∥∥∥(1

t

(
e−itT

γ(g) − 1
)

+ iT γ(g)

)
ξ

∥∥∥∥+

∥∥∥∥(1

t
Lγ0
(
e−itT

γ(g) − 1
)

+ iLγ0T
γ(g)

)
ξ

∥∥∥∥) .
(3.1.10)

The �rst term of (3.1.10) goes to 0 by Stone's theorem [RS80, Theorem VIII.7(c)].

The second term can be treated by (3.1.4) and (3.1.7) as follows:∥∥∥∥1

t
Lγ0(e−itT

γ(g) − 1)ξ + iLγ0T
γ(g)ξ

∥∥∥∥
=

∥∥∥∥1

t

(
e−itT

γ(g)(T γ(Exp(tg)∗(1))− β(Exp(tg), 1))− Lγ0
)
ξ + i(iT γ(g′) + T γ(g)Lγ0)ξ

∥∥∥∥
≤
∥∥∥∥1

t
(e−itT

γ(g)T γ(Exp(tg)∗(1))− e−itT γ(g)Lγ0)ξ − T γ(g′)ξ
∥∥∥∥

+

∥∥∥∥1

t
(e−itT

γ(g)Lγ0 − L
γ
0)ξ + iT γ(g)Lγ0ξ

∥∥∥∥+

∣∣∣∣1t β(Exp(tg), 1)

∣∣∣∣‖ξ‖.
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Irreducible case Extension of representations of Diff+(S1)

each term can be seen to converge to 0: the �rst term is done by noting that

Lγ0 = T γ(1), continuity of T γ (Proposition 3.1.3), [g, 1] = g′ and unitarity of e−itT
γ(g).

The second term vanishes by using Stone's theorem. The last term also converges

to zero by (1.2.1) and using the fact that ω(g, 1) = 0. To summarize, the �rst term

of the right-hand side of (3.1.9) tends to −iT γ(f)T γ(g).

The second term of (3.1.9) is equal to iT γ(g)T γ(f). Indeed, since C∞(Lγ0) is

invariant under the action of T γ(f), this follows by Stone's theorem.

Altogether, we obtained the equality i[T γ(g), T γ(f)] = T γ(g′f − gf ′) + cω(g, f)

on C∞(Lγ0), which is the Virasoro commutation relation.

Note that until here we have only used that T is a positive energy representation

of the Virasoro algebra with the central charge c with diagonalizable L0, but not

irreducibility. Therefore, one can iterate our construction for another element in

Ds(S1). In particular, by taking γ−1, we obtain by Proposition 3.1.1

(T γ)γ
−1

(f) = T (f). (3.1.11)

We claim that the new representation T γ is irreducible and has the same lowest

weight h. Indeed, by (3.1.11), one can approximate T (f) by T γ(γ−1
n∗ f)+β(γ, (γ−1

n )∗(f))

in the strong resolvent sense, where {γn} ⊂ Diff+(S1) and γn → γ in the topology

of Ds(S1). As {eiT (f) : f ∈ Vect(S1)} generates B(H(c, h)), so does {eiT γ(f) : f ∈
Vect(S1)}, and this shows that T γ is a irreducible representation of the Virasoro

algebra. Furthermore, the new conformal Hamiltonian Lγ0 = T γ(1) has spectrum

which is a subset of the spectrum of the old conformal Hamiltonian L0 since it is

obtained as a limit in the strong resolvent sense of {AdU(γn)(L0)} with the same

spectrum [RS80, Theorem VIII.24(a)]. Again by iteration, we have

spL0 = sp (T γ)γ
−1

(1) ⊂ spLγ0 = spT γ(1) ⊂ spL0,

therefore, all these sets must coincide. In particular, h is the lowest eigenvalue of

Lγ0 .

As T and T γ are equivalent as irreducible representations of Vect(S1) and thus of

the Virasoro algebra, there is an intertwiner U(γ), de�ned up to a scalar: U(γ)T (f) =

T γ(f)U(γ).

Corollary 3.1.5. The map γ 7→ U(γ) where γ ∈ Ds(S1), s > 3, is a unitary

projective representation of Ds(S1), i.e. U(γ1 ◦ γ2) = U(γ1)U(γ2) up to a phase

factor.

Proof. We know that for γ1, γ2 ∈ Ds(S1)

U(γ1)T (f) = T γ1(f)U(γ1),

U(γ2)T (f) = T γ2(f)U(γ2)
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Extension of representations of Diff+(S1) Irreducible case

hold for every f ∈ Vect(S1). So

U(γ1)U(γ2)T (f) = U(γ1)T γ2(f)U(γ2) = U(γ1)(T (γ2∗f)− β(γ2, f))U(γ2) =

= (T γ1(γ2∗f)− β(γ2, f))U(γ1)U(γ2) =

= (T ((γ1 ◦ γ2)∗f)− β(γ1, γ2∗f)− β(γ2, f))U(γ1)U(γ2).

Consequently by the computations of Proposition 3.1.1

U(γ1)U(γ2)T (f) = T γ1◦γ2(f)U(γ1)U(γ2),

therefore, U(γ1 ◦ γ2) = U(γ1)U(γ2) up to a phase because we are dealing with

irreducible representations of the Virasoro algebra.

Corollary 3.1.6. Let U(c,h) be the irreducible unitary projective representation of

Diff+(S1) with central charge c and lowest weight h. U(c,h) extends to a strongly

continuous irreducible unitary projective representation of Ds(S1).

Proof. We only need to be prove, i.e. that the action α : Ds(S1)→ Aut(B(H(c, h))),

γ 7→ AdU(γ) is pointwise continuous in the strong operator topology of B(H(c, h)).

Let {γn} ⊂ Diff+(S1), γ ∈ Ds(S1) with γn → γ in the topology of Ds(S1). Then

lim
n→∞

U(γn)eitT (f)U(γn)∗ = lim
n→∞

eitT
γn (f) = eitT

γ(f)

where the limit is meant in the strong topology. By taking f = 1, we obtain the

convergence of Lγn0 to Lγ0 in the strong resolvent sense. As they are in the (c, h)-

representation of the Virasoro algebra, the lowest eigenprojections E0, E
γ
0 are one-

dimensional, and it holds that limn→∞AdU(γn)(E0) = Eγ
0 . Let Ω,Ωγ be the lowest

eigenvectors. By �xing the scalars, we may assume that Ωγn := U(γn)Ω→ Ωγ.

With this U(γn) with �xed phase, the sequence

U(γn)eiT (f1) · · · eiT (fk)Ω = eiT
γn (f1) · · · eiT γn (fk)Ωγn

is convergent to eiT
γ(f1) · · · eiT γ(fk)Ωγ, because all the operators eiT

γn (f1), · · · , eiT γn (fk)

are uniformly bounded and convergent in the strong operator topology. Since vectors

of the form eiT (f1) · · · eiT (fk)Ω span a dense subspace of the whole Hilbert space

H(c, h), together with the uniform boundedness of U(γn), we obtain the convergence

of U(γn) to U(γ) in the strong operator topology.

The continuity follows, since for any x ∈ B(H), AdU(γn)(x) is convergent in the

strong operator topology because U(γn) is uniformly bounded.

Corollary 3.1.7. Let U(c,h) be the irreducible unitary projective representation of

Diff+(S1) with central charge c and lowest weight h. U(c,h) extends to a strongly

continuous irreducible unitary projective representation of Diffk+(S1) with k ≥ 4.

Proof. This is an immediate corollary of the continuous embedding Diffk+(S1) ↪→
Ds(S1), s ≤ k.
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3.2 Direct sum of irreducible representations

Here we prove that every positive energy projective unitary representation of Diff+(S1)

extends to a unitary projective representation of Ds(S1) for s > 3. A similar result

holds for the universal covering groups provided that the representation is assumed

to be a direct sum of irreducibles. This is not an immediate consequence of Corollary

3.1.6, because, in general, the direct sum of projective representations does not make

sense: U(Hj)/C is not a linear space. On the other hand, if we havemultiplier rep-

resentations of a group G with the same cocycle, Uj(g1)Uj(g2) = ω(g1, g2)Uj(g1g2)

where ω(g1, g2) is a 2-cocycle H2(G,C) of G, then the direct sum
⊕

j Uj(g) is again

a multiplier representation with the same cocycle ω. If we are interested in a pro-

jective representation of a certain quotient G/H by a normal subgroup H we have

to make sure that the direct sum
⊕

Uj(h) reduces to a scalar when h ∈ H.

First of all, we need that elements in Ds(S1) with compact support can be

approximated by elements Ds(S1) with slightly larger support.

Lemma 3.2.1. For a �xed f ∈ Hs(S1), the rotation R 3 t 7→ ft = f(ei(·−t)) ∈
Hs(S1) is continuous.

Proof. We have f̂t,k = eiktf̂k, and hence |f̂t,k| = |f̂k| and f̂t,k → f̂k as t → 0. By

Lebesgue's dominated convergence theorem (applied to the measure space Z with

the counting measure, with the dominating function k 7→ 4|(1 + k2)sf̂k|2)∑
k

(1 + k2)s|f̂t,k − f̂k|2 → 0.

This means ‖f − ft‖Hs → 0.

Lemma 3.2.2. For every γ ∈ Ds(S1), there exists a sequence {γn} converging to γ

in the topology of Ds(S1). Furthermore, if γ is supported in I, we can take γn such

that supp γn ⊃ γn+1 and
⋂
n supp γn = I.

Proof. Let γ ∈ Ds(S1) and ϕ ∈ D̃s(S1) such that ϕ(θ + 2π) = ϕ(θ) + 2π and

γ(eiθ) = eiϕ(θ). If γ is supported in a proper interval we may assume without loss

of generality that ϕ(θ) = θ if θ ∈ [−π, a) ∪ (b, π]. The function ψ := ϕ′ − 1 is

2π-periodic and has compact support [a, b] as a function on [−π, π].

We now choose a set of C∞-functions {gn} with compact support strictly con-

tained in [−π, π] such that for all n ∈ N gn ≥ 0,
∫
gn = 1, supp (gn) ⊃ supp (gn+1),

supp (gn) → {0}. In addition, if γ is supported in [a, b], we may assume that

[a, b] + supp (gn) ⊃ supp (ψ ∗ gn), where the convolution is de�ned on S1 = R/2πZ
as an abelian group.
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Extension of representations of Diff+(S1) Direct sum of irreducible representations

To obtain the claim, it is enough to show that ‖ψ − ψ ∗ gn‖Hs → 0 as n → 0.

This follows from

‖ψ − ψ ∗ gn‖Hs ≤
∫
S1

gn(t)‖ψ − ψt‖Hsdt

and Lemma 3.2.1.

Lemma 3.2.3. Let U(c,h1), U(c,h2) be irreducible, projective representations of D̃s(S1)

with central charge c and lowest weight h1, h2 respectively, constructed as in Section

3. Let I be a proper interval of S1. Then the projective representations U(c,h1)

and U(c,h2) restricted to Ds(I) are unitarily equivalent. Furthermore, a unitary U

intertwines U(c,h1) and U(c,h2) restricted to Ds(I) if and only if it intertwines T(c,h1)(f)

and T(c,h2)(f) for every f ∈ Vect(S1) with support in I.

Proof. Let Ĩ an open proper interval of S1 such that Ĩ ⊃ I. By [Wei17, Theorem 5.6]

there exists a unitary W which intertwines the representations U(c,h1), U(c,h2) when

restricted to Diff+(Ĩ). Let γ ∈ Ds(I), then by Lemma 3.2.2 there exists a sequence

of C∞-di�eomorphisms {γn} ⊂ Diff+(Ĩ) converging to γ. By Corollary 3.1.6,

AdWU(c,h1)(γ)W ∗ = Ad lim
n→∞

WU(c,h1)(γn)W ∗ = Ad lim
n→∞

U(c,h2)(γn) = AdU(c,h2)(γ).

The last assertion follows from [Wei17, Lemma 2.1].

We are going to show that we can take the direct sum of irreducible projective

representations of Ds(S1), {U(c,hj)}, with the same central charge c but possibly

di�erent lowest weights {hj} where di�erences hj−hj′ are integers. We split the proof

into two steps. First, we make U(c,hj) into continuous multiplier representations with

the same cocycle in some neighborhood V of the identity di�eomorphism ι ∈ D̃s(S1).

Then it is straightforward to take the direct sum. Next, we show that the direct

sum representation reduced to a projective representation of Ds(S1) if the di�erences

hj − hj′ are integers.
Let G and G′ be two topological groups. Given a neighborhood V of the identity

in G, a continuous map µ : V → G′ is a local homomorphism if µ(g1)µ(g2) = µ(g1g2)

for all g1, g2 ∈ V and g1g2 ∈ V .
We say that a map U is a local unitary multiplier representation of a topolog-

ical group G on a neighborhood V of the identity if U is a map from V to the

unitary group U(H) of a Hilbert space H which satis�es the equality U(g1)U(g2) =

ω(g1, g2)U(g1g2), where ω : V×V → T and ω(g1, g2)ω(g1g2, g3) = ω(g1, g2g3)ω(g2, g3)

whenever g1, g2, g3, g1g2 and g2g3 are in V . The following is obtained by reversing

the idea of [Tan18].
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Proposition 3.2.4. For a family {(c, hj)} of pairs with the same central charge c,

there is a neighborhood V of D̃s(S1) such that the irreducible unitary projective rep-

resentations U(c,hj) lift to local multiplier representations of V with the same cocycle

c(·, ·).

Proof. Let us take h1. By [Bar54][Mor17, Proposition 12.44], in a neighborhood V̂
of the identity ι ∈ ˜Diff4

+(S1), U(c,h1) lifts to a continuous multiplier representation,

with some continuous cocycle c(·, ·), which we will denote by U1.

Because D̃s(S1) is a topological group, and by Lemmas C.0.3, C.0.4, for each

neighborhood W , there is a smaller neighborhood p(W) such that p(W)2 ⊂ W and

χk(γ), χ
(k)
k (γ), χ

(k)
k+1(γ) ⊂ W for γ ∈ p(W). We take V = p11(V̂) = p(p(p(· · · V̂ · · · )))︸ ︷︷ ︸

11-times

.

Construction of multiplier representations Uj. We show that we can take Uj

with the same cocycle c(·, ·).
We �x a covering {Ik} of S1 as in Lemma C.0.3. For γ ∈ p(V̂), we de�ne Uj as

follows: By Lemma 3.2.3, there are unitary intertwiners {Vj,k} between U(c,h1) and

U(c,hj) restricted to Ds(Ik). We set

Uj(χk(γ)) = AdVj,k(U1(γk)),

which makes sense because p(V̂) ⊂ V̂ . Note that Uj(χk(γ)) does not depend on the

choice of unitary intertwiner Vj,k, since, if Vj,k and V̂j,k are both unitary intertwiners,

then by Lemma 3.2.3

AdV ∗j,kV̂j,k(Uj(χk(γ))) = Uj(χk(γ))

for γ smooth, and by continuity of U1 for χk(γ) ∈ Ds(Ik) ∩ V̂ .
Let us denote γk = χk(γ) for simplicity. Now, since γ = γ1γ2γ3 with γk ∈

Ds(Ik) ∩ V̂ , we can de�ne Uj(γ) by

Uj(γ) = Uj(γ1)Uj(γ2)Uj(γ3)c(γ1, γ2)−1c(γ1γ2, γ3)−1, (3.2.1)

and note that the corresponding equation holds for U1.

Well-de�nedness. We used a particular set of maps χk to de�ne Uj, but actually

they do not depend on the choice of such map χk if γ satis�es certain properties and

is su�ciently close to ι. Namely, we take two decompositions γ = γ1γ2γ3 = γ′1γ
′
2γ
′
3

where γk, γ
′
k ∈ Ds(Ik) ∩ p5(V̂).

It holds that γ−1
3 γ−1

2 γ−1
1 γ′1γ

′
2γ
′
3 = ι in D̃s(S1) and U1(γ1)∗ = c(γ1, γ

−1
1 )U1(γ−1

1 ),

hence we have

c(γ1, γ2, γ3, γ
′
1, γ
′
2, γ
′
3) := U1(γ3)∗U1(γ2)∗U1(γ−1

1 γ′1)U1(γ′2)U1(γ′3) ∈ C.
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Furthermore, as U1 is a multiplier representation in V̂ , we have

U1(γ) = U1(γ1)U1(γ2)U1(γ3)c(γ1, γ2)−1c(γ1γ2, γ3)−1

= U1(γ′1)U1(γ′2, )U1(γ′3)c(γ′1, γ
′
2)−1c(γ′1γ

′
2, γ
′
3)−1.

By putting all factors in one side, we obtain

c(γ1, γ2, γ3, γ
′
1, γ
′
2, γ
′
3)c(γ−1

1 , γ′1)c(γ1, γ
−1
1 )c(γ1, γ2)c(γ1γ2, γ3)c(γ′1, γ

′
2)−1c(γ′1γ

′
2, γ
′
3)−1 = 1.

(3.2.2)

Note that Uj is unitarily equivalent to U1 on any proper interval, therefore,

Uj(γ1)∗Uj(γ
′
1) = c(γ−1

1 , γ′1)c(γ1, γ
−1
1 )Uj(γ

−1
1 γ′1), and γ−1

1 γ′1 = γ2γ3γ
′−1
3 γ′−1

2 has sup-

port in I2 ∪ I3. Then we can again use the unitary equivalence between Uj and U1

on I2 ∪ I3 to obtain

Uj(γ3)∗Uj(γ2)∗Uj(γ
−1
1 γ′1)Uj(γ

′
2)Uj(γ

′
3) = c(γ1, γ2, γ3, γ

′
1, γ
′
2, γ
′
3),

which is, by (3.2.2), equivalent to the equality

Uj(γ1)Uj(γ2)Uj(γ3)c(γ1, γ2)−1c(γ1γ2, γ3)−1

= Uj(γ
′
1)Uj(γ

′
2)Uj(γ

′
3)c(γ′1, γ

′
2)−1c(γ′1γ

′
2, γ
′
3)−1.

In other words, Uj is well-de�ned on p6(V̂).

Cocycle relations. Next we show that Uj is a local multiplier representation on

V . Let γ, γ′ ∈ V = p11(V̂) and we take decompositions γ = γ1γ2γ3, γ
′ = γ′1γ

′
2γ
′
3.

We �rst look at the product γ3γ
′
1. This is supported in I1 ∪ I3, and we can �nd

another decomposition γ3γ
′
1 = γ′′1γ

′′
3 using Lemma C.0.4, where γ′′j ∈ Ds(Ij)∩ p8(V̂).

By repeating such operations and taking new decompositions in proper intervals,

we �nd

γγ′ = γ1γ2γ3γ
′
1γ
′
2γ
′
3

= γ1γ2γ
′′
1γ
′′
3γ
′
2γ
′
3

= γ1γ
′′′
1 γ
′′′
2 γ
′′′′
2 γ′′′′3 γ′3,

where γ
(k)
j ∈ Ds(Ij) ∩ p6(V̂).

Again, by considering the multiplier representation U1, we can prove the following

relations

U1(γ3)U1(γ′1) = U1(γ′′1 )U1(γ′′3 )c(γ3, γ
′
1, γ
′′
1 , γ

′′
3 ),

U1(γ2)U1(γ′′1 ) = U1(γ′′′1 )U1(γ′′′2 )c(γ2, γ
′′
1 , γ

′′′
1 , γ

′′′
2 ),

U1(γ′′3 )U1(γ′2) = U1(γ′′′′2 )U1(γ′′′′3 )c(γ′′3 , γ
′
2, γ
′′′′
2 , γ′′′′3 ),

(3.2.3)
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where c(γ3, γ
′
1, γ
′′
1 , γ

′′
3 ), c(γ2, γ

′′
1 , γ

′′′
1 , γ

′′′
2 ), c(γ′′3 , γ

′
2, γ
′′′′
2 , γ′′′′3 ) ∈ C are de�ned through

these equalities. Therefore, as U1 has the cocycle c,

c(γ, γ′)U1(γγ′)

= U1(γ)U1(γ′)

= c(γ1, γ2)−1c(γ1γ2, γ3)−1c(γ′1, γ
′
2)−1c(γ′1γ

′
2, γ
′
3)−1

×U1(γ1)U1(γ2)U1(γ3)U1(γ′1)U1(γ′2)U1(γ′3)
by (3.2.1)

= c(γ1, γ2)−1c(γ1γ2, γ3)−1c(γ′1, γ
′
2)−1c(γ′1γ

′
2, γ
′
3)−1

×U1(γ1)U1(γ′′′1 )U1(γ′′′2 )U1(γ′′′′2 )U1(γ′′′′3 )U1(γ′3)

×c(γ3, γ
′
1, γ
′′
1 , γ

′′
3 )c(γ2, γ

′′
1 , γ

′′′
1 , γ

′′′
2 )c(γ′′3 , γ

′
2, γ
′′′′
2 , γ′′′′3 )

by (3.2.3)

= c(γ1, γ2)−1c(γ1γ2, γ3)−1c(γ′1, γ
′
2)−1c(γ′1γ

′
2, γ
′
3)−1

×c(γ3, γ
′
1, γ
′′
1 , γ

′′
3 )c(γ2, γ

′′
1 , γ

′′′
1 , γ

′′′
2 )c(γ′′3 , γ

′
2, γ
′′′′
2 , γ′′′′3 )

×c(γ1, γ
′′′
1 )c(γ′′′2 γ

′′′′
2 )c(γ′′′′3 γ′3) · U1(γ1γ

′′′
1 )U1(γ′′′2 γ

′′′′
2 )U1(γ′′′′3 γ′3)

= c(γ1, γ2)−1c(γ1γ2, γ3)−1c(γ′1, γ
′
2)−1c(γ′1γ

′
2, γ
′
3)−1

×c(γ3, γ
′
1, γ
′′
1 , γ

′′
3 )c(γ2, γ

′′
1 , γ

′′′
1 , γ

′′′
2 )c(γ′′3 , γ

′
2, γ
′′′′
2 , γ′′′′3 )

×c(γ1, γ
′′′
1 )c(γ′′′2 γ

′′′′
2 )c(γ′′′′3 γ′3) · c(γ1γ

′′′
1 , γ

′′′
2 γ
′′′′
2 )c(γ1γ

′′′
1 γ
′′′
2 γ
′′′′
2 , γ′′′′3 γ′3)U1(γγ′)

or equivalently, the following relation between scalars:

c(γ, γ′) = c(γ1, γ2)−1c(γ1γ2, γ3)−1c(γ′1, γ
′
2)−1c(γ′1γ

′
2, γ
′
3)−1

× c(γ3, γ
′
1, γ
′′
1 , γ

′′
3 )c(γ2, γ

′′
1 , γ

′′′
1 , γ

′′′
2 )c(γ′′3 , γ

′
2, γ
′′′′
2 , γ′′′′3 ) (3.2.4)

× c(γ1, γ
′′′
1 )c(γ′′′2 γ

′′′′
2 )c(γ′′′′3 γ′3) · c(γ1γ

′′′
1 , γ

′′′
2 γ
′′′′
2 )c(γ1γ

′′′
1 γ
′′′
2 γ
′′′′
2 , γ′′′′3 γ′3).

Since Uj is locally equivalent to U1, the following also follows from (3.2.3):

Uj(γ3)Uj(γ
′
1) = Uj(γ

′′
1 )Uj(γ

′′
3 )c(γ3, γ

′
1, γ
′′
1 , γ

′′
3 ),

Uj(γ2)Uj(γ
′′
1 ) = Uj(γ

′′′
1 )Uj(γ

′′′
2 )c(γ2, γ

′′
1 , γ

′′′
1 , γ

′′′
2 ),

Uj(γ
′′
3 )Uj(γ

′
2) = Uj(γ

′′′′
2 )Uj(γ

′′′′
3 )c(γ′′3 , γ

′
2, γ
′′′′
2 , γ′′′′3 ),

(3.2.5)

Now, in order to show that Uj is a local multipler representation with the cocycle
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c, we only have to compute

Uj(γ)Uj(γ
′)

= c(γ1, γ2)−1c(γ1γ2, γ3)−1c(γ′1, γ
′
2)−1c(γ′1γ

′
2, γ
′
3)−1

×Uj(γ1)Uj(γ2)Uj(γ3)Uj(γ
′
1)Uj(γ

′
2)Uj(γ

′
3)

by (3.2.1)

= c(γ1, γ2)−1c(γ1γ2, γ3)−1c(γ′1, γ
′
2)−1c(γ′1γ

′
2, γ
′
3)−1

×Uj(γ1)Uj(γ
′′′
1 )Uj(γ

′′′
2 )Uj(γ

′′′′
2 )Uj(γ

′′′′
3 )Uj(γ

′
3)

×c(γ3, γ
′
1, γ
′′
1 , γ

′′
3 )c(γ2, γ

′′
1 , γ

′′′
1 , γ

′′′
2 )c(γ′′3 , γ

′
2, γ
′′′′
2 , γ′′′′3 )

by (3.2.5)

= c(γ, γ′) (c(γ1, γ
′′′
1 )c(γ′′′2 γ

′′′′
2 )c(γ′′′′3 γ′3) · c(γ1γ

′′′
1 , γ

′′′
2 γ
′′′′
2 )c(γ1γ

′′′
1 γ
′′′
2 γ
′′′′
2 , γ′′′′3 γ′3))−1

×Uj(γ1)Uj(γ
′′′
1 )Uj(γ

′′′
2 )Uj(γ

′′′′
2 )Uj(γ

′′′′
3 )Uj(γ

′
3)

by (3.2.4)

= c(γ, γ′) (c(γ1γ
′′′
1 , γ

′′′
2 γ
′′′′
2 )c(γ1γ

′′′
1 γ
′′′
2 γ
′′′′
2 , γ′′′′3 γ′3))−1

×Uj(γ1γ
′′′
1 )Uj(γ

′′′
2 γ
′′′′
2 )Uj(γ

′′′′
3 γ′3)

= c(γ, γ′)Uj(γγ
′),

where we used local equivalence between Uj and U1 in and 4th equalities, and the

well-de�nedness (independence of the partition of a group element into Ds(Ik) ∩
p5(V̂)) in the 5th equality. Namely, Uj has the cocycle c on V = p11(V̂).

Direct sum of multiplier representations. Since all the projective representa-

tions Uj can be made into the local multiplier representations with the same cocycle

c, the direct sum U :=
⊕

j Uj is again a local multiplier representation of D̃s(S1) on

V . By forgetting the phase, we can interpret that U is a local projective representa-

tion of V ⊂ D̃s(S1), or in other words, a continuous local group homomorphism from

V into U(H)/T (see Section A), where H =
⊕

jH(c, hj). As D̃s(S1) is simply con-

nected and locally connected, U extends to a continuous projective representation

of D̃s(S1) [Pon46, Theorem 63].

Theorem 3.2.5. For a family {(c, hj)} of pairs with the same central charge c such

that hj − hj′ ∈ N, the direct sum projective representation U of D̃s(S1) as above

satis�es U(ρ(2π)) ∈ C, where ρ(·) is the lift of rotations to D̃s(S1), or in other

words, U is a projective representation of Ds(S1).

Proof. Let Ũ(c,hj) the irreducible global multiplier representation of ˜Diff+(S1) with

central charge c and lowest weight hj associated to the Bott-Virasoro cocycle. As

a projective representation, we have U
∣∣

˜Diff+(S1)
=
⊕

j Ũ(c,hj): this is because, by

de�nition of U , they agree on a neighborhood of the identity of ˜Diff+(S1), and since
˜Diff+(S1) is simply connected they agree globally. Since ˜PSL(2,R) is a simple Lie

group, U
∣∣

˜PSL(2,R)
extends to a true representation of ˜PSL(2,R) by changing U(γ)

only by a scalar [Bar54][Mor17, Theorem 12.72] (see also [Mor17, Example 12.77]).
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The lift to a true representation of ˜PSL(2,R) is unique, since if V1 and V2 are true

representations which give rise to the same projective representation, we have that

V1(g) = χ(g)V2(g) for all g ∈ ˜PSL(2,R), where χ is a character. Since ˜PSL(2,R)

is a perfect group, χ(g) = 1 for all g. By the uniqueness of the lift of U
∣∣

˜PSL(2,R)

to a true representation V , we have that V =
⊕

j V(c,hj), where V(c,hj) is the lift of

Ũ(c,hj)

∣∣
˜PSL(2,R)

to a true representation. As we assume that hj − hj′ are integers,

V (ρ(2π)) ∈ C.

From the previous theorem, it follows that every positive energy projective uni-

tary representation of Diff+(S1) extends to a unitary projective representation of

Ds(S1) using the following well-known fact that we here prove for completeness.

Proposition 3.2.6. Let U be a positive energy unitary projective representation of

Diff+(S1) on the Hilbert space H. Then U is unitarily equivalent to a direct sum of

irreducible positive energy unitary projective representation of Diff+(S1) and extends

to Ds(S1), s > 3.

Proof. As in the proof of Theorem 3.2.5, we have that U
∣∣
PSL(2,R)

can be lifted to

a true representation of ˜PSL(2,R). Thus we can take the generator of rotations

L0 and, since ei2πL0 ∈ C1 from the fact that U is a projective representation of

Diff+(S1), it follows that L0 is diagonalizable with spectrum Sp(L0) ⊂ {h1 + N}
with h1 ∈ R, h1 ≥ 0. Let Hfin be the dense subspace of H generated by the

eigenvectors of L0. We can apply [CKLW18, Theorem 3.4] to conclude that there

exists a positive energy unitary representation πU of Vir on Hfin.

The representation of Vir on Hfin is equivalent to an algebraic orthogonal di-

rect sum of multiples of irreducible positive energy representations of Vir in the

following sense. Let V1 be the smallest πU -invariant subspace of Hfin which con-

tains ker(L0 − h11Hfin) where h1 is the smallest eigenvalue of L0. By induction let

Vn be the smallest πU -invariant subspace of (V1 ⊕ V2 ⊕ · · · ⊕ Vn−1)⊥ ∩ Hfin which

contains (V1 ⊕ V2 ⊕ · · · ⊕ Vn−1)⊥ ∩ ker(L0− hn1Hfin) where hn is the smallest eigen-

value of L0 restricted to (V1 ⊕ V2 ⊕ · · · ⊕ Vn−1)⊥ ∩Hfin. It is straightforward to see

that Hfin =
⊕

n Vn in the algebraic sense. Now choose an orthonormal basis {enj } of
Wn := Vn∩ker(L0−hn1Hfin). We de�ne Hn

j to be the smallest πU -invariant subspace

of Wn which contains the vector enj . By construction Hn
j has no proper πU -invariant

subspaces, Hn
j and Hn

k are orthogonal subspaces for j 6= k and Vn =
⊕

j H
n
j . Let T

be the stress-energy tensor associated to the representation πU of Vir. By construc-

tion T (f)|Hn
j
is essentially self-adjoint on Hn

j .

To conclude the decomposition of U , we have to show that eiT (f)Hn
j ⊂ Hn

j

for all f ∈ Vect(S1). We note that D

((
(T (f)|Hn

j
)
)`)

⊂ D(T (f)`) and if ξ ∈
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D

((
(T (f)|Hn

j
)
)`)

then
(
T (f)|Hn

j

)`
ξ = (T (f))`ξ. Thus the analytic vectors for

(T (f)|Hn
j
) are also analytic for T (f) and e

i(T (f)|Hn
j

)
ξ = eiT (f)ξ. Using the density of

the analytic vectors in Hn
j , we obtain that e

i(T (f)|Hn
j

)
= eiT (f)

∣∣
Hn
j
. Irreducibility of

U |Hn
j
follows because T |Hn

j
is irreducible.

The extension to Ds(S1) is now a mere corollary of Theorem 3.2.5.

Corollary 3.2.7. Let U be a positive energy unitary projective representation of

Diff+(S1) on the Hilbert space H. Then U is unitarily equivalent to a direct sum of

irreducible positive energy unitary projective representation of Diff+(S1) and extends

to Diffk+(S1) with k ≥ 4.

Proof. This again follows from Proposition 3.2.6 and the continuous embedding

Diffk+(S1) ↪→ Ds(S1), s ≤ k.

We do not know whether our local multiplier representations can be extended to

a global multiplier representation of D̃s(S1). It is also open whether the global multi-

plier representation of Diff+(S1) with the Bott-Virasoro cocycle [FH05, Proposition

5.1] extends to D̃s(S1) by continuity.

3.3 Conformal nets and di�eomorphism covariance

Consider a conformal net (A, U,Ω), see 3.3. By de�nition, U is a positive energy

representation of Diff+(S1) and is equivalent to a direct sum of irreducible represen-

tations, see Proposition 3.2.6. Every irreducible component Uj in decomposition has

the same value of the central charge c and if hj is the lowest weight of Uj, hj−hk ∈ Z
for every j, k. This fact is crucial for our purpose, which is to extend the conformal

symmetry of the net to the larger group Ds(S1), s > 3, in the sense that we want to

show that the conditions in (2.1.1) are satis�ed for arbitrary γ in Ds(S1) and Ds(I ′)
respectively.

Proposition 3.3.1. A conformal net (A, U,Ω) is Ds(S1)-covariant, s > 3.

Proof. Let {γn} be a sequence of di�eomorphisms in Diff+(S1) converging to γ ∈
Ds(S1) in the topology of Ds(S1) as in Lemma 3.2.2. For all n ∈ N it holds that

U(γn)A(I)U(γn)∗ = A(γnI) ⊂ A(
⋃n
k=m γkI),

where we used isotony of the net A. For x ∈ A(I), it follows for m ≤ n that

U(γn)xU(γn)∗ ∈ A(
⋃n
k=m γkI) =

∨∞
k=mA(γkI),
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by additivity. By Proposition 3.1.6 it follows that U(γ)xU(γ)∗ = limn→∞ U(γn)xU(γn)∗

(convergence in the strong operator topology) is in
⋃∞
k=mA(γk · I) for any m, hence

we have by upper semicontinuity that

U(γ)A(I)U(γ)∗ ⊂
⋂
m

A(
⋃∞
k=m γkI) = A(γI).

The other inclusion follows by applying AdU(γ−1).

Now consider γ ∈ Ds(I ′) and x ∈ A(I). We know from lemma 3.2.2 that

exists a sequence {γn} ⊂ Diff+(I ′n) converging to γ in the topology of Ds(S1) and

a decreasing sequence of intervals I ′n ⊃ supp (γn) ⊃ I ′ such that
⋂
n I
′
n = I ′. For

x ∈ A(In), U(γm)xU(γm)∗ = x if m ≥ n, hence by Proposition 3.1.6 we obtain

U(γ)xU(γ)∗ = x. As n is arbitrary, this holds for any x ∈ A(
⋃
n In) = A(I) by

additivity.
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Chapter 4

General results about soliton

representations

Contents

4.1 C1 piecewise smooth di�eomorphisms . . . . . . . . . . . 37

4.2 Positivity of energy . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Solitons from nonsmooth di�eomorphisms . . . . . . . . 47

4.3.1 Type I solitons . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.2 Type III solitons . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.3 Covariance for soliton representations . . . . . . . . . . . 50

In this Chapter we prove that any soliton representation is translation covari-

ant and has always positive energy (in [Hen17b, Section 3.3.1], Henriques already

observed that the translation covariance holds for any soliton representations). Fur-

thermore we construct a class of inequivalent irreducible proper soliton representa-

tions. In the �rst part of the chapter we prove that any C1 piecewise smooth dif-

feomorphism is imlementable by an unitary operator in any conformal net (A, U,Ω)

and the proof is based on an idea of André Henriques. This technical statement is

used in Section 4.2 and 4.3.

4.1 C1 piecewise smooth di�eomorphisms

De�nition 4.1.1. With Diff1,∞
+ (S1) we denote the group of C1 di�eomorphisms of

the circle which are piecewise smooth. In the sequel, we denote with Di�1,∞
+,0 the

subgroup of Diff1,∞
+ (S1) consisting of elements γ such that γ(−1) = −1 and with

Di�1,∞
+,1 the subgroup of Di�1,∞

+,0 consisting of elements γ such that γ′(−1) = 1.
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Soliton representations C1 piecewise smooth di�eomorphisms

Let γ ∈ Diff1,∞
+ (S1) and let γ̃ be a lift of γ to the universal covering ˜Diff1

+(S1).

Recall that as a consequence of Borel's lemma [Hör90][Theorem 1.2.6], there exists

an open interval I of S1 which contains p = −1 and γI− , γI+ ∈ Diff+(S1) such that

γ agrees with γI− in I− and with γI+ in I+, where I− and I+ are the connected

components of I \ {−1}.
For f ∈ C∞(S1,R) and γ ∈ Diff+(S1) we de�ne

f (k)(eiθ) :=
dk

dθk
f(eiθ) (4.1.1)

and

γ(k)(eiθ) :=
dk

dθk
γ̃(θ) (4.1.2)

where γ̃ is the lift of γ in ˜Diff+(S1).

Lemma 4.1.2. Let {λn}n≥2 be a sequence of real numbers. There exists g ∈
C∞(S1,R) such that Exp(g)(n)(−1) = λn for all n ≥ 2.

Proof. Consider the following Lie subalgebras of C∞(S1,R)

bn =
{
f ∈ C∞(S1,R) : f (k)(−1) = 0, for 0 ≤ k ≤ n

}
, (4.1.3)

and b∞ =
{
f ∈ C∞(S1,R) : f (k)(−1) = 0, for all k ∈ N

}
.

To each algebra corresponds a Lie subgroup of Diff+(S1),

Bn :=
{
γ ∈ Diff+(S1) : γ(−1) = −1, γ(1)(−1) = 1, γ(k)(−1) = 0, for 2 ≤ k ≤ n

}
,

(4.1.4)

andB∞ :=
{
γ ∈ Diff+(S1) : γ(−1) = −1, γ(1)(−1) = 1, γ(k)(−1) = 0, for all k ≥ 2

}
.

By explicit calculations, Bn is a normal subgroup of B1 for every n ≥ 1, as

in [Tan10]. The quotient B1/Bn is a �nite-dimensional Lie group with Lie alge-

bra b1/bn. An element [γ] ∈ B1/Bn is completely determined by the numbers

{γ(k)(−1)}nk=2 and the product is(
{γ(k)

1 (−1)}nk=2

)
·
(
{γ(k)

2 (−1)}nk2

)
=
{

(γ1 ◦ γ2)(k) (−1)
}n
k=2

.

Analogously, every element [f ] of the Lie algebra b1/bn is completely determined by

the numbers {f (k)(−1)}nk=2.

The colimit of the sequence of Lie algebras

b1/b2 ←− · · · ←− b1/bn ←− b1/bn+1 ←− · · · (4.1.5)

is the Lie algebra x2C[[x]], where sum, product and derivation are the usual ones for

formal power series and the Lie bracket is [f, g] := f ′g − g′f , f, g ∈ x2C[[x]]. Note

that x2C[[x]] ' b1/b∞ by Borel's Lemma.
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The colimit of the sequence of groups

B1/B2 ←− · · · ←− B1/Bn ←− B1/Bn+1 ←− · · · (4.1.6)

is the group x + x2C[[x]] with product given by the composition of formal power

series.

Since b1/bn is a nilpotent Lie algebra, the exponential map Expn : b1/bn −→ B1/Bn

is surjective [CG90][Theorem 1.2.1]. We prove that Expn agrees with the projection

of the exponential Exp of Diff+(S1) on b1/bn. Let f, g ∈ b1 such that [f ] = [g] in

b1/bn, i.e. f = g + h with h ∈ bn. We need to show that Exp(f) ◦ Exp(−g) ∈ Bn

or Exp(f)(k)(−1) = Exp(g)(k)(−1) for 0 ≤ k ≤ n− 1. We have that

d

dt

(
dk

dθk
Exp(tf)(eiθ)

∣∣∣∣
eiθ=−1

)
=

dk

dθk

(
d

dt
Exp(tf)(eiθ)

) ∣∣∣∣
eiθ=−1

=
dk

dθk
f(Exp(tf)(eiθ))

∣∣∣∣
eiθ=−1

(4.1.7)

and observe that making explicit calculations, in last term of the equation dk

dθk
Exp(tf)(eiθ)

∣∣∣∣
eiθ=−1

does not appear because f (1)(−1) = 0. Reasoning by induction on k and since

dk

dθk
Exp(tf)(eiθ)

∣∣∣∣
eiθ=−1

and dk

dθk
Exp(tg)(eiθ)

∣∣∣∣
eiθ=−1

satisfy the same di�erential equa-

tion with the same initial data, we can conclude that Exp(f)(k)(−1) = Exp(g)(k)(−1)

for 0 ≤ k ≤ n− 1.

The colimit of the Expn maps is in particular surjective. Furthermore it agrees

with Exp projected on b1/b∞.

Proposition 4.1.3. Let {λ+
n }n≥2, {λ−m}m≥2 be two sequences of real numbers. There

exists g ∈ C1(S1,R), g smooth on S1 \ {−1}, such that Exp(g) ∈ Diff1,∞
+ (S1),

Exp(g) is smooth on S1 \ {−1} and ∂n+Exp(g)(−1) = λ+
n , ∂

m
−Exp(g)(−1) = λ−m for

all n,m ≥ 2.

Proof. From Lemma 4.1.2 applied to {λ+
n }n≥2, {λ−m}m≥2, there exist g+, g− ∈ C∞(S1,R)

such that Exp(g+)(n)(−1) = {λ+
n } and Exp(g−)(n)(−1) = {λ−n }, m,n ≥ 2. From g+

and g− we can construct a g which is smooth on S1 \ {−1}, g is in C1(S1,R) and

g|I+ = g+|I+ , g|I− = g−|I− .

Proposition 4.1.4. Let γ ∈ Diff1,∞
+ (S1), smooth on S1 \ {−1}. There exist g ∈

C1,∞(S1,R), ϕ ∈ Diff+(S1) such that γ = Exp(g) ◦ ϕ.

Proof. Up to composing γ with a dilation and a rotation, we can assume that

γ(−1) = −1 and γ(1)(−1) = 1. Let {λ+
n }n≥2 :=

{
∂n+γ(−1)

}
and {λ−m}m≥2 :={

∂m− γ(−1)
}
. By Proposition 4.1.3 there exists g ∈ C1(S1,R), g smooth in S1 \{−1}

such that Exp(g) ∈ Diff1,∞
+ (S1) and ∂n+Exp(g)(−1) = λ+

n , ∂
m
−Exp(g)(−1) = λ−m for
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all n,m ≥ 2. It follows that ϕ := γ ◦ Exp(−g) is an element of Diff1,∞
+ (S1) such

that ∂k+ϕ(−1) = ∂k−ϕ(−1) = 0 for all k ≥ 2 and in particular is an element of

B∞ ⊂ Diff+(S1).

Corollary 4.1.5. Let (A, U,Ω) be a conformal net. The representation U extends

to Diff1,∞
+ (S1) and the net is covariant with respect to Diff1,∞

+ (S1).

Proof. If γ �xes the point −1 and γ(1)(−1) = 1, we de�ne U(γ) := U(Exp(g))U(ϕ).

It is enough to show the covariance for exponentials. Let {fn} ∈ C∞(S1,R) con-

verging to f ∈ C1,∞(S1,R) ⊂ S 3
2
(S1), see [CW05, Lemma 4.6]. Let γn := Exp(fn).

By Proposition 1.2.11 it follows that eiT (fn) converges strongly to eiT (f). The rest of

the proof is the same as in Proposition 3.3.1.

We want to show that the map U is a well-de�ned. This is clear if γ �xes the point

−1 and γ(1)(−1) = 1, since the action of U(γ) := U(Exp(g))U(ϕ) on the local alge-

bras is de�ned by U and
∨
I∈IR A(I) = B(H). If γ has only one non-smooth point we

can write γ = γ1γ̂γ2 with γ1, γ2 smooth and γ̂ which �xes −1 and γ̂(1)(−1) = 1 and

de�ne U(γ) := U(γ1)U(γ̂)U(γ2). If γ has a �nite number of non-smooth points, we

can write γ = γ̂ϕ̄ with γ̂ which �xes the non-smooth points and supp (γ̂) is a disjoint

union of intervals. We de�ne U(γ) as the product of each non-smooth component

as de�ned above. We want to show now that U is a unitary projective represen-

tation of Diff1,∞
+ (S1). If If γ1, γ2 �x the point −1 and γ

(1)
1 (−1) = γ

(1)
2 (−1) = 1,

AdU(γ1γ2) and AdU(γ1)U(γ2) implement the same action on the local algebras, so

U(γ1γ2) and U(γ1)U(γ2) di�er by a scalar. This is true also when γ1 and γ2 have

only one and the same non-smooth point. If γ1 and γ2 have a �nite number of non-

smooth points, let γi = γ̂iϕ̄i as above. We have that the components of ϕ̄1γ̂2ϕ̄
−1
1

and γ̂1 are either disjoint or have a common non-smooth point. In the �rst case the

representation U commute. In the second case, we have the homomorphism prop-

erty as above. So we the decomposition γ1γ2 = (γ̂1ϕ̄1γ̂2ϕ̄
−1
1 )ϕ̄1ϕ̄2, with γ̂1ϕ̄1γ̂2ϕ̄

−1
1

supported around the non-smooth points and ϕ̄1ϕ̄2 ∈ Diff+(S1) and we have that

U(γ1)U(γ2) = U(γ̂1)U(ϕ̄1)U(γ̂2)U(ϕ̄2) = U(γ̂1ϕ̄1γ̂2ϕ̄
−1
1 )U(ϕ̄1ϕ̄2) = U(γ1γ2).

4.2 Positivity of energy

Let us �rst observe that Exp(tg) makes sense if g is C1, because then the existence

and uniqueness of the ODE are assured. We need some preparatory results on

representations of these elements.

Lemma 4.2.1. Let g ∈ C∞(S1) and f be a real piecewise smooth and C1-function

on S1. Then it holds that

Ad eiT (g)(eiT (f)) = ei(T (Exp(g)∗(f))+β(Exp(g),f)).
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Proof. Let fn ∈ C∞(S1). We use Proposition 1.2.8, so

Ad eiT (g)(eiT (fn)) = ei(T (Exp(g)∗(fn))+β(Exp(g),fn)). (4.2.1)

We choose an s such that 2 < s < 5
2
. We want to show that f ∈ Hs(S1). Indeed,

f ′′ is everywhere de�ned except a �nite number of points and is of bounded varia-

tion, so using [Wei06, Lemma 2.2], we have |k2f̂k| ≤
∣∣∣Var(f ′′)

k

∣∣∣, where Var(f ′′) is the

variation of f ′′. From this follows that |k|2s|f̂k|2 ≤
∣∣∣Var(f ′′)2

k6−2s

∣∣∣ and the right-hand side

is summable in k as 6− 2s > 1, hence f ∈ Hs(S1).

Next, let us observe that Hs(S1) ⊂ S 3
2
(S1). Indeed,∑

k

(1 + |k|)
3
2 |f̂k| ≤

∑
k

(1 + |k|)s|f̂k| · (1 + |k|)
3
2
−s ≤ 2

∑
k

(1 + |k|2)
s
2 |f̂k| · (1 + |k|)

3
2
−s

and the right-hand side can be seen as a scalar product of two `2(Z) sequences

(because s > 2), hence it holds that ‖f‖ 3
2
≤ Const.‖f‖Hs , where the constant

depends on s but not on f .

We can choose a sequence {fn} ⊂ C∞(S1), ‖f − fn‖Hs → 0, so in particu-

lar fn → f in S 3
2
(S1). By [IKT13, Lemma B.2], f 7→ Exp(g)∗(f) is continu-

ous in Hs(S1), hence Exp(g)∗(fn) → Exp(g)∗(f) in S 3
2
(S1). By [CW05, Propo-

sition 4.5], T (Exp(g)∗(fn)) → T (Exp(g)∗(f)) in the strong resolvent sense, and

β(Exp(g), fn)→ β(Exp(g), f). Taking the limit of (4.2.1), we obtain the claim.

Remark 4.2.2. If f ∈ C1 and not C2, then f /∈ Hs(S1), s > 5
2
since with such s it

holds that Hs(S1) ⊂ C2(S1) by the Sobolev-Morrey embedding.

Lemma 4.2.3. Let f, g ∈ C∞(S1) and g(−1) = g′(−1) = f(−1) = f ′(−1) = 0 and

compactly supported. Let I± be disjoint intervals in S1 one of whose boundary points

is −1. Let f = f− + f+, f± ∈ S 3
2
(S1) be the decomposition of f into two pieces cut

at the point −1 (which is possible by [Wei06, Lemma 2.2]), and similarly introduce

g = g− + g+, g± ∈ S 3
2
(S1), and assume that supp f±, supp g± ⊂ I±.

Then it holds that

Ad eiT (g−)(T (f−)) = T (Exp(g−)∗(f−)) + β(Exp(g−), f−),

where β(Exp(g−), f−) is de�ned by a similar formula as before:

β(Exp(g−), f) :=
c

24π

∫
supp g−

{Exp(g−), z}
∣∣∣∣
z=eiθ

f(eiθ)ei2θdθ, (4.2.2)

where the integral is restricted to supp g− in which the Schwarzian derivative is

de�ned.
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Proof. Let t ∈ R. Since f− is piecewise smooth and C1 and g is smooth, by Lemma

4.2.1 we have

Ad eiT (g)(eiT (tf−)) = eiT (Exp(g)∗(tf−))eiβ(Exp(g),tf−)

and

β(Exp(g), tf−) =
c

24π

∫ 2π

0

{Exp(g), z}
∣∣∣∣
z=eiθ

tf−(eiθ)ei2θdθ

=
c

24π

∫
supp g−

{Exp(g−), z}
∣∣∣∣
z=eiθ

tf−(eiθ)ei2θdθ

= β(Exp(g−), tf−),

because Exp(g−) and f− has support contained in a common interval where Exp(g−)

is smooth.

By [Wei06, Proposition 2.3], eiT (tf±) and eiT (g±) are a�liated to A(I±). Note that

g± ∈ S 3
2
(S1), hence it follows that eiT (g) = eiT (g−)eiT (g+). By the assumed support

property, we have

Ad eiT (g)(eiT (tf−)) = Ad (eiT (g−) · eiT (g+))(eiT (tf−)) = eiT (Exp(g−)∗(tf−)) · eiβ(Exp(g−),tf−).

By taking the derivative with respect to t, we obtain

Ad eiT (g)(T (f−)) = Ad eiT (g−)(T (f−)) = T (Exp(g−)∗(f−)) + β(Exp(g−), f−),

on the full domain.

Theorem 4.2.4. A soliton σ of a conformal net (A, U,Ω) is Di�1,∞
+,1 -covariant and

has positive energy.

Proof. The strategy is to write the translation as a product of three elements: two

of them are localized in half-lines and the other on an interval. First of all, we de�ne

I(θ1,θ2) := {eiθ : θ1 < θ < θ2} ⊂ S1. Then we take a C∞ function h+ : S1 \{−1} → R
which is equal to 0 on I(−π,0) and equal to 1 on I(π

2
,0). Similarly, let h− : S1\{−1} →

R be a C∞ function which is equal to 1 on I(−π,−π
2

) and equal to 0 on I(0,π). The

two functions have disjoint supports.

Let us �rst prove the following relation:

Ad eitT (h−τ)(T (τ)) = T (Exp(h−τ)∗(τ)) + β(Exp(h−τ), τ), (4.2.3)

with τ the generator of translations. Note that h−τ is supported in a certain interval

I−, one of whose boundary is −1, hence so is Exp(th−τ). We decompose τ into two

pieces τ+, τ− ∈ S 3
2
(S1) such that τ−(eiθ) = τ(eiθ) on I− and τ+ = τ − τ−. Note that

β(Exp(th−τ), τ−) = β(Exp(th−τ), τ), since the supports of Exp(th−τ) and of τ+ are
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disjoint (4.2.2). As h−τ coincides with τ on a neighborhood of −1, we can apply

Lemma 4.2.3 to obtain

Ad eitT (h−τ)(T (τ−)) = T (Exp(th−τ)∗(τ−)) + β(Exp(th−τ), τ−)

= T (Exp(th−τ)∗(τ−)) + β(Exp(th−τ), τ).

One the other hand, since h−τ and τ+ have disjoint support, we have

Ad eitT (h−τ)(T (τ+)) = T (τ+).

Note that Exp(th−τ)∗τ = Exp(th−τ)∗τ+ + Exp(th−τ)∗τ− = τ+ + Exp(th−τ)∗τ−. By

adding these operator equations, we obtain on the intersection of the domains

Ad eitT (h−τ)(T (τ)) = T (Exp(th−τ)∗(τ)) + β(Exp(th−τ), τ).

The intersection contains C∞(L0), hence the right-hand side is essentially self-

adjoint. Hence the left-hand side is a self-adjoint extension of the right-hand side,

and therefore, they must coincide on the full domain.

Next, we write eitT (τ) as

eitT (τ) = eitT (h−τ) · e−itT (h−τ)eitT (τ)e−itT (h+τ) · eitT (h+τ).

We claim that e−itT (h−τ)eitT (τ)e−itT (h+τ) is localized on a bounded interval (the in-

terval depends on t). This claim follows from (4.2.3). Indeed, Exp(th−τ)∗(τ) agrees

with τ in a neighborhood of the point at in�nity (depending on t),

e−itT (h−τ)eitT (τ)e−itT (h+τ) = eitT (Exp(th−τ)∗(τ))eiβ(Exp(th−τ)∗(τ),τ)e−itT (h−τ)e−itT (h+τ)

= eitT (Exp(th−τ)∗(τ))eiβ(Exp(th−τ)∗(τ),τ)e−itT (h−τ+h+τ),

where we used the linearity of T on functions of class S 3
2
(S1), and the last ex-

pression is localized in a bounded interval: as h−τ + h+τ equals τ in a neigh-

borhood of −1 ∈ S1, Ad e−itT (h−τ+h+τ) implements the same action on A(It,ε)

for some neighborhood It,ε for small t as the action of Ad eitT (Exp(h+τ)∗(τ)). In

other words, Ad e−itT (h−τ+h+τ)eitT (Exp(h+τ)∗(τ)) is trivial on A(It,ε), which implies that

e−itT (h−τ+h+τ)eitT (Exp(h+τ)∗(τ)) is localized in I ′t,ε.

We introduce a representation of the translation group by

Uσ(t) := σ(eitT (h−τ))σ(e−itT (h−τ)eitT (τ)e−itT (h+τ))σ(eitT (h+τ))

By noting that h− and h+ have disjoint supports, this yields a one parameter group
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in t:

Uσ(t1)Uσ(t2) = σ(eit1T (h−τ))σ(e−it1T (h−τ)eit1T (τ)e−it1T (h+τ))σ(eit1T (h+τ))

· σ(eit2T (h−τ))σ(e−it2T (h−τ)e−it2T (τ)eit2T (h+τ))σ(eit2T (h+τ))

= σ(eit1T (h−τ))σ(eit2T (h−τ))σ(e−it1T (h−τ)eit1T (Exp(t2h−τ)∗(τ))eiβ(Exp(t2h−τ),τ)e−it1T (h+τ))

· σ(eit1T (h+τ))σ(e−it2T (h−τ)eit2T (τ)e−it2T (h+τ))σ(eit2T (h+τ))

= σ(eit1T (h−τ))σ(eit2T (h−τ))σ(e−it1T (h−τ)eit1T (Exp(t2h−τ)∗(τ))eiβ(Exp(t2h−τ),τ)e−it1T (h+τ))

· σ(e−it2T (h−τ)eit2T (Exp(t1h+)∗τ)eiβ(Exp(t1h+τ),τ)e−it2T (h+τ))σ(eit1T (h+τ))σ(eit2T (h+τ))

= σ(eit1T (h−τ))σ(eit2T (h−τ))

· σ(e−it1T (h−τ)e−it2T (h−τ)eit1T (τ)eiβ(Exp(−t2h−τ),Exp(t2h−τ)∗(τ))eiβ(Exp(t2h−τ),τ)e−it1T (h+τ))

· σ(eit2T (Exp(t1h+)∗τ)eiβ(Exp(t1h+τ),τ)e−it2T (h+τ))σ(eit1T (h+τ))σ(eit2T (h+τ))

= σ(eit1T (h−τ)eit2T (h−τ))σ(e−it1T (h−τ)e−it2T (h−τ)eit1T (τ)eit2T (τ)e−it1T (h+τ)e−it2T (h+τ))

· σ(eit1T (h+τ)eit2T (h+τ))eiβ(Exp(t2h−τ),τ)eiβ(Exp(−t2h−τ),Exp(t2h−τ)∗(τ))

· eiβ(Exp(t1h+τ),τ)eiβ(Exp(−t1h+τ),Exp(t1h+τ)∗(τ))

= Uσ(t1 + t2),

where we used the equality

β(γ1 ◦ γ2, f) = β(γ1, γ2∗(f)) + β(γ2, (f)),

which implies

0 = β(id, τ) = β(Exp(−t2h−τ),Exp(t2h−τ)∗(τ)) + β(Exp(t2h−τ), τ),

0 = β(id, τ) = β(Exp(−t1h+τ),Exp(t1h+τ)∗(τ)) + β(Exp(t1h+τ), τ).

It remains to prove the positivity of energy. We do this by showing that Uσ(t) can

be obtained as a limit in the strong resolvent sense of a sequence of one-parameter

unitary groups with positive generator.

Let τ1 : R → R be a C∞ vector �eld equal to 1 on (−∞, 1) and equal to 0 on

(2,+∞). From τ1 we construct a sequence of vector �elds

τn(x) := τ1

(x
n

)
, x ∈ R, n ∈ N.

We �x 2 < s < 5
2
(cf. the proof of Lemma 4.2.1). Let us show that τn → τ in the

Hs(S1) topology as vector �elds on S1. The expression of τn in angular coordinates

is

τn(x(θ)) = (1 + cos(θ)) τ1

(
x(θ)

n

)
.

For this it is su�cient to show that
{

d3

dθ3 τn

}
n∈N

is a sequence of functions in

L1(S1) uniformly bounded in n and that τn → τ in L1(S1): this implies that
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|k3τ̂n(k)| < Const., where τ̂n(k) is the k-th Fourier coe�cient of τn, or equivalently,

|k2sτ̂n(k)| < Const.
k6−2s , and the right-hand side is summable in k since 6− 2s > 1. From

the convergence τn → τ in L1 we obtain the convergence of each τ̂n(k), Theorefore,

by the Lebesgue dominiated convergence theorem (applied to the measurable set Z
with the counting measure), we obtain the convergence τn → τ in Hs(S1).

The third derivative of τn is

d3

dθ3
τn(x(θ)) = sin(θ)τ1

(
x(θ)

n

)
− 1

n

2 cos(θ)

(1 + cos(θ))

d

dx
τ1

(
x(θ)

n

)
− 1

n

sin2(θ)

(1 + cos(θ))2

d

dx
τ1

(
x(θ)

n

)
+

1

n3

1

(1 + cos(θ))2

d3

dx3
τ1

(
x(θ)

n

)
.

(4.2.4)

The �rst term of the right-hand side of (4.2.4) is clearly uniformly bounded in n on

S1. For the second term of the right-hand side of (4.2.4) we have:

∫ 2π

0

∣∣∣∣ 1n 2 cos(θ)

(1 + cos(θ))

d

dx
τ1

(
x(θ)

n

) ∣∣∣∣dθ =

∫ 2n

n

∣∣∣∣2 cos(θ(x))

n

d

dx
τ1

(x
n

) ∣∣∣∣dx
=

∫ 2

1

∣∣∣∣2 cos(θ(y))

(
d

dx
τ1

(x
n

) ∣∣∣∣
x
n

=y

)∣∣∣∣dy
which does not depend on n.

The third term is∫ 2π

0

∣∣∣∣ 1n sin2(θ)

(1 + cos(θ))2

d

dx
τ1

(
x(θ)

n

) ∣∣∣∣dθ =

∫ 2n

n

∣∣∣∣ 1n sin2(θ)

(1 + cos(θ))

d

dx
τ1

(x
n

) ∣∣∣∣dx
≤
∫ 2n

n

∣∣∣∣ 1n sin2(θ(n))

(1 + cos(θ(2n))

d

dx
τ1

(x
n

) ∣∣∣∣dx =

∫ 2n

n

∣∣∣∣2n2(1 + 4n2)

n(1 + n2)2

d

dx
τ1

(x
n

) ∣∣∣∣dx
=

∫ 2

1

∣∣∣∣2n2(1 + 4n2)

(1 + n2)2

(
d

dx
τ1

(x
n

) ∣∣∣∣
x
n

=y

)∣∣∣∣dy
which is uniformly bounded in n.

The fourth term is uniformly bounded in n since

∫ 2π

0

∣∣∣∣ 1

n3

1

(1 + cos(θ))2

d3

dx3
τ1

(
x(θ)

n

) ∣∣∣∣dθ =

∫ 2n

n

∣∣∣∣ 1

n3

(
1

1 + cos(θ(x))

)
d3

dx3
τ1

(x
n

) ∣∣∣∣dx
≤
∫ 2n

n

∣∣∣∣ 1

n3

(
1

1 + cos(θ(2n))

)
d3

dx3
τ1

(x
n

) ∣∣∣∣dx =

∫ 2n

n

∣∣∣∣1 + 4n2

2n3

d3

dx3
τ1

(x
n

) ∣∣∣∣dx
=

∫ 2

1

∣∣∣∣1 + 4n2

2n3

(
d3

dx3
τ1

(x
n

) ∣∣∣∣
x
n

=y

)∣∣∣∣dy.
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We need only to show that τn → τ in L1(S1):∫ 2π

0

∣∣τ(θ)− τn(θ)
∣∣dθ =

∫ 2π

0

∣∣∣∣ (1 + cos(θ)

2

)(
1− τ1

(
x(θ)

n

)) ∣∣∣∣dθ
=

∫ +∞

n

∣∣∣∣ ((1 + cos(θ(x)))2

2

)(
1− τ1

(x
n

)) ∣∣∣∣dx =

∫ +∞

1

∣∣∣∣n2 (1 + cos(θ(ny)))2 (1− τ1(y))

∣∣∣∣dy
=

∫ +∞

1

∣∣∣∣
( √

2n

1 + n2y2

)2

(1− τ1(y))

∣∣∣∣dy ≤ 2

n3

∫ +∞

1

1

y4
dy −→ 0 (as n→∞).

The representation Uσ(t) can be obtained as the limit of σ(eitT (τn)) in the strong

topology. Indeed,

σ(eitT (τn)) = σ(eitT (h−τn))σ(e−itT (h−τn)eitT (τn)e−itT (h+τn))σ(eitT (h+τn))

Note that h−, h+, τn belong to Hs(S1), and the product is (jointly) continuous

[IKT13, Lemma B.4], hence both h−τn and h+τn are convergent in Hs(S1), and

by the argument of Lemma 4.2.1, they are convergent in S 3
2
(S1), hence the corre-

sponding operators are convergent in the strong resolvent sense. Furthremore, each

of these sequences are localized in a �xed interval or a half line, by the normality of

σ on half lines, the convergence follows.

We have by Theorem 1.2.9 that T (τ1) ≥ α. By the fact that the Schwarz deriva-

tive of a Möbius transformation is 0, it follows that the quantum energy inequalities

are invariant under Möbius transformations and thus we have that

T (δn∗ (τ1)) = T (nτn) ≥ α,

which implies

T (τn) ≥ α

n
.

Since T (τn) is localized on a half-line, by local normality of σ, the generator of

the one-parameter group σ(eitT (τn)) is bounded from below. By [RS75, Theorem

VIII.23], the generator of Uσ(t), T σ, is positive as well.

By Section 4.1, the net (A, U,Ω) is Diff1,∞
+ (S1)-covariant. Any element γ ∈

Di�1,∞
+,1 (S1) can be decomposed into a product γ = γ− ◦ (γ−1

− ◦ γ ◦ γ−1
+ ) ◦ γ+, where

γ± ∈ Di�1,∞
+,1 (S1) as in the proof for Uσ(t). The de�nition

Uσ(γ) := σ(U(γ−))σ(U(γ−1
− ◦ γ ◦ γ−1

+ ))σ(U(γ+))

does not depend on the decomposition of γ. If I is a left half-line, we can choose

γ− such that I ∩ supp γ+ = ∅ and supp (γ−) ⊃ I. Now for x ∈ A(I) the covariance

σ(AdU(γ)(x)) = AdUσ(γ)(σ(x)) follows because the both sides are localized in I−,

and by the de�nition Uσ(γ ◦ γ−1
+ ) = σ(U(γ ◦ γ−1

+ )).
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4.3 Solitons from nonsmooth di�eomorphisms

Here we construct a continuous family of proper solitons for any conformal net A,
using the di�eomorphism covariance.

Let F ⊂ Homeo+(S1) be the class of orientation preserving homeomorphism γ

of S1, which have the following properties

1. γ(−1) = −1,

2. γ is a smooth function in S1 \ {−1}, the half-sided derivates exist even at the

point −1 at all orders with the �rst derivatives di�erent from zero.

As a consequence of Borel's lemma [Hör90][Theorem 1.2.6], there exists an open

interval I of S1 which contains p = −1 and γI− , γI+ ∈ Diff+(S1) such that γ agrees

with γI− in I− and with γI+ in I+, where I− and I+ are the connected components

of I \ {−1}.
Let A be a conformal net on S1 on the Hilbert space H and U its associated

projective representation of Diff+(S1). For γ ∈ F and for every I ∈ IR we choose

γI ∈ Diff+(S1) which agrees with γ on I (there is such γI even if I is a half-line by

the remark above). We denote by σγ the family of maps σγ := {σIγ} where

σIγ :A(I)→ B(H)

x 7→ σIγ(x) = AdU(γI)(x)

and I ∈ IR, γ ∈ F .

Proposition 4.3.1. Let γ ∈ F . The family of maps σγ is a soliton of the conformal

net A.

Proof. Local normality follows because each map σIγ is given by the adjoint action

AdU(γI). We show that the family of maps σγ is compatible, namely that, if I ⊂ J

for I, J ∈ IR, then σJγ �A(I)= σIγ. By de�nition, γI , γJ ∈ Diff+(S1) agree with γ on

I and J , respectively, hence they agree on I. Then on A(I) we have

AdU(γI) = AdU(γJ) ◦ AdU(γ−1
J ◦ γI) = AdU(γJ),

because γ−1
J ◦ γI is a di�eomorphism of the circle localized in I ′ and by conformal

covariance (2.1.1).

Now we show that if γ has di�erent left and right derivatives, then σγ is a proper

soliton. Modular theory is used as a tool to show non-triviality of the constructed

soliton. Let us introduce the notation for left and right derivatives:

∂±γ(−1) = lim
θ→0±

γ̃(−eiθ)− γ̃(−1)

θ
. (4.3.1)
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with γ̃ the lift of γ in H̃omeo+(S1). Furthermore, denote their ratio by

Rγ :=
∂+γ(−1)

∂−γ(−1)
(4.3.2)

which is an element of R+ by de�nition.

4.3.1 Type I solitons

Now we show that the construction in 4.3.1 using functions in a subclass of F
indeed yields proper solitons, i.e. solitons which cannot be obtained as restrictions

of representations of the conformal net on S1. Modular theory is used as a tool to

show non-triviality of the constructed soliton.

Let Fδ be the class of functions in F of the form

γ(eiθ) :=


eiθ if θ ∈ [−π, α)

k(eiθ) if θ ∈ [α, β)

δ(s)(eiθ) if θ ∈ [β, π)

(4.3.1)

where δ(s) is the dilation as in equation 1.2.4, 0 < α < β < π and k is a smooth

function on [α, β) such that γ ∈ F . Note that ∂−γ(−1) = 1 and ∂+γ(−1) = es, so

the value s = 0 must be excluded.

Theorem 4.3.2. Let γ ∈ Fδ. Then σγ is a proper, irreducible soliton of A.

Proof. From γ ∈ Fδ it is possible to construct a new function σ on the circle which

is always continuous but fails to be di�erentiable in two points, the points −1 and

1:

σ := γ ◦Rπ ◦ γ−1 ◦Rπ (4.3.2)

with Rπ the rotation of π. The function

ψ(eiθ) :=

eiθ if θ ∈ [−π, 0)

δ(s)(eiθ) if θ ∈ [0, π)
(4.3.3)

is continuous and like σ fails to be di�erentiable in −1, 1. In fact there is a φ ∈
Diff+(S1) such that φ ◦ σ = ψ.

If we consider the map

σ̃ := AdU(φ) ◦ σγ ◦ AdU(Rπ) ◦ σγ−1 ◦ AdU(Rπ)

de�ned on A((−π, 0)) ∪ A((0, π)), then we have that σ̃(x) = x for x ∈ A((−π, 0))

and σ̃(x) = AdU(δ(s)) for x ∈ A((0, π)).
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Suppose that σγ is not a proper soliton of the Virasoro net, i.e. it is the restriction

of a DHR representation. In particular σγ is rotation covariant, [DFK04, Theorem 6],

namely there is a unitary representation of the universal covering of S1, θ → Uγ(Rθ),

such that

AdUγ(Rθ) ◦ σγ = σγ ◦ AdU(Rθ). (4.3.4)

Then it follows that σ̃ is implemented by a unitary since

σ̃ :=AdU(φ) ◦ σγ ◦ AdU(Rπ) ◦ σγ−1 ◦ AdU(Rπ)

=AdU(φ) ◦ AdUγ(Rπ) ◦ σγ ◦ σγ−1 ◦ AdU(Rπ) =

=AdU(φ) ◦ AdUγ(Rπ) ◦ AdU(Rπ).

This unitary must belong to A((0, π)) by Haag duality since σ̃(x) = x for x ∈
A(−π, 0). At the same time, by the Bisognano-Wichmann theorem 2.1.4, it must

implement a modular automorphism of A(0, π) with respect to the vacuum vector

since σ̃(x) = AdU(δ(s)) for x ∈ A((0, π)). We have a contradiction because the

modular automorphisms cannot be inner for a type III factor.

Remark 4.3.3. The functions γ are taken to be in Fδ so that φ := ψ ◦ (γ ◦ Rπ ◦
γ−1 ◦ Rπ)−1 is a smooth di�eomorphism, where ψ is in particular a function which

we know is not unitarily implementable with the aid of modular theory. If we take

any γ ∈ F , then the resulting φ will not necessarily be smooth but at best piecewise

smooth. Thus, in order to show that any γ ∈ F determines a proper soliton, we

need the results in Section 4.1, i.e. that a piecewise smooth di�eomorphisms φ is

unitarily implementable in a local net A.

Proposition 4.3.4. Let A be a conformal net. If γ ∈ F then σγ is a proper soliton

representation.

Proof. Let ϕ ∈ Fδ with Rγ = Rϕ and note that σγ = AdU(γ ◦ϕ−1) ◦ σϕ is a proper

soliton for A since γ ◦ ϕ−1 ∈ Diff1,∞
+ (S1). The equation does not depend on the

choice of ϕ.

Proposition 4.3.5. Let A be a conformal net. Let γ1, γ2 ∈ F , then σγ1 ' σγ2 if

and only if Rγ1 = Rγ2.

Proof. σγ1 ' σγ2 ⇔ σγ1◦γ−1
2

= AdW , with W a unitary in B(H). By Theorem 4.3.2

this is true if and only if γ1 ◦ γ−1
2 is at least in Diff1,∞

+ (S1), or equivalently if and

only if Rγ1 = Rγ2 .

Remark 4.3.6. It follows easily that alpha-induction is not a surjective map in the

case of a �nite-index conformal extension A ⊂ B, i.e. α± :DHR{A} → Sol±(B).
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4.3.2 Type III solitons

Instead of considering functions γ ∈ F , we can repeat the same construction in

De�nition 4.3.1 using functions in a di�erent class. Let G be the set maps from S1

to S1 ϕ with the following properties

1. ϕ is smooth on S1 \{−1} and the half-sided derivatives at all orders exist even

at the point −1 (the left and right �rst derivatives are non-zero),

2. ϕ is injective and orientation preserving,

3. ϕ(S1 \ {−1}) is a proper interval of S1.

If we take ϕ ∈ G, σϕ still yields a soliton of the conformal net A, since the

conclusions of Proposition 4.3.1 are still true.

This type of construction was already presented in [LX04] and [KLX05]. In this

case one obtains solitons σϕ which are of type III (namely σϕ(A(R))′ is a type III

factor). For completeness in the following proposition we show that this type of

construction also yields a proper soliton.

Proposition 4.3.7. Given ϕ ∈ G, then σϕ is a proper soliton of type III.

Proof. We must show that the representation σϕ does not extend to a representation

of the net A of the circle. Consider the set E := I1 ∪ I2, where I1 and I2 are two

disjoint intervals of the circle which have the point p = −1 as a common end-point.

Suppose now that σϕ extends to a representation of the net A on S1. In this case

we have an action of σEϕ on A(I1) ∨ A(I2) such that

σEϕ (A(I1) ∨ A(I2)) = σI1ϕ (A(I1)) ∨ σI2ϕ (A(I2)) ' σI1ϕ (A(I1))⊗ σI2ϕ (A(I2)) (4.3.1)

where we used the fact that the net satis�es the split property. But A(I1)∨A(I2)

is not isomorphic to A(I1)⊗A(I2), so the contradiction [Buc74][page 292, Example

b)].

4.3.3 Covariance for soliton representations

In section 4.1 we proved that every conformal net A is Diff1,∞
+ (S1)-covariant. We

now use this fact to see that all the constructed soliton representations σγ, γ ∈ F ,
are B0-covariant.

Proposition 4.3.8. Let (A, U,Ω) be a Diff1,∞
+ (S1)-covariant net and let γ ∈ F .

Then the soliton σγ is B0-covariant.
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Proof. Let γ ∈ F and σγ the associated soliton. Given g ∈ B0, γ ◦ g ◦ γ−1 is

a C1-di�eomorphism which is locally C∞, so it follows that there exists Uσ(g) :=

U(γ ◦ g ◦ γ−1) which is a map from B0 to U(H)/T. The covariance on σγ holds,

indeed

Uσ(g)σIγ(x)Uσ(g)∗ = σgIγ (U(g)xU(g)∗).

Remark 4.3.9. Let A be a Diff1,∞
+ (S1)-covariant net, U its covariance representation

and γ ∈ F . Note that the representation Uγ de�ned by the equation 5.2.2 is irre-

ducible when A is the Virasoro net AVirc with c ∈ Z+.

For ϕ ∈ Diff+(I),

σγ(Uc,0(ϕ)) = AdU(γI)(Uc,0(ϕ)) = Uc,0(γI ◦ ϕ ◦ γ−1
I ) = Uγ(ϕ).

This relation is similar to the correspondence between irreducible, unitary, positive

energy representations of Diff+(S1) and DHR sectors of the Virc nets. It would

be suggestive to think that solitons of the type σγ exhaust all unitary equivalence

classes of irreducible solitons for Virasoro nets.
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Chapter 5

Further results on concrete examples

Contents

5.1 The U(1)-current net . . . . . . . . . . . . . . . . . . . . . 53

5.2 Non-extendable representations of ΛSU(N) and B0 . . . 58

5.2.1 Representations of ΛSU(N) . . . . . . . . . . . . . . . . . 58

5.2.2 Representations of the one point stabilizer subgroup of

Diff+(S1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 The U(1)-current net

Let K be a real Hilbert space with a nondegenerate symplectic bilinear form σ and

J a complex structure on K. The C∗-algebra generated by the non-zero opera-

tor W (f), f ∈ K, satisfying the relations W (f)W (g) = e−iσ(f,g)1/2W (f + g) and

W (0) = 1 is called the CCR algebra. If f ∈ K and A is an invertible operator on K
which preserves the symplectic bilinear form, then the map W (f) 7→ W (Af) is a *-

automprhism of the CCR algebra. Such a *-automorphism is unitary implemented

if and only if A ∈ Sp2(K), i.e. 1
2
J [A, J ] is an Hilbert-Schmidt operator. Such a

unitary is unique up to a phase factor, see [Ott95][Theorem 16].

Let C∞(S1,R) ⊂ L2(S1) be the space of real-valued smooth function on S1. We

de�ne a seminorm on it

‖f‖ :=
∑
k∈N

k|f̂k|2

which is induced by the semi-inner product

(f, g)1/2 :=
1

2

∑
k∈N

k(f̂kĝk + f̂kĝk).
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It is also possible to induce a complex structure on C∞(S1,R) by means of the

operator J

J

 ∑
k∈Z\{0}

fkek

 :=
∑
k∈N

(ifk)ek +
∑
k∈N

(−if−k)e−k,

where ek(e
iθ) := eikθ.

The space C∞(S1,R) equipped with J modulo the null space {f ∈ C∞(S1,R) : ‖f‖ = 0}
is denoted with H1/2 and is a realization of the complex Hilbert space H1, namely

the representation space of the irreducible unitary representation U1 of PSL(2,R)

with lowest weight 1. The action of PSL(2,R) on C∞(S1,R)

U1(γ)(f) := f ◦ γ−1 (5.1.1)

extends to H1/2.

Let Γ(H1/2) be the second quantization space constructed fromH1/2 and Γ+(H1/2)

the associated symmetric Fock space. For any f ∈ H1/2 the Weyl operators W (f)

on Γ+(H1/2) are unitary operators which satisfy

� commutation relations: W (f)W (g) = e−i
Im (f,g)1/2

2 W (f + g)

� strong continuity: if fn → f in H1 then ‖(W (fn)−W (f))v‖ → 0 for every

v ∈ Γ+(H1).

The bilinear form σ(f, g) := Im(f, g)1/2 is clearly invariant under the action of

U1(γ) for all f, g ∈ C∞(S1,R). Furthermore, the unitary operators U1(γ) ∈ U(H1/2),

γ ∈ PSL(2,R) act on Γ+(H1/2) via the second quantization functor, and we de�ne

U(γ) := Γ(U1(γ)). The adjoint action of U(γ) on the Weyl operators is particularly

simple, since

AdU(γ)W (f) = W (U1/2(γ)f). (5.1.2)

De�nition 5.1.1. The family of von Neumann algebras

AU(1)(I) := {W (f) : f ∈ C∞(S1,R) ⊂ H1/2, supp (f) ⊂ I}′′

is a Möbius covariant net on S1, where the vacuum vector is 1 ∈ C ⊂ Γ+(H1/2) and

the Möbius covariance follows immediately by 5.1.2.

The representation U1 of PSL(2,R) can be extended to a projective representa-

tion U of Diff+(S1) in such a way that AU(1) is actually a di�eomorphism covariant

net, see [PS86][Theorem 9.3.1].

Lemma 5.1.2. Let γ ∈ Ds(S1), s > 3/2, the image of γ̃ ∈ D̃s(S1) through the

covering map and λm,n := 1
2π

∫ 2π

0
e±i|m|γ̃(θ)e±i|n|θdθ. Then there exists Cs ≥ 0 such

that

|λm,n| ≤
Cs‖γ̃−1‖s−1

(|m|+ |n|)s−1 .
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Proof. As in the proof of [Seg81, Proposition 5.3], consider the path γ̃t in D̃s(S1):

[0, 1] 3 t 7→ γ̃t := tγ̃ + (1− t)id ∈ D̃s(S1).

This is indeed a path in D̃s(S1), because γ̃t(θ) > 0. By setting t = |m|
|m|+|n| , we have

λm,n =
1

2π

∫ 2π

0

e±i(|n|+|m|)γ̃t(θ)dθ =
1

2π

∫ 2π

0

e±i(|n|+|m|)ϕ
(
γ̃−1
t

)′
(ϕ)dϕ.

Since
(
γ̃−1
t

)′ ∈ Hs−1, |
(̂
γ̃−1
t

)′
(|m|+|n|)| ≤

‖(γ̃−1
t )

′
‖s−1

(|m|+|n|)s−1 . The map t 7→ ‖
(
γ̃−1
t

)′ ‖s−1 is

continuous, which proves the statement.

Proposition 5.1.3. Let γ ∈ Ds(S1), s > 2, and f ∈ C∞(S1,R). The map

V (γ)[f ] := [f ◦ γ−1] = f ◦ γ−1 − (f̂ ◦ γ−1)0 induces an action to the CCR alge-

bra which is implemented by an unitary operator U(γ).

Proof. Let f, g ∈ C∞(S1,R). The (real) symplectic bilinear form σ([f ], [g]) :=

Im 〈f, g〉 can be written as follows:

σ([f ], [g]) =
1

4π

∫ 2π

0

f(eiθ)g′(eiθ)dθ.

As a consequence, for γ ∈ Ds(S1), s > 2, the map V (γ) preserves the symplectic

form because γ is in particular in Diff1
+(S1). Following [Vro13, Theorem 24] we only

need to show that the Hilbert-Schmidt norm of the operator AV (γ) := 1
2
J [V (γ), J ]

‖AV (γ)‖2
HS =

∑
m>0,n<0

|m|
|n|
|λm,n|2 ≤

∑
m>0,n<0

|m|
|n|

C2
s

1

(|m|+ |n|)2(s−1)

is �nite. Let p := |m|+ |n|, then

∑
m>0,n>0

m

n (m+ n)2(s−1)
=
∑
p>0

1

p2(s−1)

p−1∑
n=1

p− n
n
≤
∑
p>0

p− 1

p2(s−1)

p−1∑
n=1

1

n
≤
∑
p>0

(p− 1) (2 + log(p))

p2(s−1)

which converges if s > 2.

Theorem 5.1.4. The map α : Ds(S1)→ Aut(B(H)) such that γ 7→ αγ := AdU(γ)

is pointwise strongly continuous if s > 2.

Proof. Let f ∈ C∞(S1,R) and {γn} ⊂ Ds(S1) a sequence converging to γ in Ds(S1).

Recall that C∞(S1,R) ⊂ Hs(S1) for every s and that if f ∈ Hs(S1), s ≥ 1/2, then

‖f‖1/2 ≤ ‖f‖s. By Lemma 1.4.2, the map (f, γ) 7→ f ◦γ−1 is continuous for s > 3/2.

Using Proposition 5.1.3 and the strong continuity of the Weyl operators, it follows

that for s > 2, the map αγn(W ([f ]))→ αγ(W ([f ])), f ∈ C∞(S1,R)
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Thus we have that there is a strongly dense setR of B(H) for which limn→∞ U(γn)xU(γn)∗ =

U(γ)xU(γ)∗ in the strong topology for every x ∈ R.
Now let {ξn} ⊂ H be a dense sequence. Let A ∈ B(H). By Kaplanski's theorem we

can choose a sequence {Am} ⊂ R for which Am → A strongly.

Thus we have for every ξn

lim
m→∞

U(γ)AmU(γ)∗ξn = U(γ)AU(γ)∗ξn,

i.e. fn(γ) := U(γ)AU(γ)∗ξn is the pointwise limit of fmn (γ) := U(γ)AmU(γ)∗ξn.

Note that Ds(S1) is a Baire set, since it is an open set of a complete metric space

[IKT13, page 37]. By Baire-Osgood's theorem [Car00, Theorem 11.20] we get that

the set

S(fn) := {γ ∈ Ds(S1) : fn is not continuous in γ}

is meager. Thus also ∪nS(fn) is meager. It follows thatDs(S1)\∪nS(fn) is nonempty

and thus ∃ γ0 ∈ Ds(S1) for which all fn are continuous. It easily follows that

γ 7→ U(γ)AU(γ)∗ξ =: fAξ (γ)

is continuous for γ0 for every ξ ∈ H. De�ne h := γ−1
0 γ, then

gAξ (h) := U(h)AU(h)∗ξ = U(γ−1
0 )∗U(γ)AU(γ)∗U(γ−1

0 )∗ξ = U(γ−1
0 )fAU(γ0)ξ(γ)

is continuous in the identity e ∈ Ds(S1) for every A ∈ B(H) and for every ξ ∈ H.
Since the map

γ 7→ Ad (U(γ)) ∈ Aut(B(H))

is a group homomorphism and is continuous in e (where Aut(B(H)) is equipped with

the topology of pointwise strong convergence) it is continuous for every γ ∈ Ds(S1).

De�nition 5.1.5. We denote with Diff1,∞
+ (S1) the group of orientation preserving,

C1 di�eomorphisms of the circle which are piecewise C∞.

Remark 5.1.6. The group of piecewise Möbius transformations de�ned in [Wei05] is

contained in Diff1,∞
+ (S1).

Lemma 5.1.7. The group Diff1,∞
+ (S1) ⊂ Ds(S1) if s < 5/2.

Proof. Follows immediately from |k2γ̂k| ≤
∣∣∣Var(γ′′)k

∣∣∣, where Var(γ′′) is the total vari-
ation of γ′′, see [Kat04][Theorem 4.5].

Corollary 5.1.8. The U(1)-current net AU(1) is Ds(S1)-covariant, s > 2, and in

particular is Diff1,∞
+ (S1)-covariant.
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Proof. The proof is the same as in Proposition 3.3.1.

Corollary 5.1.9. The Virasoro net AVir1 is Ds(S1)-covariant, s > 2, and in par-

ticular is Diff1,∞
+ (S1)-covariant.

Proof. For the theorem 5.1.4 map α : γ 7→ αγ := AdU(γ), γ ∈ Ds(S1), is continuous.

Let A := AVir1 the Virasoro net of central charge c = 1 and B che U(1)-current net

on the Hilbert space H. The projection E on HA :=
∨
I A(I)Ω is clearly invariant

for the action of αγ due to continuity of α and so we have the desired claim.

Remark 5.1.10. The action of Diff1,∞
+ (S1) in Corollary 5.1.8 and Corollary 5.1.9 is

continuous. On the contrary, the action in Corollary 4.1.5 is in general not contin-

uous.

Remark 5.1.11. Let U(1,0) the irreducible positive energy projective unitary represen-

tation of Diff+(S1) with central charge 1 and lowest weight 0. De�ne Un :=
⊗

n U(1,0),

which is a positive energy projective representation of Diff+(S1) which contains U(n,0)

as a subrepresentation. Using Corollary 5.1.9 we can deduce that all the Virasoro

nets with positive integral central charge are Ds(S1)-covariant, s > 2 and that all

the representations U(n,0) extend to Ds(S1), s > 2.

Remark 5.1.12. It should be stressed that all the extended representations are con-

tinuous.

Lemma 5.1.13. Let g̊ ∈ B0, γ̊ ∈ F and 2 < s < 5/2. The homomorphism

αγ̊ : B0 −→ Ds(S1), g̊ 7→ αγ̊ (̊g) := γ̊ ◦ g̊ ◦ γ̊−1, where B0 is equipped with the

C∞-topology, is continuous.

Proof. Let {g̊n} ⊂ B0 be a sequence converging to g̊ ∈ B0 with respect to the C∞-

topology. We denote with γ the lift to ˜Diff0
+(S1) of γ̊ and with gn and g the lift to

B̃0 of γ̊n and g̊, respectively. We use the same strategy of Lemma 4.2.3. Namely,

the convergence γ ◦ gn ◦ γ−1 → γ ◦ g ◦ γ−1 in the L1(S1)-topology is clear. Then, by∣∣∣( ̂γ ◦ gn ◦ γ−1
)
k

∣∣∣ ≤ Var
(
(γ ◦ gn ◦ γ−1)

′′)
k3

it is su�cient to show that the right-hand side is uniformly bounded in n. The

second derivative of γ ◦ gn ◦ nu−1 is

d2

dθ2

(
γ ◦ gn ◦ γ−1

)
(θ) = γ′′(gn(γ−1(θ)))g′n(γ−1(θ))2 1

γ′(γ−1(θ))2

+ γ′(gn(γ−1(θ)))g′′n(γ−1(θ))
1

γ′(γ−1(θ))2
(5.1.3)

− γ′(gn(γ−1(θ)))g′n(γ−1(θ))
γ′′(γ−1(θ))

γ′(γ−1(θ))3
.
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To evaluate its total variation, we use the following facts: for every pair of functions

f1, f2 with bounded variation, it holds [Pau15, Theorem 3.7] that

Var(f1 · f2) ≤ ‖f1‖∞Var(f2) + ‖f2‖∞Var(f1) + 3Var(f1)Var(f2)

Var(f1 ◦ f2) ≤ Lf1Var(f2),

where f1 is Lipschitz and Lf1 is the Lipschitz constant of f1. Now, the total vari-

ations of the second and the third terms are uniformly bounded in n since L
g

(k)
n

are uniformly bounded in n. As for the �rst term, we have Var(γ′′ ◦ gn ◦ γ−1) ≤
2π
∥∥(γ′′ ◦ gn ◦ γ−1)

′∥∥
L∞(0,2π)

+ |γ′′(2π)− γ′′(0)|, and this is again uniformly bounded

since γ′′ has a bounded derivative on the open interval (0, 2π) and L
g

(k)
n

are uniformly

bounded in n.

5.2 Non-extendable representations of ΛSU(N) and

B0

5.2.1 Representations of ΛSU(N)

Proposition 5.2.1. There exist irreducible positive energy representations of ΛSU(N)

which do not extend to positive energy representations of LSU(N).

Proof. Fix a level ` and consider the conformal net ASU(N),` induced by the vac-

uum representation of level ` and lowest weight 0, U`,0, of LSU(N). Then we can

construct a representation of ΛSU(N), Uγ
`,0, by de�ning

Uγ
`,0 := σγ ◦ U`,0, (5.2.1)

where σγ is a proper soliton of the conformal net ASU(N),` with γ ∈ F .
Clearly by Proposition 4.2.4, Uγ

`,0 it has positive energy. To check that Uγ
`,0 does not

extend to a positive energy representation of LSU(N) we proceed by contradiction.

Suppose that Uγ
`,0 does indeed extend to a positive energy representation of LSU(N).

Then Uγ
`,0 is also irreducible as a representation of LSU(N). Uγ

`,0 must have level `

by Theorem 2.5.2 since it is locally equivalent to U`,0 by its de�ning equation 5.2.1.

Then by the correspondence 2.5.2 applied to Uγ
`,0, the corresponding representation

of the conformal net ASU(N),` is an extension of σγ, which does not exist by Theorem

4.3.2.
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5.2.2 Representations of the one point stabilizer subgroup of

Diff+(S1)

We know want to use the results in Section 4.3 to construct unitary projective

representations of B0. Let γ ∈ F , set

αγ : B0 → Diff1,∞
+ (S1)

g 7→ γ ◦ g ◦ γ−1.
(5.2.1)

Clearly αγ is an homomorphism of the stabilizer group of the point at in�nity

B0 into the group Diff1,∞
+ (S1). Note that the function γ ◦ g ◦ γ−1 is indeed a C1

function as the discontinuity of the �rst derivative of γ at the point of in�nity is

eliminated. We construct a projective unitary representation Uγ of B0 induced from

γ in the following way:

Uγ : B0 → U(H)

g 7→ Uγ(g) := (U ◦ αγ)(g)
(5.2.2)

where U is a projective unitary representation of Diff1,∞
+ (S1) on the Hilbert space

H.

Proposition 5.2.2. Let γ ∈ F and U = U(c,0) the irreducible positive-energy unitary

projective representation of Diff+(S1) with central charge c. The maps Uγ de�ned by

the equation 5.2.2 are unitary projective representations of B0 which do not extend

to Diff+(S1). In addition, Uγ1 ' Uγ2 if and only if Rγ1 = Rγ2.

Proof. It follows easily from the de�nition of Uγ, see for instance the proof in Propo-

sition 5.2.1.

Proposition 5.2.3. Let 2 < s < 5/2 and γ ∈ F . The map Uγ := U ◦ αγ is a

strongly continuous unitary projective representation of B0 when U = Un,0, n ∈ Z+.

Furthermore, let A be the U(1)-current net or the Virasoro net AVirc with c ∈ Z+

and γ ∈ F . Every soliton σγ of A as in Section 4.3 is continuously B0-covariant

with respect to the representation Uγ.

Proof. This is clear from Theorem 5.1.4 and Lemma 5.1.13.
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Appendix A

Projective unitary representations

In this section we collect the basic de�nitions on projective unitary representations

of (topological) groups.

De�nition A.0.1. A strongly continuous unitary projective representation of a

topological group G is a pair (U,H) whereH is a Hilbert space and U is a continuous

group homomorphism from G to U(H)/T, where U(H) is equipped with the strong

operator topology and U(H)/T with the quotient topology by the quotient map q.

The subbasis elements which contain q(u) are {Uq(u),ξ,ε}ξ∈H,ε>0, where

Uq(u),ξ,ε = {q(v) : there are u′, v′ ∈ U(H), q(u) = q(u′), q(v) = q(v′), and ‖(v′−u′)ξ‖ < ε}.

Therefore, it is clear that a net {q(uλ)} has limit q(u) if and only if for each

ξ ∈ H there is zξ,λ, ẑξ,λ ∈ T such that ‖zξ,λuλξ − ẑξ,λuξ‖ → 0 if and only if there

is zξ,λ ∈ T such that1 zξ,λuλξ → uξ. Actually, zξ,λ does not depend on ξ (because,

if zξ,λuλη were not convergent for η ⊥ ξ, zξ,λuλ(ξ + η) would not be convergent in

H/T, hence convergence holds for any η), hence q(uλ) is convergent if and only if

there is a net zλ ∈ T such that zλuλ is convergent in the strong operator topology.

We have the following result, see [Bar54]

Theorem A.0.2. U(gλ)→ U(g) in U(H)/T if and only if AdU(gλ)(x)→ AdU(g)(x).

We can consider U(g) as an operator acting on H determined up to a phase

factor. Two projective unitary representations (U1,H1) and (U2,H2) are said to be

equivalent if exists an unitary W : H1 → H2 such that WU1(g) = U2(g)W for every

g ∈ G up to a phase factor.

De�nition A.0.3. A unitary multiplier representation of G is a pair (U,H)

were U : G → U(H) is a map such that U(g1)U(g2) = ω(g1, g2)U(g1g2) and ω :

G×G→ T is a map which satis�es the equality

ω(g1, g2)ω(g1g2, g3) = ω(g1, g2g3)ω(g2, g3).

1One can concretely make the following choice: zξ,λ = 〈uξ,uλξ〉
|〈uξ,uλξ〉| , then zξ,λuλξ converges to uξ.
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A unitary multiplier representation U of G is strongly continuous if U(g)v tends

to U(g0)v for all v ∈ H if g tends to g0.
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Appendix B

Central extensions

In this section we introduce central extensions of groups and of Lie algebras. Most

of the de�nitions and facts are taken from [KW09, Sch08].

B.1 Central extensions of groups

Let G and H be two arbitrary groups.

De�nition B.1.1. An extension of G by the group H is an exact sequence of

homomorphisms

1 −→ H −→ Ĝ −→ G −→ 1.

The extension is central if H is abelian and is in the center of Ĝ.

We say that two central extensions of G by H are equivalent if the diagram

1 H Ĝ1 G 1

1 H Ĝ2 G 1

id Φ id

is commutative, with Φ : Ĝ1 −→ Ĝ2 a group homomorphism.

A map c : G×G→ H is said to be a 2-cocycle of G with values in H if

c(g1, g2)c(g1g3, g3) = c(g1, g2g3)c(g2, g3)

and c(1, 1) = 1, for every g1, g2, g3 ∈ G. We say that two 2-cocycles c1 and c2

are equivalent, c1 v c2, i� there exists a map α : G → H such that α(g1g2) =

c1(g1, g2)c2(g1, g2)−1α(g1)α(g2).

We de�ne the second cohomology group H2(G,H) of G with coe�cients in H as

the set of 2-cocycles modulo the equivalence relation

H2(G,H) := {c is a 2-cocycle}/ v
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and with the group operation given by the pointwise product.

We now construct a central extension of G by H using a 2-cocycle ω in this way:

the exact sequence which determines the central extension is

1 −→ H
ι−→ H ×ω G

π2−→ G −→ 1

where H ×ω G is equal to H ×G as a set and is endowed with the multiplication

(h1, g1) · (h2, g2) := (ω(g1, g2)h1h2, g1g2),

and π2 is te projection map from H × G onto G. With this in mind, the following

holds:

Proposition B.1.2. There exists a correspondence between the 2-cocycles of G

with values in H and central extensions of G by H. The second cohomology group

H2(G,H) is in one-to-one correspondence with the equivalence classes of central

extensions.

B.2 Central extensions of Lie algebras

De�nition B.2.1. A central extension of a Lie algebra g by a vector space h is

a Lie algebra g̃ which is equal to g⊕ h as a vector space, and with bracket

[(g1, h1), (g2, h2)] := ([g1, g2], ω(g1, g2)), (B.2.1)

where ω : g× g→ h is a continuous bilinear map.

Since the bracket associated to g̃ does not depend on elements in h, it is clear that

h is in the center of g̃. From equation (B.2.1) ω has to be bilinear, antisymmetric

and has to satisfy the equation

ω([g1, g2], g3) + ω([g2, g3], g1) + ω([g3, g1], g2) = 0 (B.2.2)

for every g1, g2, g3 ∈ g (cocycle relation). A continuous function ω : g×g→ h which

is bilinear, antisymmetric and satis�es the cocycle relation is called a 2-cocycle.

We denote with the symbol Z2(g, h) the space of 2-cocycles of g with values in h. An

element ω ∈ Z2(g, h) is a 2-coboundary if ω(g1, g2) = α(g1, g2) for every g1, g2 ∈ g,

where α : g→ h is a linear map. The space of 2-coboundaries of g with values in h

is denoted with B2(g, h).

De�nition B.2.2. The second cohomolgy group of g awith values in h is

H2(g, h) := Z2(g, h)/B2(g, h).
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In a di�erent way, we can de�ne a central extension of a Lie algebra g by the Lie

algebra h as an exact sequence

0 −→ h −→ g̃ −→ g −→ 0

with h in the center of g̃. A morphism of central extensions of g is a pair (µ, ν) of

Lie algebra homomorphisms such that the diagram

0 h1 g̃1 g 0

0 h2 g̃2 g 0

µ ν id

is commutative. The extensions of g by h are equivalent if ν is an isomorphism

of Lie algebras and µ is the identity map.

The following is a well-known fact, see [Sch08][Remark 4.7]:

Proposition B.2.3. There exists a bijection between H2(g, h) and the set of equiv-

alence classes of central extensions of g by h.

Let g a Lie algebra and g̃ a central extension of g. If for any other central

extension g̃∗ there exists an unique morphism of central extension between g̃ and

g̃∗, then g̃ is called universal.

The following Theorem is a classical result of Bargmann [Bar54]:

Theorem B.2.4. Let G be a connected and simply connected �nite-dimensional Lie

group with Lie algebra g. If H2(g,R) = 0, then every unitary projective representa-

tion U of G lifts to a true unitary representation.
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Appendix C

Continuous fragmentation of D̃s(S1).

If I is a proper open interval of S1, we denote with I ′ = (S1 \ I)◦ the interior of its

complement. Let I be the closure of I. With Diff+(I) we denote the group

Diff+(I) :=
{
γ ∈ Diff+(S1) : γ(x) = x if x ∈ I ′

}
(C.0.1)

and with Ds(I) the group

Ds(I) :=
{
γ ∈ Ds(S1) : γ(x) = x if x ∈ I ′

}
. (C.0.2)

In di�erent words, we say that an element γ ∈ Diff+(I) (or an element γ ∈ Ds(I))

is supported in I, where the support of a (non necessarily smooth) di�eomorphism

γ is the closure of the set {x ∈ S1 : γ(x) 6= x}.
Let {Ij}j=1,2,3 be a cover of the unit circle as Fig. C.1: Ik := (ak, bk) where ak, bk

are the endpoints. We take a smaller interval Îk = (âk, b̂k) ⊂ Ik which still consist

a cover of S1 points ă1, b̆1, c.f. [DFK04]. Furthermore, we choose b̂2, b̌2 such that

â1 < b̂2 < b̌2 < b2.

De�nition C.0.1. We say that a group G ⊂ Homeo+(S1) has the fragmentation

property if for any �nite open cover U = {Ii}ni=1 of S1 and for any element γ ∈ G
there exist {γi}mi=1 ⊂ G such that γ = γ1 ◦ . . . γm and supp (γj) is contained in some

Ii ∈ U .

We denote with Homeo0(S1) the connected component of Homeo(S1) containing

the identity. Since Homeo0(S1) is algebraically simple [Man15][Corollary 1.10], and

Homeo+(S1) is connected and normal Homeo0(S1), they coincide. Here we mention

an important fact about the group of orientation preserving homeomorphisms (for

a sketch of the proof and for references see [Man15]):

Theorem C.0.2. The group Homeo+(S1) has the fragmentation property.
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I1

I2

I3

I1

( )
Î1

( )
a1 b1ă1 â1 b̂1 b̆1

I2

b2

()
I3

a3

Figure C.1: The covering of the unit circle.

By the above theorem any given di�eomorphism γ can be written as a product

of elements supported in Ik. For our purpose we need a slightly re�ned version of

it, namely, if γ ∈ V , where V is in a small neighborhood of the unit element ι, then

the fragments γk can be taken in a small, but larger neighborhood V̂ :

Lemma C.0.3. There is a neighborhood V of the unit element ι of D̃s(S1) and

continuous localizing maps χk : V → D̃s(Ik) with

γ = χ1(γ)χ2(γ)χ3(γ)

and χk(ι) = ι, suppχk(γ) ⊂ Ik. If supp γ ⊂ Ĭk ∪ Ĭk+1, then χk+2(γ) = ι, where

k = 1, 2, 3 mod 3.

Proof. We may assume without loss of generality that 0 < a1 < ă1 < â1 < b2 <

a3 < b̂1 < b̆1 < b1 < 2π, (see Figure C.1).

We choose 2π-periodic function Dc,1 with Dc,1(t) = 1 for t ∈ Î1 = [â1, b̂1] and

Dc,1(t) = 0 for t ∈ [0, ă1] ∪ [b̆1, 2π] and 0 ≤ Dc,1(t) ≤ 1 everywhere. Let 0 ≤
Dl,1(t) ≤ 1 be another smooth 2π-periodic function with support in (a1, ă1) and

with
∫ 2π

0
Dl,1(t)dt =

∫ ă1

a1
Dl,1(t)dt = 1

2
(ă1−a1) (which is possible because the interval

(a1, ă1) is longer than 1
2
(a1, ă1)). Similarly, let 0 ≤ Dr,1(t) ≤ 1 be a smooth 2π-

periodic function with support in (b̆1, b1) and with
∫ 2π

0
Dr,1(t)dt = 1

2
(b1 − b̆1).
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We consider the following open neighborhood of the unit element of D̃s(S1)

Vε :=
{
γ ∈ D̃s(S1) : |γ(θ)− ι(θ)| < ε, |γ′(θ)− 1| < ε for θ ∈ [0, 2π]

}
.

Suppose γ ∈ Vε. We set

M := max {Dc,1(t), t ∈ [0, 2π]}

and de�ne the constant α(γ) by

α1(γ) =
2

ă1 − a1

(
γ(â1)− â1 −

∫ â1

0

(γ′(t)− 1)Dc,1(t)dt

)
. (C.0.3)

It follows that

|α1(γ)| ≤ 2

|ă1 − a1|
ε(1 + â1M) (C.0.4)

by the de�nition of Vε and

γ(â1) =

∫ â1

0

((γ′(t)− 1)Dc,1(t) + 1 + α1(γ)Dl,1(t))dt.

Similarly, set the constant β1(γ) by

β1(γ) =
−2

b1 − b̆1

(∫ 2π

0

((γ′(t)− 1)Dc,1(t) + α1(γ)Dl,1(t))dt

)
(C.0.5)(

=
2

b1 − b̆1

(
b̂1 − γ(b̂1)−

∫ b1

b̂1

(γ′(t)− 1)Dc,1(t)

))
,

then it follows that

|β1(γ)| ≤ 2

|b1 − b̆1|
ε(|b̂1 − b1|M + 1) (C.0.6)

and

b1 =

∫ b1

0

((γ′(t)− 1)Dc,1(t) + 1 + α1(γ)Dl,1(t) + β1(γ)Dr,1(t))dt.

The function

γ1(θ) =

∫ θ

0

((γ′(t)− 1)Dc,1(t) + 1 + α1(γ)Dl,1(t) + β1(γ)Dr,1(t))dt (C.0.7)

is 2π-periodic and the �rst derivative

γ′1(θ) = (γ′(θ)− 1)Dc,1(θ) + 1 + α1(γ)Dl,1(θ) + β1(γ)Dr,1(θ)

is positive if we take ε su�ciently small because we can control |α1(γ)| and |β1(γ)|
by (C.0.4), (C.0.6). Furthermore γ′1− 1 ∈ Hs−1(S1) because Hs−1(S1) is an algebra
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by Lemma 1.4.1 and γ− ι ∈ Hs. In conclusion, γ1 can be regarded as an element in

D̃s(S1). It also has the desired properties, namely γ1(θ) = θ for θ ∈ I ′1 and γ1(θ) =

γ(θ) for θ ∈ Î1. From (C.0.7)(C.0.3)(C.0.5) follows that the map Vε → D̃s(S1),

γ 7→ γ1 is continuous.

We choose ε such that γ′1 is positive for γ ∈ Vε. Furthermore the assignment

Vε → D̃s(S1), γ 7→ γγ−1
1 is continuous by Lemma 1.4.2. We take V ⊂ Vε to be the

neighborhood of the identity of D̃s(S1) such that for γ ∈ V we have γγ−1
1 ∈ Vε1

where ε1 is small enough that we obtain γ2 ∈ D̃s(S1) (in particular γ′2 is positive) if

we do an analogous construction on I2 for γγ−1
1 .

For γ ∈ V we set χ1(γ) = γ1. The continuity of the map χ1 in the topology of

D̃s(S1) is clear.

Next we construct χ2(γ). By construction (γγ−1
1 )(θ) = θ for θ ∈ Î1, therefore

, supp γγ−1
1 ⊂ I2 ∪ I3. We can apply an analogous construction to I2 and γγ−1

1 to

obtain γ2 such that supp γ2 ⊂ Î2, γ2(θ) = (γγ−1
1 )(θ) for θ ∈ Î2. In this way we obtain

the continuous map χ2(γ) := γ2. Furthermore, by our choice â1 < b̂2 < b̌2 < b2,

γ2(θ) = (γγ−1
1 )(θ) for θ ∈ Î1 where both are equal to θ, hence for Î1 ∪ Î2.

Now we have (γγ−1
1 γ−1

2 )(θ) = θ for θ ∈ Î1 ∪ Î2, and as {Îk} is a cover of S1,

(Î1 ∪ Î2)′ ⊂ Î3. Therefore, if we set χ3(γ) = γγ−1
1 γ−1

2 , it is supported in Î3 ⊂ I3 and

the map χ3 is continuous because it is a composition of continuous maps (Lemma

1.4.2).

If γ is not supported on all S1 but is localized in some proper interval, we can

improve the previous statement.

Lemma C.0.4. Let k ∈ {1, 2, 3} mod 3 and Ĩk = Ik∪Ik+1. There is a neighborhood

V of the unit element ι of D̃s(S1) and continuous localizing maps

χ
(k)
k : V ∩ D̃s(Ĩk)→ D̃s(Ik),

χ
(k)
k+1 : V ∩ D̃s(Ĩk)→ ˜Ds(Ik+1)

with γ = χ
(k)
k (γ)χ

(k)
k+1(γ) and χ

(k)
k (ι) = χ

(k)
k+1(ι) = ι.

Proof. Without loss of generality, we may assume k = 2. This is done by applying

the steps of constructing χ2 and χ3 in the proof of Lemma C.0.3 to slightly enlarged

I2 and Î2, so that χ
(2)
2 (γ)(θ) = γ(θ) for θ ∈ I ′3.
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