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1. Introduction 

 

1.1 Bacterial ribosome 

Ribosomes are essential macromolecular machines that translate the genetic 

information into functional proteins. They are particles of more than 2.3 MDa 

with a diameter of about 20 nm, composed of 65% ribosomal RNA (rRNA) 

and 35% ribosomal proteins (r-proteins). The bacterial ribosome sediments, 

during ultracentrifugation, as a 70S particle composed of a small subunit 

(30S) and a large subunit (50S) (Ramakrishnan et al., 2002). Each subunit is 

therefore defined by a sedimentation coefficient, which reflect its relative 

mass, structure and composition differences (Connolly et al., 2008). The 

small subunit contains 21 ribosomal proteins and a 16S ribosomal RNA 

(rRNA), whereas the large subunit is made up of 34 proteins and two rRNAs: 

the 23S and 5S (Shajani et al., 2011) (Figure 1.1).  
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The 30S subunit binds mRNA during translation initiation and is mainly 

responsible for the mRNA decoding function. The 50S subunit contains the 

peptidyl transferase center and catalyzes peptide-bond formation. The 30S 

subunit is composed of three domains: the body (5’ domain), the platform 

region (central domain), and the head (3’ domain), whereas the 50S subunit 

principal features are the central protuberance, the L1 arm (L1 stalk) and the 

L7–L12 region (L7-12 stalk) (Figure 1.2). Ribosome has three functional 

sites designated as A (aminoacyl), which accepts the incoming aminoacylated 

tRNA; P (peptidyl), which holds the tRNA with the nascent peptide chain; 

and E (exit), which holds the deacylated tRNA before it leaves the ribosome 

(Ramakrishnan et al., 2002).   

 

 
 

50S subunit 70S ribosome 30S subunit 

L1 stalk 

L7-L12 stalk 
central 

protuberance 
body 

platform 

head 

PTC 
DC 

Figure 1.1 E. coli 70S ribosome. The small subunit (30S) is shown on the left, with the 16S 

rRNA in blue and the small subunit proteins (S-proteins) in orange. The large subunit (50S) 

is shown on the right, with the 23S rRNA in red, the 5S rRNA in pink and the large subunit 

proteins (L-proteins) in green.  

[Figure adapted from Shajani et al., 2011] 
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Structural information on the 70S ribosome (Yusupov et al., 2001; Noeske et 

al., 2015), the 30S (Wimberly et al., 2000; Schluenzen et al., 2000) and the 

50S subunits (Ban et al., 2000) have contributed to shed light on many 

aspects of ribosome architecture and function (Ramakrishnan et al., 2001). 

Together, available structures provide a great deal of information about 

protein-RNA interactions in each subunit, as well as the details of the 

interaction of the ribosome with ligands such as initiation and elongation 

factors, mRNA, tRNA and antibacterial drugs (Noller et al., 2005; Carter et 

al., 2000; Ramakrishnan, 2001 et al.; Steiz et al., 2003). Despite the acquired 

knowledge on the ribosome structure and function, ribogenesis (i.e. the 

processes leading to a functional ribosome in cell) is far to be completely 

understood even if dozens of proteins involved in ribosome maturation have 

been identified and many genetic, biochemical and structural data have been 

accumulated up to now (Goto et al., 2013). To reach a complete picture of 

how the ribosome get its functional state in vivo is of profound interest both 

from a biological perspective as well as from a pharmacological point of 

view, since the ribosome represents an important drug target. 

 

1.1.1 Bacterial ribosome assembly 

Ribosome biogenesis is a central cellular program that accounts for a 

Figure 1.2 Bacerial ribosome. The functional 70S in the middle, the 50S subunit on the 

left (rRNA in yellow and r-proteins in magenta) and 30S on the right (rRNA in green and 

r-proteins in cyan). Features in the 50S subunit include the central protuberance, L1 arm 

(L1 stalk) and L7–L12 region (L7-12 stalk) and the peptidyl transferase center (PTC). In 

the 30S subunit, these include the head, body and platform as well as the decoding center 

(DC).  

[Figure adapted from Schuwirth et al., 2005]  
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significant fraction of the energy budget for rapidly growing bacteria, and is 

an essential process in all living cells. Due to the complexity of this process, 

understanding how different components of the bacterial ribosome come 

together and organize themselves remains a daunting challenge.  

The in vitro assembly of the small and large subunits from individual 

components was achieved over 40 years ago (Nierhaus et al., 1991; Nomura 

et al., 1970; Traub and Nomura, 1969). This pioneering work, led primarily 

by the Nomura and Nierhaus laboratories, demonstrated that the information 

for the assembly of these macromolecular complexes resided within the 

components of the ribosomal subunits themselves. Nevetheless, the non-

physiological conditions required for ribosome assembly and the slow 

kinetics of this process in vitro indicated that additional factors are required 

in vivo. Indeed, in bacteria, the cytoplasmic assembly of ribosomes is 

facilitated by many cofactors, that include ribonucleases, RNA helicases, 

chaperones, ATPases, GTPases and ribosomal RNA (and r-protein) 

modification factors (Wilson and Nierhaus 2007). Although the specific role 

of many of these factors is still unclear, the deletion of genes encoding many 

of them causes accumulation of precursor rRNAs and immature ribosomal 

subunits and therefore affects ribosomal assembly (Wilson and Nierhaus 

2007; Connolly and Culver 2009). The most notable and enigmatic of these 

proteins are the GTPases (Brown et al., 2005). Indeed, several GTPases have 

been correlated with ribogenesis in bacteria like RsgA, Era and YqeH in the 

30S maturation and YihA, RbgA, Der and Obg in the 50S maturation (Goto 

et al., 2013). 

Ribogenesis involves different and coordinated events: i) the transcription, 

processing, and modification of rRNA; ii) the translation and modification of 

ribosomal proteins; iii) the proper folding of rRNA and ribosomal proteins; 
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iv) the binding of ribosomal proteins and v) the binding and release of 

assembly factors. Many of these steps are coupled and occur simultaneously 

during rRNA transcription through an alternating series of RNA 

conformational changes and protein-binding events (Karbstein et al., 2007; 

Williamson et al., 2005; Holmes et al., 2005).  

1.1.2 30S subunit maturation 

The assembly of the 30S subunit is a multistep process (Figure 1.3) that starts 

with transcription of the 16S ribosomal RNA (rRNA) and the synthesis of the 

ribosomal proteins (r-proteins). Folding of the 16S rRNA starts before 

transcription is completed. This process is coupled with modifications to the 

RNA and processing of the precursor sequences (Shajani et al., 2011; 

Connolly et al., 2009). The binding of the 21 r-proteins to the 16 rRNA 

stabilizes rRNA and suppresses its misfolding (Hosokawa et al., 1966; Traub 

and Nomura, 1968, 1969; Woodson et al., 2008, 2011).  
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Vintage experiments by Nomura (Hosokawa et al., 1966; Traub and Nomura, 

1968, 1969) and more recent experiments from the Williamson and Woodson 

laboratories (Talkington et al. 2005; Adilakshmi et al. 2008) have defined the 

hierarchy and kinetic pathway of the 21 r-proteins binding to mature 16S 

rRNA in vitro. They have shown that six primary r-proteins bind the naked 

16S rRNA, while secondary r-proteins require one or more primary r-proteins 

binding. Finally, the tertiary r-proteins bind after a temperature-dependent 

conformational step that is dependent on the binding of secondary r-proteins 

(Traub and Nomura, 1968; Shajani et al., 2011) (Figure 1.4).  

  

Figure 1.3 Biogenesis pathways of the bacterial ribosomal subunits 30S (left; pdb code 

2AVY; RNA shown in gray and r-proteins in red) and 50S (right; PDB code 2AW4; RNA 

colored gray and r-proteins purple). The biogenesis of these subunits start with the 

transcription of primary rRNA transcripts, which contain 16S, 23S and 5S rRNA sequences 

and proceeds through a series of ill-defined steps. Several ribosomal biogenesis factors, 

shown in the central box, facilitate the ribosomal assembly through a coordinated series of 

maturation events. 

[Figure adapted from Connolly et al., 2009] 
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This hierarchy in protein binding leads to a cooperative assembly, ensuring 

each complex forms completely. Cooperativity mostly arises from structural 

changes in the 16S rRNA induced by the progressive addition of proteins 

(Culver et al., 2003). The 30S proteins make few base-specific contacts with 

the rRNA, but recognize the shape of the folded RNA (Brodersen et al., 

2002). Co-folding of the RNA and the r-proteins increases the specificity of 

the assembly (Williamson et al., 2005). Williamson and colleagues, 

monitoring the binding rates and activation energies of all the 30S ribosomal 

proteins simultaneously, revealed that the assembly can proceed along 

multiple alternative pathways, due to the existence of an ensemble of 

multiple intermediate states from distinct assembly pathways, with no 

evidence of a single rate-limiting step (Williamson et al., 2005; Talkington et 

al., 2005; Mulder et al., 2010). They also showed that protein binding to the 

rRNA drives conformational rearrangements that stabilize the native fold of 

the 30S subunit (Talkington et al., 2005). This paradigm has been 

strengthened by Woodson and coworkers who showed multiple early folding 

nucleation events and induced fit of protein–rRNA complexes (Adilakshmi et 

al., 2008).  

In line with the co-transcriptional nature of ribosome assembly, r-protein 

binding rates follow the 5’ to 3’ directionality of rRNA transcription, such 

that r-proteins bind rapidly to the 5’ 16S rRNA domain that forms the 30S 

body, and more slowly to the 3’ domain that forms the 30S head (Talkington 

Figure 1.4 The Nomura assembly map. A few proteins, referred to as primary binding 

proteins (1°), bind directly to the nascent 16S rRNA. The binding of secondary binding 

proteins (2°) depend on primary binders wheras the tertiary binding proteins (3°) are 

sequential to secondary binders. The map is divided into 5′ (red), central (green), and 3′ 

(blue) domains on the basis of binding position relative to the 16S rRNA. 

[Figure adapted from Shajani et al., 2011] 
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et al., 2005). Overall the folding of the 5’ and central domains is more robust 

than that of the 3’ domain due to redundant and alternative assembly 

pathways, while assembly of the 3’ domain follows a more restrictive 

pathway that is susceptible to interference and kinetic traps (Xu et al., 2010). 

Multiple assembly pathways increase the flexibility of the assembly process, 

while accessory factors and modification enzymes chaperone the late stages 

of assembly and control the quality of the mature subunits.  

During 30S ribosomal subunit biogenesis, assembly factors prevent 

accumulation of misfolded intermediate states of low free energy that slowly 

convert into mature 30S subunits. Four protein factors, RsgA (also known as 

YjeQ), Era, RbfA and RimM, are involved in the late stages of the 30S 

subunit maturation (Jomaa et al., 2011; Leong et al., 2013; Guo et al., 2013; 

Jeganathan et al., 2015; Thurolow et al., 2016). Recent work indicates that 

these factors bind the 30S subunit at or near the decoding center and aid its 

folding (Lopez-Alonso et al., 2017; Razi et al., 2017; Sharma et al., 2015; 

Datta et al., 2007); however, the precise mechanisms and the functional 

interplay among them are very complex and are not yet well understood. 

 

 

1.2 GTPases and ribosome biogenesis 

Guanine nucleotide-binding proteins or G proteins are well-known molecular 

switches that control several key cellular events (Bourne et al., 2009). 

Extensive structural and biochemical studies have contributed to our current 

understanding of their roles in protein synthesis, signaling events leading to 

cell proliferation and differentiation, endocytosis, protein trafficking, 

cytoskeletal rearrangement and cell motility (Bourne et al., 2009). 

During the genome sequencing revolution in late 1990s it became clear that 

bacteria harbored several GTPases that had no known function but were 
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homologous to proteins in eukaryotic organisms. Prior to discover that many 

of these proteins were implicated in ribosome biogenesis, several groups had 

shown that many of these uncharacterized GTPases were essential for 

bacterial growth and had potential links to cell cycle and metabolic pathways 

(Britton et al., 1998; Morimoto et al., 2002). Although these proteins were 

initially classified as part of the Ras superfamily of GTPases, nevertheless 

they are distinct as they have additional domains that are lacking in many of 

the small monomeric GTPases. Most of these extra domains mediate the 

interaction of the GTPases with the ribosome through direct binding to rRNA 

and/or to ribosomal proteins. Mutations affecting the ribosome-associated 

GTPases, as well as in many Ras superfamily GTPases in eukaryotes, have 

pleiotropic phenotypes indicating potential connections between the 

ribosome and the cell cycle, stress, cell growth and nutrient availability.  

The GTPases involved in ribosome assembly (referred to as RA-GTPases 

hereafter) have been studied in multiple bacterial species and share some 

general features: 1) most of these proteins are essential for growth and, in 

cases in which null mutations have been made, the mutants show an impaired 

phenotype including reduced levels of 70S ribosomes in the cell, due to 

improper assembly of the individual subunits; 2) Many, but not all, RA-

GTPases are conserved throughout evolution and homologs can be found in 

most eukaryotic genomes, including human; 3) The bacterial RA-GTPases 

interact with ribosome subunits, usually in a GTP-dependent manner. Among 

the RA-GTPases, RsgA, Era and YqeH are involved in the maturation of the 

30S subunit maturation while YihA, RbgA, Der and Obg in the maturation of 

the 50S subunit (Goto et al., 2013). 
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1.2.1 General features of GTPases  

Monomeric GTPases function as molecular switches, with the GTP-bound 

form corresponding to the “ON” state and the GDP-bound form to the “OFF” 

state. Although the bacterial RA-GTPases share many conserved features 

with traditional GTPases, some unique aspects are highlighted below. 

GTPases have conserved motifs recognizable at the sequence and structural 

levels (Vetter and Wittinghofer, 2001). These include the G1-G2-G3-G4-G5 

motifs with G2 and G3 contained in the so-called switch I and switch II 

regions. These motifs coordinate the binding of guanine nucleotides (G 

motifs) and the positioning of an Mg++ ion and a water molecule for efficient 

hydrolysis. The highly mobile switch regions, which show different 

conformations based on the GTP/GDP bound, are often the sites at which 

effector proteins bind to propagate the downstream GTP mediated signal 

events (Wittinghofer, Vetter, 2011). The intrinsic rate of GTP hydrolysis is 

usually low and additional factors are required to speed it up. These include 

factors such as GTPase activating proteins (GAPs) and guanine nucleotide 

exchange factors (GEFs). For several RA-GTPases, the ribosome may act as 

a GAP factor and, in few cases, also a role as a GEF has been proposed, 

hovewer, the molecular details of these functions have not been fully 

characterized to date.  

The conserved functional 18–20 kDa G domain has a common structure and 

switch mechanism and consists of a six-stranded β-sheet and five helices on 

both sides (Vetter and Wittinghofer, 2001). The conserved sequence elements 

surround the nucleotide-binding site and are designed as G1 

(GxxxxGK[S/T]), G2 (T), G3 (DxxG), G4 (N/TKxD) and a weakly 

conserved G5 sequence motif (often SAK). The loop containing G1, named 

the P-loop (for phosphate binding) and originally termed the Walker A motif, 
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interacts with the β- and γ-phosphate groups of GTP. The loops containing 

G2 and G3, termed switch I and switch II, respectively, make contact with 

the γ-phosphate and undergo a structured/unstructured shift upon GTP 

hydrolysis. The aspartate of DxxG in G3 (also called the Walker B motif) 

makes a water-mediated contact to the Mg++ ion, which is required for GTP 

hydrolysis in most Ras-like and other G proteins. G4 and G5 are instead the 

major determinants for guanine-base specificity (Vetter and Wittinghofer, 

2001). Comparison of available structures of GTPases, in both the di- and 

triphosphate bound state, confirmed a canonical interaction with nucleotides 

and led to the conclusion that the switch mechanism is also conserved (Tu et 

al., 2009, 2011; Foucher et al., 2012). The conformational changes during 

GTP/GDP transition are confined to switch I and switch II (Milburn et al., 

1990; Wittingover and Vetter, 2011). However, in multidomain proteins, 

these regions are often located in the interdomain interface such that the 

GTP/GTP transition can induce changes in the relative orientation of G 

flanking domains (Wittingover and Vetter, 2011). 

1.2.2 Circulary permutated GTPases 

A subset of RA-GTPases contains a unique circular permutation of the GTP 

binding domain. These atypical circularly permuted GTPases (cpGTPases) 

are grouped into distinct subfamilies, represented by the proteins YlqF, 

YqeH, YjeQ and YawG (Leipe et al., 2002). In the aminoacid sequence of 

these proteins the occurrence of sequence motifs follows the order G4-G5-

G1-G2-G3, instead of the usual order G1-G2-G3-G4-G5 observed in 

canonical GTPases (Anand et al., 2006). Despite such a variation at the 

primary sequence level, which should lead to different topological 

connections between secondary structure elements, the three dimensional 

fold is well preserved (Shin et al., 2004). Although there are some structural 
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differences between cpGTPases and traditional GTPases in terms of the GTP 

binding pocket, the circular permutation does not dramatically alter the way 

these proteins interact with guanine nucleotides. In these proteins the circular 

permutation of G region relocates Switch-II to the C-terminus and leaves it 

unfastened. Since nucleotide-binding and hydrolytic activity require Switch-

II to be held rigidly, an additional domain or a super secondary structure able 

to the proper positioning of Switch-II is required (Anand et al., 2006). As a 

consequence of the only permutation observed in nature is the creation of a 

new C-terminus following the DxxG motif in Switch-II. Such feature of 

cpGTPases confers two advantages: first, the Switch-II is properly positioned 

and oriented to favour guanine nucleotide binding and hydrolysis. Second, 

this coupling allows the propagation of conformational changes, mediated by 

GTP hydrolysis and associated with Switch-II, to the C-terminal domain thus 

regulating its biochemical functions (Anand et al., 2006). 

1.2.3 HAS family of GTPases and mechanism of GTP hydrolysis 

All the GTPases involved in ribosome biogenesis are members of the 

hydrophobic aminoacid substituted (HAS) family of GTPases (Mishra et al., 

2005). In classical GTPases, such as Ras, a conserved glutamine residue 

(Gln61 designated as the Glncat) is located in the switch II. Hydrolysis of 

GTP is due to a nucleophilic attack by a water molecule and the role of Glncat 

is to stabilize the transition state by orienting the relative positions of the 

nucleophilic water and the γ-phosphate (Mishra et al., 2005). The importance 

of the catalytic glutamine in GTP hydrolysis is well documented (Vetter and 

Wittinghofer, 2001) and its mutation to hydrophobic aminoacids is reported 

to be oncogenic in Ras. Because of this substitution, the HAS-GTPases are 

believed to use an alternative mechanism for GTP hydrolysis (Mishra et al., 

2005).  



	 13	

Another feature that remains unclear for the RA-GTPases is how the 

subsequent stabilization of the transition state (TS) is achieved. In the Ras 

system, RasGAPs stimulate GTP hydrolysis by supplying an additional 

residue, the “arginine-finger” (ArgGAP), into the active site, which is 

responsible for ~2,000-fold acceleration of the GTPase reaction by direct 

electrostatic stabilization of developing negative charges in the transition 

state (Scheffzek et al., 1997). The ArgGAP is provided either in cis by the 

same molecule or in trans by a different molecule and the scenarios are well 

known (Mishra et al., 2005). Up to now, RA-GTPases seem to be an 

exception among Ras-related G proteins, as the search for an arginine-finger 

or an analogous catalytic element has been unsuccessful (Rodnina et al., 

2009). It has been proposed that some RA-GTPases use a monovalent cation 

(M+ ion) as a structural and catalytic cofactor (Kuhle et al., 2014). These RA-

GTPases coordinate a M+ ion next to the GTP-γ-phosphate in a conserved 

coordination shell, where it forms a structurally relevant component of the 

catalytic center. The M+ ion adds another positive charge to the preorganized 

active site of GTPases that together with the invariant lysine of the P-loop 

and the Mg++ ion forms a triangle of positively charged moieties around the 

GTP molecule. Therefore, the M+ ion would be in a suitable position to 

neutralize negative charges of the TS in the γ-phosphate as well as the 

designated leaving group (GDP). This suggests that the M+ ion might 

function as the catalytic element that contributes to rapid GTP hydrolysis by 

providing electrostatic stabilization for the TS, in analogy to the arginine-

finger in the Ras-RasGAP system or the M+ ion in MnmE (Kuhle et al., 

2014).  

The cation-dependent GTPases can be placed into two distinct groups, 

according to their behaviour in vitro: those that are stimulated by potassium 
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ions but not by sodium ions (potassium-selective cation-dependent GTPases) 

and those that are stimulated by both potassium and sodium ions (sodium-

accomodating cation-dependent GTPases) (Ash et al., 2012). Moreover, it 

has been shown that the intrinsic activities of many bacterial RA-GTPases, 

YqeH (Anand et al., 2010), Era (Rafay et al., 2012), RbgA (Achila et al., 

2012) and Der (Foucher et al., 2012) are enhanced by potassium ions, wheras 

ObgE activity is stimulated by sodium ions (Gkekas et al., 2017). 

1.2.4 Role of GTPases in ribosomal assembly 

The next major advancement in the field of RA-GTPases will come from 

determining how these proteins participate in ribosome biogenesis at 

molecular level. Few possible mechanisms by which RA-GTPases could 

function in ribosome assembly have been proposed: i) RA-GTPases could 

serve to recruit other assembly factors during key points of the assembly 

process; ii) RA-GTPases may control rRNA structure by regulating the 

activity of RNA helicases; iii) RA-GTPases could serve as RNA helicases 

itself and directly unwind or refold rRNA during the assembly process; iv) 

RA-GTPases could serve to determine whether a particular step in assembly 

has been properly achieved prior to the occurrency of the following phase 

(Britton et al., 2009). Under this light, energy from GTP hydrolysis can be 

used to regulate delivery or removal of proteins to nascent ribosomes as well 

as to promote a conformational rearrangement within nascent ribosomes. 

Moreover, GTPases could act as reversible “placeholders”, regulating r-

proteins binding to nascent ribosome, as nutrient and enviromental sensors, 

by perception the cell metabolic state reflected in the GTP/GDP ratio, or as 

“checkpointers” by preventinting the entry of the 70S into the translational 

processes if not properly mature (Karbstein et al., 2007). Therefore, RA-

GTPases perform essential functions in the assembly of ribosome and a clear 
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picture of how they work at the molecular level is critical to understand the 

general process of ribosome biogenesis. 

 

1.3 Ribosome small subunit-dependent GTPase A (RsgA) 

Ribosome small subunit-dependent GTPase A (RsgA), also named YjeQ 

/YloQ/CpgA, is a ribosome assembly factor that intervenes during the late 

stages of 30S maturation (Daigle et al., 2002; Himeno et al., 2004; Jomaa et 

al., 2011). RsgA is broadly conserved among bacteria but absent in 

eukaryotes (Daigle et al., 2002; Leipe et al., 2002). RsgA has low intrinsic 

GTPase activity that is stimulated by the 30S subunit and the 70S ribosome, 

but not by the 50S subunit (Himeno et al., 2004). RgsA is found associated 

with ribosome at very low stoichiometry (1:200) in vivo (Daigle and Brown 

2004) and in vitro binds stably to the 30S subunit in the presence of GDPNP, 

a nonhydrolyzable GTP analogue, but not GTP or GDP (Daigle and Brown 

2004; Himeno et al., 2004). In the presence of GDPNP-RsgA, 70S ribosomes 

dissociated into their subunits, suggesting an intersubunit localization of the 

factor (Himeno et al., 2004).  

 

1.3.1 Structural features 

RsgA belongs to the TRAFAC (translation factors) class of GTPases and, 

within this class, to the YlqF/YawG sub-family. YlqF/YawG members share 

the common characteristic of a circularly permutated GTP binding site in 

which the canonical G motifs (G1-G2-G3-G4-G5), mediating the nucleotide 

binding and hydrolysis (Bourne et al., 1991), are circularly permutated and 

adopt a G4–G5–G1–G2–G3 pattern (Shin et al., 2004; Levdikov et al., 2004; 
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Nichols et al., 2007). G1 is characterized by the consensus sequence 

GxxxxGKS/T in which the lysine side chain is responsible for phosphate 

binding; G2 has only a threonine residue highly conserved and is located in 

the so called switch I loop; G3, located in the switch II loop, contains the 

DxxG motif in which the aspartic acid residue is involved in Mg++ 

coordination; G4, characterized by the N/TKxD motif, is responsible for 

guanine specificity together with the G5 region that is only weakly 

conserved. In RsgA, the G domain is located within two additional regions: 

an oligonucleotide/oligosaccharide binding-fold domain (OB-domain) and a 

zinc-binding domain (Daigle et al., 2002; Nichols et al., 2007; Shin et al., 

2004). The OB-fold consists of five antiparallel β-strands defining a β-barrel. 

The zinc-binding domain is composed of four helices in which the central 

pair, together with the intervening loop, defines a zinc-binding site. In RsgA 

structure the switches I and II and are ideally positioned to propagate 

conformational changes between the GTPase domain and the other two 

domains (Razi et al., 2017).  

1.3.2 RsgA and the 30S subunit 

High resolution structural information on the E. coli RsgA-30S complex, 

achived very recently by cryo-EM studies (Razi et al., 2017; Lopez-Alonzo et 

al., 2017), allowed the unequivocal positioning of RsgA with respect to the 

30S subunit (Figure 1.5). 
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In the GTP-bound form, RsgA binds all three domains of the subunit. The 

OB-fold contacts the body of the 30S, whereas the zinc-finger domain 

anchors the protein to both the head and platform domains. Finally, the 

GTPase domain covers the decoding center almost completely and contacts 

the platform through a long loop (Figure 1.6). In particular, the OB-fold 

interacts with the 30S mainly through helix 18 and helix 44, the GTPase 

domain contacts helix 44, mainly through switch I and switch II, and helix 24 

in the platform, and the C-terminal zinc binding domain anchors the protein 

to the head through helices 29 and 30 and to the platform by contacting helix 

45 (Razi et al., 2017). In the GDP form of RsgA the OB-domain is the 

dominant interface for 30S contact. Accordingly, it has been proposed that 

the OB-domain acts as an anchoring point to tether RsgA to the 30S subunit 

(Lopez-Alonso et al., 2017). The interaction of RsgA with the 30S subunit 

places the GTPase domain in direct contact with the upper part of helix 44 

Figure 1.5 Cryo-EM structure of the 30S-RsgA complex. The side view (A) and the front 

view (B) of the 30S-RsgA complex are shown. Important landmarks of the 30S subunit, in 

gray, as well as the three domains of RsgA, in purple, are indicated. 

[Figure adapted from Razi et al., 2017] 
 

	RsgA 



	 18	

that represents the ribosomal motif undergoing the largest conformational 

change upon RsgA binding.  
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As previously suggested, RsgA binds the 30S subunit close to the decoding 

center, in a position that is incompatible with that of all the three translation 

initiation factors (IF1, IF2, and IF3) (Carter et al., 2001; Simonetti et al., 

2008), as well as A- and P-site tRNAs (Selmen et al., 2006) and the 50S 

subunit. Recent studies suggest functional interplay between RsgA and other 

factors involved in the 30S maturation process, like Era, RbfA, and RimM 

(Inoue et al., 2006; Campbell and Brown, 2008; Goto et al., 2011). Era is of 

particular interest because of the genetic interaction of this gene with RsgA: 

overexpression of Era suppresses defects in growth and ribosome maturation 

of a rsgA-null mutant (Campbell and Brown, 2008). Era performs its function 

in conjunction with RsgA; in particular they both assist the processing of the 

3’ end of the precursor 17S rRNA. The binding sites of Era and RsgA to the 

30S subunit do not overlap, thus simultaneous binding of the two proteins is 

possible. Moreover, RsgA promotes the release of RbfA from the mature 30S 

subunit (Goto et al., 2011). RbfA is a small protein that binds the 30S subunit 

at the junction of the head and body, and its binding alter the position of 

helices 44 and 45 (Datta et al., 2007). The binding of RsgA to the 30S 

subunit has a stabilizing effect in the upper region of helix 44. This is the 

same rRNA motif that appears severely disrupted on RbfA binding (Razi et 

al., 2017). Therefore, it is likely that binding of RsgA to the 30S subunit 

Figure 1.6. The cryo-EM structure and atomic model of RsgA bound to the 30S subunit. The 

zoom-in view of the density representing RsgA in the cryo-EM map of the 30S-RsgA 

complex with the atomic model of RsgA superimposed in the cryo-EM map is shown on the 

left. The equivalent close-up view of the atomic model of the complex with the assembling 

factor binding to the decoding center of the 30S subunit is shown on the right. The rRNA 

and r-proteins interacting with RsgA are labeled. The panels shown different views of the 

30S-RsgA complex, the side view (A), the front view (B) and the platform view (C).  

[Figure adapted from Razi et al., 2017] 
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forces helix 44 back into the normal decoding position and triggers the 

release of RbfA. RsgA also distorts the binding site for IF1, which binds the 

30S subunit in the cleft between helix 44 and protein S12 (Carter et al., 

2001). In addition, the RsgA binding site partially overlaps with the 

interaction site of IF2 (Simonetti et al., 2008) and the C-terminal domain of 

IF3 (Dallas and Noller 2001). Therefore, RsgA might assists ribosome 

maturation by preventing premature formation of the translation initiation 

complex (Joomaa et al., 2011). These observations suggest that RsgA might 

be a general checkpoint protein in the late stage of the 30S subunit 

biogenesis, not only to release RbfA and other biogenesis factors from the 

nascent 30S subunit, but also to block the binding of players in translation 

initiation to the premature 30S subunit. Moreover, RsgA has a role in 

destabilizing kinetically trapped assembly intermediate as it induces local 

conformational changes in the 30S structure and disrupts binding of several 

tertiary r-protein binding, like S2, S3, S12 and S21 (Lopez-Alonso et al., 

2017). However, to ultimately describe the existing functional relationships 

between these factors, additional structural, genetic and biochemical studies 

of RsgA and other assembly factors are needed. 

1.3.3 GTPase activity 

Although the GTPase activity of RsgA was characterized early on (Daigle et 

al., 2002, 2004), the role of this activity in the overall function of RsgA and 

its regulation remains unclear. The GTPase activity of RsgA is stimulated by 

over 100-fold in the presence of mature 30S subunits (Daigle et al., 2002, 

2004; Himeno et al., 2004). Although the structure does not reveal what 

triggers this stimulation, it is possible that the specific conformation of helix 

44 may stimulate the GTPase activity in RsgA. Recent structural information 

provides also important clues on the catalytic mechanism of RsgA and on the 
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30S mediated GTPase activity stimulation (Daigle et al., 2002, 2004; Himeno 

et al., 2004). Lopez-Alonso and coworkers showed that the catalytic residue 

in RsgA (performing function that parallel Gln61 in Ras) is an histidine 

(His248 in E. coli sequence) located in the switch 1 loop. The 16S rRNA, in 

particular the upper region of h44, plays a key role in mantaining His248 in 

position suitable for the catalitic events; the same role has been proposed for 

the 23S rRNA in activating EF-Tu (Lopez-Alonzo et al., 2017). 

Conformational changes in the GTPase domain caused by GTP hydrolysis, 

ready propagated to neighboring domains, may lead to reorganization of the 

interface of the complex, causing an overall decrease in the binding affinity 

of RsgA (Razi et al., 2017) and its release from the 30S subunit. Therefore, 

the GTPase activity of RsgA may functions as a sensor to facilitate the 

release of the protein from the 30S subunit once RsgA has performed its 

functions (Daigle and Brown 2004).  

1.3.4 Role of RsgA in 30S subunit maturation 

Biochemical and genetic studies over last decade have provided a growing 

body of evidence implicating a role for RsgA in the late stages of 30S 

biogenesis (Jomaa et al., 2011; Daigle et al., 2004; Himeno et al., 2004). 

Involvement of RsgA in ribosome maturation has been firsly suggested by 

the phenotype arising from rsgA deletion. Disruption of the gene for RsgA in 

Escherichia coli affects cell growth, subunit association and processing of the 

16S rRNA (Himeno et al., 2004), whereas in Bacillus subtilis it has been 

shown to affects the growth and morphology of the bacterial cells (Campbell 

et al., 2005; Cladiere et al., 2006). RsgA deletion or inactivation of its 

ribosome small subunit-dependent GTPase activity provides Escherichia coli 

cells with resistance to high salt stress, suggesting a functional connection of 

the ribosome with the cellular mechanisms of salt tolerance. In addition to an 
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altered growth rate, rsgA deletion in S. aureus results in reduced virulence in 

mouse models (Cambell, 2006), implicating that RsgA is as a valid 

antibacterial target. Despite the acquired knowledge, the specific roles of 

RsgA in ribosomal assembly remain elusive. It is known that RsgA promotes 

the subunits assembly in vivo by changing the kinetics of the assembly 

process (Shanjani et al., 2011) and facilitating the incorporation of ribosomal 

proteins, especially those tertiary proteins with very slow binding rates 

(Talkington et al., 2005), during the late-stage 30S subunit maturation. RsgA 

plays a role as a checkpoint protein in the mature 30S subunit by testing the 

ability of the 30S subunit to perform proofreading before the subunit is 

released to the pool of active ribosomes. Another possible checkpoint role of 

RsgA is to block the binding of initiation factors to premature 30S subunits 

and ensuring quality control of the 30S subunit production (Guo et al., 2011). 

RsgA promotes dissociation of RbfA from the 30S subunit and as such 

facilitates the docking of the penultimate 16S rRNA helix, h44, on to the 

body of the 30S subunit (Guo et al., 2011; Jeganathan et al., 2015). Indeed, 

ribosomes purified from rsgA depleted strains are characterized by a distorted 

decoding center where h44/h45/h24 are not juxtaposed, preventing these 

particles from associating with the 50S subunit and engaging in translation 

(Jomaa et al., 2011). Moreover, aminoglycoside antibiotics, such as 

neomycin, which bind in the decoding center on the interface side of the 30S 

subunit, inhibit the ribosome dependent GTPase activity of RsgA (Campbell 

et al., 2005). In contrast chloramphenicol, which binds to the 50S subunit had 

no effect on its activity (Himeno et al., 2004). However, the role of the 

GTPase activity in these functions of RsgA remains unclear.  

Interestingly, RsgA has been identified as a target for the stringent response 

nucleotides (p)ppGpp in S. aureus (Corrigan et al., 2016) and in E.coli 



	 23	

(Zhang et al., 2018). These studies revealed that RsgA, as well as other 

GTPases involved in ribogenesis, is inhibited by the stringent response 

nucleotides suggesting a possible mechanism by which the stringent response 

alarmones can control cell proliferation by interfering with ribosome 

assembly to inhibit cell growth and promote antimicrobial tolerance. 

With the increased importance of ribosome biogenesis as a potential anti-

microbial target, the chemical basis of RsgA activity becomes more 

important (Comartin et al., 2006; Nikolay et al., 2016; Stokes et al., 2014). 

Additional work and future structures of RsgA alone or in complex with 

GDP, GTP or transition state analogues as well as in complex with 

preribosomal particles or 30S-RAs particle, not only would clarify the 

molecular mechanisms of how this protein assists the maturation of the 

functional core of the 30S subunit (Razi et al., 2017) but also will be essential 

to explore the possibility to target RsgA for bacterial infection treatment. 

 

1.4 Targeting ribosomal assembly as novel antibacterial strategy 

The widespread and wasteful use of antibiotics in agricolture and clinical 

applications has strengthened the spread of resistant of and often multi-

resistant bacteria via horizontal gene transfer (Davies et al., 2010). In 

addition to acquired resistance, some bacterial species have an intrinsic or 

innate resistance to different classes of antibiotics essentially carried out by 

three mechanisms: restricted uptake and efflux; drug inactivation and 

changes in targets (Lambert et al., 2002).  

Existing antibiotics have limited chemical diversity and few mechanisms of 

action, making research on novel antibacterial targets a critical factor in 
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fighting multidrug resistance in bacteria (Poehlsgaard and Douthwaite, 

2005). The ribosome and proteins involved in the translational process are 

among the main antibiotic targets. Crystal structures of naturally produced 

antibiotics and their semi-synthetic derivatives bound to ribosome have 

provided unparalleled insight into their mechanisms of action, and have also 

facilitated the design of more effective compounds for targeting multidrug-

resistant bacteria. Many chemically diverse antibiotic compounds target the 

ribosome at surprisingly few locations, which results in overlap between 

many of their binding sites. Given the fundamental importance of the rRNA 

in the translation mechanism, it is not surprising that most ribosome 

inhibitors target the rRNA-rich surfaces on the 30S and 50S subunits (Figure 

1.7). The 30S subunit is targeted by drugs that include tetracycline and 

aminoglycosides, which hinder the subunit in carrying out its function of 

deciphering the genetic information encoded in the mRNA (Poehlsgaard and 

Douthwaite, 2005). On the 50S subunit, most of the antibiotics binding sites 

cluster at or near the peptidyl-transferase centre (PTC), where peptide-bond 

formation occurs. The binding sites of macrolides are located near the PTC 

within the ribosomal exit tunnel, preventing elongation of most nascent 

chains (Wilson et al., 2014). 
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The plethora of recent structures of antibiotics in complex with the ribosome 

has highlighted how resistance emerges through mutation or modification of 

the drug binding sites (Wilson, 2014; Poehlsgaard and Douthwaite, 2005). 

Indeed, structural studies provided insight about how existing drugs might be 

improved or novel drugs created. Derivatizing existing drugs to improve 

interaction at their binding site is an approach that has received considerable 

attention in the pharmaceutical industry (Wilson, 2014). Moreover, rational 

approaches based on crystallographic data have been applied to the design of 

new aminoglycosides and to the development of hybrid drugs (Poehlsgaard 

and Douthwaite, 2005). These novel drugs target the same sites as the parent 

compounds but with improved properties (Wilson, 2014).  

A considerable challenge still remains to identify and target unexploited sites 

with novel drugs (Poehlsgaard and Douthwaite, 2005). The prospect of 

blocking ribosome function by preventing the assembly of subunits has come 

to light, supported by recent studies of non-ribosomal proteins involved in 

this process (Comartin and Borwn, 2006). Accumulating evidence indicates 

that the proteins like Era, Obg, RsgA, YlqF and RimM may be crucial to 

bacterial ribosome assembly and therefore they may represent novel targets 

for modern antibacterial drug discovery (Comartin and Borwn, 2006). These 

assembly factors are small, soluble and amenable to X-ray crystallography, to 

determine their structure, and cryo-electron microscopy to analyze their 

interaction with the ribosome. Furthermore, the pleiotropic effects of their 

inhibition may offer multiple ways to inhibit cell growth through the 

Figure 1.7. Overview of antibiotic binding sites on the 30S and 50S subunits. Major 

antibiotic binding sites on the 30S (A) and 50S subunits (B) are indicated and shown as red 

spheres; the names of antibiotics classes bound to each site are listed. 

[Figure adapted from Lin et al., 2018] 
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impairment of a single target, an attractive feature that might limit the 

emergence of resistance (Maguire, 2009). Moreover, structures of additional 

antibiotic-ribosome complexes from diverse species will shed further light on 

the factors that govern species specificity, which should lead to the 

development of more selective or broader spectrum antimicrobials.  

In conclusion, we find ourselves in a new era of ribosome and antibiotic 

research. With multi-drug resistance in bacteria being continuous threat to 

public health, there is enormous interest in rational approaches for the 

discovery of molecules belonging to new chemical classes and/or displaying 

novel mechanisms of action that could block protein translation (Comartin 

and Borwn, 2006).  

 

 

1.5. Pseudomonas aeruginosa 

Among the many bacteria that cause thread to human health Pseudomonas 

aeruginosa (P. aeruginosa) is of particular interest. P. aeruginosa is a Gram-

negative bacterium that causes infections in individuals suffering from 

immune deficiency, severe burns and cystic fibrosis (Sousa and Pereira, 

2014). Moreover, P. aeruginosa is responsible for 10-15 % of the nosocomial 

infections worldwide (Blanc et al., 1998). These infections are hard to treat 

due to the natural resistance of the P. aeruginosa strains, as well as to the 

remarkable ability of acquiring further mechanisms of resistance to multiple 

groups of antimicrobial agents (Stateva and Yordanov, 2009). P. aeruginosa 

is an highly adaptable organism; it can grow on a wide variety of substrates 

and alter its lifestyle in response to changes in the surrounding environment. 

During infection, P. aeruginosa generate a series of adaptive responses to 

facilitate its survival and colonization in the hostile host environment, 
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including the alteration of surface antigens, an increase in antibiotic 

resistances and the regulation of metabolic pathways (Hogardt and 

Heesemann, 2010). In addition, P. aeruginosa is particularly prone to 

maintain its survival in the host by promoting biofilm formation (Rybtke et 

al., 2015).  

P. aeruginosa is intrinsically resistant to many structurally unrelated 

antimicrobial agents (Mesaros et al., 2007) and represents a phenomenon of 

bacterial resistance, since all known mechanisms of antimicrobial resistance 

can be seen in it: derepression of chromosomal AmpC b-lactamase (also 

known as cephalosporinase); production of plasmid or integron-mediated b-

lactamases of different molecular classes; diminished outer membrane 

permeability; overexpression of various efflux pumps with wide substrate 

specificity; synthesis of aminoglycoside-modifying enzymes; and structural 

alterations of topoisomerases II and IV determining quinolone resistance 

(Stateva and Yordanov, 2009). Worryingly, often these mechanisms exist 

simultaneously conferring combined resistance to many strains (McGowan, 

2006). The extensive use of antibiotics to treat P. aeruginosa, as well as the 

emergence of mutator variants, has generated the selective pressure to 

resistance development (Lambert et al., 2002), leading to serious therapeutic 

problems as well as the urgency for identification of new potential targets for 

the development of innovative antibacterial startegies (Stateva and Yordanov, 

2009).   
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2. Aim of the thesis 

The increase in antibiotic resistance among pathogenic bacterial strains 

presents a significant health threat. So far, the main efforts to combat 

antibiotic resistance are focused on the development of new antibiotics 

targeting protein biosynthesis. Ribosome, the large molecular machine 

responsible for this process, and proteins involved in the translational process 

represent ideal targets of molecules with antibacterial activity. 

As discussed in the Introduction, it is now clear that ribosome assembly in 

vivo is an intricate and finely tuned process promoted by the action of several 

proteins acting as assembly factors, whose precise role is still largely 

unknown. Small GTPases represent the largest class of ribosome assembly 

factors in bacteria and are emerging as possible targets to be explored for the 

development of novel antibacterial strategies. Among them, of particular 

interest is the Ribosome small subunit-dependent GTPase A (RsgA). The 

characterization of RsgA from the human pathogenic bacterium 

Pseudomonas aeruginosa (PaRsgA) represents the main focus of this PhD 

thesis.  

RsgA is a late-stage ribosome biogenesis factor involved in the 30S subunit 

maturation, broadly conserved among bacteria but absent in eukaryotes. 

Despite the large amount of biochemical, structural and genetic data on RsgA 

achieved in the last decade, its mechanism of action is still not completely 

understood.  

The main goal of this work is the determination of the PaRsgA structure by 

X-ray crystallography. To date, no structure is available for RsgA from this 

opportunistic pathogen. This knowledge will allow investigate the molecular 
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features for the recognition of GDP and GTP as well as the key determinants 

for the mechanism of GTP hydrolysis.  

Moreover, an accurate kinetic analysis of PaRsgA interaction with GDP and 

GTP, together with a detailed functional characterization of PaRsgA, 

provided the determination of substrates affinity and biochemical parameters 

of GTP hydrolysis.  

The results obtained will pave the way for future experiments aimed at the 

characterization of the binding mechanism underlying ribosome recognition 

and to get key insight the GTPase activity of PaRsgA in the presence of other 

assembly factors and/or the ribosomal particle. 
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3. Materials and methods 

 

3.1 Protein Expression and Purification  

PaRsgA synthetic gene (Eurofins Genomics) was cloned into expression 

vector pET28a(+) between restriction sites NdeI and BamHI. Escherichia 

coli cells, strain BL21(DE3) (Biolabs, Ipswich, MA), transformed with the 

expression vectors, were grown to A600 ~ 0.6 in Luria-Bertani (LB) medium 

supplemented with kanamycin at 37°C. Expression was induced by addition 

of 1mM isopropyl-1-thio-ß-D-galactopyranoside (IPTG) and cells were 

further grown at 20°C for 16 hours. Harvested cells were lysed in a buffer 

containing 20mM Tris-HCl pH 8.0, 20mM MgCl2, Benzonase nuclease 

(500U) (Sigma Aldrich), Protease Inhibitor Cocktail Tablet (Roche, Basel, 

CH) and sonicated. After centrifugation, supernatant was supplemented with 

20mM Imidazole and 0.5M NaCl, and loaded on a HisTrap FF (GE 

Healthcare) equilibrated with the same buffer. Proteins were eluted by a 

linear gradient of 20mM Tris-HCl pH 8.0, 0.5M NaCl plus imidazole (from 

20mM to 1M). Fractions containing PaRsgA, were collected, diluted 10-fold 

and loaded on an anion exchange column (Q-Sepharose Fast Flow, GE 

Healthcare) equilibrated with 20mM Tris-HCl pH 8.0. After elution with 

NaCl, fractions containing the protein were monitored by UV absorption at 

280 nm and SDS-PAGE, pooled and concentrated. Sample was buffer 

exchanged to 20mM Tris-HCl pH 8.0, 200mM NaCl (Storage Buffer) using a 

PD10 column (GE-Healthcare) and stored at -20 °C. For crystallization 

experiments protein was further purified by gel filtration on a fast-

performance liquid chromatography (FPLC) column (Superdex 75 10/300; 

GE Healthcare). 
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3.2 Protein crystallization and structure solution  

Purified PaRsgA (concentrated up to 20 mg/ml) was subjected to 

crystallization procedure using vapour-diffusion technique. Crystallization 

trials have been performed using the automatic crystallization platform 

(Phenix-Art Robbins) and different commercial sparse-matrix screens. 

Promising hits were obtained by using the poly(acrylic acid sodium salt) 

5100 as precipitating agent. To improve crystals shape, size and quality 

various parameters have been screened. High quality crystals were obtained 

by mixing 2 µl of the protein solution (20 mg/ml) with 3 µl of the reservoir 

solutions containing 28-30% poly(acrylic acid sodium salt) 5100, 0.1M 

Hepes pH 7.5, 0.02M MgCl2 and 5% PEG 200. Crystals were cryoprotected 

increasing the poly(acrylic acid sodium salt) 5100 up to 34 % and flash-

frozen. Diffraction data were collected at cryogenic temperature (100 K) at 

the XRD1 beamline of ELETTRA Synchrotron (Trieste, Italy). Data were 

indexed and integrated with XDS (Kabsch et al., 2010). The structure was 

solved by molecular replacement using the structure of RsgA from 

Salmonella typhimurium (pdb code: 2RCN; Nichols et al., 2007) as search 

model. Molecular replacement as well as refinement procedure was carried 

out using Phenix (Adams et al., 2010). For the refinement the initial model 

was subjected to rigid body refinement and, subsequently, to several cycle of 

refinement and manual visual inspecting and rebuilding using COOT 

(Emsley et al., 2010). Final model, containing a GDP molecule in the active 

site and a Zn atom, was refined to an Rwork = 0.248 and an Rfree= 0.286. 

Data collection and refinement parameters are reported in Table 1. The 

coordinates and structure factors have been deposited in the Protein Data 

Bank with accession number 6H4D. Structural superpositions were 

performed with COOT (Emsley et al., 2010). Figures were prepared with 

Chimera (Pettersen et al., 2004). 



	 33	

3.3 Preparation of nucleotide-free PaRsgA 

PaRsgA protein was purified with the GDP bound to the active site (GDP-

PaRsgA). Preparation of nucleotide-free protein was carried out in two-step 

as reported in Ford et al., 2009. Briefly, GDP was firstly degraded by 1U/mg 

of alkaline phosphatase (Roche) and replaced with a non hydrolysable GTP-

analogue, Gpp(CH2)p (Sigma-Aldrich), by incubating the protein at 25 °C 

with 1,5 fold excess of Gpp(CH2)p for 16 hours. After, 0.002U of snake 

venum phosphodiesterase (Sigma-Aldrich) per mg of Gpp(CH2)p-PaRsgA 

was then added to the solution and incubated one hour at 25°C. Free 

nucleotide was removed by PD10 column (GE-Healthcare) equilibrated with 

the Storage Buffer. Enzymes used to obtain the nucleotide-free RsgA were 

inactivated by 4 steps of rapid freezing-defreezing in liquid nitrogen. The 

complete removal of GDP was verified by ion-pair reversed-phase HPLC 

(RP-HPLC) analysis, using a PrevailTM C18 column (GRACE), equilibrated 

with 100 mM KH2PO4/K2HPO4 pH 5.8, 10 mM tetrabutylammonium 

bromide, 8.5% acetonitrile buffer (HPLC buffer) and monitoring the 

nucleotides absorbance at 254 nm.  

 

3.4 CD and fluorescence spectroscopy 

All circular dichroism (CD) experiments were performed in sodium 

phosphate buffer 20mM pH 7.2, NaCl 150mM using a Jasco J710 instrument 

(Jasco Inc., Easton, MD, USA) equipped with a Peltier apparatus for 

temperature control. Static spectra were collected at 20 °C. Proteins 

concentration was 10 µM. Spectra were collected using a quartz cell with 1-

mm optical path length (Hellman, Plainview, NY, USA) and a scanning 

speed of 100 nm/min. The reported spectra are the average of three scans. 
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The spectral contribution of buffers was subtracted as appropriate. Thermal 

denaturation experiments were performed using a quartz cell with 1-mm 

optical path length and monitoring the variation of CD signal at 210 nm. 

Temperature was progressively increased, in 1°C/min steps, from 20 °C to 90 

°C.  

Thermodynamic stabilities of nucleotide-bound PaRsgA and the nucleotide-

free protein (6 µM) were determined at 25 °C by equilibrium urea-induced 

denaturation experiments, monitoring the change of intrinsic fluorescence 

emission. Equilibrium denaturations were carried on a Fluoromax-4 

spectrofluorometer (Jobin-Yvon) monitoring the Trp fluorescence emission 

upon addition of urea between 300 and 400 nm at 25 °C in sodium phosphate 

buffer 20mM pH7.2, NaCl 150mM. Assuming a standard two-state model, 

the urea-induced denaturation transitions were fitted to the Eq. (1) 

(1) ΔGd = mD-N (D–D50 )   

where ΔGd is the free energy of folding at a concentration D of denaturant, 

mD-N is the slope of the transition (proportional to the increase in solvent-

accessible surface area from the native to the denatured state) and D50 is the 

midpoint of the denaturation transition. An equation which takes into account 

the pre- and post-transition baselines was used to fit the observed unfolding 

transition. The Kaleidagraph software was used for graphical representation.  

 

3.5 Binding kinetic measurements 

Binding kinetic experiments were performed on an SX-18 stopped-flow 

instruments (Applied Photophysics) using the nucleotide-free PaRsgA and 

fluorescent GDP and GTP analogues (2′ or 3′ mant-GDP and mant-GTP (Life 
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Technologies)). The excitation wavelength was 355 nm (2.3 nm slit) and the 

fluorescence emission was measured using a 420 nm cut off filter at 25 °C. 

Fluorescence intensity of the mant moiety depends on the hydrophobicity of 

its environment, thus binding of protein to nucleotides leads to an increase of 

mGDP/mGTP intrinsic fluorescence. Kinetic parameters of PaRsgA-

nucleotides association were measured using 1 µM of nucleotides 

(concentration after mixing) and different concentration of protein (from 0.2 

to 5 µM /after mixing) in 50mM Tris-HCl pH 7.5, 50 mM NaCl. The increase 

in fluorescence intensity of mGDP or mGTP upon PaRsgA binding was 

monitored over time. Three to five separate curves were averaged for each 

concentration of protein, and the averaged curves were fitted to a single 

exponential function, yielding the observed rate constant kobs. The association 

rate constants (kon), for both GDP and GTP binding, were obtained from the 

slope of the plot of kobs versus the protein concentration. Dissociation rate 

constants (koff) were determined by displacement experiments in which 

nucleotide-free PaRsgA (2 µM), pre-incubated with 5 µM of mGDP/GTP, 

was rapidly mixed with an excess of non-fluorescent GDP or GTP. Rates of 

m-nucleotides release were monitored as a decrease in fluorescence 

intensities. The resulting time traces were fitted on a single exponential, 

yielding koff. The equilibrium dissociation constant KD was calculated from 

the ratio of koff and kon. The GraphPad Prism software was used for graphical 

representation.  

 

3.6 GTPase activity 

The intrinsic GTPase activity of PaRsgA was assessed measuring the GTP-

GDP conversion over the time by ion-pair reversed-phase HPLC (RP-HPLC) 
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analysis.  

To define the experimental condition in which perform the quantitative 

analysis, PaRsgA (5 µM) was incubated with 400 µM GTP (steady state 

conditions) at 25°C in Tris 20 mM pH 8.0 containing different concentrations 

(up to 300 mM) of NaCl or KCl, as well as in absence of salt, in presence of 

10 mM MgCl2. The GDP production was measured after 120 minutes 

incubation. For the quantitative determination of catalytic parameters, 5µM 

of PaRsga was incubated with different GTP concentrations (50-1200 µM) at 

25°C in Tris 20 mM pH 8.0, NaCl 200 mM, in presence of 10 mM MgCl2. At 

different time intervals the reactions were stopped and the GDP production 

was monitored. Finally, to investigate the role of the cation over PaRsga 

GTPase activity, PaRsgA (5 µM) was incubated with 400 µM GTP (steady 

state conditions) at 25°C in Tris 20 mM pH 8.0 containing 200 mM of 

different monovalent cations (NaCl, KCl, NH4Cl, LiCl and CsCl), in 

presence of 10 mM MgCl2. The GDP production was measured after 120 

minutes incubation. 

The reactions were stopped by adding the proteinase K (Sigma) and by 

heating 10 minutes at 95 °C. The denatured protein was removed by 

centrifugation and the supernatant applied to the PrevailTM C18 column. The 

GDP production was monitored by separation of the nucleotides (GTP and 

GDP) using a PrevailTM C18 column (GRACE, 150 x 4.6 mm) attached to an 

HLPC AZURA® system (KNAUER). The nucleotides were eluted using a 

buffer solution containing 100 mM KH2PO4/K2HPO4 pH 5.8, 10 mM 

tetrabutylammonium bromide, 8.5% acetonitrile buffer, as mobile phase. 

Nucleotides were detected by their absorbance at 254 nm and peak areas 

were converted to concentration using a standard curve derived from known 
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nucleotides concentrations. For the catalytic parameters estimation, the initial 

reaction rates (vo) were obtained as the slope of the linear fit of the initial 

linear period of the reaction in plot showing the GDP concentration versus 

time. V0s were plotted as a function of GTP concentration and fitted with the 

Michaelis-Menten equation. The GraphPad Prism and the Kaleidagraph 

software were used for graphical representation.  
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4. Results 

 

4.1 PaRsgA expression and purification  

Rsga from Pseudomonas aeruginosa (PaRsgA; Uniprot: Q9HUL3) is a 

soluble protein of 339 aminoacids (MW = 39241 Da), composed of three 

domains: a N-terminal Oligonucleotide/Oligosaccharide Binding (OB) 

domain, a central circularly permutated GTPase (cpGTPase) domain and a C-

terminal Zinc-binding domain (Figure 1).  

PaRsgA was expressed in E. coli BL21 (DE3) and purified to homogeneity 

(Figure 4.2A) by using various chromatographic approaches (affinity, ion-

exchange and size-exclusion chromatography) (see Material and Methods). 

The UV spectrum of the purified protein shows a blunt peak around 280 nm 

(Figure 4.2B), suggesting the presence of a nucleotide bound to the purified 

protein.  

Figure 4.1 Domains organization of PaRsgA. The N-terminal OB-fold domain is shown in 

green, the central cpGTPase domain in pink and the C-terminal zinc-finger domain in 

cyan.   
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In order to confirm the presence of a co-purified nucleotide and to unveil its 

nature, we developed a protocol based on an ion-pair reversed-phase HPLC 

(RP-HPLC) analysis, using a PrevailTM C18 column and monitoring the 

absorbance of the sample at 254 nm. Since the polarity of nucleotides 

increases with the number of phosphate groups, nucleoside triphosphates, 

unlike nucleoside mono- and diphosphates are weakly retained on reversed-

phase chromatography with a conventional mobile phase. Conversely, by 

using an ion pairing reagent, such as tertrabutylammonium bromide (TBAB), 

nucleoside diphosphates were retained better than mono-phosphates although 

more weakly than nucleoside triphosphates. In this case, the separation is 

based on the formation of ion pair(s) between the positively charged ion-pair 

Figure 4.2 SDS PAGE of PaRsgA purification (A). The diffrerent lines are representative 

of the purification steps, carried out with various cromatography approaches: 1) marker, 2) 

supernatant, 3) affinity 4) ionic exchange and 5) size exclusion cromatography. (B) UV-

spectrum of PaRsgA co-purified with a nucleotide bound. 
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reagent and the negatively charged nucleotide. Since this ion-pair RP-HPLC 

method enables the efficient separation of guanine nucleotides, it was 

possible to identify them by referring to the retention times established by the 

corresponding standards. Representative RP-HPLC chromatogram of purified 

PaRsgA (Figure 4.3) shows a prominent peak eluting at the retention time 

corresponding to GDP. The calibration curve of the GDP standard (Figure 

4.14) obtained by plotting the peak areas against the concentration of the 

analyte allows to estimate that PaRsgA is purified with approximately 80% 

of GDP nucleotide bound.  

 

  

Figure 4.3 Identification of the nucleotide bound to PaRsgA and validation of the 

nucleotide-free form production through reverse phase cromatograpy. Nucleotide-bound 

PaRsgA is shown in blue, nucleotide-free PaRsgA in red, GDP standard (50uM) in 

magenta and GTP standard (50uM) in green. 
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4.2 PaRsgA structural characterization 

4.2.1 PaRsgA crystallization, data collection and structure determination 

Purified PaRsga was concentrated up to 20 mg/ml and subjected to 

crystallization procedure using the vapour-diffusion technique. 

Crystallization trials have been performed using commercial sparse-matrix 

screens and an automatic crystallization platform (Phenix-Art Robbins) at 

21°C. Initial promising hits (multiple small crystals or microcrystalline 

precipitates) were obtained with the INDEX screen (Hampton Research) 

where the poly(acrylic acid sodium salt) 5100 is present as precipitating 

agent (Figure 4.4A-B).  

To improve crystal quality, we performed different experiments in which 

various parameters have been screened, such as protein concentration, the 

crystallization buffer and pH, the presence of additional salts or “additive 

agents” to slow down the crystallization speed as well as the protein/reservoir 

solution ratio in the drop. Moreover, different crystallization techniques, such 

as seeding performed with microcrystals and crystallization under oil (also at 

4°C), were attempted in order to improve the diffraction quality. A wide array 

of PaRsgA crystals were analysed through X-ray diffraction with different 

synchrotron light source (Elettra, Trieste; Bessy II Berlin; ESRF, Grenoble). 

The best diffracting crystal (2.9Å resolution) was obtained by mixing 2 µl of 

the protein solution (20 mg/ml) with 3 µl of the reservoir solutions containing 

30% poly(acrylic acid sodium salt) 5100, 0.1 M Hepes pH 7.5, 0.02 M 

MgCl2 and 5% PEG 200 (Figure 4.4C).  
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Diffraction data were collected at 100K (after cryoprotecting the crystal by 

increasing the poly(acrylic acid sodium salt) 5100 concentration up to 34 %) 

at the XRD1 beamline of the ELETTRA synchrotron (Trieste, Italy). PaRsgA 

crystal belongs to the space group P4132, with unit cell parameters of a=b=c= 

146.4 Å. One monomer of PaRsgA is present per asymmetric unit. PaRsgA 

structure (pdb code: 6H4D) was solved by molecular replacement using the 

structure of RsgA from Salmonella typhimurium (pdb code: 2RCN; Nichols 

et al., 2007) as a search model and refined as reported in the experimental 

section. The final model, containing a GDP molecule and a Zn atom, was 

refined to an Rwork = 0.248 and an Rfree= 0.286. Data collection and 

refinement parameters are reported in Table 1. 

 

A B C 

	
200	uM 

Figure 4.4. GDP-PaRsgA microcrystals (A) and multiple crystals (B). GDP-PaRsgA 

crystals (C) obtained by the optimized crystallization condition: 28-30% poly(acrilyc acid 

sodium salt) 5100, 0.1M Hepes pH 7.5, 0.02M MgCl
2
 and 5% PEG 200 at 20°C.  
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4.2.2 Overall structure 

Crystal structure of PaRsgA is depicted in Figure 4.5A and, as reported in the 

previous section, consists of three domains: a N-terminal Oligonucleotide/ 

Oligosaccharide Binding (OB) domain, a central circularly permutated 

domain (cpGTPase), and a C-terminal Zn-binding domain. 

 

Table 1. Data collection and refinement statistics for PaRsgA.  

TABLE	1	

Data	collection	and	refinement	statistics	for	RsgA	

Data	collection		 	

Beamline	 XRD1	
Wavelength	(Å)	 1.0	
Space	group	 P4132	
Cell	dimensions	(Å)	 a=b=c=146.405	
Resolution	range	(Å)	 48.8-2.9	(3.08-2.9)a	
CC(1/2)(%)	 99.9	(75.0)	
I/sigma	I	 20.4	(2.5)	
Completeness	(%)	 100	(100)	
Reflections		 	
										Total	no.	observed	 214545	 	
										Multiplicity	 17.2	(18.2)	
Wilson	plot	B	value	 75.8	

Refinement	statistics	 	
Resolution	range	(Å)	 48.8-2.9	
Rwork/Rfree	 0.248/0.286	
Average	B-factor	(Å2)	(no.	of	atoms)	 	
											Protein	 89	
											Waters	 78.7	
RMSD	 	
										Bond	lenght	(A)	 0.007	
										Bond	angle	(°)	 1.12	
Ramachandran	(n,%)	 	
										Favoured		 98.64	
										Allowed	 3.36	
										Outliers	 0	
	 	
aValues	in	parentheses	refer	to	the	highest	resolution	shell	
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The quality of the diffraction data is good and electron density is clearly 

visible for the most of residues with the exception of residues belonging to 

the N-terminal region (NTE, res: 1-39), residues 90-91, the switch I region  

Figure 4.5 Cartoon representation of PaRsgA structure (A) colored in rainbow. Close 

view of the GDP binding region (B). 2Fobs-Fcalc density map is contoured at 1σ and the 

GDP and GDP contacting residues are shown in stick representation. Close view of the 

zinc-binding region (C). 2Fobs-Fcalc density map is contoured at 1σ and the Zn is 

represented as a green sphere and Zn contacting residues are shown in stick 

representation. 
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(res: 230-249), and the last four residues. Prediction of intrinsically 

unstructured regions, performed with the on-line server IUPRED (Dosztányi 

et al. 2005) on PaRsgA sequence, indicates that the NTE region is natively 

unstructured. Albeit disordered, this region has been proposed to be involved 

in ribosome binding and to undergo an disorder-to-order transition upon 

ribosome binding, as reported in the cryo-EM structure of the E. coli 30S-

RsgA complex (Lopez-Alonzo et al., 2017). However, a large group of RsgA 

orthologoues, including TmRsgA (Shin et al., 2004) and BsRsgA (Levdikov 

et al., 2004), whose 3D structures are available, do not posses this N-terminal 

region, suggesting a possible difference in the interaction with the ribosome 

and/or a not yet identified role. The schematic representation of the 

secondary structure elements arrangement in PaRsgA structure is shown in 

the topology diagram (Figure 4.6). 

      

Figure 4.6. Topology diagram of GDP-PaRsgA. β-strands are colored in pink and α-

helices in red. 
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The N-terminal OB-fold domain (residues 40-101) consists of five 

antiparallel β-strands creating a β-barrel (β1-5β). The OB domain is a 

compact structural motif frequently used for nucleic acid recognition; despite 

the well-conserved core structure topology, sequence similarity among OB 

folds is low. The OB domain is connected to the GTPase domain by a two 

stranded antiparalleel β-sheet (β6, β7).  

The cpGTPase domain spans residues 124-264. The central domain closely 

resembles the classical small GTPases in terms of 3D structure albeit having 

a circularly permutated arrangement of the G regions (G4-G5-G1-G2-G3) 

with respect to the classical ones. It includes the motifs: i) G1 

(213GQSGVGKS220) located between β11 and α5; ii) G2 (T250) in the loop 

connecting α5 and β12; iii) G3 (264DSPG267) following the β13, iv) G4 

(159NKAD162) and G5 (190SAK192) located between β9 and α2 and β10 and α4 

respectively. The G domain is formed by six stranded β-sheets and 5 α-

helices in the arrangement β8, α1, β9, α2, α3, β10, α4, β11, α5, β12 and β13. 

The loop connecting α5 to β12 (res: 228-251), corresponding to the Switch I 

in the PaRsgA structure, is disordered. Switch I undergoes important 

conformational changes upon nucleotides binding, as well as Switch II, that 

follows the G3 region in PaRsgA. These regions both undertake an order-

disorder transition upon GTP hydrolysis, thereby sending “on” or “off” 

signals to downstream effectors (Witthinghofer and Vetter, 2011). Residues 

contacting GDP (N159, K160, D162, S190, F192, K219 and S221) are 

strictly conserved in all protein family members (Figure 4.5B). In the 

structure of PaRsgA, the cpGTPase domain has interfaces with both the OB 

and the Zn-binding domains, whereas there are no intramolecular contacts 

between the β-barrel and Zn-binding domains. A small helix (α6) followed by 

a long loop, located downstream the G3 region, connect the central and the 

C-terminal domains. This connecting region lies down the entire protein 
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surface in a position suitable to propagate functional information to all the 

protein domains. Indeed, in cpGTPases the peculiar arrangement of the 

catalytic site requires an additional region/domain located downstream to 

properly position the G3 motif.  

The C-terminal domain can be divided into two functional regions: a Zn-

binding region (res: 277-319) composed by three helices (α7, α8, α9) plus a 

loop and a C-terminal helix α10 (res: 320-322). Three conserved cysteine 

residues (C295, C300, C308) and one histidine (H302) are located in a loop 

between helices α8 and α9 and are responsible for the tetrahedral 

coordination of the Zn atom (Figure 4.5C).   

 

4.2.3 Structural comparison with PaRsgA orthologues 

To date, 3D structures of RsgA from different bacteria have been reported 

either in the GDP bound form (TmRsgA: 1U0L; Shin et al., 2004, StRsgA: 

2RCN; Nichols et al., 2007, and AaRsgA: 2YV5) or in the apo form 

(BsRsgA: 1T9H; Levdikov et al., 2004). Moreover, recent cryo-EM structure 

of the E. coli 30S-RsgA complex provides information on the GTP-bound 

RsgA structure (EcRsgA: 5NO2; Lopez-Alonzo, 2017). 

Comparison of the present GDP-PaRsgA structure with the structures of 

orthologous proteins in the GDP-bound form, by using Coot (Emsley et al., 

2010), clearly shows that the overall fold is well conserved. Pairwise 

comparison shows that the rmsd (calculated on the Cα atoms) is 1.3 Å with 

StRsgA, 1.7 Å with TmRsgA and 2.1 Å with AaRsgA (Figure 4.7). Small 

differences can be found in the region connecting the OB domain to the 

central domain; this region is composed by a two-stranded β-sheet in PaRsgA 

and StRsgA while it is smaller in A.aeolicus and T. maritima RsgA structures. 

Moreover, in the structure of AaRsgA the C-terminus is longer and the last 

helix is bent with the terminal part folding back (Figure 4.7). 
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To investigate the conformational changes in PaRsgA structure upon GTP 

hydrolysis we struggled to obtain either the structure of the protein in 

complex with a non-hydrolysable-GTP analogue and the structure of the 

protein without nucleotides; unfortunately, we were not able to obtain 

crystals from the nucleotide-free form of PaRsgA. We were able to 

crystallize PaRsgA in complex with a non-hydrolysable-GTP analogue 

(Gpp(CH2)p); however, to date, these crystals diffract only at very low 

resolution. Therefore, in a preliminary analysis, we compared the present 

GDP-PaRsgA structure with the one from B. subtilis solved in the 

nucleotide-free form (1T9H; Figure 4.8A). The overall fold is preserved in 

the nucleotide-free BsRsgA structure (rmsd of 2.1 Å). The OB-domain and 

the Zn-finger domain adopt a similar fold, while the cpGTPase domain 

Figure 4.7. Comparison of GDP-PaRsgA structure (pdb code: 6H4D) in dark green with 

other RsgA structures from different bacterial species: Salmonella Typhimurium in light 

green (pdb code: 2RCN), Thermotoga maritima in magenta (pdb code: 1U0L) and Aquifex 

aeolicus in orange (pdb code: 2YV5).  
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shows some differences due to the presence of GDP in the nucleotide-binding 

pocket. In particular, in BsRsgA the nucleotide binding site is smaller with 

respect to the nucleotide-bound form of orthologous proteins whose 

structures have been determined (see above). This is mainly due to a 

structuring of the loop connecting β10 to α4 and the terminal end of the helix 

α5 corresponding to G1 motif (Figure 4.8B). The smaller dimension of the 

nucleotide binding cleft results in a steric hindrance, which is compatible 

with the presence of nucleotides, and the relaxation of these regions is 

required to provide space for nucleotides binding. Moreover, folding of the 

α5 helix brings the K219 of the G1 motif (corresponding to K177 in BsRsgA) 

back on the phosphate group of the nucleotide (Figure 4.8B).  

 

Figure 4.8. Comparison of GDP-PaRsgA structure (pdb code: 6H4D) in dark green with 

the structure of nucleotide-free RsgA from Bacillus subtilis in purple (pdb code: 1T9H). 

(A) GDP is shown in stick coloured by heteroatoms. Close up view of the GDP binding 

site (B). Residues involved in nucleotide interaction are shown in stick representation. 

A	 B	
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Structural comparison performed by superimposing only the GTPase 

domains of the GDP-bound PaRsgA, the GTP-bound EcRsgA and the 

nucleotide-free form of BsRsgA, reveals differences in the mutual domains 

orientation upon nucleotides binding (Figure 4.9). The absence of nucleotide 

in the BsRsgA structure not only contributes to a local rearrangement of the 

guanine moiety pocket but also perturbs interdomains orientation, with a 

greater impact on the OB domain, which is subjected to a large movement 

respect to the C-terminal one. The two stranded beta sheets located between 

the OB and G domain could sense structural rearrangement due to the 

hydrolytic activity and transfer the information to the upstream domain. It is 

worth mentioning the possibility that the movements of the G flanking 

regions can be due to the interaction of EcRsgA with the 30S ribosome 

subunit.  

Figure 4.9 Comparison of GDP-PaRsgA structure (pdb code: 6H4D) in dark green, with 

available structures of RsgA from Escherichia coli in pink (pdb code: 2NO5) and Bacillus 

subtilis in purple (pdb code: 1T9H). Nucleotides are shown in stick coloured by 

heteroatoms.  
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 4.3 Preparation of the nucleotide-free form of PaRsgA 

To perform a detailed biochemical characterization of PaRgsA we resorted to 

purify the nucleotide-free form of the protein and different biochemical 

procedures have been attempted for this purpose. Two protocols exploited the 

use of chaotropic agents to partially denature the protein (urea at low 

concentration) or to weaken electrostatic interactions (ammonium sulphate at 

high concentration) whereas another one is based on an enzymatic procedure 

(Ford et al., 2009). Each of these procedures led to the removal of the GDP 

bound to PaRsgA, however, employing the non-enzymatic protocols we 

obtained very low yields of the nucleotide-free protein. Therefore, the 

enzymatic procedure (described in the Materials and methods section) was 

used to obtain a sufficient amount of the nucleotide-free form of PaRsgA. 

The success of the procedure, firstly indicated by the presence of a sharp 

peak at 280 nm in the UV-spectrum (Figure 4.10), was confirmed by ion-pair 

RP-HPLC analysis as discussed above (see Section 1.PaRsgA expression and 

purification and Figure 4.3).  

Figure 4.10 UV-spectra of nucleotide-free PaRsgA 
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4.4. Biophysical characterization of PaRsgA  

 

4.4.1 Far-UV CD spectroscopy 

In order to evaluate if the presence of a GDP molecule could alter the 

secondary structure content of PaRsgA, far-UV CD spectroscopy 

experiments of both nucleotide-bound and nucleotide-free forms of the 

protein were carried out. As reported in Figure 11A, the CD spectra of 

nucleotide-bound and nucleotide-free forms of PaRsgA in the far-UV region 

(200-250 nm) are very similar and typical of a protein with a mixed content 

of α-helices and β sheets. This result is in accordance with the known 

structures of RsgA proteins in the two forms, which do not highlight any 

conspicuous structural rearrangement upon binding of the nucleotide. 

Moreover, in order to evaluate the contribution of GDP to the overall thermic 

stability of PaRsgA, thermal denaturation experiments, from 20 °C to 90 °C, 

monitoring the variation of the CD signal at 210 nm, have been carried out.  

Figure 11B shows that the midpoint of the thermal denaturation curve of the 

nucleotide-free PaRsgA is slightly lower than the value obtained for 

nucleotide-bound protein. Although a quantitative analysis was not possible 

given that the thermal denaturation process was not reversible, this 

experiment suggests that nucleotide binding does not strongly affects the 

thermal stability of PaRsgA.  
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4.4.2 Urea-induced denaturation 

Since thermal denaturation of PaRsgA is not reversible, thermodynamic 

stability parameters of nucleotide-bound and nucleotide-free forms were 

estimated by equilibrium denaturation experiments using urea as denaturing 

agent at 25 °C. Fluorescence spectroscopy was used to monitor the increase 

of tryptophan fluorescence emission at 350 nm after addition of urea (Figure 

12). In both cases, the observed unfolding transition follows a simple two-

state behaviour, suggesting the absence of stable equilibrium intermediate/s. 

A quantitative analysis of the observed spectroscopic signals as a function of 

[urea] allowed us to estimate the thermodynamic stability of the proteins 

(ΔG°) and to calculate the mD-N values, which describe the cooperativity of 

the unfolding process. The calculated parameters determined by applying a 

two-state model (see Materials and Methods), are ΔG° = 4.3 ± 0.4 kcal mol−1, 

mD-N = 0.95 ± 0.04 kcal mol−1 M−1 for the nucleotide-bound form and ΔG° = 

A B 

Figure 4.11 Far-UV CD spectra (A) of nucleotide-bound PaRsgA (blue line) and 

nucleotide-free PaRsgA (red line). Equilibrium thermal denaturation (B) monitored by CD 

spectroscopy (ellipticity at 210 nm) of nucleotide-bound PaRsgA (blue line) and 

nucleotide-free protein (red line). 



	 55	

4.2 ± 0.4 kcal mol−1, mD-N = 0.92 ± 0.08 kcal mol−1 M−1 for the nucleotide-

free PaRsgA, respectively. The similar ΔG° values obtained from the 

denaturation experiments in urea of the two forms quantitatively confirm the 

observations attained from the CD thermal denaturation experiments 

described above. It is therefore clear that the presence of the nucleotide 

provides only a negligible contribution to the total thermodynamic stability 

of the protein.  

 

 

 

4.5 Nucleotide binding kinetics 

In order to get information about the kinetic binding mechanism of PaRsgA 

with GDP or GTP nucleotides and to obtain the relative association and 

dissociation rate constants (kon and koff), a detailed analysis was performed by 

time-resolved fluorescence spectroscopy. The kinetics parameters for the 

binding of nucleotide-free PaRsgA to GDP and GTP were estimated by rapid 

Figure 4.12. Stability of nucleotide-bound PaRsgA (A) and its nucleotide-free form (B) 

obtained by equilibrium urea-induced denaturation monitoring intrinsic tryptophan 

fluorescence at 350 nm. Inset: Fluorescence emission spectra at different denaturant 

concentrations.  

A B 
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stopped-flow binding experiments carried out at 25°C and using fluorescent 

analogues of the two nucleotides (mGDP, mGTP, see Materials and 

Methods). The m-derivatized nucleotides provide a good tool to study 

protein-nucleotide interactions due to the high fluorescence quantum yield of 

the mant moiety and its sensitivity to the molecular environment.  

Representative time courses obtained by mixing a constant amount of 

derivatized nucleotide against different concentrations of PaRsgA solutions, 

are shown in Figure 4.13 A and D for both GDP and GTP binding, 

respectively. At this temperature and under pseudo-first order conditions, the 

time courses matched single exponentials at all concentrations of PaRsgA. 

The calculated rate constants were plotted as a function of protein 

concentration (Figure 4.13 B and E). Values of kon = 9.1 µM-1 s-1 and 8.1 µM-

1 s-1 for the binding of PaRsgA to GDP and GTP respectively were obtained 

from the slope of the linear plot of kobs versus PaRsgA concentration. 

Dissociation rate constants (koff) were evaluated by stopped-flow experiments 

carried out by mixing PaRsgA-m-nucleotide complex with an excess of the 

appropriate unlabelled nucleotide. These displacement experiments allowed 

us to obtain the dissociation rate constant koff for GDP (koff = 0.07 s-1) and 

GTP (koff = 0.5 s-1) (Figure 4.13 C and F). Equilibrium dissociation constants, 

calculated from the kinetics parameters, result in a KD of 0.008 µM for the 

PaRsgA-GDP complex and 0.06 µM for PaRsgA-GTP complex. Therefore, 

the higher affinity of PaRsgA towards GDP mostly depends on its slower koff 

as compared to a faster GTP release. 
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Figure 4.13 GDP and GTP binding and dissociation kinetics of PaRsgA determined via 

stopped-flow fluorescence analysis. Transients obtained by following mGDP (A) and 

mGTP (D) (constant concentration of 1 µM/after mixing) fluorescence upon rapid mixing 

with different concentrations of PaRsgA, shown in rainbow. The second panels (B and E) 

show the protein concentration dependency of the observed rate constant (k
obs

). The slope 

of the linear fit yields k
on

. The lower panels (C and F) show the direct determination of k
off 

by following the release of mGDP/mGTP from PaRsgA, upon mixing unlabelled 

nucleotides with a preformed complex of PaRsgA and mGDP/mGTP.  
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4.6 Enzyme activity 

 

4.6.1 Intrinsic GTPase activity 

Previous data showed that RsgA from E. coli exhibits weak intrinsic GTPase 

activity (Daigle et al., 2002) while association of RsgA with the 30S subunit 

leads to a 160-fold stimulation of its activity (Daigle et al., 2004; Himeno et 

al., 2004). Moreover, it is well known that the enzyme activity of several RA-

GTPases is stimulated in presence of NaCl and/or KCl (Anand et al., 2010; 

Rafay et al., 2012; Achila et al., 2012; Foucher et al., 2012; Gkekas et al., 

2017). In order to get insight into the catalytic activity of PaRsgA, we 

resorted to investigate its intrinsic GTPase activity measuring the GTP-GDP 

conversion over time by ion-paring RP-HPLC analysis (see 3.1 Section). 

To define the optimal experimental conditions necessary for evaluating the 

catalytic parameters of PaRsgA GTPase activity, pilot experiments were 

performed testing different ionic strength conditions. Purified PaRsgA was 

incubated with 400 µM GTP (steady state conditions) at 25°C in a buffer 

containing different concentrations (up to 300 mM) of NaCl or KCl, as well 

as in absence of salt, and the GDP production was measured after 120 

minutes incubation. Nucleotides were detected by their absorbance at 254 nm 

and the corresponding peaks areas were converted to concentrations using 

calibration curves. In Figure 4.14 is shown the standard curve used to 

estimate the GDP production in term of concentration for the following 

analysis.  
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 The GDP production rate calculated for the different ionic strength 

conditions were compared, in term of fold rate, to the condition in absence of 

salt  (Figure 4.15).  

 

These data shown that the GTPase activity of PaRsgA is dependent to the 

ionic strength with no selectivity for Na+ or K+ ions and that the GDP 

A B 

Figure 4.14 Calibration curve of GDP used for quantitative analysis. The plot of analytical 

signal (the GDP area calculated by ion-paring RP-HPLC analysis) versus GDP 

concentrations show a linear relationship. 

Figure 4.15 Influence of the ionic strength over PaRsgA GTPase activity. The dependency 

of the GDP production rate over increasing concentrations of NaCl  (A) and KCl (B), shown 

in term of fold stimulation as compared to the reaction carried out in the absence of any salt. 
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production attains a maximum between 100 and 200 mM salt concentration. 

The maximal stimulation is reached around 200 mM NaCl and KCl, resulting 

in 3.4 to 2.6 folds rate enhancement, respectively. Therefore, the ionic 

strength condition of 200 mM NaCl, at whom the maximal stimulation is 

obtained and afterward referred as internal standard, was used for the 

following quantitative analysis. 

For the quantitative determination of catalytic parameters, purified PaRsgA 

(5 µM) was incubated with different GTP concentrations (50-1200 µM) at 

25°C in presence of 200 mM NaCl and the reactions were stopped at 

different time intervals. An example of the time course is represented in 

Figure 4.16, in which the increase of GDP area (corresponding to the GDP 

production) and the decrease of GTP area over the time are highlighted.  

 

Figure 4.16 Example of the time course in multi-turnover analysis. PaRsga (5µM) was 

incubated with 400 µM GTP at 25°C, in presence of 10 mM MgCl
2
. At different time 

points (0, 60, 120, 180 min) the reaction was stopped and the GTP hydrolysis was 

monitored. 

	 	

GDP GTP 
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Since the reaction is so slow to have a linear trend in the analysed time 

window, the initial reaction rate (vo) was obtained as the slope of the linear fit 

of the initial linear period of the reaction in plot showing the GDP 

concentration versus time. An example of the initial reaction rate (vo) 

evaluation is shown in Figure 4.17.  

 

The observed velocities at certain concentration were plotted as a function of 

GTP concentration and fitted with the Michaelis-Menten equation (Figure 

4.18). PaRsgA has slow but saturable GTPase activity, as expected for this 

class of proteins, with KM = 208 ± 27,7 µM, vmax = 0,29 ± 0,011 µM min-1 

and Kcat = 0.058 min-1. 

Figure 4.18 PaRsgA GTPase activity. Initial reaction rate (vo), obtained as the slope of GDP 

concentration versus time plots, are plotted as a function of GTP concentration and fitted to 

the Michaelis-Menten equation.  
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4.6.2 Role of monovalent cations in the GTPase activity of PaRsgA 

The presence of a monovalent cation (usually Na+ or K+) not only accelerates 

the intrinsic activity of diverse RA-GTPases but also stabilizes the transition 

state and thereby is involved in GTP hydrolysis mechanism (Anand et al., 

2010; Rafay et al., 2012; Achila et al., 2012; Foucher et al., 2012; Gkekas et 

al., 2017). This mechanism is in contrast to the well known mechanism 

employed by classical GTPases like Ras, which utilize an ‘Arginine finger’ 

from an interacting GTPase activating protein (GAP) to stabilize the 

transition state and facilitate GTP hydrolysis. Currently, experimental data 

about the ability of monovalent cations to influence the GTPase activity of 

RsgA are not available in the literature. 

To test if the nature of the cation is important in modulating the GTPase 

activity of PaRsgA, its intrinsic activity was investigated in the presence of 

200 mM of different monovalent salts such as NaCl, KCl, NH4Cl, LiCl and 

Figure 4.17 Example of initial reaction rate (v
o
) calculation. The initial reaction rate (v

o
) 

was obtained as the slope of the linear fit of the initial linear period of the reaction in plot 

showing the GDP concentration (evaluated at different time intervals by using the standard 

curve) versus time. 
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CsCl. The rate of GDP production has been compared, in term of percentage, 

to the one measured in 200 mM NaCl, used as our internal reference. As 

reported in Figure 4.19, in the presence of KCl the GDP production is slight 

lower (around 76%), while in the presence of LiCl it decreases further to 

approximately 24% and is less than 10% in the presence of NH4Cl and CsCl. 

 

These preliminary experiments suggest that PaRsgA catalytic site is suitable 

for accommodating monovalent cation with an ionic radius in the range of 

102 to 138 (ionic radii of Na+: 102 pm, K+: 138 pm). Cations smaller or 

larger in size (Li+: 76 pm, NH4
+: 147 pm and Cs+: 167 pm) have only a slight 

stimulating effect on PaRsgA GTPase activity. 

 

2.6.3 Possible determinant features for GTP hydrolysis mechanism of 

PaRsgA 

 

PaRsgA GTPase activity is stimulated by Na+ and K+ ions. Those cations 

Figure 4.19 Influence of the nature of the cation on PaRsgA GTPase activity. The GDP 

production rate obtained in presence of different monovalent cations (Na+, K+, Li+, NH
4
+, 

Cs+) and any salt (no salt) compared, in terms of percentage, to the condition in which 

there is the maximal stimulation, namely 200mM NaCl (100% of activity). 
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might function as the so far elusive catalytic element in PaRsgA that 

contributes to rapid GTP hydrolysis by providing electrostatic stabilization 

for the TS. Therefore, PaRsgA could use the M+-mediated mechanism, as 

depicted for other GTPases, like MnmE (Scrima et al., 2006), YqeH (Anand 

et al., 2010), and RbgA (Ash et al., 2010). 

The determinants of M+-mediated mechanism have been predicted to be two 

conserved Asn residues, one in the P-loop (G1) and another following it 

(GxxNxGKSxxxN); and the presence of an insertion termed K-loop, in 

Switch-I (G2) (Ash et al., 2012). Similarly, in dynamin a conserved Ser 

present in the P-loop, in place of Asn, stabilizes the M+ stimulating GTP 

hydrolysis (Chappie et al., 2010). However, the mere conservation of a P-

loop Asn/Ser and a K-loop are not reliable indicators of M+ stimulated GTP 

hydrolysis (Rafay, 2012). In the same field, Khule and coworkers have 

proposed that the key determinants for M+ ion binding are an Asp in the P-

loop and a Gly in the switch I (GxT in G2 motif) (Khule, 2012).  

To verify the presence of the structural element predict to trigger the M+-

mediated mechanism, we performed a multiple sequence alignment (MSA), 

by using the program Clustalω (Sievers et al., 2011), between PaRsgA and 

different RA-GTPases (BsRbgA, BsYqeH, EcObg, EcMnmE, EcEra, EcDer, 

EcEngB). Sequence analysis (Figure 4.20) reveals that Ser215 in G1, like in 

dynamin, is located one residue downstream in sequence (respect to the first 

conserved Asn in others RA-GTPases), followed by a Gly, whereas the 

Asn224 is conserved in PaRsgA sequence. Gly247 in G2, also indicated as 

important for TS stabilization, is located one residue downstream in the 

sequence (247GTHT250 respect to the canonical GxT).  

Therefore, the putative determinants features of the M+-mediated mechanism 

are present in PaRsgA sequence. However, here we can only speculate about 

the residues involved in GTP hydrolysis mechanism. To gain key insights 
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into PaRsgA molecular mechanism and to define the key determinants 

additional structural information are required.  

 

 

 

  

	

	 		 	 	
G1/P-loop	 G2	K-loop	

		
213	 251	

Figure 4.20 Multiple sequence alignment of PaRsgA and different RA-GTPases. 

Primary sequences of respective GTPases were retrieved in Uniprot and were subjected 

to multiple sequence alignment (MSA) by using the program clustalω. The region 

spanning G1 and G2 (residues 213-251 in PaRsgA sequence) is shown. Residues 

suggested to coordinate the M+ ion and to stabilize the TS are highlighted in green. 

Residues conserved in G1 are highlighted in cyan and a conserved Thr from G2 is 

highlighted in purple. 
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5. Discussion  

 

Ribosome assembly in vivo is an extremely efficient process owing to the 

existence of a variety of assembly factors (Woodson et al., 2011). During 

ribosomal biogenesis, assembly factors prevent accumulation of misfolded 

intermediate states by facilitating proper rRNA folding and r-protein-rRNA 

interactions (Shajani et al., 2011) and/or by acting as checkpointers in the 

context of the mature ribosomal subunits (Woodson et al., 2008). 

Understanding their specific functions in subunits maturation may help not 

only to gain a clear picture of how they work, but also to identify key 

molecular features to target for the development of new antibiotics.  

Four protein factors, RsgA, Era, RbfA and RimM, are involved in the late 

stages of the 30S subunit maturation (Jomaa et al., 2011; Leong et al., 2013; 

Guo et al., 2013; Jeganathan et al., 2015; Thurolow et al., 2016). These 

factors bind the small subunit at or near the decoding center and contribute to 

the 30S proper biogenesis (Lopez-Alonso et al., 2017; Razi et al., 2017; 

Sharma et al., 2015; Datta et al., 2007); however, the precise mechanisms of 

action as well as the functional interplay among them are not yet completely 

understood.  

This study focuses on the ribosome small subunit dependent GTPase A from 

the pathogen Pseudomonas aeruginosa (PaRsgA). RsgA is broadly 

conserved in bacteria and has been shown to be dispensable for growth but 

critically important for the overall fitness of E. coli, B. subtilis, and S. aureus. 

Moreover, reduced virulence of an S. aureus rsgA deletion strain in mouse 

model has been reported (Tracey et al., 2008). Preliminary experiments 

performed in collaboration with Dr. Francesco Imperi (“Sapienza” Università 

di Roma) showed that deletion of the rsgA gene in P. aeruginosa causes a 

slight delay of bacterial growth but a significant reduction in pathogenicity in 
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animal model (Galleria mellonella), indicating that although RsgA is not an 

essential protein in P. aeruginosa, it can play a key role during the infectious 

process. Therefore, PaRsgA represents a possible novel target for 

antibacterial drug discovery for P. aeruginosa infections treatment. 

In an attempt to perform a detailed characterization of PaRsgA from a 

structural and biochemical point of view, PaRsgA was expressed as a 

recombinant protein in E. coli and purified to homogeneity. The protein was 

submitted to extensive crystallization trials and then crystallised as described 

in the Results section. The structure was solved with a GDP molecule in the 

active site at 2.9 Å resolution and the model was deposited in the Protein 

Data Bank (pdb code: 6H4D). PaRsgA consists of three domains following a 

N-terminal unstructured region: an OB domain, a central cpGTPase domain 

and a C-terminal Zn-binding domain (Figure 4.5). The OB domain consists 

of two three stranded antiparallel β-sheets, packed orthogonally to one 

another creating a β-barrel; a two-stranded β-sheet connects the OB domain 

to the central circularly permutated domain, that is made up by a central six-

stranded β-sheet surrounded by α helices. The C-terminal region 

encompasses the zinc-binding domain and a C-terminal extension. Different 

structures of RsgA orthologous have been solved by X-ray crystallography, 

either in the GDP bound form (TmRsgA: 1U0L; Shin et al., 2004, StRsgA: 

2RCN; Nichols et al., 2007, and AaRsgA: 2YV5) and in the apo form 

(BsRsgA: 1T9H; Levdikov et al., 2004). Recently, cryo-EM structure of the 

E. coli 30S-RsgA complex has provided information on the GTP-bound 

RsgA structure (EcRsgA: 5NO2; Lopez-Alonzo et al., 2017) as well as on its 

interaction with the 30S subunit (Razi et al., 2017). Comparison of the 

present PaRsgA structure with the structures of orthologous proteins in the 

GDP-bound form indicates that the overall fold is well preserved (Figure 4.7) 

with most of the differences localizing in the region connecting the OB 
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domain to the cGTPase domain and the C-terminal region (see Results). The 

overall conservation among different bacterial species implies a strong link 

between structure and functional properties. Interestingly, a comparison of 

the structures of the GDP-bound PaRsgA with the GTP-bound EcRsgA and 

the nucleotide-free BsRsgA, reveals some differences in the respective 

domain orientation (Figure 4.9). In particular, the OB domain is subjected to 

a larger movement with respect to the zinc-binding domains. The absence of 

nucleotide in the BsRsgA structure not only contributes to a different inter-

domains orientation, but also leads to a local rearrangement of the nucleotide-

binding pocket. In particular, in BsRsgA the nucleotide-binding cavity is 

smaller than it is in the nucleotide-bound form of orthologous proteins. Thus 

a relaxation of the cavity is clearly required to provide space for nucleotide 

binding. Unfortunately, structures of RsgA available to date (including our 

PaRsgA structure) do not provide an accurate description of important 

functional motifs of RsgA. These motifs include the N-terminal unstructured 

region, which is important for binding to the 30S subunit in E. coli (Razi et 

al., 2017) and the Switch I. Since Switch I is the major determinant of 

structural rearrangement upon GTP hydrolysis, to investigate these 

conformational changes we struggled to obtain either the structure of the 

protein in complex with a non-hydrolysable-GTP analogue (GppCH2p), and 

the structure of the protein in the nucleotide-free form. However, to date 

PaRsgA-ppCH2p crystals diffracted only at low resolution and optimization 

trials are in progress. 

In order to get insight into the function of PaRsgA we have carried out an 

extensive biochemical and biophysical characterization of this protein. To our 

knowledge no thermodynamic parameters of RsgA, in both the nucleotide-

free and nucleotide-bound forms are currently available.   

Since PaRsgA is purified in the nucleotide-bound form, different biochemical 
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procedures have been optimized to obtain the nucleotide-free form of the 

protein: an enzymatic procedure and two different protocols that exploited 

the use of chaotropic agents to partially denature the protein or to weaken 

electrostatic interactions (Ford et al., 2009). Each of these procedures 

successfully led to the removal of the GDP bound to PaRsgA. However, the 

enzymatic procedure, showing the best yields, was used to obtain a sufficient 

amount of the nucleotide-free form of PaRsgA. 

In order to evaluate the contribute of a GDP molecule on the secondary 

structure content of PaRsgA, far-UV CD spectroscopy experiments of both 

nucleotide-bound and nucleotide-free forms of the protein were performed. 

The far-UV spectra do not highlight any conspicuous structural 

rearrangement upon binding of the nucleotide and therefore the nucleotide 

bound does not perturb the overall secondary structure of PaRsgA (Figure 

4.11). The thermodynamic stability parameters of nucleotide-bound and 

nucleotide-free forms were estimated by equilibrium denaturation 

experiments using urea as denaturing agent. The similar ΔG° values obtained 

for both PaRsgA forms, quantitatively confirm the observations obtained 

from the CD thermal denaturation experiments (Figure 4.12). It is therefore 

clear that the presence of the nucleotide provides only a negligible 

contribution to the total thermodynamic stability of the protein. 

The possibility to obtain large amounts of the nucleotide-free form of the 

protein, allowed us to perform a detailed kinetic analysis of PaRsgA binding 

to nucleotides. The kinetics parameters at 25°C for the binding of nucleotide-

free RsgA to GDP and GTP were estimated by rapid kinetic binding 

experiments using a stopped-flow apparatus and fluorescent analogues of the 

two nucleotides (mGDP, mGTP). Equilibrium dissociation constants (KD), 

calculated from the kinetics parameters, are ︎0.008 µM for the PaRsgA-GDP 

interaction and 0.06 µM for PaRsgA-GTP interaction. The higher affinity of 
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PaRsgA binding to GDP, respect to GTP, is mostly dependant on its slower 

koff as compared to a faster GTP release (Figure 4.13). Nichols and coworkers 

assessed nucleotide binding of StRsgA by isothermal titration calorimetry, 

resulting in a KD = 1 µM for GDP and KD = 8 µM for GTP, values slight 

higher compared to those here obtained for PaRsgA (Nichols et al., 2007). 

These differences could be ascribed either to the diverse analytical 

methodologies and experimental conditions used to evaluate the kinetics 

parameters or to the use of nucleotide-bound StRsgA in the assay.  

RsgA characterized early on exhibit slow intrinsic GTPase activity (Daigle, 

et al., 2002) enhanced by 160-fold in the presence of mature 30S subunits 

(Daigle et al., 2004; Himeno et al., 2004). Information available to date do 

not provide the molecular determinants of this effect even though, very 

recently, it has been proposed that a specific conformation of helix 44 may be 

responsible of GTPase stimulation (Razi et al., 2017).  Once GTP hydrolysis 

has occurred, additional conformational changes in switch I and switch II 

trigger the reorganization of their interactions with the 30S subunit, causing 

an overall decrease in the binding affinity of RsgA (Daigle et al., 2004; 

Thurlow et al., 2016) and its release from the 30S subunit. Therefore, the 

GTPase activity of RsgA functions as a sensor to facilitate the release of the 

protein factor from the 30S subunit once RsgA has performed its functions 

(Razi et al., 2017). Apart from the GTP-induced conformational switch, the 

mechanism of GTP hydrolysis is an unsolved problem in the universal 

functional cycle of RA-GTPases.  

Central to biological processes is the regulation rendered by GTPases. 

Despite being a critical enzyme family, G-proteins are typically very 

inefficient catalysts and can have intrinsic turnover numbers as low as 10-5 s-1 

(Ash, 2012). G-proteins must associate with additional factors in vivo that 

accelerate the conversion of GTP to GDP. Until  recently, the GTP 
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hydrolysis mechanism, exemplified by Ras-family of GTPases,  was thought 

to be universal. The emergence of a novel class of GTPases, like the HAS-

GTPases, that carry a hydrophobic residue in lieu of the conserved catalytic 

Gln (Mishra, 2005), suggested that newer mechanisms to hydrolyze GTP 

must exist. Several RA-GTPases use a monovalent cation (M+ ion) as a 

structural and catalytic cofactor that contributes to rapid GTP hydrolysis by 

providing electrostatic stabilization for the transition state (Kuhle et al., 

2014). Moreover, these GTPases does not require a GAP and instead a M+ 

(K+ or/and Na+) substitutes for the role of an Arginine finger in stabilizing 

the TS (Scrima et al., 2006; Anand et al., 2010; Ash et al., 2010; Chappie et 

al., 2010).  

To get insight into the molecular mechanism underlying the PaRsgA 

GTPase activity, the influence of the ionic strength over its hydrolytic 

activity was investigated and the catalytic parameters were estimated. The 

GDP production rate reaches maximum values between 100 and 200 mM M+ 

ions (KCl and NaCl), according to the relative concentration of these ions in 

the cell. In presence of 200 mM KCl and NaCl there is a 2.6 to 3.4 folds rate 

enhancement in the GDP production, respectively. Therefore, there is a 

dependency of the PaRsgA GTPase activity over the ionic strength but no 

selectivity for Na+ or K+ ions (Figure 4.15), and the maximal stimulation is 

attained at 200mM NaCl. PaRsgA has slow but saturable GTPase activity, as 

expected for this class of proteins, with KM of 208 ± 27,7 µM, vmax of 0,29 ± 

0,011 µM min-1 and Kcat of 0.058 min-1 (Figure 4.18). The intrinsic PaRsgA 

activity is then stimulated by the presence of a monovalent cation, where the 

nature of cation has in important role. The rate of GDP production over the 

time is stimulated mostly by the presence of Na+ and K+, whereas other 

monovalent cations like Li+, NH4
+ and Cs+ have only a slight effect on the 

GDP production stimulation (Figure 4.19). This observation suggests that it 
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is plausible that the nucleotide binding site is suitable for a cation with an 

ionic radius in the range of 102 pm to 138 pm (respectively, ionic radii of 

Na+ and K+). Smaller (Li, NH4
+) or larger (Cs+) cations do not have the same 

stimulating effect described for Na+ and K+.  To gain key insights regarding 

the possibility to use both Na+ and K+ to stabilise the TS, structural 

information on PaRsgA bound to TS analogues are needed. Based on the 

conservation of the features in the G motifs responsible for the stabilization 

of TS and for triggering GTP hydrolysis, we checked for the presence of 

those elements in PaRsgA sequence. The proposed determinants features of 

M+-mediated mechanism, the Ser/Asp and Asp (215SGVGKSSLVN224) in G1 

as well as Gly (247GTHT250) in G2, are conserved in PaRsgA sequence. 

However, here we can only speculate about the key residues possibly 

involved in GTP hydrolysis mechanism. To understand the molecular 

mechanism of GTP hydrolysis of PaRsgA additional structural and 

biochemical studies are needed; this information ill be pivotal to explore the 

possibility to target PaRsgA for P. aeruginosa infection treatment. 
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6. Conclusion and future prospects 

 

Here we presented the first structural and functional characterization of 

Ribosome small subunit dependent GTPase A from Pseudomonas 

aeruginosa (PaRsgA). The crystal structure of PaRsgA has been solved with 

a GDP molecule in the active site (pdb code: 6H4D). A detailed biochemical 

and biophysical characterization of both the nucleotide-bound and 

nucleotide-free form of PaRsgA has been accomplished; the substrates 

affinities have been estimated as well as the catalytic parameters of its 

GTPase activity.  

Despite it is not yet possible to define the underlying principles of PaRsgA 

molecular mechanism due to the lack of the completeness of data, the 

information here reported pose the basis for a wider characterization of 

PaRsgA. Further structural and biochemical studies are essential to 

completely decipher its mechanism of action but also to define possible sites 

to target for the development of novel antimicrobial agents.  

To gain key insights into the molecular mechanism of PaRsgA, structural 

data on GTP-bound form are required. PaRsgA in complex with a non-

hydrolysable GTP analogue has been crystallized and improvements of the 

crystallization conditions are in progress. Structural information on the GTP-

bound form of PaRsgA would shed the light on the key determinants 

responsible for the stabilization of the transition state and for triggering GTP 

hydrolysis. Moreover, the structure of the GTP-bound form of PaRsgA 

would provide additional information on the inter-domain interfaces, possible 

target sites to interfere with the PaRsgA functions. Therefore, a complete 

structural characterization would be pivotal to explore the possibility to target 

PaRsgA for Pseudomonas aeruginosa infections treatment. 
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With the increased importance of ribosome biogenesis as a potential anti-

microbial target, the chemical basis of RsgA activity and its functional 

interplay with other assembly factor becomes more important. Therefore, we 

propose to investigate the functional relationship between PaRsgA and other 

ribosomal assembly factors involved in 30S subunit maturation. Among 

them, Ribosome-binding factor A from P. aeruginosa (PaRbfA) is the first 

candidate; this protein has been successfully cloned and purified in our 

laboratory.  

PaRsgA ability to bind PaRbfA will be investigated by surface plasmon 

resonance (SPR) technique as well as the influence of PaRbfA on PaRsgA 

GTPase activity. These additional data would help to clarify the molecular 

mechanisms of how this protein assists the maturation of the functional core 

of the 30S subunit. 
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During my PhD I also participated in a project aimed at the structural and 

functional characterization of Nucleophosmin (NPM), a multifunctional 

nucleo-cytoplasmic shuttling protein involved in ribosome maturation in 

eukaryotes, whose role in Acute Myeolid Leukemia and its potential role as a 

drug target are well documented (Di Matteo et al., 2016). 

In particular, I was involved in the characterization of the interaction between 

NPM N-terminal domain and the tumor suppressor Fbw7γ, that permitted to 

identify the protein surfaces implicated in recognition and the key aminoacids 

involved. That analysis was also extended to other NPM partners (HIV-Tat 

and CENP-W) allowing conclude that NPM uses the same molecular surface 

as a platform to recognize different protein partners. This study (Di Matteo et 

al., 2017) contributed to unveil the molecular details of the interaction 

between NPM and its partners.  

 

 

 

In preparation: 

“Structural and functional investigation of the Ribosome Small Subunit-

dependent GTPase A (RsgA) from Pseudomonas aeruginosa.”  

Rocchio S., Santorelli D., Rinaldo S., Malatesta F., Imperi F., Federici L., 

Travaglini-Allocatelli, Di Matteo A. 

 

“Folding and aggregration properties of RbfA from Pseudomonas 

aeruginosa.” Santorelli D., Rocchio S., Angelucci F., Imperi F., Marasco D., 

Federici L., Di Matteo A, Travaglini-Allocatelli. 
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ABSTRACT

Nucleophosmin is a highly and ubiquitously expressed protein, mainly localized 
in nucleoli but able to shuttle between nucleus and cytoplasm. Nucleophosmin 
plays crucial roles in ribosome maturation and export, centrosome duplication, cell 
cycle progression, histone assembly and response to a variety of stress stimuli. 
Much interest in this protein has arisen in the past ten years, since the discovery 
of heterozygous mutations in the terminal exon of the NPM1 gene, which are the 
most frequent genetic alteration in acute myeloid leukemia. Nucleophosmin is also 
frequently overexpressed in solid tumours and, in many cases, its overexpression 
correlates with mitotic index and metastatization. Therefore it is considered as a 
promising target for the treatment of both haematologic and solid malignancies. NPM1 
targeting molecules may suppress different functions of the protein, interfere with its 
subcellular localization, with its oligomerization properties or drive its degradation. 
In the recent years, several such molecules have been described and here we review 
what is currently known about them, their interaction with nucleophosmin and the 
mechanistic basis of their toxicity. Collectively, these molecules exemplify a number 
of different strategies that can be adopted to target nucleophosmin and we summarize 
them at the end of the review.

INTRODUCTION

Nucleophosmin (also known as NPM1, B23, 
No38, numatrin) is a phosphoprotein, mainly localized at 
nucleoli [1]. The NPM1 gene maps to chromosome 5q35 
and is expressed in three isoforms through alternative 
splicing (Figure 1A). Isoform NPM1.1 (P06748-1) (294 
residues) is the most abundant one and displays nucleolar 
localization. Isoform NPM1.2 (P06748-2) lacks an in-
frame exon (exon 8) resulting in a shorter protein with 
respect to NPM1.1 in which an internal segment (residues 
195-223) is lacking. The third isoform, NPM1.3 (formerly 
known as B23.2; P06748-3), uses an alternative exon 
at the 3’ end, which is responsible for a shorter protein 
construct lacking the last 35 aminoacids with respect 

to NPM1.1 [2]. This isoform is expressed to low levels 
and has nucleoplasmic localization. The most abundant 
NPM1.1 isoform, which will be called NPM1 from now 
on, is expressed in all tissues. All studies we report here 
are focused on this isoform.

NPM1 is one of the most abundant proteins in 
the granular region of nucleoli; it plays a crucial role in 
maintaining nucleolar structure and is therefore considered 
one of the “hub” proteins of the nucleolus [3, 4]. NPM1 
is involved in many and different cellular functions 
which have been extensively reviewed recently [5, 6, 7]. 
Among them NPM1 plays a role in: i) rRNA expression 
and maturation [8, 9], ii) ribosome assembly and export 
[10, 11], iii) centrosome duplication [12, 13], iv) DNA 
replication, recombination, transcription, and repair [1, 
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5, 6, 14, 15], v) molecular chaperoning for histones and 
other proteins [5, 16, 17, 18]. Many of these functions 
are fulfilled through the interaction with different 
protein partners and indeed NPM1 has been reported to 
interact with a plethora of proteins [reviewed in 6]. Of 
particular importance here is the involvement of NPM1 
in the p14ARF-HDM2-p53 signaling axis. NPM1 has 
been reported to interact with all these three proteins in 
different cellular contexts [19, 20, 21]. In particular NPM1 
appears to be the major cellular interactor of p14ARF [22] 
and to be responsible for p14ARF nucleolar localization 
in unstressed cells. p14ARF mutants failing to interact 
with NPM1 are highly unstable and display low anti-
proliferative activity [23]. Moreover, overexpressed 
NPM1 directly interacts with c-MYC and controls c-MYC 
induced hyperproliferation and transformation activities 

[24], while being also essential for c-MYC nucleolar 
localization and c-MYC mediated rRNA transcription 
[25].

Various aspects of the NPM1 structure, trafficking 
and post-translational modifications are central to 
its pleiotropic behavior. NPM1 displays a modular 
organization in distinct domains each endowed with 
specific activities (see below). Furthermore, NPM1 mainly 
resides in nucleoli but can shuttle between nucleoli, 
nucleoplasm, and cytoplasm thanks to its different 
localization signals. NPM1 cellular localization during 
the various phases of the cell cycle or in response to 
stress signals, as well as the interactions established by 
NPM1, are all tightly regulated through post-translational 
modifications. Indeed NPM1 phosphorylation, acetylation, 
sumoylation, ADP ribosylation and poly-ubiquitination 

Figure 1: Domain organization and structure of NPM1. A. Primary structures of NPM1.1, NPM1.2 and NPM1.3 are shown. The 
blue bar marks the N-terminal core domain. Nuclear export signals (NES) in the N-terminal domain are highlighted in green. Acidic-rich 
regions in the central domain are highlighted in red, while the bipartite nuclear localization signal (NLS) is highlighted in magenta. The 
cyan bar marks the C-terminal nucleic acid binding domain. Trp288 and Trp290, which form the nucleolar localization signal (NoLS) are 
highlighted in yellow. Notably NPM1.2 lacks part of the NLS while NPM1.3 lacks most of the C-terminal domain and its NoLS. B. Crystal 
structure of the N-terminal core domain [32]. Five monomers associate to form a pentameric assembly and two pentamers interact in a 
head-to-head fashion to generate a decamer. C. The structure of the C-terminal domain of NPM1 (in cyan) is shown in complex with a 
G-quadruplex sequence from the c-MYC promoter (in magenta) [43]. Trp288 and Trp290 side chains are also highlighted.
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have all been reported [reviewed in 5].

NPM1 STRUCTURE

NPM1 shows a modular organization in which 
three distinct regions can be envisaged: i) the N-terminal 
region, often referred to as the “core” domain, is mainly 
responsible for the chaperone activities and for the 
interaction with protein partners [26, 27, 28]. This region 
contains two nuclear export signals (NES) (Figure 1A); 
ii) a central region, predicted to be natively unstructured, 
which contains a bipartite nuclear localization signal 
(NLS) (Figure 1A); iii) the C-terminal region of the 
protein is important for the interactions with nucleic acids 
[27, 29], contains the nucleolar localization signal (NoLS) 
(Figure 1A), and is the region where AML-associated 
mutations occurr [30]. 

The NPM1 N-terminal core domain shows high 
similarity to proteins belonging to the nucleoplasmin 
family [31]. The three-dimensional structures of this 
domain from human [32] and mouse [28] NPM1 as 
well as from the homologous Drosophila dNLP [33] 
and Xenopus NO38 [34] proteins have been determined. 
They all consist of eight antiparallel β-strands forming a 
β-barrel with jelly-roll topology. Five monomers tightly 
associate to form a crown-shaped pentamer (Figure 1B) 
and two pentamers interact in a head-to-head fashion 
to form a decamer, with few contacts between the two 
pentamers (Figure 1B). Whether this decameric assembly 
is physiologically relevant is presently unknown. NPM1 
functions and cellular localization have been reported to 
be correlated with its oligomerization state [5, 35, 36]. 
In all determined structures, the pentameric assembly 
is stabilized by extensive hydrophobic and hydrogen-
bonding interactions, ensuring for this domain a high 
thermal and chemical stability, typical of molecular 
chaperones [37]. Experimental evidences suggest that 
ionic strength, divalent ions and interactions with protein 
partners also contribute to stabilize the pentameric 
organization of NPM1 [28, 38]. However, a key and 
opposed role appears to be played by phosphorylation of 
serine and threonine residues by several different kinases 
[28]. The sequential phosphorylation of such residues, 
first those solvent exposed and then those buried at the 
monomer-monomer interface, greatly destabilizes the 
oligomeric state of NPM1 promoting monomerization 
[28]. Monomers are in turn intrinsically unstable and, 
following pentamer dissociation, completely unfold [28]. 

The N-terminal core domain is followed by a 
poorly characterized central region, predicted to be 
natively unstructured. This region contains two long 
acidic stretches, spanning residues 120-132 and 161-188 
respectively. They are composed of several consecutive 
glutammate or aspartate residues (Figure 1A) and thought 
to be important, in cooperation with the N-terminal 
domain, for the histone chaperoning activity played by 

NPM1 [31]. Before and after the second acidic stretch, 
a bipartite nuclear localization signal (NLS) is present 
(residues 152-157 and 191-197). The terminal part of the 
region is instead markedly basic and may cooperate with 
the C-terminal domain in shaping its binding properties. 
Interestingly, a protein segment comprising the second 
acidic stretch, the terminal basic region and part of the 
C-terminal domain (residues 140-259) has been associated 
to a ribonuclease activity on the internal transcribed 
segment 2 (ITS2) of 47S ribosomal pre-mRNA, essential 
for ribosome maturation [10].

The C-terminal domain of NPM1 consists of a 
three-helix bundle (Figure 1C) [39], stabilized by a 
set of strictly conserved aromatic residues (Phe268, 
Phe276, Trp288, and Trp290) [7]. This domain contains 
the NPM1 nucleolar localization signal (NoLS), 
encompassing the two tryptophan residues Trp288 and 
Trp290. This aromatic-rich NoLS is very atypical and, 
to our knowledge, present only in NPM1. Mutations of 
one or both Trp288 and Trp290 residues cause unfolding 
of the three-helix bundle and loss of NPM1 nucleolar 
localization [39, 40]. Such mutations are typical of AML 
patients, as it will be detailed later. 

The DNA and RNA binding activity of NPM1 is 
exerted by its C-terminal domain. This was initially shown 
to have a preference for single stranded DNA and RNA 
over duplex DNA, however no sequence requirements 
for nucleic acid binding were uncovered [27, 41]. More 
recently, NPM1 was shown to specifically target a 
G-rich sequence at the SOD2 gene promoter [42] which 
adopts a G-quadruplex structure under physiological 
conditions [29]. The structure of NPM1 C-terminal 
domain in complex with a G-quadruplex oligonucleotide 
derived from the c-MYC promoter was also investigated 
[43]. It was shown that the three-helix bundle engages 
the G-quadruplex phosphate scaffold with a positively 
charged groove located between helices H1 and H2 
(Figure 1C). Structural studies also revealed that the 
terminal part of the central domain, which is unstructured 
and markedly positively charged, is also necessary for 
high affinity binding, through both long range electrostatic 
effects and transient interactions with the G-quadruplex 
[44, 45]. NPM1 loses its nucleolar localization following 
lysine acetylation played by p300 [46] and, consistently 
with structural studies, both lysine residues located in the 
three-helix bundle at the G-quadruplex interface (Lys250, 
Lys257 and Lys267) [43] and lysine residues located in 
the flanking unstructured tail (Lys229 and Lys230) are 
acetylated by p300 [46].

NPM1 AND CANCER

NPM1 is over-expressed in a variety of solid 
tumours of different histological origin including 
prostate [47], liver [48], thyroid [49], colon [50], gastric 
[51], pancreas [52], glioma and glioblastoma [53, 54], 
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astrocytoma [55] and others. NPM1 overexpression often 
correlates with mitotic index and metastatization and 
it has been proposed as an adverse prognostic marker 
in a number of such malignancies [5, 56]. Even though 
amplification of the NPM1 locus has never been shown, 
the NPM1 gene is a target of the oncogenic c-MYC, 
which stimulates NPM1 expression by direct binding to 
the NPM1 promoter [57].

The specific contribution of overexpressed NPM1 
to cancer development is not fully understood but it may 
arise from multiple factors. First, NPM1 overexpression 
is correlated to increased ribosome biogenesis and protein 
synthesis and both these functions are amplified in tumour 
cells [58]. Furthermore, NPM1 plays a role in stimulating 
DNA repair following oncogene activation and reduces 
apoptotic or senescence response [5, 6, 59]. Accordingly, 
a model has been recently proposed [5] whereas, when 
oncogene activation arises in a normal cell as a first 
genetic event, overexpression of NPM1 may contribute 
to reinforce the DNA damage response thus keeping 
DNA damage and the consequent genomic instability to 
a level that the cell can sustain. This would in turn allow 
cells to select for the cooperative mutations necessary for 
transformation. 

NPM1 is also heavily implicated in haematological 
malignancies, being its gene both the target of different 
chromosomal translocations or of frequent mutations. In 
30% of anaplastic large cell lymphoma (ALCL) patients 
a t(2;5) translocation fuses the 5’ end of NPM1 gene with 
the 3’ portion of the ALK (anaplastic limphoma kinase) 
gene. This leads to the expression, in the cytoplasm 
of cancer cells, of a chimeric protein consisting of the 
NPM1 N-terminal oligomerization domain fused to the 
ALK tyrosine kinase domain [60, 61]. This chimera is a 
major driver in ALCL tumourigenesis [62] and the role 
of the NPM1 moiety is thought to be that of facilitating, 
through its oligomerization, the dimerization and thus the 
constitutive activation of the ALK tyrosine kinase domain.

A second rare event was found in acute 
promyelocytic leukemia (APL) patients. Here, as a 
consequence of a t(5;17)(q35;q31) translocation, the 
NPM1 N-terminal domain is fused to the DNA-binding 
domain of retinoic acid receptor α (RARα). Also in this 
case, and similarly to the most common PML-RARα 
chimera, NPM1 facilitates dimerization of the RARα 
moiety thus interfering with the RARα transcriptional 
activity [63]. The resulting arrest of myeloid differentiation 
may be reversed by treatment with all-trans retinoic acid 
(ATRA) [64].

A third chromosomal translocation at t(3;5)
(q25;q35) has been identified in a small subgroup (less 
than 1%) of acute myeloid leukemia (AML) patients. This 
event generates a protein chimera comprising the first 
175 aminoacids of NPM1 (the N-terminal domain plus a 
portion of the central unstructured region) and the entire 
coding sequence of the protein MLF1 (myelodisplasia/

myeloid leukemia factor 1) [65]. The role of this chimera 
in tumourigenesis has not been fully elucidated.

Beside the specific role played by the NPM1 moiety 
in the different chimeras, in all cases haploinsufficiency 
for the NPM1 WT gene is generated and partial dislocation 
of the NPM1 WT protein in the cytosol is observed, as 
a consequence of heteroligomerization with protein 
chimeras. Interestingly, NPM1 haploinsufficiency is also 
observed in myelodisplastic syndromes with 5q deletion 
[66], suggesting that it may confer per se a proliferative 
advantage in the myeloid lineage.

In 2005 the NPM1 gene was identified as the most 
frequently mutated one in AML, accounting for around 
60% of patients with normal kariotype and 35% of total 
cases [30]. Mutations map to the last exon of the gene and 
are always heterozygous [67, 68]. More than 30 different 
mutations have been identified but the consequences at the 
protein level are similar in all cases: due to duplication 
or insertion of short nucleotide stretches at exon XII of 
the NPM1 gene, the reading frame is altered leading to 
a protein that has acquired four additional residues at the 
C-terminus and has a different sequence in the last seven 
residues. Both triptophans 288 and 290, or only Trp288 in 
some unfrequent mutants, which constitute the nucleolar 
localization signal (NoLS), are replaced and the whole 
C-terminal domain of the protein is totally unfolded or 
largely destabilized [39, 69, 70, 71]. Furthermore, the 
newly generated sequence forms a novel NES which 
reinforces the two already present at the N-terminal region 
of the protein. Disruption of the NoLS and appearance of a 
new NES account for the aberrant cytoplasmic localization 
of mutated NPM1 [40], which is the hallmark of this 
kind of leukemia (hence mutated NPM1 is also termed 
NPM1c+, from cytoplasmic positive). Furthermore, 
since NPM1c+ oligomerizes with the wild-type protein 
produced by the normal allele, through its unaltered 
N-terminal domain, the majority of wild-type NPM1 is 
also translocated in the cytosol and only a small fraction 
still resides in the nucleoli of leukemic blasts. A wealth of 
different data [72, 73] suggests that NPM1 mutations act 
as a founder genetic lesion in this kind of leukemia and 
therefore AML with NPM1 mutation has been included as 
a new provisional entity in the WHO 2008 classification of 
myeloid neoplasms [74]. AML with mutated NPM1 may 
be further stratified into two different categories: those 
patients where concomitant FLT3-ITD (FMS-like tyrosine 
kinase internal tandem duplication) is absent, usually 
respond to standard induction therapy and have favourable 
prognosis; when FLT3-ITD sums up to NPM1 mutations 
(around 30% of cases) the prognosis is much worse. In 
all cases relapse is frequent and NPM1 mutations are 
typically present at relapse [75].

The exact mechanism through which NPM1c+ 
exerts its transforming activity is not yet fully understood, 
but all evidences point to the hypothesis that “placing a 
critical regulator at the wrong place in the wrong time” 
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may be the driving force [76]. In particular NPM1c+ may 
confer a proliferative advantage to blasts through the 
gain of several and unwanted “new” cytosolic functions. 
A number of them have been elucidated. For instance 
NPM1c+ interacts, through its unchanged N-terminal 
domain, with the tumour suppressors p14ARF and 
Fbw7γ, the major E3-ubiquin ligase targeting c-MYC, 
which are both translocated in the cytosol and there 
proteasomally degraded [77, 78]. Therefore, an important 
tumour suppressor pathway is hampered while, at the 
same time, an oncogene product like c-MYC is stabilized. 
Also, NPM1c+ binds and inhibits caspases 6 and 8, 
thus directly impacting on the execution of apoptosis 
[79]. Furthermore, NPM1c+ binds and inhibits the 
PTEN deubiquitinating enzyme HAUSP, resulting in 

PTEN cytoplasmic polyubiquitinilation and degradation 
[80]. Thus a third important tumour suppressor is also 
deregulated by NPM1c+ [80]. These cytosolic activities 
promote leukemic blasts survival and may also counteract 
the nucleolar stress caused by NPM1 delocalization. 
Additionally, the unfolded C-terminal domain of NPM1c+ 
has been recently shown to contain amyloidogenic regions 
that may also contribute to the gain of cytosolic functions 
played by the protein [81].

Targeting NPM1 for cancer treatment

A comprehensive description of the pleiotropic 
functions played by NPM1 and its role in cancer has 
been the subject of a number of excellent reviews to 

Figure 2: Structures of molecules that target NPM1. A. NSC348884. B. 1A1(1-40) RNA aptamer. C. (+)-avrainvillamide. D. 
TmPyP4. E. All trans-retinoic acid (ATRA). F. deguelin. G. (-)-epigallocatechin-3-gallate (ECGT). H. NucAnt 6L. I.YTR107.
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which we refer the reader [1, 5, 6, 7, 71, 72]. A common 
conclusion in all these analyses is that NPM1 should be 
considered as a target for the treatment of several tumours, 
noticeably haematological malignancies where the NPM1 
gene is mutated or found at the junction of chromosomal 
translocations, but also solid tumours where the gene is 
overexpressed.

Interestingly, over the course of the last 10 years, 
several molecules that target NPM1 have been indeed 
discovered and their effect and therapeutic potential has 
been investigated to various extent. Therefore we thought 
that it might have been timely and appropriate to review 
here what is currently known about these molecules, their 
interaction with NPM1 and the mechanistic basis for their 
toxicity. 

NSC348884

NPM1 oligomerizes through interactions mediated 
by its N-terminal domain. Loss of oligomerization has 
been shown to promote unfolding of the domain [28], 
suggesting a consequent impairment of its functions. The 
hypothesis of targeting the oligomerization properties 
of NPM1 to interfere with its functions, including 
its antiapoptotic activities, led to the identification 
of NSC348884, the first small molecule inhibitor 
reported to specifically interact with NPM1 [82]. A 
pharmacophore hypothesis was devised from the analysis 
of the hydrophobic interface between monomers in the 
pentameric ring and used to screen “in silico” a large 
library of compounds. NSC348884 ((di-[((6-methyl-1H 
-benzo[d]imidazol-2-yl)methyl)((5-methyl-3-oxo-3H 
-indol-2-yl)methyl)]) aminoethane) (Figure 2A and Figure 
3) was the best hit and used for subsequent functional 
studies. NSC348884 was initially shown to promote 
monomerization of NPM1 in LNCaP (androgen-sensitive 
prostate adenocarcinoma) and HCT116 (colorectal 
carcinoma) cell lines, in which NPM1 is wild-type 
and highly expressed. Cell viability assays, conducted 
on LNCaP and Granta (mantle cell lymphoma) cells 
showed cellular toxicity with IC50 varying in the 1.5-4 
micromolar range (Table 1). Subsequent experiments 
demonstrated a remarkable synergic effect of NSC348884 
with doxorubicin. The combined used of sub-cytotoxic 
doses of both drugs led to a complete loss of cell viability 
[82]. These promising data led to the investigation of 
the mechanistic basis of cellular toxicity. First, it was 
shown that NSC348884 counteracts the anti-apoptotic 
activity of over-expressed NPM1 and promotes apoptosis 
in LNCaP and Granta cells in a dose-dependent fashion, 
as seen both by morphologic analysis and annexin V 
staining. It is well known that NPM1 knockdown results 
in increased levels of p53 and of its phosphorylation at 
the Ser15 site [83]. Similarly, NSC348884 treatment was 
shown to exert both effects and also to elevate levels of 
p21, a key transcriptional target of p53. NPM1 is known 

to interact with the tumour suppressor p14ARF and to 
sequester it in nucleoli. When moving to the nucleoplasm, 
p14ARF interacts with HDM2, the E3-ubiquitin ligase 
for p53, resulting in elevated p53 levels [84]. NPM1 has 
also been shown to directly interact with p53 and prevent 
its phosphorylation at Ser15 [83]. Both of these NPM1 
antiapoptotic activities may be compromised by treatment 
with NSC348884 thus explaining its apoptotic effect in 
cells overexpressing NPM1. Similar results, i.e. NPM1 
monomerization and cell growth inhibition, were also 
recently shown in the hepatic carcinoma HepG2 cells 
treated with NSC348884 [85].

The effect of NSC348884 in AML was analysed 
by comparing cells expressing NPM1c+ (OCI-AML3) 
and cells expressing only wild type NPM1 (HL-60 and 
OCI-AML2) [86]. Interestingly, NSC348883 was found 
to be more effective in disrupting NPM1 oligomerization 
in OCI-AML3 cells compared to HL-60 and OCI-AML2 
cells. This is somewhat unexpected since mutations target 
the C-terminal domain of the protein while NSC348884 
targets the N-terminal domain. Furthermore, NSC348883 
markedly induced higher levels of apoptosis in OCI-
AML3 cells than in the NPM1 wt cells. A synergic effect 
was found in the combined treatment of OCI-AML3 
cells or primary AML cells expressing NPM1c+ with 
NSC348884 and all-trans-retinoic acid (ATRA), but 
not in cells expressing wild-type NPM1 only. However, 
NSC348883 treatment alone or co-treatment with ATRA 
was significantly less effective in inducing apoptosis in 
primary AML cells co-expressing NPM1c+ and FLT3-
ITD, consistent with the poorer prognosis of patients 
carrying both alterations with respect to patient with 
NPM1c+ only [86].

Overall, these data suggest that molecules targeting 
NPM1 oligomerization may be effective against both solid 
malignancies overexpressing NPM1 and in AML with 
NPM1c+ expression, especially when used in combination 
with established chemotherapy. This therapeutic strategy 
may be also attractive for tackling haematological 
disorders caused by chromosomal translocations in 
which the N-terminal region of NPM1 is fused to other 
proteins, i.e. NPM-ALK, NPM-RARα and NPM-MLF1. 
As already discussed above, in such chimeric oncoproteins 
the role of the NPM1 moiety is probably that of favouring, 
through its oligomerization, the dimerization of the fusion 
partners, which are then constitutively activated. However, 
NSC348884 has not been yet tested in such tumours.

REV-NLS

Different studies have suggested that NPM1 
behaves as a nucleolar “hub”, favouring the localization 
and accumulation of its protein partners in the nucleolus 
thanks to reciprocal interactions [87]. Although extensive 
biochemical and structural characterization of these 
interactions is still lacking and many observations 
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available in the literature are conflicting, various studies 
have identified NPM1 and in particular its N-terminal 
region as one of the receptors responsible for the nucleolar 
localization of many proteins (Figure 3) [28]. 

This topic was initiated by studies on the interaction 
between NPM1 and the Rev protein from the human 
immunodeficiency virus-1 (HIV-1). Rev is a protein 
essential for virus replication and was initially shown to 
interact with NPM1 [88, 89]. Later on, the Rev sequence 
recognized by NPM1 was identified and shown to coincide 
with the highly basic sequence necessary for Rev nuclear/
nucleolar localization (i.e. its NoLS) [90]. To analyse the 
effect played in cancer cells by interfering with NPM1 
protein-protein interactions, different Rev peptides were 
administered to Ras-3T3 cells [91]. In particular, the 
Rev37-47 peptide (ARRNRRRRWRE), which binds in 
vitro NPM1 with submicromolar affinity [90] was shown 

to be active with GI50=95.1 μM (Table 1). Other Rev-
derived peptides with reduced or no affinity for NPM1 had 
virtually any effect. Rev37-47 also efficiently inhibited 
colony formation in soft agar, suggesting that the peptide 
could revert the transformed phenotype of Ras-3T3 cells 
to a normal phenotype. Further experiments on nude mice 
inoculated subcutaneously with Ras-3T3 cells confirmed 
the efficacy of Rev37-47 to consistently reduce tumour 
growth. Finally Rev37-47 was shown to synergize with 
doxorubicin in reducing tumour growth in the xenografts. 
Similarly to what already shown with drugs that influence 
the oligomeric state of NPM1, treatment with Rev37-47 
results in p53 increased levels and transcriptional activity. 
Consistently, the cytotoxic effect of this Rev peptide was 
abrogated by siRNA directed against p53 [91].

Overall, though very preliminary, these data suggest 
that a molecule targeting the NPM1 surface that interacts 

Figure 3: Schematic representation of full-length NPM1 structure showing the pentamer formed by the N-terminal 
domains, followed by the central unstructured regions and culminating with the folded C-terminal domains. The sites 
recognized by NPM1-interacting molecules are indicated, when known.



Oncotarget44828www.impactjournals.com/oncotarget

with HIV Rev, plays a toxic effect on cancer cells. Since 
NPM1 interacts with many proteins, the protein-protein 
interaction surface targeted by Rev37-47 may be common 
to other NPM1 partners (Figure 3). Therefore a single 
molecule may compromise many of the interactions 
established by NPM1 at once.

RNA APTAMERS

Aptamers are small synthetic RNA or single 
stranded DNA molecules that can bind and inhibit with 
high affinity and specificity target molecules. Many 
aptamers are currently in development and have already 
undergone clinical trials as promising therapeutic tools 
against different diseases including cancer [92].

With the aim of inhibiting the antiapoptotic activity 
of NPM1, an effort to select functional aptamers was paid 
by using the technique known as “systematic evolution of 
ligands by exponential enrichment” (SELEX) [93]. This 
procedure, performed against full-length NPM1, led to the 
identification of the 1A1 RNA aptamer and its truncated 
40-mer form 1A1(1-40) (Figure 2B), both able to bind 
NPM1 with KD=33 nM and KD=30 nM, respectively 
(Table 1) [94]. Subsequent efforts were paid to identify 
the exact NPM1 domain targeted by the aptamer in vitro. 
These studies showed that the isolated NPM1 central 
region (residues 114-187) was bound with same affinity 
as full-length NPM1 while the N-terminal (1-113) and 
C-terminal (188-294) domains were not bound by the 
aptamer (Figure 3). Further experiments performed in 
vitro with full-length NPM1 demonstrated that the aptamer 
interferes with NPM1 oligomerization. It is well-known 
that the isolated N-terminal domain of the protein, which 
is not bound by the aptamer in isolation, is per se sufficient 
to form very stable pentamers and dimers of pentamers 
[27, 32, 33]. Therefore, further experiments are necessary 
to understand the dependence of NPM1 oligomers stability 
on the interplay among different domains in the context of 
the whole protein.

The effect of aptamers was assayed in different 
cancer cell lines including MCF-7 (human breast 
adenocarcinoma). It was confirmed that aptamers 
interact with NPM1 also in vivo and promote monomer 
accumulation and oligomer depletion. Importantly, 
immunofluorescence studies indicated that, upon aptamers 
expression, NPM1 delocalizes from nucleoli to the 
nucleoplasm [94]. Since it is known that the nucleolar 
localization signal is localized at the very C-termini of 
the protein (Trp288 and Trp290), an area far from the 
putative aptamers binding site, also this effect awaits 
for a structural explanation; it is possible that currently 
unknown interactions between NPM1 domains may 
be destabilized by aptamer binding and interfere with 
NPM1 ability to associate with nucleoli. From the cell 
viability point of view, the expression of the aptamers 
caused an increase of apoptotic cells, comparable to 

what seen with siRNA mediated NPM1 down-regulation. 
A synergistic effect in causing apoptosis with the DNA 
damaging drugs etoposide and cisplatin was also observed. 
Mechanistically, it was shown that aptamer expression is 
followed by p14ARF accumulation in the nucleoplasm, 
p53 increased levels and p21 expression, similarly to what 
observed with NSC348883 [82]. 

CIGB-300

Many protein kinases are established targets in 
cancer therapy and several kinase inhibitors already 
entered the clinic or are undergoing clinical trials. Among 
the protein kinases that could be targeted one is the Ser/
Thr Casein kinase 2 (CK2). In fact, high levels CK2 have 
been found in different cancer cells [95, 96] especially 
those which show remarkable resistance to death, being 
this protein a major player in apoptosis suppression [97]. 

CIGB-300 is a cyclic peptide fused, at the 
N-terminus, to a cell-penetrating peptide derived from 
the HIV Tat protein (GRKKRRQRRRPPQ-β-ala-
CWMSPRHLGTC with a disulphide bond between the 
two cysteine residues). This compound was derived by 
screening a random cyclic peptide phage library against 
the HPV-16 E7 oncoprotein site targeted by CK2 for 
phosphorylation [98]. Therefore, rather than being a direct 
CK2 inhibitor, CIGB-300 was selected for interfering 
with CK2 phosphorylation by interacting with one of 
its targets. Consistently, it was shown that treatment 
with CIGB-300 induces apoptosis in several tumour cell 
lines (Table 1). Furthermore CIGB-300 was shown to 
significantly reduce tumour growth in syngeneic C57BL6 
mice implanted with TC-1 lung epithelial tumour [98]. 
This initial observation stimulated further studies aimed 
at identifying the protein(s) targeted by CIGB-300 in 
vivo. Pull-down experiments in NCI-H82 cells (small 
cell lung cancer) identified 20 proteins: two known 
CK2 substrates, NPM1 and nucleolin as well as several 
ribosomal proteins. Subsequent experiments demonstrated 
that CIGB-300 directly binds NPM1 and not nucleolin in 
vivo, and suggested that nucleolin and ribosomal proteins 
pull-down may be mediated by NPM1 [99]. Using an 
in vitro CK2 phosphorylation assay, it was shown that 
NPM1 phosphorylation inhibition is due to direct binding 
of CIGB-300 to NPM1. In particular, CIGB-300 inhibits 
CK2 phosphorilation of NPM1 at Ser125 and rapidly 
co-localize with NPM1 at nucleoli after administration 
(Figure 3). Nucleolar disassembly was also observed 
after treatment with CIGB-300 as monitored by the rapid 
nucleoplasmic redistribution of both NPM1 and fibrillarin. 
CK2 was previously shown to be a master regulator of 
ribosome biogenesis [100]. Furthermore, CK2 inhibition 
by DRB was shown to trigger nucleolar breakdown and 
interfere with ribosome biogenesis. Notably similar 
effects were also observed by mutating NPM1 Ser125 
[101]. These observations suggest that the activity of 
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CK2 as a master regulator of nucleolar assembly and 
ribogenesis is operated through NPM1 as a downstream 
effector. CK2 mediated phosphorylation of NPM1 has 
also been shown to regulate its chaperone activity [102]. 
NPM1 inhibition might therefore interfere with the proper 
folding of ribosomal proteins, their correct loading on 
the nascent ribosome, but also with histone assembly at 
nucleolar rDNA. Even though the precise mechanism 
connecting nucleolar breakdown to apoptosis is not clear, 
data obtained with CIGB-300 support the idea that NPM1 
phosphorylation may be a target for cancer treatment in 
those tumours were high levels of NPM1 are present. 
CIGB-300 exerts a broad antiproliferative effect on cell 
lines derived from breast, cervical, lung, colon, prostate 
cancer and chronic lymphocytic leukemia (CLL) while 

a robust antitumour effect was also observed in vivo in 
mouse models of cervical and lung cancer as well as CLL 
[98, 103, 104]. Recently it was also observed that the 
concomitant administration of CIGB-300 and drugs like 
cisplatin, paclitaxel, doxorubicin or 5-fluorouracil cisplatin 
gives rise to synergic chemotherapeutic effects in lung and 
cervical cancer models [105]. 

In clinical research, CIGB-300 has been established 
to provide some benefits and to be safe and tolerable 
by local injection in cervical malignancies [106]. More 
recently, another phase I clinical study on patients with 
stage 1B2/II cervical cancer allowed the estimation 
of the maximum tolerated dose (MTD) and the 
pharmacokinetics/biodistribution profiles for CIGB-300 
following local administration [107]. Collectively these 

Table 1: Molecules that interact with NPM1
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data make of CIGB-300 the NPM1-targeting drug that has 
been more deeply investigated so far.

AVRAINVILLAMIDE

(+)-avrainvillamide is an alkaloid (hereafter 
avrainvillamide; Figure 2C), firstly isolated from a marine 
fungal strain of Aspergillus sp. and initially shown to 
display antiproliferative activity on a panel of cancer cell 
lines [108]. In 2007 it was reported that avrainvillamide 
was able to form tight complexes with NPM1 in vivo 
[109]. Avrainvillamide is thought to act as an electrophile 
centre subjected to the nucleophilic addition of a sulphur 
group to its unsaturated nitrone moiety. Consistently, 
the NPM1-avrainvillamide complex was disrupted by 
iodoacetamide treatment. Binding assays on site-directed 
mutants revealed that avrainvillamide binds NPM1 
primarily by alkylating Cys275, which is located in 
helix H2 of the C-terminal three-helix bundle (Figure 1 
and Figure 3). This makes this alkaloid the first and only 
small molecule inhibitor known to directly bind the NPM1 
C-terminal DNA-binding domain (Table 1). Cellular 
studies reported that HeLa S3 cells transfected with a 
siRNA targeting NPM1 exhibited enhanced sensitivity 
to avrainvillamide, providing a correlation between the 
antiproliferative effects of avrainvillamide and levels of 
NPM1. A following recent paper thoroughly investigated 
the effect of avrainvillamide-NPM1 association in AML 
[110]. It was shown that avrainvillamide binds both 
NPM1wt and NPM1c+ in vitro, with increased efficiency 
for the latter, probably due to its unfolded C-terminal 
domain. The effect of avrainvillamide on NPM1 cellular 
localization was studied both in cells carrying wild-
type and predominantly nucleolar NPM1 (OCI-AML2) 
and in cells carrying heterozygous NPM1 mutation and 
the NPM1c+ phenotype (OCI-AML3). Treatment with 
sublethal doses of avrainvillamide (250 nM) was not 
effective in displacing NPM1 from nucleoli in OCI-
AML2 cells. Conversely, NPM1c+ was observed to 
partially relocalize in nucleoli when OCI-AML3 cells 
were challenged with the same dose of avrainvillamide. 
Higher doses of avrainvillamide (4 μM) caused an 
apoptotic phenotype in both cell lines with condensed 
or fragmented nuclei. The cellular localization of NPM1 
was however markedly different in the two cell lines. 
While NPM1 was displaced from nucleoli in OCI-AML2 
apoptotic cells, it appeared to co-localize with the highly 
condensed nuclei of OCI-AML3 cells. Interestingly, the 
nucleolar relocalization effect of avrainvillamide on the 
mutant form of NPM1 was confirmed by transfecting cells 
with an eGFP-NPM1c+ construct. Conversely, treatment 
with the Crm1-exportin1 inhibitor leptomycin, resulted 
in the nucleoplasmic but not nucleolar accumulation 
of the eGFP-NPM1c+ construct. It was also shown 
that avrainvillamide binding to the mutated C-terminal 
domain at Cys275 does not result in domain refolding, 

which would have explained the re-localization effect. 
Therefore, avrainvillamide appears to act as a surrogate for 
the compromised nucleolar localization signal (NoLS) in 
NPM1c+ even in the presence of an unfolded C-terminal 
domain [110], through a mechanism that is currently 
unknown.

TMPYP4

TmPyP4 (tetra-N-methyl-pyridyl porphyrin) 
(Figure 2D) is a positively charged porphyrin that binds 
G-quadruplex DNA with high affinity [111]. The potential 
of this molecule in cancer therapy has been recently 
investigated by different groups (Table 1) [111, 112, 113, 
114].

NPM1 was recently recognized as a G-quadruplex 
binding protein and initially implicated in binding 
G-quadruplex sequences from the SOD2 and c-MYC gene 
promoters [29, 42, 43]. These initial findings prompted 
investigations aimed at assessing whether there might be 
a link between DNA binding, especially at G-quadruplex 
regions, and nucleolar localization. Nucleoli are nuclear 
regions enriched in proteins and RNAs that are organized 
in correspondence of and around tandemly duplicated 
ribosomal DNA genes; bioinformatics and in vitro analysis 
of rDNA suggested that this gene contains as much as 14 
different G-quadruplex regions in the non-template strand 
[115]. 

NPM1 was initially found to be associated to the 
rDNA throughout the whole gene [9] and further studies 
revealed that rDNA G-quadruplexes are effectively 
bound by NPM1 both in vitro and in vivo [116]. This 
activity is played by the C-terminal domain of the protein 
and depends critically on its folded state. It was shown 
that the C-terminal domain of the AML-linked NPM1 
mutant A form, which lacks both Trp288 and Trp290, 
is unfolded and unable to bind rDNA G-quadruplexes, 
while the reinsertion of the two tryptophan residues was 
sufficient to restore the correct folding, G-quadruplex 
binding and nucleolar localization [40, 116]. Among the 
possible strategies for treating AML with mutated NPM1 
a so-called “NPM1 nucleolar starvation” hypothesis 
was suggested [7, 71]. This is based on the observation 
that mutations are always heterozygous and a small but 
detectable fraction of the wild-type protein always resides 
in nucleoli of leukemic blasts, possibly because it is 
necessary for nucleolar functions such as ribogenesis and/
or for the correct assembly of nucleoli. Therefore depriving 
nucleoli of NPM1 might cause nucleolar stress and induce 
an apoptotic response. A lower dosage of such NPM1-
nucleoli depleting agents might be toxic for AML blasts 
with respect to healthy cells given their limited residual 
NPM1 pool. This hypothesis was tested using TmPyP4 as 
an investigational tool on OCI-AML2 leukemia cells and 
OCI-AML3 cells expressing NPM1c+. First it was shown, 
on both OCI-AML2 and OCI-AML3 cells, that TmPyP4 
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effectively displaces NPM1 from nucleoli, even at sub-
cytotoxic amounts [116, 117]. Indeed, nucleolar protein 
content is heavily affected by TmPyP4 since two other 
important nucleolar proteins, i.e. nucleolin and fibrillarin, 
are also displaced. However, TmPyP4 was found to be 
more toxic on OCI-AML2 than on OCI-AML3 cells, both 
as a function of dose and time, despite the limited amount 
of nucleolar NPM1wt in OCI-AML3 cells as compared to 
OCI-AML2 [117]. Mechanistically, it was shown i) that 
OCI-AML3 cells contain reduced levels of both NPM1 
and p53 as compared to OCI-AML2, ii) that levels of p53 
in both cell lines decreased in the presence of TmPyP4 and 
iii) that p53 was activated, as monitored by elevation of 
p21 mRNA levels, in OCI-AML2 but not in OCI-AML3 
cells [117]. This is possibly linked to p14ARF inhibition of 
HDM2 in OCI-AML2 cells following TmPyP4 treatment; 
an event that may not happen in OCI-AML3 cells since 
p14ARF is delocalized in the cytoplasm by NPM1c+ and 
degraded [78].

ATRA/ARSENIC OXIDE, DEGUELIN AND 
(-)-EPIGALLOCATECHIN-3-GALLATE

All-trans-retinoic-acid (ATRA) (Figure 2E), 
alone or in combination with arsenic trioxide (ATO; 
As2O3), is currently the frontline treatment for acute 
promyelocytic leukemia (APL) harbouring the PML-
RARα gene rearrangement [118, 119]. Since the use of 
these agents has provided excellent results in APL, the 
therapeutic potency of these two compounds either in 
association with one another or with other cytotoxic 
agents has been also recently investigated in the most 
common type of AML i.e. the one with mutated NPM1 
gene and NPM1c+ expression [120, 121]. Initially it was 
shown that ATO, but not ATRA, is effective in inducing 
apoptosis in AML cell lines carrying NPM1 mutation A 
(NPM1c+ phenotype), both OCI-AML3 and IMS-M2, as 
compared to AML cells with NPM1wt only. When ATO 
was combined with ATRA a striking cooperative action 
in inducing apoptosis was detected in OCI-AML3 cells. 
These results were also replicated using patients’ primary 
blasts. The primary blasts carrying the concurrent FLT3-
ITD mutation were more susceptible than those where 
FLT3 was not affected and this is particularly important 
given the worse prognosis of these patients with respect 
to those carrying NPM1 mutation only. Furthermore 
pre-treatment with ATO/ATRA was shown to greatly 
sensitize cells to daunorubicin, which is currently used in 
AML induction therapy [120]. Similar results were also 
obtained by El Hajj and coworkers [121]. ATO is known 
to target the promyelocitic leukemia protein (PML) and 
this was confirmed also in AML blasts carrying NPM1c+. 
Importantly it was also shown that ATO treatment results 
in decreased levels of NPM1c+ while levels of NPM1wt 
remain unchanged [120]. Surprisingly this effect was 
exerted also by ATRA and a synergistic behaviour in the 

combined treatment was observed. Pre-treatment with the 
proteasome inhibitor MG132 reverted this phenotype, 
suggesting that NPM1c+ disappearance after ATO/ATRA 
treatment is due to proteasomal degradation. Further 
experiments suggested that NPM1c+ specific degradation 
may be triggered by the oxidative stress induced by 
ATO. In particular, oxidation of NPM1c+ Cys288 (which 
replaces the tryptophan residue of the wild type protein) 
could be the reason that makes the mutant protein more 
susceptible to proteasomal-mediated degradation with 
respect to wild-type [120]. 

These results are very promising, especially if we 
consider that both ATRA and ATO are already in the 
clinic, but further studies are required to reach a thorough 
biochemical characterization of the effects played by these 
drugs in AML with NPM1 mutations. 

Therapeutic strategies focused on NPM1c+ specific 
degradation have also been invoked in studies centred 
on two natural compounds, i.e. deguelin (Figure 2F) 
and (-)-epigallocatechin-3-gallate (ECGT) (Figure 2G). 
Deguelin is a rotenoid molecule initially isolated from the 
African plant Mundulea sericea (Leguminosae) and later 
from other plants, which displayed potent and selective 
apoptotic and antiangiogenic effects on a variety of cancer 
cells (lung, prostate, gastric, and breast cancer) [122]. 
ECGT is the major polyphenol extracted from green tea, 
widely investigated for its antioxidant properties and 
for its possible effects in cancer prevention [123]. In 
both cases it was shown that treatment of OCI-AML3 
cells with deguelin [124] and of IMS-M2 cells (also 
expressing NPM1c+) with ECGT [125], was effective in 
reducing NPM1c+ but not NPM1wt levels and in inducing 
apoptosis. NPM1 levels were instead not consistently 
affected when treating AML cell lines expressing 
NPM1wt only [124]. Nothing is known however about 
the mechanistic basis of NPM1c+ specific degradation 
triggered by either deguelin or ECGT treatment.

NUCANT (N6L)

Recently, Destouches and collaborators have 
identified NPM1 as one of the targets of a promising 
anticancer compound, NucAnt 6L (N6L) [126]. N6L is a 
synthetic pseudopeptide consisting of a central 310-helical 
template formed by a repetition of 6 pseudopeptide 
residues (Lys-Aib-Gly) in which, each of the six lysines 
is linked to other three pseudopeptides (Lys [CH2N] Pro-
Arg) (Figure 2H). This molecule has been shown to inhibit 
the formation of colonies of various cancer cell lines in 
soft agar assays with IC50 values ranging from 5 to 40 
μM, and also to significantly inhibit invasion capacity 
in a metastatic melanoma cell model (Table 1) [127]. 
In vivo, upon administration, N6L rapidly localizes to 
tumour tissue in tumour-bearing mice inducing significant 
inhibition of tumour growth without evident toxicity 
[126]. 
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The anticancer activity was initially ascribed to 
the interaction of N6L with nucleolin, however, further 
investigation also identified NPM1 as a N6L interaction 
partner. The interaction between NPM1 and N6L was 
deemed to be monophasic with a dissociation constant 
of 1 nM as inferred by Surface Plasmon Resonance 
(SPR) experiments with purified NPM1 [126]. In vitro 
experiments were conducted only using full-length NPM1 
and therefore it is presently unknown which NPM1 
domain is actually targeted by N6L. Since N6L is rich in 
lysine and arginine residues, it resembles some properties 
of positively charged peptides that also bind NPM1, 
such as those belonging to the HIV Rev and Tat proteins. 

Therefore N6L, through NPM1 binding, may interfere 
with some protein-protein associations played by the 
protein (Figure 3). Further studies are needed to dissect 
this interaction and to investigate the effect of the drug on 
cell lines carrying NPM1c+ mutation.

YTR107

Recent evidences have shown that NPM1, when 
phosphorylated on threonine 199 (pT199NPM1), is a 
key component of the DNA double strand break (DSB) 
repair machinery [128]. In particular, in response to the 
formation of DNA DSBs, pT199NPM1 is recruited to 

Figure 4: Strategies for NPM1 targeting. A. Interfering with monomer-monomer interactions at the N-terminal domain would 
cause domain unfolding and the impairment of its functions. B. Interfering with the protein-protein interaction surface at the N-terminal 
domain might prevent most of the NPM1 anti-apoptotic activities. C. Interfering with NPM1 post-translational modifications such as CK2-
mediated phosphorilation. D. Interfering with NPM1 C-terminal domain interactions with nucleic acids would result in nucleolar stress 
due to the dissociation of the protein from nucleoli (nucleolar starvation hypothesis). E. Selective degradation of NPM1c+ while leaving 
wild-type NPM1 unaffected may be pursued in AML with NPM1 mutation. F. Pharmacological chaperone strategy aimed at refolding the 
mutated C-terminal domain in NPM1c+ would relocate the protein in nucleoli thus counteracting NPM1c+ anti-apoptotic activities. In 
panels E and F, mutated NPM1 is distinguished from wild-type NPM1 because represented with horizontal white and coloured lines.
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the site of damage and binds ubiquitinated chromatin in 
a RNF8/RNF168 dependent manner, forming irradiation-
induced foci (IRIF) that promote the repair of DNA DSBs 
[128]. The use of radiation therapy in cancer treatment is 
limited by the intrinsic resistance acquired by cancer cells 
through the increased efficacy of their DNA damage repair 
processes, thus the inhibition of DNA repair mechanisms 
in cancer cells exposed to ionizing radiation may represent 
a valid therapeutic approach and, in this context, NPM1 is 
a new promising target.

Sekhar and colleagues [129], through affinity-based 
solid-phase resin capture and liquid chromatography/
tandem mass spectrometry (LC/MS-MS), have identified 
NPM1 as the biological target of YTR107, a potent 
radiosensitizing compound previously identified [130]. 
YTR107 ((Z) -5 - ((N-benzyl-1H-indol-3-yl) methylene) 
pyrimidine-2, 4, 6 (1H, 3H, 5H) trione) (Figure 2I) 
interferes with DNA damage repair mechanisms 
and is therefore capable of sensitizing to radiation 
different tumour cell lines, including HT29 colorectal 
adenocarcinoma cells, D54 glioblastoma cells, PANC1 
pancreatic cancer cells, different breast cancer cell models 
and NSCLC cell lines (Table 1) [127]. Moreover, YTR107 
significantly potentiated radiation-induced growth delay in 
HT29 tumour xenografts [129].

Evidence suggesting that the radiosensitization 
induced by YTR107 is mediated by NPM1 was also 
reported [131]. First it was shown that NPM1-null 
mouse embryonic fibroblasts (MEFs) but not NPM1-wt 
MEFs are deficient in DNA repair and are radiosensitive. 
Then, it was shown that treatment with YTR107 of 
NPM1wt MEFs, but not of NPM1-null MEFs, impaired 
the formation of pNPM1 irradiation-induced foci and 
triggered a significant dose-dependent radiosensitization 
[131]. YTR107 was also shown to bind to the N-terminal 
region of NPM1 (residues 1-122) responsible for protein 
oligomerization and to promote NPM1 monomerization 
(Figure 3) [131]. Very recently, the synthesis of YTR107 
analogues with increased efficacy on several cell lines, 
including OCI-AML3, has also been reported [132]. 

Strategies in NPM1 targeting

The molecules that we have described above all bind 
NPM1 or interfere with specific functions played by the 
protein and, collectively, exemplify six different strategies 
that can be adopted in NPM1 targeting, summarized in 
Figure 4.

A first strategy consists in interfering with NPM1 
oligomerization (Figure 4A). This effect is best achieved 
through molecules that target the NPM1 N-terminal 
domain dimerization surface. This is for instance the case 
of NSC348884 and, possibly, of YTR107, which were 
both shown to promote monomer formation, destabilizing 
the pentameric ring. Such molecules were tested against 
a significant panel of cancer cell lines where NPM1 is 

overexpressed and showed significant activity, especially 
in combination with other drugs (NSC34884) or radiation 
(YTR107). Not surprisingly, given the high hydrophobicity 
of the NPM1 dimerization surface, both drugs are poorly 
water-soluble (Figure 2A and 2I). This may constitute an 
obstacle for all drugs targeting this NPM1 surface that may 
be possibly overcome by the development of appropriate 
delivery systems such as nanocarriers.

A second strategy consists in interfering with the 
NPM1 protein-protein interaction network (Figure 4B). 
Data available in the literature [28, 90] and unpublished 
data from our laboratory, all suggest that protein epitopes 
enriched in positively charged residues are specifically 
recognized by the NPM1 N-terminal domain. Importantly, 
it is highly probable that NPM1 recognizes its protein 
partners’ epitopes with the same surface. Therefore, 
targeting this surface would hamper several anti-apoptotic 
functions played by the protein simultaneously. This 
strategy is so far exemplified by the Rev-NLS peptide, 
which was effective against the Ras-3T3 cell line, also 
engrafted in mice, through a p53-dependent apoptotic 
response. Moreover, the pseudopeptide N6L was found to 
be effective against a large panel of cancer cell lines and 
structurally resembles NPM1 interacting peptides. Further 
design or optimization of molecules that display high 
affinity and specificity for the NPM1 protein interacting 
surface would be greatly facilitated if we had structures of 
the complexes between the NPM1 N-terminal domain and 
different protein partners.

A third strategy consists in interfering with NPM1 
post-translational modifications (Figure 4C). This is 
exemplified by the cyclic peptide CIGB-300 that targets 
NPM1 Ser125 and prevents its phosphorylation by CK2, 
causing nucleolar stress and nucleolar breakdown followed 
by apoptotic cell death. CIGB300 has demonstrated 
pharmacological activity against a large panel of tumour 
cell lines where NPM1 is overexpressed and in mice 
xenografts. Its mechanism of action is unique among 
NPM1 interacting drugs however, since Ser125 is located 
just at the end of NPM1 N-terminal domain, it cannot be 
excluded that its action may also be that of impairing some 
NPM1 protein-protein association. 

A fourth strategy is based on the so-called “nucleolar 
starvation hypothesis” [7, 72] according to which the 
selective displacement of NPM1 from nucleoli might cause 
nucleolar stress followed by apoptotic cell death (Figure 
4D). TmPyP4 and Avrainvillamide actions may be both 
categorized under this strategy. Both compounds target the 
NPM1 C-terminal domain structure (avrainvillamide) or 
nucleic acid binding activity (TmPyP4) and are the only 
two drugs that are meant to interfere with this protein’s 
domain activities. TmPyP4 effectively displaced NPM1 
from nucleoli of AML cells and showed toxicity in a cell 
line where NPM1 is wild-type, due to p53 activation, while 
was relatively ineffective in a cell line carrying NPM1c+. 
Avrainvillamide exerted similar toxicity in the two cell 



Oncotarget44834www.impactjournals.com/oncotarget

lines but with a remarkable difference as regards to the 
NPM1 status: wild-type NPM1 was found displaced from 
nucleoli while NPM1c+ regained nucleolar localization 
(which let us categorize avrainvillamide also under a 
different strategy, see below). The NPM1 C-terminal 
domain surface involved in nucleic acid binding, and 
thus responsible for nucleolar localization, has been 
structurally elucidated and this offers a remarkable 
opportunity for the design of further molecules specifically 
aimed at interfering with this surface. Interestingly, while 
the nucleolar starvation strategy was initially proposed for 
the treatment of AML with NPM1c+, evidences obtained 
so far suggest that could it be effective also in tumours 
where wild-type NPM1 is overexpressed. 

The strategies described above are relevant 
for targeting both solid tumours where NPM1 is 
overexpressed and AML with NPM1c+. The last two 
strategies instead may be considered specific for the latter. 

The fifth strategy consists in the use of drugs 
causing the selective destruction of the mutated form of 
NPM1 (NPM1c+) while leaving wild-type NPM1 levels 
relatively unchanged (Figure 4E). Recent results suggest 
that the combined treatment with ATRA/ATO or the use of 
natural compounds like deguelin or EPGT may reach this 
goal. The underlying molecular mechanisms are totally 
unknown with respect to deguelin and EPGT. As to ATRA/
ATO, it has been suggested that NPM1c+ might be more 
sensitive than wild-type NPM1 to the oxidative stress 
caused by ATO. This strategy is definitively worth further 
investigation especially in view of its high specificity for 
NPM1c+.

The final sixth strategy is the least investigated so far 
and consists in the so-called “pharmacological chaperone” 
approach [7]. In NPM1c+, the C-terminal domain of the 
protein is largely destabilized or totally unfolded due to the 
loss of Trp288 and Trp290. As a consequence the protein 
loses its nucleolar localization. According to this strategy 
any drug capable of refolding the mutated C-terminal 
domain should restore NPM1c+ nucleolar localization thus 
counteracting NPM1c+ cytosolic antiapoptotic activities 
(Figure 4F). Interestingly, avrainvillamide was shown to 
act as a surrogate of a pharmacological chaperone, being 
capable of inducing NPM1c+ nucleolar relocalization, but 
without refolding the protein’s C-terminal domain. 

Finally, always with reference to AML with NPM1 
mutations, it is worth mentioning an additional strategy 
consisting in the use of nucleolar stress inducers that 
already are in the clinic. For instance, promising results 
were obtained by treating patients with actinomycin D, a 
well known RNA polymerase I inhibitor [133].

CONCLUSIONS

The studies we have reviewed here have shown 
a therapeutic potential for many molecules that interact 
with NPM1. Moreover, a striking synergy was observed 

in many cases when NPM1-targeting compounds 
were administered in combination with different 
chemotherapeutic agents or radiotherapy. This suggests 
that interfering with NPM1 status or functions may be 
a general way to sensitize cancer cells. Even though it 
cannot be excluded that, at least in some cases, cellular 
responses could be due not only to a direct effect on NPM1 
and its interactors but also to indirect effects like those 
following DNA damage, it is clear from these studies that 
NPM1 targeting may be a powerful strategy for treating a 
number of tumours of diverse histological origin. 

This is a field still in its infancy. Very few tests in 
animal models were performed and only two compounds 
(CIGB-300 and Nucant N6L) have entered clinical trials 
(Table 1). Indeed, many of the compounds we have 
reviewed here have been discovered or recognized for 
their effect on NPM1 only in the last two or three years. 
Furthermore, they not always display chemical features 
suitable for their development as drugs. Therefore, we 
anticipate that new molecules will be discovered, pursuing 
any of the different strategies that we delineated above. 

One important issue that arises from the analysis 
of the available molecules is that, in some cases, their 
influence on the NPM1 status and localization is not 
immediately understandable on the basis of our current 
knowledge of NPM1 structural features. For instance, even 
though it is well established that the C-terminal domain of 
the protein contains the NoLS and therefore is responsible 
for NPM1 nucleolar localization, molecules targeting the 
NPM1 oligomerization surface at the N-terminal domain 
were equally able to displace the protein from nucleoli. 
Moreover, molecules targeting the central region caused 
loss of oligomerization, a property that is currently 
ascribed to the N-terminal domain. These and other 
data indicate the need for a better description of NPM1 
structure and interactions. In particular the structures of 
the NPM1 N-terminal and C-terminal domains have been 
determined in isolation but nothing is known about the 
central domain and if, how and when the three domains 
interact with each other and structurally cooperate to 
enable NPM1 to fulfil its functions. Furthermore, even 
though NPM1 interacts with a plethora of different 
proteins, none of these interactions has been structurally 
characterized. If we aim at successfully targeting NPM1 
for cancer treatment we will also need to address these 
important issues.
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Structural investigation of nucleophosmin interaction with the
tumor suppressor Fbw7γ
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Nucleophosmin (NPM1) is a multifunctional nucleolar protein implicated in ribogenesis, centrosome duplication, cell cycle control,
regulation of DNA repair and apoptotic response to stress stimuli. The majority of these functions are played through the
interactions with a variety of protein partners. NPM1 is frequently overexpressed in solid tumors of different histological origin.
Furthermore NPM1 is the most frequently mutated protein in acute myeloid leukemia (AML) patients. Mutations map to the
C-terminal domain and lead to the aberrant and stable localization of the protein in the cytoplasm of leukemic blasts. Among NPM1
protein partners, a pivotal role is played by the tumor suppressor Fbw7γ, an E3-ubiquitin ligase that degrades oncoproteins like
c-MYC, cyclin E, Notch and c-jun. In AML with NPM1 mutations, Fbw7γ is degraded following its abnormal cytosolic delocalization
by mutated NPM1. This mechanism also applies to other tumor suppressors and it has been suggested that it may play a key role in
leukemogenesis. Here we analyse the interaction between NPM1 and Fbw7γ, by identifying the protein surfaces implicated in
recognition and key aminoacids involved. Based on the results of computational methods, we propose a structural model for the
interaction, which is substantiated by experimental findings on several site-directed mutants. We also extend the analysis to two
other NPM1 partners (HIV Tat and CENP-W) and conclude that NPM1 uses the same molecular surface as a platform for recognizing
different protein partners. We suggest that this region of NPM1 may be targeted for cancer treatment.
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INTRODUCTION
Nucleophosmin (NPM1) is an abundant and ubiquitous protein1

mainly localized in nucleoli, where it contributes to their structure
and organization,2,3 but also shuttles between nucleolus and
cytoplasm to perform its functions.4–6 NPM1 has a primary role in
ribosome biogenesis and transport7,8 but also contributes to the
maintenance of genomic stability and DNA repair,9,10 histones
assembly,11,12 centrosome duplication,13,14 cell cycle regulation
and response to stress stimuli.5 The pleiotropic behavior of NPM1
is due to its modular structure consisting of: (i) an N-terminal
oligomerization domain involved in protein–protein interactions
and containing two nuclear export signals (NES);1,4 (ii) an
intrinsically unstructured central region which contains a bipartite
nuclear localization signal (NLS) and (iii) a C-terminal nucleic acid
binding domain where the nucleolar localization signal (NoLS) is
located.6 Multiple post-translational modifications such as phos-
phorylation, acetylation and glutathionylation regulate NPM1
localization and activities.4,5,15

NPM1 is overexpressed in several tumors, including prostate,
liver, gastric, colon, pancreas, glioma and glioblastoma, astro-
cytoma and others.16 Its overexpression often correlates with
mitotic index and metastatization and it was proposed as an
adverse prognostic marker.17,18 The NPM1 gene is also frequently
altered in hematological malignancies arising from chromosomal
translocations. Here, the N-terminal domain of NPM1 is fused to

protein partners such as ALK, RARα and MLF1, giving rise to
oncogenic proteins and haploinsufficency for wild-type NPM1.1

Finally, the NPM1 gene is the most frequently mutated in acute
myeloid leukemia (AML), accounting for 30% of patients.19 AML
mutations are localized at the C-terminal domain of the protein
and cause: (i) the loss of the NoLS, (ii) a severe destabilization or
the complete unfolding of the domain and (iii) the appearance of
a new NES.19 As a result, mutated NPM1 loses affinity for nucleoli
and is found stably and aberrantly in the cytoplasm.19

NPM1 interacts with several protein partners, modulating their
stability and, importantly, it seems to have a fundamental role in
their nucleolar localization. Indeed, most of NPM1 interacting
proteins contain multivalent arginine-rich motifs3 generally found
in NoLS.20 Furthermore, the reduction of NPM1 levels is associated
with the alteration of nucleolar structure.18 All these aspects
substantiate the hypothesis that NPM1 behaves as a hub protein
in nucleoli.2,3 Relevant examples of NPM1 partners include
ribosomal proteins (RPL5, RPS9, RPL23), viral proteins (Rev, Tat)
and many tumor suppressors, including p14ARF, p53 and
Fbw7γ.4,16

NPM1 is required for the nucleolar localization and stabilization
of the isoform γ of Fbw7.21 Fbw7 belongs to the SCF (Skp1, Cullin-
1, Fbox protein) class of E3-ubiquitin ligases22 and has a modular
organization comprising: (i) the D dimerization domain, (ii) the
Fbox domain that binds Skp1 of the SCF complex and (iii) the
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WD40 domain, which recognizes phosphorylated substrates.22 The
Fbw7 gene codes for three protein isoforms (namely α, β and γ)
differing in their N-terminal region and displaying distinct cellular
localization: Fbw7α is nucleoplasmic, Fbw7β is cytoplasmic and
Fbw7γ is nucleolar.23 Many of Fbw7 targets are oncoproteins,
including c-MYC, Notch, Cyclin E and c-Jun22 and therefore
isoforms localization may be instrumental in their regulation
through the compartmentalization of substrates recognition and
degradation. For instance, nucleolar c-Myc is specifically ubiqui-
tinylated by Fbw7γ, thus regulating its growth promoting
activity.23

The alteration of the NPM1/Fbw7γ/c-Myc circuitry was reported
in AML with NPM1 mutations.21 First, it was shown that NPM1 is
necessary for Fbw7γ nucleolar localization and stabilization. As a
consequence, c-Myc ubiquitination and proteasome degradation
is enhanced, thus lowering its levels. Conversely, c-Myc is
stabilized in cells lacking NPM1 and, importantly, in AML blasts
bearing the mutated form of NPM1.21 Indeed, mutations causing
NPM1 cytoplasmic delocalization, do not compromise the inter-
action of NPM1 with Fbw7γ which is also delocalized in the
cytoplasm and degraded.21 A similar delocalization/degradation
mechanism was observed with the tumor suppressor p14ARF.24,25

Overall, different apoptotic responses are compromised by the
selective cytosolic degradation of NPM1 partners. These and other
observations led to the suggestion that the NPM1 region/s
implicated in protein partners recognition may be considered a
target for cancer treatment.16

In this paper we investigate the interaction between NPM1 and
Fbw7γ. We identify, in both proteins, the domains that are
necessary for recognition and the aminoacids involved. We
provide and validate a structural model for the interaction
through protein-peptide docking and molecular dynamics simula-
tions. We also extend this analysis to two other NPM1 interacting
proteins, namely Tat26 and CENP-W,27,28 demonstrating that the
same region of NPM1 recognizes all these proteins, substantiating
the proposed role of NPM1 as a ‘nucleolar hub’. We suggest that

this protein region may be targeted for the treatment of AML with
NPM1 mutations.

RESULTS
NPM1 interacts with the predicted NoLS sequence of Fbw7γ
In an effort to understand the molecular mechanism whereby
Fbw7γ localizes in nucleoli, we carried out a bioinformatic analysis
of Fbw7 isoforms using the NoD algorithm (Nucleolar Localization
Signal Detector; http://www.compbio.dundee.ac.uk/www-nod/
index.jsp) to identify putative nucleolar localization signals (NoLS)
in these proteins (Figures 1a–c). This analysis, which relies on
sequence only, is based on the observation that the NoLS of many
proteins consists of a short motif rich in lysines and arginines
positioned in variably spaced clusters.20 The results showed that
only the N-terminal region of Fbw7γ contains a putative NoLS
(Figures 1c and d), while a partial signal is present in Fbw7α
(nucleoplasmic) (Figures 1a and d) and absent in Fbw7β (cytosolic)
(Figures 1b and d), in agreement with their observed cellular
localization.23 In all three isoforms, this region of the protein is
predicted to be natively unstructured (Figure 1e) and a higher
amount of positive charges within few residues can be
appreciated in the γ isoform with respect to the other two.
Indeed the α and β isoforms contain insertion regions, separating
the two clusters of positive charges found in the γ isoform,
endowed with a higher conformational entropy and smaller
stability, which possibly preclude their recognition as NoLS.
Since Fbw7γ nucleolar localization depends on the presence in

nucleoli of NPM1,21 we hypothesized that its predicted NoLS is the
epitope recognized by NPM1 and we investigated the molecular
determinants of this interaction. To this purpose, we used both
the N-terminal and C-terminal regions of NPM1 (Nter-NPM1,
residues 16-123 and Cter-NPM1, residues 225-294, respectively),
and a peptide encompassing residues 43-56 of the Fbw7γ
sequence (hereafter Fbw7γ*), consisting of the central region of
the Fbw7γ predicted NoLS and containing six positively charged
residues arranged in two clusters (Table 1). The binding process

Figure 1. Identification of nucleolar localization signal (NoLS) in Fbw7. Fbw7 isoforms vary in their N-terminal sequence. The sequences of
Fbw7α (a), Fbw7β (b) and Fbw7γ (c) were subjected to the NoD algorithm in order to identify putative NoLS (Scott et al.,20). The server
identifies a full NoLS in Fbw7γ only (score above 0.8) while only a partial one in Fbw7α. Fbw7γ is known to be nucleolar while Fbw7α is located
in the nucleoplasm. In d the underlined sequences correspond to the putative NoLS. PSIPRED secondary structure predictions for the three
isoforms, in the regions of interest, are shown in e.
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was monitored by equilibrium fluorescence spectroscopy taking
advantage of a dansyl group attached to the peptide N terminus.
Titrations showed an increase of fluorescence dansyl emission
with a blue shift of the emission peak as a function of Nter-NPM1
concentration (see Figure 2a inset). Analysis of the data according
to Equation (1) (Figure 2a) yielded an equilibrium dissociation
constant KD = 3.2 ± 0.6 μM (Table 1). Data were well fitted with a 1:1
peptide/Nter-NPM1 monomer stoichiometry, even though Nter-
NPM1 is pentameric at all concentrations tested in our
experiments.
When the C-terminal domain of NPM1 (Cter-NPM1) was used,

no variation in the emission peak was observed, indicating that it
does not bind Fbw7γ* (Figure 2b). We also performed the same
experiments using dansylated peptides (named unrelated long

and unrelated short) whose sequences are not present in the
Fbw7γ isoform and which are not predicted to be NoLS (Table 1).
No interaction was observed when these peptides were titrated
with Nter-NPM1.
Since it has been reported that NPM1 interacts also with CENP-

W and Tat proteins,26,27 we used the NoD algorithm to identify in
these two proteins their NoLS. Then, dansylated peptides
corresponding to the suggested NoLS regions of the proteins
(peptides CENP-W* and Tat*, respectively) (Table 1) were tested
for their interaction with Nter-NPM1 (Figures 2c and d) and Cter-
NPM1 (Supplementary Figure 1). For both peptides, equilibrium
titrations experiments showed an increase of fluorescence
emission as a function of protein concentration only when the
Nter-NPM1 domain was used (Figures 2c and d), demonstrating
that the interaction specifically involves the N-terminal domain
and that, also in these cases, the predicted NoLS is the binding
epitope recognized by NPM1. The calculated dissociation con-
stants parallel the one obtained for Fbw7γ, being KD = 6.2 ± 0.9 μM
for the Nter-NPM1-CENP-W* interaction and KD = 2.4 ± 0.5 μM for
the Nter-NPM1-Tat* interaction (Table 1).

Identification of Nter-NPM1 residues involved in Fbw7γ
recognition
Nter-NPM1 monomer consists of eight antiparallel β-strands
forming a β-barrel with jelly-roll topology. Five monomers tightly
associate to form a crown shaped pentamer. Since the identified
Nter-NPM1-interacting epitopes are all enriched in positive

Table 1. Dissociation constants for the complexes between Nter-
NPM1 and peptides

Peptide Sequence Nter-NPM1 KD (μM)

Fbw7γ* 43LPFCRRRMKRKLDH56 3.2± 0.6
CENP-W* 14KRKAPRGFLKRVFKRKK30 6.2± 0.9
Tat* 47AGRKKRRQRRRPPQ60 2.4± 0.5
Unrelated long DDEAQTLAKFVLSQK Ni
Unreleted short VLSQK Ni

Abbreviation: Ni, no interaction.

Figure 2. Interaction analysis of NoLS sequences. Peptides corresponding to the putative NoLS were dansylated at their N terminus and
titrated with NPM1 constructs. The static fluorescence spectra are shown in insets, while the experimental maxima and their fit according to
equation 1 (see Materials and Methods) are reported as a function of NPM1 concentrations in the main panels as follows: (a) Interaction
between Fbw7γ* and Nter-NPM1. (b) Interaction between Fbw7γ* and Cter-NPM1. (c) Interaction between CENP-W* and Nter-NPM1.
(d) Interaction between Tat* and Nter-NPM1. Peptides sequences are reported in Table 1.
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charges, we inspected the electrostatic potential surface of Nter-
NPM1 in search for negatively charged patches. Indeed, as shown
in Figure 3, a large negatively charged surface is found, extending
from the pentamer external surface to its central cavity. Among
the residues that contribute to this negatively charged surface, we
focused our attention on three residues, namely D36, E39 and E93,
because they were previously shown to play a role in the
interaction of NPM1 with the tumor suppressor p14ARF.29 To
establish their involvement in binding Fbw7γ*, these residues
were all mutated to alanine, as single or double mutants; a triple
mutant was also prepared. The interaction was measured using
the same protocol as for the wild-type protein (Supplementary
Figure 2) and the resulting KD are reported in Table 2. Mutation to
alanine of D36 and E39 residues led to an increase of KD between
two and three fold. Mutation of E93 had instead a smaller effect.
Consistently, when the double mutants D36A-E93A and E39A-
E93A where tested, observed KD were comparable to those
obtained with the D36A and E39A single mutants, respectively.
When the D36A-E39A double mutant was tested no dramatic

additive effect of the two mutations in destabilizing the
interaction was obtained with KD = 13.5 ± 2.0 μM. Finally, the triple
mutant D36A-E39A-E93A resulted to bind the peptide with a KD
= 22± 3 μM, around seven fold higher than wild type. These data
suggest that though residues D36, E39 and to a minor extent E93,
contribute to the binding energy, the overall binding process is
not entirely dependent on their interactions. Additional residues
are likely involved.
In order to obtain a better description of the interaction and

identify additional residues involved, we performed a molecular
docking analysis of the Nter-NPM1- Fbw7γ* complex. Given the
complexity of docking a long and flexible peptide, the procedure
adopted here was based on a ‘divide and conquer’ approach,
starting from a combinatorial merging of energy-favorable
tripeptides, which were then used as templates for biased-
guided docking (see Materials and Methods for a detailed
description). The top ten scoring docking poses cluster in the
same binding site, with a mean RMSD between poses of 4.3 Å
(Supplementary Figure 3). This is principally the result of the
variable conformations adopted by the C-terminal half of the
peptide, while the N-terminal half appears more fixed. Only a
single peptide was docked onto the Nter-NPM1 pentamer,
nevertheless equivalent docking surfaces are available for the
additional peptides. It is possible that different peptide conforma-
tions, among those selected by the docking procedure, would be
adopted when all Nter-NPM1 monomers are engaged by peptides.
Figures 4a and b show the best scoring docking pose and,

according to this model, Fbw7γ* adopts an extended conforma-
tion and lies with its N-terminal end along the external surface of
the protein while its C-terminal end protrudes into the central
cavity of the pentamer. The majority of interactions are
established with residues belonging to a single Nter-NPM1
monomer, with few contributions from the adjacent one (see
below). Interestingly, although no information regarding interact-
ing residues was imparted to the docking algorithm, all three
residues that we have examined before (D36, D39 and E93) were
found to interact with positively charged residues of the
Fbw7γ* peptide. In particular, in the docking model, D36 forms
a salt bridge with Fbw7γ* R47 (Figure 4c), E39 is salt-bridged to
both R48 and R52 (Figure 4d), while E93 interacts with K53
(Figure 4e).
Inspection of the model showed two additional negatively

charged residues that interact with Fbw7γ*. The first one is E37
that interacts with R47 (Figure 4f); the second one is E121: in this
case the same residue from two different Nter-NPM1 monomers
binds two different residues of the peptide, i.e., K51 and R52
(Figure 4g). Therefore, we mutated these two additional residues
and measured their contribution to the binding energy (Supple-
mentary Figure 2). When E37A and E121A single mutants were
tested, we obtained dissociation constants approximately four-
fold higher than wild-type, similarly to what already seen for the
D36 and E39 mutants (Table 2). Furthermore, starting from the
D36A-E39A-E93A triple mutant, we also prepared two quadruple
mutants and a quintuple one. When the D36A-E37A-E39A-E93A
mutant was tested, we obtained a KD = 151.5 ± 20.5 μM, ≈50-fold
higher than wild type. Likewise, the D36A-E39A-E93A-E121A
mutant showed a KD = 224.3 ± 35.9 μM, ≈70-fold higher than wild
type. Finally, the quintuple mutant displayed negligible affinity for
the peptide, with KD = 653.7 ± 46.9 μM (Table 2).
Overall, these data suggest that the Nter-NPM1-Fbw7γ* binding

energy is dictated by multiple electrostatic contributions through-
out the binding cleft. They also show a non-linear variation of the
KD upon loss of negative charges in Nter-NPM1. In fact the
dissociation constant is relatively stable when only three residues
are mutated, while it markedly increases upon addition of a fourth
mutation. To check the effect of salt on binding we also performed
titrations with wild-type protein and triple, quadruple and
quintuple mutants increasing the ionic strength to 150 mM. We

Figure 3. Electrostatic potential surface analysis of Nter-NPM1. The
crystal structure of human Nter-NPM1 displays a pentameric
organization and was subjected to calculation of the electrostatic
potential surface through the APBS algorithm. Negative and positive
charges are shown in red and blue, respectively. One of the
monomers is shown in ribbon to better highlight the position of
three important acidic residues (D36, D39 and E93), which are
shown in sticks.

Table 2. Dissociation constants for the complexes between the
Fbw7γ* peptide and Nter-NPM1 mutants

Protein KD (μM)

Nter-NPM1 3.2± 0.6
D36A 10.8± 2.6
E37A 12.5± 1.4
E39A 6.2± 1.5
E93A 5.0± 1.6
E121A 13.3± 3.8
D36A-E39A 13.5± 2.0
D36A-E93A 8.4± 1.5
E39A-E93A 7.6± 1.9
D36A-E39A-E93A 22.0± 3.0
D36A-E37A-E39A-E93A 151.5± 20.5
D36A-E39A-E93A-E121A 224.3± 35.9
D36A-E37A-E39A-E93A-E121A 653.7± 46.9
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obtained a general decrease in affinity, as expected, but the trend
observed with the previous experiments was confirmed (Supple-
mentary Table 1).

The same surface of Nter-NPM1 recognizes peptides from
different protein partners
Since the peptides from CENP-W and Tat recognized by Nter-
NPM1 share with Fbw7γ* a high positive charge (Table 1), we
investigated whether the same Nter-NPM1 surface is implicated in
their binding. To this end, we tested the triple, quadruple and
quintuple Nter-NPM1 mutants interaction with the CENP-W*
and Tat* peptides (Supplementary Figure 4). In both cases, and
similarly to what already seen for Fbw7γ*, a clear trend of
increasing dissociation constants is observed as a function of
decreasing negative charges from the triple to the quintuple

mutant (Table 3). These results indicate that the same region of
Nter-NPM1 is responsible for the interaction with different
nucleolar proteins that are all recognized through their
predicted NoLS.

Figure 4. Molecular docking analysis of the Fbw7γ*-Nter-NPM1 interaction. The interaction between Fbw7γ* and Nter-NPM1 investigated
through molecular docking analysis is shown. (a) Nter-NPM1 pentamer is represented in cartoon while the Fbw7γ* peptide is shown in sticks.
(b) The Nter-NPM1 electrostatic surface is shown in a different orientation from a. The peptide, shown in sticks, adopts an extended
conformation with its C-terminal end protruding into the central pentamer cavity. (c) A detail of the interaction played by Nter-NPM1 residue
D36 with Fbw7γ* R47. (d) Nter-NPM1 residue is predicted to interact with both Fbw7γ* R48 and R52 residues. (e) Interaction between Nter-
NPM1 E93 and Fbw7γ* K53. (f) Nter-NPM1 residue E37 is also predicted to interact with Fbw7γ* R47. (g) E121 residues from two different Nter-
NPM1 monomers (the second one is shown in magenta) are predicted to interact with residue K51 and R52 residues.

Table 3. Dissociation constants for the complexes between Nter-
NPM1 selected mutants and the CENP-W* and Tat* peptides

CENP-W* KD (μM) Tat* KD (μM)

Nter-NPM1 6.2± 0.9 2.4± 0.5
D36A-E39A-E93A 18.4± 2.6 11.1± 2.1
D36A-E37A-E39A-E93A 71.4± 9.1 57.4± 7.0
D36A-E39A-E93A-E121A 82.8± 5.6 63.8± 5.0
D36A-E37A-E39A-E93A-E121A 734.0± 158.0 642.6± 70.8
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Figure 5. Molecular dynamics simulations of the interaction between Fbw7γ* and Nter-NPM1 constructs (wild-type and mutants). (a) Root
mean square deviation (RMSD) of Nter-NPM1 and Fbw7γ* Cα atoms as a function of simulation time for WT (black line), triple (red), quadruple
(green) and quintuple (blue), respectively. (b) Average RMSD (root mean square deviation) of Fbw7γ* as calculated for peptide Cα residues for
all simulated systems. Wild-type Nter-NPM1 is shown in black, the triple D36A-E39A-E93A mutant is shown in red, the quadruple D36A-E39A-
E93A-E121 mutant is shown in green, the quintuple D36A-D37A-E39A-E93A-E121 is shown in blue. (c) The position of the peptide at selected
snapshots along the simulation time is shown. Nter-NPM1 wild-type is shown in gray cartoon, Fbw7γ* is shown as a ribbon colored from blue
(simulation start time) to red (simulation end). (d) Same as in c for the interaction between the peptide and the triple D36A-E39A-E93A
mutant. (e) Same as in c for the interaction between the peptide and the quadruple D36A-E39A-E93A-E121 mutant. (f) Same as in c for the
interaction between the peptide and the quintuple D36A-D37A-E39A-E93A-E121 mutant.
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Molecular dynamics simulations
To gain further insights into the structural requirements for
binding, we performed extended molecular dynamics (MD)
simulations on the model structure for the complex between
Fbw7γ* and Nter-NPM1. Given their increasing effect on the
dissociation constant of the complex, we simulated also the
complexes formed by Fbw7γ* with the D36A-E39A-E93A triple
mutant, the D36A-E39A-E93A-E121A quadruple mutant and the
D36A-E37A-E39A-E93A-E121A quintuple mutant. Total simulation
time for all systems was 150 ns. We firstly determined the
convergence and stability of the MD trajectories, in order to
ascertain the validity of conformational sampling in all simulated
systems. To this end, the root mean square deviations (RMSD) of
Cα coordinates of wild type and mutants Nter-NPM1 were
calculated as a function of simulation time (Figure 5a). This
analysis confirmed that the trajectories reached a plateau of the
RMSD, a regime compatible with the conformational drift of a
folded structure and that the simulation time was sufficient to
equilibrate the protein dynamics.
This enabled us to investigate the nature of the Nter-NPM1-

Fbw7γ* interaction by analyzing the relative conformational drift
of Fbw7γ* with respect to the Nter-NPM1 and mutants structures.
Figure 5b shows the averaged RMSD per peptide residue, as
calculated for Cα atoms, for all simulated systems. This analysis
suggests that the Fbw7γ* peptide is stabilized in the binding
surface of wild-type Nter-NPM1 through interactions involving
mainly its N-terminal residues 1–6, which keep a position similar to
the starting structure throughout the whole simulation. This is also
represented in Figure 5c, showing snapshots of the Nter-NPM1-
Fbw7γ* simulation, with the conformation adopted by the peptide
at different times from the beginning (blue) to the end (red) of the
simulation. Differently from the N-terminal end, the C-terminal
region of the peptide, which protrudes inside the central cavity of
the Nter-NPM1 pentamer, populates several conformations along
the simulation time (Figure 5c). Overall, the interaction of wild-
type Nter-NPM1 with Fbw7γ* has the highest RMSD values as
compared with the mutants (Figure 5b). It appears that no single
ion pair is absolutely required for the interaction because adjacent
negative residues can replace the loss of a contact. We speculate
that such binding mode allows the stabilization of the peptide
into the cleft without a significant entropy loss, since many energy
minima can be efficiently explored by the peptide (Figure 5c). This
also explains why single and double NPM1 mutants show only a
weak decrease of the binding affinity for Fbw7γ*.
The analysis of the RMSD over peptide length for the triple,

quadruple and quintuple mutants suggest that in all mutants the
positions explored by the peptide are less variable as compared
with wild type, as shown in Figure 5b which represents a measure
of the average displacement of each peptide Cα atom with
respect to its starting position. Indeed, snapshots of the
simulations at different times indicate that the peptide docks
into the binding surface of the mutants maintaining an overall less
variable conformation along the simulation time (Figures 5d–f).
This observation can be rationalized by taking into account the
hydrophobic interactions played by the newly introduced alanine
residues in the mutants, which are favored and replace many of
the electrostatic interactions previously observed for the wild-type
protein.
Overall we hypothesize that while Fbw7γ* is still able to bind all

NPM1 mutants, the sequential loss of negative charges may be
associated with a significant entropy loss upon binding and a
progressively decreased affinity.

DISCUSSION
In this work we investigated the structural basis of NPM1 protein–
protein associations. We started from the hypothesis that NPM1 is

a ‘nucleolar hub’ protein because it recognizes the NoLS of
different protein partners. In most proteins, the NoLS consists of a
linear stretch of aminoacids, within a natively disordered region,
that is rich in clustered arginines and lysines. Even though a clear
sequence motif cannot be envisaged, such accumulation of
positive charges within few residues is uncommon in proteins and
may be searched for by specific algorithms. We employed one
such algorithm to spot putative NoLS in representative proteins
that are known to interact with NPM1 and to be nucleolar. Then,
we showed that all these epitopes from different proteins were
effectively recognized by Nter-NPM1.
A deeper analysis of the interaction highlighted additional

concepts. First, we showed that at least five negatively charged
residues of Nter-NPM1 contact the peptides. Then, by mutating
them alone and in combinations, we could argue against the
existence of specific hot-spots. Rather, we observed a substantial
stability of the complex when negative charges where replaced
alone or in couples, and appreciated gradually increasing
dissociation constants when three to five residues where mutated
at once. Molecular dynamics simulations provided a plausible
mechanism to interpret these observations and suggested that
the absence of hot-spots is the consequence of the fact that the
loss of one interaction may be compensated by the emergence of
a new one. This is possible because the peptide does not stably
populate a single conformation but moves rather freely within an
extended binding surface provided by Nter-NPM1. Therefore the
loss of a single or a couple of ion-pairs that would destabilize one
conformation may be compensated by the adoption of an
alternative one by the peptide.
Such a model may also explain the amazing versatility of Nter-

NPM1 in binding epitopes from a plethora of other proteins. The
peptides from Fbw7γ, TAT and CENP-W that we identified here, as
well as several other peptides studied by others,3,29,30 are all
positively charged but differ in residue composition, in the
number of charged residues and in their position along the
sequence. How can a single protein recognize them all with similar
affinities? The model we propose implies that all peptides will find,
within the large negatively charged surface provided by the NPM1
pentamer, a multitude of binding poses and will populate those
that are more convenient to their particular distribution of positive
charges. We speculate that such mechanism is at the heart of
NPM1 behavior as a nucleolar hub protein.
But how NPM1 is itself enriched in nucleoli? Previous research

from our and other laboratories has clarified this issue. The NPM1
nucleolar localization signal is unique and consists of W288 and
W290 residues near the C terminus of the protein. These
tryptophans take part to the hydrophobic core of the C-terminal
three-helix bundle domain and their substitution with other
residues leads to the unfolding of the C-terminal domain.31–34 An
unfolded C-terminal domain is in turn unable to interact with
nucleic acids, most prominently G-quadruplex regions at riboso-
mal DNA, resulting in detachment from nucleoli.35–37 Therefore,
the C-terminal domain of NPM1 keeps it at nucleoli while the
N-terminal domain sequesters its binding partners in the same
organelle. When NPM1 moves from nucleoli, because of post-
translational modifications or mutations, the NPM1 protein
partners will be equally displaced, because of their interaction
with the N-terminal domain.
This is ultimately what happens in AML with NPM1 gene

mutations. Mutations cause the unfolding of the C-terminal
domain and consequent loss of affinity for nucleoli. Furthermore,
since a new NES appears in the mutated protein, this is aberrantly
translocated in the cytosol, carrying with itself protein partners like
Fbw7γ and p14ARF, which will be there degraded.21,24 Moreover,
the presence in the cytosol of mutated NPM1 with a functional
N-terminal domain, will result in the establishment of additional
protein–protein interactions. For instance, cytosolic NPM1 binds
and inhibits caspases 6 and 838 and the PTEN deubiquitinating
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enzyme HAUSP, resulting in PTEN cytoplasmic polyubiquitinilation
and degradation.39 Thus a third important tumor suppressor is
also deregulated by the presence of NPM1 in the cytosol.
AML with NPM1 mutation is currently treated with the

administration of several cycles of an anthracycline (daunorubicin,
doxorubicin or others) plus cytarabine.40 Patients carrying NPM1
mutation without the concomitant FLT3-ITD alteration have good
prognosis while, for the latter, chemotherapy is less effective.
However, relapse is frequent and the toxicity of anthracyclines
prevents many patients from its prolonged use. Importantly,
NPM1 mutations are always retained at relapse and this led to the
generally accepted concept that NPM1 should be specifically
targeted in this kind of leukemia.41

Based on the experimental observations we outlined above, we
have recently suggested that an effective strategy to specifically
target AML with NPM1mutations would be that of interfering with
NPM1 protein–protein interactions.16 Here, we have characterized
the extended surface of Nter-NPM1 involved in protein binding
and thus provided a structural framework to search for small
molecules and/or peptidomimetics targeting this surface. Future
work will be directed at testing these concepts in cellular models
of AML with NPM1 mutations.

MATERIALS AND METHODS
NoLS identification
To identify NoLSs in the proteins of interests to this work we employed the
method described by Scott et al.20 and implemented in the NoD web
server (http://www.compbio.dundee.ac.uk/www-nod/). Briefly, the NoD
algorithm uses an artificial neural network trained on a large set of NoLs
experimentally evaluated, to analyze a sequence in search of local
enrichments of positively charged residues. The sequence of a protein is
scanned in windows of 13 residues with slippage of one amino acid for
each consecutive window and at each window is assigned a score, which
depends on the number of positive charges. When the score is greater
than 0.8, the relative sequence is identified as a predicted NoLs.

Protein constructs
The Nter-NPM1 (residues 16-123) coding sequence was obtained through
gene synthesis (GeneArt, Regensburg, Germany) and cloned into the
expression vector pET28+(a) (Novagen, San Diego, CA, USA) using NdeI
and BamHI restriction enzymes.
Nter-NPM1 mutants were obtained by site-directed mutagenesis using

the Quickchange II Lightning Site-Directed Mutagenesis kit (Stratagene, La
Jolla, CA, USA), following manufacturer’s instructions. Oligonucleotides
used for PCR were obtained from Primm Biotech (Milan, Italy). Forward
oligonucleotides used are reported in Supplementary Table 2.

Protein expression and purification
Escherichia coli cells, BL21(DE3) (Biolabs, Ipswich, MA, USA), transformed with
the expression vectors were grown to A600 ~0.5 in LB medium supplemented
with kanamycin at 37 °C. Expression was induced by addition of 1 mM

isopropyl-1-thio-β-D-galactopyranoside (IPTG) and cells were further grown at
20 °C for 16h. Cells were collected, resuspended in lysis buffer (Buffer A:
20 mM Hepes, pH 7.0, 20 mM imidazole), plus 5 mM MgCl2, 2 μg/ml DNAse
(Roche, Basel, Switzerland), Protease Inhibitor Cocktail Tablet (Roche) and
sonicated. Nucleic acids were digested for 30’ at 37 °C with DNAse I. Proteins
were purified by affinity chromatography (HisTrap FF, GE Healthcare, USA)
using a linear gradient of buffer A plus imidazole (from 20 mM to 1M). Further
purification involved anion exchange chromatography (Q-Sepharose Fast
Flow, GE Healthcare, USA) eluted with NaCl gradient. Fractions containing the
protein, as showed by SDS–PAGE, were collected and concentrated using
Amicon Ultra-15 Centricons with a 3K cut-off (Merck Millipore, Darmstadt,
Germany). The protein solutions were buffer exchanged with Hepes 20 mM,
pH 7.0 and stored at −20 °C. The Cter-NPM1 protein construct (residues 225-
294) was expressed and purified as previously described.36

Equilibrium binding experiments
All experiments were performed at 25 °C in sodium phosphate buffer
20 mM pH 7.2, or in sodium phosphate buffer 20 mM plus 100 mM NaCl pH

7.2 (which sets ionic strength to 150 mM), using a FluoroMax-4 spectro-
fluorometer (Jobin Yvon, Edison, NJ, USA), equipped with a water bath
apparatus. Fbw7γ and CENP-W peptides, functionalized with a dansyl (5-
dimetilamminonaftalen-1-sulphonyl) group at their N terminus, were
purchased from JPT (Germany). Tat peptide was synthesized employing
the solid phase method following standard Fmoc strategies and labeled
with dansyl fluorophore at its N terminus. Crude product was purified by
RP-HPLC applying a linear gradient of 0.1% TFA CH3CN in 0.1% TFA water
from 5% to 65% over 12 min using a semi-preparative 2.2× 5 cm C18
column at a flow rate of 20 ml/min. Purity and identity were confirmed by
LC–MS analysis.
Titration experiments were conducted with an excitation wavelength of

330 nm while the fluorescence emission spectra were collected in the
range between 350 and 650 nm. Titrations were performed at constant
peptide concentration (5 μM) and varying protein concentrations (from 0 to
200/400 μM). Titrations were performed in triplicate and data, analyzed
with the Graphpad Prism software (https://www.graphpad.com/scientific-
software/prism/), were reported as dissociation constant ± s.d.
Equilibrium binding curves were fitted to the standard quadratic

equation:

F ¼
A½ #0 þ KD þ n
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where F is the observed fluorescence signal, n and [A]0 are the total
concentration of non-varied and varied species, respectively, and KD is the
equilibrium dissociation constant. B and C are constants taking into
account the total fluorescence change and fluorescence at [A]0 = 0,
respectively, and k is a term describing the slope of the curve at high
protein concentration42. Whenever possible, under pseudo first-order
conditions, the equation 1 was simplified to:

F ¼ A½ #0
A½ #0 þ KD

ð2Þ

Molecular docking
In order to predict the binding mode of the peptide Nter-PFCRRRMKRKLDH-
Cter to NPM1, tripeptides covering the whole sequence were exhaustively
generated by an ad-hoc Python script.43 The obtained peptides were then
energy minimized by using the Molecular Operating Environment 2009.10
(http://www.chemcomp.com/MOE-Molecular_Operating_Environment.
htm). Steepest descents steps of energy minimization were performed
until the root mean square (RMS) gradient fell below the 0.005 Å default
threshold. The Amber99 force field, a distance-dependent dielectric
constant and a cut-off distance of 40 Å were used during each simulation.
Molecular docking of the tripeptides was carried out by means of

Molegro Virtual Docker (MVD) software (®CLCbio).44 Flexible torsions were
automatically detected by MVD, and manually checked for consistency.
The structure of NPM1 (PDB: 2P1B) was prepared by automatically
assigning bond orders and hybridization, and adding explicit hydrogens,
charges and Tripos atom types. Missing heavy atoms were fixed by
modeling them, using Modeler v.9.845 and PyMod.46 A search space of 20Å
radius, centered on the central cavity of the pentamer (∼4385 Å3) was used
for docking. Cavity detection was carried out by MVD. For each tripeptide,
ten runs were defined. Similar poses (RMSD o1.2 Å) for each tripeptide
were clustered, and the best scoring one was taken as representative.
Other docking parameters were fixed at their default values. Thereafter,
hexamer peptide sequences and their structures were generated and
docked in a second round, by considering the poses of the tripeptides
identified from the first round of docking runs. To this end, the most
energetically favorable poses of the tripeptides were taken as template
groups for template-based dockings. Finally, the 100 top scoring hexamer
peptides poses were taken as template groups for template-based docking
of the whole peptide fragment, using the same above-described approach.
The obtained top scoring complex was subjected to a final energy
minimization, using conjugated gradients until the maximum derivative
was less than 0.0004 kJ mol− 1Å− 1.

Molecular dynamics simulations
MD simulations of complexes were performed starting from the final
refined model obtained in docking calculations. Mutations were intro-
duced with the Pymol software (www.pymol.org).
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Simulation setup. Calculations were performed using GROMACS 5.0.x
(www.gromacs.org) suite with the Amber99 force field. Initial structures
were immersed in a triclinic simulation box, solvated with SPC water
molecules.47 Ionic strength was adjusted to set the total charge of
simulation box to 0. All simulations were performed in the NVT ensemble
at constant volume and constant temperature (300 K), periodic boundary
conditions were applied. Initial velocities were taken from the Maxwell-
Boltzmann distribution at 300 K. Long-range electrostatic interactions were
calculated using the particle mesh Ewald method48 with a 1.2 nm cut-off
for the real space calculation. A 1.2 nm cut-off was used to estimate Van
der Waals interactions. Pair list was updated every 10 steps. The LINCS
algorithm49 was used to constrain bond lengths; the time step for
integration was 2 fs.

Simulation protocol. Intial structures for all simulations were subjected to
a steepest descent minimizzation cycle to reduce steric hindrance. Then a
restrained MD step-wise procedure was applied to gradually release the
restraints and allow the system to equilibrate at the simulated temperature
of 300 K: applied restrained were 1000, 500 and 250 kJ/mol. Total
simulation time was typically 150 ns. Coordinates were saved every 5 ps.
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