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 

Abstract—This paper addresses the detection of surface slow 

moving targets by means of an array passive radar based on low-

EIRP satellite illuminators of opportunity. Particularly, the use of 

the receiving array of K elements is considered to provide 

increased detection capability for targets with limited radar cross 

section, together with the capability to estimate the target 

direction-of-arrival (DOA). A full processing scheme is proposed 

to exploit together both the long integration times and the multiple 

receiving elements. This includes a coherent space-time 

integration of the signal received at the K antenna elements during 

short frames, followed by an incoherent frame to frame 

integration. 

The proposed scheme is based on the Fractional Fourier 

Transform (FrFT) that is shown to map the signals into a natural 

rotated frequency-angle plane, where we can easily compensate 

the target Doppler frequency shifts available at the different 

antenna elements and temporal frames. Its effectiveness is shown 

by application to different synthetic scenarios, where the target 

detection is only achievable when all the possible integration gain 

is capitalized. 

 
Index Terms—passive bistatic radar, moving target detection, 

DOA estimation, Fractional Fourier Transform, satellite-based 

passive radar 

 

I. INTRODUCTION 

HE last two decades have seen a significant growth of 

interest in passive radar sensors for surveillance 

applications. Passive radar sensors do not emit any e.m. 

radiation; they capitalize on the signals already existing in the 

environment, often referred to as signals of opportunity. The 

absence of the transmitting section makes them lighter than 

conventional radar systems and totally “green” since they do 

not contribute to the e.m. environmental pollution, hence they 

can be deployed in places where heavy active radar cannot be 

installed or undesired for their harmful radiations. Moreover, 

the absence of transmission provides intrinsic covert operation, 

as well anti-jamming and anti-stealth capabilities, [1]. 

 The large majority of the developed passive radar 

technologies considers terrestrial transmitters as signal sources. 

The large number of RF emissions from terrestrial illuminators 

results in a wide range of signal types, which in many cases, 

e.g. the FM radio, can have relatively high transmitter power 

 
 

[2], as well as the possibility to exploit different channels 

emitted by the same broadcast station [3]. The exploitation of 

television broadcast towers has become quite effective since a 

significant fraction of the world has switched to digital 

transmissions, with applications both to air and maritime traffic 

surveillance, [4], [5]. Also mobile phone base stations, as well 

as Wi-Fi, WiMAX/LTE, and all OFDM modulated 

transmissions have been investigated toward new fields of 

application, varying from the surveillance of local areas up to 

the monitoring of people in indoor environment [6]-[11]. 

Critical factors affecting terrestrial-based passive radar are 

multipath and shadowing effects, as well as the reliance on 

potentially vulnerable proximate infrastructure. A very 

promising option is relying on satellite illuminators, [12], [13]. 

Unlike terrestrial sources, satellite signals are not blocked by 

mountains and are less sensitive to multipath issues. Some 

theoretical and experimental studies have been conducted in the 

past exploiting communication and navigation satellites [12]-

[14], with particular regard to the imaging of stationary scenes 

[15]-[20]. Wide accessibility on the global scale as well as the 

launching of new satellite fleets (such as the European 

navigation satellite system Galileo) are stimulating the research 

toward new generation of passive radar sensors [21]-[23]. 

Maybe one of the frameworks that more enjoys the 

exploitation of satellite sources is the maritime surveillance. 

Satellite-based illuminators such as DVB-S, Inmarsat and 

GNSS constellations have the potential to provide a persistent 

monitoring even of economic ocean zones and adjacent waters. 

Continental coverage is assured by geosynchronous satellites 

transmitting in DVB-S, while GNSS signals are available 

everywhere over the Earth’s surface: even at the poles. 

Therefore, a ship navigating near the coastline or in open sea 

can be reached by the radio waves emitted by non-cooperative 

satellite illuminators and the reflections can be intercepted by 

light receivers carried by platforms mounted on the coast or on 

moored buoys. 

In order to sort the reflected signals into the capability to 

detect a target, sophisticated signal processing techniques have 

to be developed, able to deal with the specific issues of the 

considered scenario and application. One of the biggest 

challenges when satellite sources are employed as illuminators 

of opportunity is the very low level of electromagnetic field on 

Passive Radar Array with Low-Power Satellite 

Illuminators Based on Fractional Fourier 

Transform  

Zhongyu Li, Fabrizio Santi, Debora Pastina, Pierfrancesco Lombardo 

T 



 

 

 

the Earth’s surface, thus requiring very long integration times 

to improve the signal level by means of integration. Passive 

radar relying on terrestrial transmitters usually use long 

coherent processing intervals (CPI) in the order of hundreds of 

milliseconds to detect aerial and naval targets. However, the 

exploitation of satellite signals of opportunity makes necessary 

to enlarge the dwell time on target up to several tens of seconds 

to strengthen the reflected signal energy sufficiently for the 

target detection. As example, in [14] integration times longer 

than 30 s are shown to be needed to achieve a signal-to-noise 

ratio (SNR) of about 12 dB for a target with radar cross section 

of 10 dB 40 km away from the receiver, referring to a 

geostationary satellite of the Eutelsat fleet. When lower EIRP 

(Equivalent Isotropic Radiated Power) sources, such as GNSS 

[24], are considered, the moving target detection task can be 

even more challenging; while big targets can be detected by 

exploiting integration times in the order of few seconds, as in 

[25] and [26] referred to the Galileo fleet, in [27] and [28] 

integration times of approximately 1 min are shown to be 

needed for the detection of a very small ship target (about 10 m 

length) less than 1 km away from the receiver exploiting GNSS 

transmitters of the GLONASS fleet. 

  The classical approach for moving target detection is the 

Doppler filtering, which in most of passive radar systems 

consists in detecting a peak in the relative time delay-Doppler 

plane obtained over short dwell times. However, when the 

integration time increases sensibly to detect targets with lower 

radar cross section, the Doppler frequency is no longer constant 

during the processing interval and exhibits time-varying 

characteristics. This makes the classical Doppler filtering 

techniques unsuitable, since the signals move through the 

Doppler filters. Multiple tools that have been developed in the 

past to deal with signals of this type belong to the category of 

the time-frequency distributions, such as the Wigner-Ville 

Distribution [29]. To develop an appropriate technique to deal 

with such long integration times we resort to a generalization of 

the Fourier Transform (FT), known as Fractional Fourier 

Transform (FrFT) [30]. While the FT decomposes the signals 

in terms of a set of orthogonal sinusoids, the FrFT decomposes 

the signals in terms of a basis formed by chirped waveforms; 

thus it can highly concentrate the energy distribution of linear 

frequency modulated (LFM) signals into a single point. Over 

the last years, the radar community investigated its utilization 

for different purposes, such as moving target detection, imaging 

and waveform generation, [31]-[35].  

In the specific context of moving target detection based on 

long integration times, the Doppler frequency variation with 

time can be generally approximated with a linear term, by 

arresting the standard Taylor expansion series to the first order. 

Therefore, a frequency modulated LFM signal is obtained, 

namely a chirped waveform, and the FrFT is especially 

appropriate to concentrate its energy distribution into a single 

position. In previous research [36], it has been shown how the 

FrFT can be successfully employed in satellite-based passive 

radar sensors for the detection of moving targets with long 

integration times. Working in conjunction with the Keystone 

reformatting, the method in [36] exploits the kernel of the 

fractional transform to drive a hybrid coherent/non-coherent 

integration of the signal energy available inside a long stream 

of data. Such a technique is able to detect targets that cannot be 

identified with conventional (i.e., short integration time) 

detection techniques in the space-based system under 

consideration. However, despite the increased performance 

obtained by exploiting the long integration time, only targets 

with sufficiently high radar cross section can be detected. 

Moreover, only a very limited localization accuracy of the 

detected targets is available. Indeed, the technique allows only 

retrieving the bistatic ranges; thus, it enables positioning them 

on the locus of points given by the intersection of the bistatic 

ellipses with the area illuminated by the receiving antenna. 

In the present paper, we investigate the possibility to improve 

the achievable performance by exploiting an array of receiving 

antennas that collect multiple target-scattered signals. The array 

configuration presents several interesting advantages, such as 

(i) the higher SNR level achievable by exploiting coherently the 

multiple receiving channels; (ii) the capability to measure the 

target direction-of-arrival (DOA), thus increasing the 

localization accuracy of the system. While the extension from a 

single to multiple receiving elements is conceptually simple, the 

overall processing technique that is required to exploit the array 

benefits is not trivial. Specifically, the proposed processing 

technique requires essentially a search in a 3D parameter space, 

in lieu of the 2D search presented in [36], the target DOA being 

the additional search parameter. Therefore, the highest 

integration gain is obtained for the actual target DOA, which 

also provides the DOA estimate.  

Among the key points of the new processing technique, we 

need to mention that the FrFT domain still appears as a natural 

domain to perform the target coherent integration, whereas it is 

apparent that the signals received at different antenna elements 

provide a peak in the FrFT plane in a different position. In 

consequence, the spatial integration of the echoes received at 

different antenna elements requires not only a phase 

compensation, but also an appropriate re-alignment of the FrFT 

maps. In turn, this requires to be effectively implemented, so 

that the different possible approaches to apply the re-alignment 

are considered. 

 The remainder of the paper is organized as follows. The 

signal model for the receiving array is introduced in Section II, 

together with a brief description of the single–receiver 

processing scheme. This also includes a brief recall of the FrFT. 

The proposed target detection and DOA estimation technique is 

presented in Section III, where the required shift and phase 

compensations are identified. The effectiveness of the 

developed technique is widely tested and demonstrated in 

Section IV for different study cases. Finally, in Section V we 

draw our conclusions. 

II. SIGNAL MODEL AND SINGLE RECEIVER PROCESSING 

A sketch of the reference scenario for the satellite-based 

passive radar considered in this paper is reported in Fig. 1 with 

reference to a maritime surveillance application. In this case, TX 

is the satellite opportunistic transmitter, RX is the ground based 

stationary receiving array and the target is a vessel with speed 



 

 

 

𝑉 and direction 𝜃 (measured with respect to the RX line-of-

sight, LOS). Three distances are involved in this case: (i) the 

baseline, Rb, i.e. the distance between the transmitter and the 

center of the receiving array, (ii) the distance Rt between TX and 

target, and (iii) the distance Rr between the target and the 

receiving array. It is assumed that both transmitter and target 

are in motion, so that all three distances change with time.  

The passive radar consists of a receiving only device 

consisting of a linear array of K equi-spaced receiving 

surveillance antennas acquiring the reflected signal from the 

area where targets are looked for, plus a reference antenna 

steered toward the TX to acquire a copy of the transmitted 

signal. This is used as the reference signal for the matched filter. 

 The top-view and the three-dimensional view of the system 

geometry are sketched in Fig. 2. We assume that the array 

receiver is centred in the origin of the (𝑂, 𝑥, 𝑦, 𝑧) reference 

system, where also the reference antenna is located. A satellite 

is assumed flying over the surveyed area with instantaneous 

coordinates [𝑥𝑇 , 𝑦𝑇  , 𝑧𝑇], which identify the satellite aspect 

angle 𝜃𝑇 (measured with respect to the RX LOS) and elevation 

angle 𝜓𝑇 , both possibly changing with time. The  array line-of-

sight is along the 𝑥 axis (identified by the unit vector 𝒙), 

whereas the array elements are aligned along the 𝑦 axis 

(direction of the unit vector 𝒚̂), so that the position of the 𝑘th 

receiving element, with 𝑘 = -K/2,…,K/2-1 and an even value of 

K for simplicity, is given by (0,yk,0) where yk = [𝑘𝑑 + 𝑑 2⁄ ], 

being 𝑑 the inter-element distance. As apparent, the array inter-

element distance 𝑑 must be set imposing that grating lobes will 

occur outside the antenna beamwidth Θ [37]. 

We assume a target, such as a ship, within the antenna 

footprint for the entire dwell time 𝑇𝑎. We further assume that 

the array and the target are coplanar. Therefore, the target 

instantaneous position can be expressed as 𝒑(𝜂) = 𝒑0 + 𝒗 ∙

𝜂 = [𝑥0, 𝑦0] + [𝑣𝑥 , 𝑣𝑦] ∙ 𝜂, where 𝜂 ∈ [−
𝑇𝑎

2
,
𝑇𝑎

2
] is the slow-

time. 𝜃0 = tan
−1 {

𝒑0·𝒚̂

𝒑0·𝒙̂
} denotes the target DOA at the reference 

time, which will be objective of the estimation technique 

proposed in this paper. 

After range compression, the data received by the 𝑘th 

element of the array in the range&slow-time (𝑟, 𝜂) domain can 

be modelled as follows 

𝑠𝑘(𝑟, 𝜂) = 𝜎𝜂𝑟𝑒𝑐𝑡 [
𝜂

𝑇𝑎
] ∙ exp {−𝑗

2𝜋

𝜆
𝑅𝑘(𝜂)} ∙ 𝜌[𝑟 − 𝑅𝑘(𝜂)]     (1) 

In the above equation, 𝜌(∙) is the cross-correlation function 

between reflected and reference signal, which specific shape 

depends on the particular satellite transmitter. 𝜆 is the carrier 

wavelength and 𝜎𝜂 is the complex reflectivity of the target 

possibly changing with slow-time. 𝑅𝑘(𝜂) is the differential 

bistatic range measured by the 𝑘th element that can be 

expressed as 

𝑅𝑘(𝜂) = 𝑅𝑇𝑥(𝜂) + 𝑅𝑅𝑥𝑘(𝜂) − 𝑅𝑏(𝜂)          (2) 

where 𝑅𝑇𝑥 and 𝑅𝑅𝑥𝑘 are the transmitter to target and target to 

𝑘th element distances, respectively, and 𝑅𝑏 is the transmitter to 

array baseline; because of the target motion, as well as possible 

transmitter motion, such distances change with time. By 

expanding (2) into second order Taylor series, we get 

𝑅𝑘(𝜂) ≅ 𝑅𝑘
0 − 𝜆𝑓𝑘̅

𝑑𝑐𝜂 − 𝜆𝑓𝑘̅
𝑑𝑟 𝜂

2

2
                  (3) 

where 𝑅𝑘
0 is the bistatic range at the reference instant and 𝑓𝑘̅

𝑑𝑐 

and 𝑓𝑘̅
𝑑𝑟 are the Doppler Centroid (DC) and the Doppler 

Frequency Rate (DFR) of the target. Due to the large distance 

between transmitter and both target and receiver array, we can 

assume that all the elements of the array measure the same DFR, 

i.e. 𝑓𝑘̅
𝑑𝑟 ≅ 𝑓0̅

𝑑𝑟 = 𝑓̅𝑑𝑟. Therefore, the received signal expression 

in (1) can be rewritten as 

𝑠𝑘(𝑟, 𝜂) = 𝜎𝜂𝑟𝑒𝑐𝑡 [
𝜂

𝑇𝑎
] · 

Fig. 1.  Reference surveillance scenario. 

Fig. 2.  Top-view (a) and three-dimensional view (b) of the system geometry. 

(a) 

(b) 



 

 

 

exp {−𝑗
2𝜋

𝜆
(𝑅𝑘

0 − 𝜆𝑓𝑘̅
𝑑𝑐𝜂 − 𝜆𝑓̅𝑑𝑟

𝜂2

2
)} ·               (4) 

𝜌 [𝑟 − (𝑅𝑘
0 − 𝜆𝑓𝑘̅

𝑑𝑐𝜂 − 𝜆𝑓̅𝑑𝑟
𝜂2

2
)]                            

Due to the limited EIRP emitted by the satellites, which only 

rely on solar panels as a source of energy, and to the long 

distance between transmitter and target, the level of the signal 

power scattered by the target and collected by the passive radar 

receiving elements is extremely low. Therefore, in order to 

detect the target, it is required to integrate the signals collected 

over a long integration time and at all receiving elements. From 

the signal model in (4) it is clear that both range and Doppler 

positions of the target vary during the dwell time and their 

values are different for different receiving antenna elements. 

Therefore, proper strategies need to be identified to compensate 

both range and Doppler frequency migrations before being able 

to perform the integration of the target echoes over the long 

integration time and different antenna elements. In addition, the 

integration strategy must take into account the target scattering 

behaviour that typically shows a temporal coherency limited to 

time intervals much shorter than the desired integration times. 

The case of a single receiving antenna element was already 

analysed by the authors in [36], where a complete processing 

scheme has been devised and shown to be effective for the 

target echo signal integration. The block diagram of the 

integration technique is reported in Fig. 3. First, range 

compression is applied to the signal received at the surveillance 

channel. In general, this is implemented by subdividing the 

continuous received signal into small batches of T seconds 

each, and cross-correlating each batch with the corresponding 

batch of the signal received at the reference channel. T is 

selected to be small enough that phase rotation inside the batch 

is negligible (typical values for T are of the order of 10-3 s). This 

provides a sequence of range-compressed signal batches with 

temporal separation T, which is equivalent to the range-

compressed data provided by a pulsed radar system operating 

with an equivalent PRF=1/T. In the specific case of exploitation 

of GNSS, the reference used for range compression should be a 

noise free replica of the reference signal regenerated according 

to the parameters of the direct signal (i.e. time-delay, Doppler 

frequency, phase and, if included, navigation message) 

retrieved by means of a proper synchronization technique, as 

described in [26]. Such procedure assures the direct 

compensation of any relative motion between the transmitting 

satellite and the receiver. 

The processing scheme in Fig. 3 operates on these range-

compressed data. It starts with a pre-processing stage aiming at 

removing the range cell migration (RCM) over the entire dwell 

time. Afterwards, the same processing algorithm can applied to 

each range resolution cell either sequentially or in parallel. The 

RCM corrected data are segmented into temporal frames short 

enough that the target echo can be considered coherent inside 

each one of them, namely it shows no phase and amplitude 

fluctuations. To perform a coherent integration inside each 

temporal frame (𝑇𝐶𝑃𝐼), the Fractional Fourier Transform is 

applied to the individual range resolution cell, which maps the 

signal portion into the rotated frequency-angle plane. This is 

expected to provide a peak in the rotated frequency-angle plane 

location corresponding to the target Doppler frequency and 

slope; however, due to the low signal power level, this peak is 

typically not high enough to exceed the noise level in the map. 

To increase the peak level, an incoherent integration of the 

rotated frequency-angle maps obtained at the individual 

temporal frames is performed. However, since the target motion 

between temporal frames causes a shift of the target peak in this 

plane, a frequency alignment is required before the incoherent 

integration. 

As apparent, two specific transformations are involved in the 

processing scheme presented in [36]. The Keystone Transform 

(KT) is used in the pre-processing stage to reformat the data, 

thus removing the linear coupling between range and frequency 

domain [38], i.e. it removes the range walk. The Fractional 

Fourier Transform is used inside the single frame processing 

stage to perform the coherent integration of the signal inside the 

individual temporal frame. While the KT is now a well-

established tool to deal with the range walk and it has no direct 

impact on the integration of the echoes received at the multiple 

receiving elements, the FrFT has a key role for the array signal 

integration technique that we propose inside this manuscript. 

Therefore, it is useful to give first a brief overview of this 

transform for moving target detection purposes. 

The echo azimuthal signals in (4) are chirp signals whose 

parameters (DC and DFR) depend on the target motion and, in 

the case of the present paper, also on the antenna index. As the 

chirp signal are characterized by a Doppler frequency that 

Fig. 3.  Single-receiver integration block diagram. 



 

 

 

changes linearly with time, conventional coherent integration 

techniques relying on the Doppler filter banks (i.e., the FFT) 

cannot work properly, since the chirp signals thus migrate 

through resolution filters as a function of time. To perform a 

coherent integration of the chirp signals, it is necessary to 

estimate their chirp rate (DFR) and to consider this for the phase 

compensation. While many time-frequency distributions have 

been considered in the past, which can be exploited to estimate 

the chirp rate, the FrFT has the nice property to be a linear 

transformation. For this reason, it can be regarded as a 

generalization of the ordinary Fourier transform that includes a 

rotation over some arbitrary angle 𝛼 in the time-frequency 

plane.  

For ease of future reference, we recall that the FrFT of the 

generic signal 𝑠(𝜂) is obtained as, [30]: 

𝑠𝛼(𝑢) = ∫ 𝑠(𝜂) ∙ 𝐵𝛼(𝜂, 𝑢)𝑑𝜂
+∞

−∞
        (5) 

where 𝑢 is the axis making an angle 𝛼 with the time axis and 

𝐵𝛼(𝜂, 𝑢) is the transformation kernel defined as (6) shown 

bottom of this page. 

Then, by Fourier transforming with respect to 𝑢, the signal is 

represented in the rotated frequency and rotation angle (𝑓𝛼 , 𝛼) 
domain: 

𝑆(𝑓𝛼 , 𝛼) = ∫ 𝑠𝛼(𝑢) ∙ 𝑒
−𝑗2𝜋𝑓𝛼𝑢𝑑𝑢

+∞

−∞
        (7) 

The well-known projection of a chirp signal onto the 

fractional Fourier domain, [31], is depicted in Fig. 4. The result 

of this transformation applied to a chirp signal with DC equal 

to 𝑓̅𝑑𝑐 and DFR equal to 𝑓̅𝑑𝑟 is to concentrate the chirp energy 

in a specific point (𝑓𝛼̅ , 𝛼̅) of the FrFT plane, being 𝛼̅ the 

optimum rotation angle and 𝑓𝛼̅  the projected frequency 

centroid, which are characterized by the relationships: 

{
𝑓̅𝑑𝑐 =

𝑓𝛼̅

cos 𝛼̅

𝑓̅𝑑𝑟 = tan 𝛼̅ ∙
𝑃𝑅𝐹

𝑇𝐶𝑃𝐼

              (8) 

where 𝑃𝑅𝐹 is the equivalent pulse repetition frequency of the 

system and 𝑇𝐶𝑃𝐼  is the coherent processing interval over which 

the FrFT is computed. 

We notice explicitly that if the signal energy received from 

the target during a single 𝑇𝐶𝑃𝐼  were high enough with respect to 

the disturbance contributions, the peak of the FrFT would be 

clearly visible, which would make easy the estimation of the 

target motion parameters from the peak location, by means of 

(8). Under this assumption, the moving target could be detected 

by revealing the corresponding peak in the (𝑓𝛼 , 𝛼) domain. 

However, the restricted power budget provided by the satellites 

does not provide enough energy during 𝑇𝐶𝑃𝐼 . Typically, this 

applies even when extending 𝑇𝐶𝑃𝐼  up to the maximum target 

coherency time. Therefore, it is necessary to apply incoherent 

integration of multiple temporal frames to increase the global 

integration time, which could be in the order of several tens of 

seconds.  

Due to the chirped characteristic of the overall received 

signal, from temporal frame to temporal frame the DC is 

changing with rate equal to DFR. This means that the peak 

location in the FrFT plane is moving as the temporal frame 

changes. However, its location can be easily predicted in this 

plane, since a peak at (𝑓𝛼 , 𝛼) at the first temporal frame moves 

to (𝑓𝛼 + 𝑛 sin 𝛼  𝑃𝑅𝐹, 𝛼) after 𝑛 temporal frames; moreover, 

the displacement only depends on the initial FrFT coordinates 

and on the temporal frame index, 𝑛. Therefore, the incoherent 

integration can be performed effectively in the FrFT plane, after 

a compensation that does not require knowledge of additional 

parameters.  

The above-summarized processing technique for the single 

surveillance receiver, which is strongly based on this property 

of the FrFT, is the basis for the derivation of the processing 

technique for the passive receiver array that is presented in the 

next section. 

III. ARRAY RECEIVER FRFT-BASED TECHNIQUE 

As anticipated in the introduction, this paper introduces a full 

processing scheme for an array passive radar with K 

surveillance receiving elements (that are complemented with 

the standard reference receiving channel with the antenna 

steered toward the transmitter). The use of an array of K 

receivers, in lieu of the single surveillance receiving channel, 

provides two types of improvement with respect to the single 

surveillance channel case: 

(i) The coherent integration of the target signal returns 

received at the K antenna elements is expected to provide an 

increase of the final SNR by a factor K. Despite this 

improvement is far from unexpected, in our case of interest of 

a low-power satellite transmitter used as source of opportunity 

it might be essential to allow detection of the specific targets of 

interest. For example, using an array of K=10 receivers allows 

         𝐵𝛼(𝜂, 𝑢) =

{
 

 
𝛿(𝜂 − 𝑢) if α is a multiple of 2π

𝛿(𝜂 + 𝑢) if (α + π) is a multiple of 2π

√
1−𝑗 cot𝛼

2𝜋
∙ 𝑒𝑗

𝑢2+𝜂2

2
cot 𝛼 ∙ 𝑒−𝑗𝑢𝜂 csc 𝛼 if α is not a multiple of π

         (6) 

Fig. 4. Projection of a chirp signal onto the FrFT domain. 



 

 

 

the detection of vessels with bistatic cross-section 10 dB lower 

than in the case of the single receiver. 

(ii) The receiving antenna array provides a DOA estimation 

capability, which is not available with the single receiver. This 

is quite essential to provide a target localization that does not 

reduce simply to the locus of points on a bistatic ellipse limited 

by the receiving antenna aperture. Specifically, using K antenna 

receivers, in principle a target resolution in the angle of arrival 

can be obtained up to 1/K of the receiving antenna beam, thus 

allowing separating multiple targets potentially present on the 

same bistatic ellipse. Moreover, a proper estimation can be 

provided for the target DOA with respect to the receivers, with 

an accuracy depending on the SNR. 

We explicitly notice that, due to the long integration times 

required by the satellite-based passive radar, the target DOA 

cannot be estimated by using a rotating antenna beam (as in 

sensors based on relatively short integration times). In fact, a 

staring antenna is essentially required to provide such long 

observation frames. 

As apparent from the model in Section II, moving from a 

single receiver to a receiver array of K elements is not trivial 

for this specific application. In fact, the Taylor expansion of the 

bistatic range in eq. (3) shows that together with the term of 

order zero, also the term of the first order depends on the 

antenna element 𝑘. Therefore, both phase and Doppler 

frequency depend on the considered antenna element 𝑘 [see eq. 

(4)]. This implies that the coherent integration of the target 

signals received at the different antennas is not just obtained by 

a standard addition by a constant phase shift. 

A different way to look at the problem is to consider that 

during the considered long integration times, the target DOA 

with respect to the receivers centre undergoes quite a clear 

change. This time-varying DOA must be appropriately 

compensated while the central DOA is estimated and the 

desired integration is obtained. This requires the derivation of 

the ad-hoc processing technique presented in this paper.  

The proposed technique aims at integrating the signals 

received in order to synthetize the array over a long integration 

time, thus jointly enabling the target detection and the 

estimation of its DOA. In particular, a hybrid coherent/non-

coherent procedure is performed. The former aims at synthetize 

the array over consecutive short time intervals (frames), 

whereas the latter performs an integration over the entire dwell 

time to strengthen the target energy thus counteracting the 

restricted power budget provided by the system under 

consideration. Therefore, two levels of integration can be 

identified: intra-frame, referring to the space-time coherent 

combination of the data of the array at the single frame levels, 

and frame-to-frame, referring to the combination of the data 

over the multiple frames. In the remainder of the section, it will 

be shown how both these integrations are performed in the DC-

DFR domain, or better in the (𝑓𝛼 , 𝛼) domain, i.e. the domain 

obtained by means of the FrFT. In particular, it will be shown 

how the data combination in both the intra-frame and frame-to-

frame domains can be driven by the kernel of this transform. 

The processing can be organized in three macro-steps: pre-

processing, intra-frame space-time coherent processing and 

multi-frame non-coherent processing. The detailed description 

is given as follows: 

A. Pre-processing 

The pre-processing aims at i) removing the RCM over the 

entire dwell time and ii) segmenting the RCM corrected data in 

short time frames for the array processing.  

To deal with the RCM, we observe that in (3) 𝑅𝑘
0 − 𝑅0

0 ≪
𝐾𝑑 ≪ 𝑐/𝐵, being 𝐵 the frequency bandwidth of the received 

satellite signal and 𝑐 the speed of light. Therefore, we can 

assume 𝑅𝑘
0 ≅ 𝑅0

0 = 𝑅0 inside the argument of 𝜌 in (4). 

Moreover, by recalling that typically a reasonably small 

frequency bandwidth 𝐵 is available, we assume that the second 

order terms inside the argument of 𝜌 in (4) (i.e., the range 

curvature) are negligible. In consequence, our signal model can 

be approximated by: 

𝑠𝑘(𝑟, 𝜂) = 𝜎𝜂𝑟𝑒𝑐𝑡 [
𝜂

𝑇𝑎
] ∙  

exp {−𝑗
2𝜋

𝜆
(𝑅𝑘

0 − 𝜆𝑓𝑘̅
𝑑𝑐𝜂 − 𝜆𝑓̅𝑑𝑟

𝜂2

2
)} ∙               (9) 

𝜌[𝑟 − (𝑅0 − 𝜆𝑓𝑘̅
𝑑𝑐𝜂)]  

Using the above approximation, it is apparent that the range 

migration reduces to the linear term. The migration slope 

clearly depends on the antenna element 𝑘, so that the different 

receiving antennas are subject to a different type of migration. 

Keystone reformatting is the natural solution, which removes 

the linear coupling between range and frequency domain [38], 

i.e. it removes the range walk. Using KT, the range walk is 

removed independent of its slope, so that the application of this 

transform solves the problem for all receiving antenna 

elements. Therefore, as for the single channel case, [36], the use 

of the KT provides an effective pre-processing tool. 

Even though additional processing could be exploited to 

remove the range curvature, as mentioned such a residual 

migration is expected to be smaller than one range resolution 

cell and therefore it can be ignored. In practice, this is obtained 

by applying a FT along the fast-time (range) domain to operate 

in the (𝑓𝜏, 𝜂) domain; interpolating to the new slow time 

variable 𝜂̆ such that 𝜂 =
𝑓𝑐

𝑓𝑐+𝑓𝜏
𝜂̆ (being 𝑓𝑐 the carrier frequency) 

and applying an inverse FT to come back in the (𝑟, 𝜂̆) domain, 

where the RCM corrected data can be expressed as: 

𝑠𝑘(𝑟, 𝜂̆) = 𝜎𝜂𝑟𝑒𝑐𝑡 [
𝜂̆

𝑇𝑎
] ∙  

exp {−𝑗
2𝜋

𝜆
(𝑅𝑘

0 − 𝜆𝑓𝑘̅
𝑑𝑐𝜂̆ − 𝜆𝑓̅𝑑𝑟

𝜂̆2

2
)} ∙ 𝜌[𝑟 − 𝑅0]   (10) 

We can observe that the signals in (10) are K slow-time phase 

modulated waveforms that have most of the energy gathered in 

a single range cell for the entire dwell time. We assume that the 

range cell containing the target echo has been selected and 

hereinafter the description is restricted to the azimuth signal 

only. Obviously, the same processing will be applied to each 

one of the range cells composing the surveyed area where a 

target is searched. Moreover, to simplify the notation from this 

point the modified slow time variable 𝜂̆ will be written simply 

as 𝜂. 

As mentioned in Section II, the RCS fluctuation prevents the 



 

 

 

full coherent processing of the long dwell considered. 

Therefore, the data pertaining each element are segmented in N 

consecutive frames of limited duration such that within each 

frame constant reflectivity of the target can be assumed. Let 

𝑇𝐶𝑃𝐼 =
𝑇𝑎

𝑁
 be the duration of the individual frames, the signal 

pertaining to the 𝑘th antenna and the 𝑛th frame (𝑛 =

−
𝑁−1

2
, …

𝑁−1

2
) is given by   

𝑠𝑘,𝑛
𝑎 (𝜂) = 𝜎𝑛𝑟𝑒𝑐𝑡 [

𝜂−𝑛·𝑇𝐶𝑃𝐼

𝑇𝐶𝑃𝐼
] · exp {−𝑗

2𝜋

𝜆
𝑅𝑘(𝜂)}  (11) 

Choosing a short 𝑇𝐶𝑃𝐼 , the variation of the target reflectivity 

in (11) is supposed to be limited and thus it can be neglected; 

moreover, by defining a temporal variable 𝜂′ = 𝜂 − 𝑛 · 𝑇𝐶𝑃𝐼  
that spans the single frame, we can rewrite: 

 𝑠𝑘,𝑛
𝑎 (𝜂′) = 𝜎𝑛𝑟𝑒𝑐𝑡 [

𝜂′

𝑇𝐶𝑃𝐼
] ∙ exp {−𝑗

2𝜋

𝜆
𝑅𝑘(𝜂

′ + 𝑛 · 𝑇𝐶𝑃𝐼)}    (12) 

B. Intra-frame space-time coherent processing 

Assuming that the target shows a constant cross section 

inside each temporal frame, the maximum SNR is provided by 

the coherent integration over the whole temporal frame spanned 

by 𝜂′, namely of all the temporal samples 𝑁𝑓 = 𝑇𝐶𝑃𝐼 ∙ 𝑃𝑅𝐹, 

received at the K receiving antennas, namely a coherent space-

time processing is required. However, to maximize the result of 

the coherent integration, the target differential bistatic range 

must be known as a function of time 𝜂′ and antenna element 𝑘, 

so that the phase evolution with time can be compensated. This 

depends in turn on the target initial position (𝑥0,𝑦0) and on the 

target velocity (𝑣𝑥,𝑣𝑦). Since these parameters are unknown, it 

is necessary to estimate them from the received data. This can 

be obtained by attempting a coherent integration based on a grid 

of parameter values, and by selecting the combination of values 

that provides the maximum coherent integration. We first notice 

that the target initial position (𝑥0,𝑦0) can be expressed in polar 

coordinates as target range and angle (𝑟0,𝜃0). Since the 

processing is applied to every range cell, the 𝑟0 value can be 

considered known and the maximization must be performed 

with respect to the three parameters (𝜃0, 𝑣𝑥, 𝑣𝑦). 

In [36], the use of the FrFT has been shown to be an effective 

tool to perform the coherent integration, inside each frame, of 

signals with generic DC and DFR. By means of the FrFT in (5)-

(7), rotated frequency-angle maps are obtained, where the 

energy is maximally concentrated in the cell corresponding to 

the measured Doppler frequency and Doppler rate. Therefore, 

it is interesting to understand what is the effect of the FrFT 

applied to each of the N frames of the 𝑘th antenna. With this 

objective in mind, we expand the bistatic range for the 𝑘th 

antenna element into a Taylor series. The bistatic range in (2) 

can be rearranged as 𝑅𝑘(𝜂) = 𝑅𝑅𝑥𝑘(𝜂) + Δ𝑅𝑇𝑥−𝑏(𝜂), being 

Δ𝑅𝑇𝑥−𝑏(𝜂) the differential range history between Rt and Rb. 

Let us consider first the target to 𝑘th element range. The 

series is arrested to the first order in the array element 𝑘, due to 

the small size of the receiving array: (13) shown bottom of this 

page. 

  Further, (13) is expanded in series as a function of the 

temporal variable. In this case, the series is arrested to the 

second order, since the range variation during the considered 

observation time can be relevant. Thus, we have (14) as shown 

bottom of this page.  

For convenience, we define the radial and parallel velocity 

components respectively as: 𝑣𝑟 = 𝑣𝑥 𝑐𝑜𝑠 𝜃0  + 𝑣𝑦 sin 𝜃0 and 

𝑣𝑝 = 𝑣𝑥 sin 𝜃0 − 𝑣𝑦 cos 𝜃0 and rewrite the range in (14), 

except for 𝑟0, as a function of the three variables 𝑣𝑟 , 𝑣𝑝, and 𝜃0, 

as (15) shown bottom of this page. 

The differential range Δ𝑅𝑇𝑥−𝑏(𝜂) takes into account the 

transmitter contribution to the range and Doppler history of the 

moving target. Observing that in the considered satellite-based 

𝑅𝑅𝑥𝑘(𝜂) = √𝑥
2 + (𝑦 − (𝑘𝑑 +

𝑑

2
))

2

= √(𝑟0 𝑐𝑜𝑠𝜃0 + 𝑣𝑥 𝜂)
2 + (𝑟0 𝑠𝑖𝑛𝜃0 + 𝑣𝑦 𝜂 − 𝑘𝑑 −

𝑑

2
)
2

=    

≅ √(𝑟0 𝑐𝑜𝑠𝜃0 + 𝑣𝑥 𝜂)
2 + (𝑟0 𝑠𝑖𝑛 𝜃0 + 𝑣𝑦 𝜂)

2
− (𝑘𝑑 +

𝑑

2
) 

  (𝑟0 𝑠𝑖𝑛 𝜃0+𝑣𝑦 𝜂)

√(𝑟0 𝑐𝑜𝑠𝜃0+𝑣𝑥𝜂)
2+(𝑟0 𝑠𝑖𝑛 𝜃0+𝑣𝑦𝜂)

2
                               (13) 

𝑅𝑅𝑥𝑘(𝜂) ≅ 𝑟0 + (𝑣𝑥 𝑐𝑜𝑠𝜃0 + 𝑣𝑦 sin 𝜃0) 𝜂 + (𝑣𝑥 𝑠𝑖𝑛𝜃0 − 𝑣𝑦 𝑐𝑜𝑠 𝜃0)
2  
𝜂2

2𝑟0
− (𝑘𝑑 +

𝑑

2
)  sin 𝜃0 + 

+(𝑘𝑑 +
𝑑

2
)
𝑐𝑜𝑠 𝜃0(𝑣𝑥 𝑠𝑖𝑛𝜃0−𝑣𝑦 𝑐𝑜𝑠 𝜃0)

𝑟0
 𝜂                                                 (14) 

𝑅𝑅𝑥𝑘(𝜂) ≅ 𝑟0 + 𝑣𝑟  𝜂 + 𝑣𝑝
2   

𝜂2

2𝑟0
 −   (𝑘𝑑 +

𝑑

2
)  𝑠𝑖𝑛 𝜃0 + (𝑘𝑑 +

𝑑

2
) 
𝑐𝑜𝑠 𝜃0 𝑣𝑝 

𝑟0
 𝜂                                (15) 

Δ𝑅𝑇𝑥−𝑏(𝜂) = √(𝑥𝑇 − 𝑥)
2 + (𝑦𝑇 − 𝑦)

2 + 𝑧𝑇
2  − √𝑥𝑇

2 + 𝑦𝑇
2 + 𝑧𝑇

2 ≅ −
𝑥𝑇𝑥+𝑦𝑇𝑦

√𝑥𝑇
2+𝑦𝑇

2+𝑧𝑇
2
=

𝑥𝑇(𝑟0 cos 𝜃0+𝑣𝑥𝜂)+𝑦𝑇(𝑟0 sin𝜃0+𝑣𝑦𝜂)

√𝑥𝑇
2+𝑦𝑇

2+𝑧𝑇
2

             (16) 

Δ𝑅𝑇𝑥−𝑏(𝜂) ≅ −𝑟0 cos𝜓𝑇(𝜂) ∙ cos(𝜃𝑇(𝜂) − 𝜃0) − cos𝜓𝑇(𝜂) ∙ (𝑣𝑟 𝑐𝑜𝑠(𝜃𝑇(𝜂) − 𝜃0) −𝑣𝑝 sin(𝜃𝑇(𝜂) − 𝜃0)) ∙ 𝜂        (17)   

Δ𝑅𝑇𝑥−𝑏(𝜂) ≅ −𝑟0 cos𝜓𝑇0 cos(𝜃𝑇0 − 𝜃0) + 𝑟0 cos𝜓𝑇0 sin(𝜃𝑇0 − 𝜃0) ∙ 𝜃̇𝑇𝜂 + 𝑟0 sin𝜓𝑇0 cos(𝜃𝑇0 − 𝜃0) 𝜓̇𝑇 ∙ 𝜂 +   

−cos𝜓𝑇0 (𝑣𝑟 𝑐𝑜𝑠(𝜃𝑇0 − 𝜃0)−𝑣𝑝 sin(𝜃𝑇0 − 𝜃0)) ∙ 𝜂                                                    (18) 



 

 

 

geometry 𝑅𝑇𝑥(𝜂) ≫ 𝑅𝑅𝑥𝑘(𝜂), Δ𝑅𝑇𝑥−𝑏(𝜂) can be expanded in 

Taylor series around the RX position arresting the series to the 

first order: (16) shown bottom of previous page. 

Recalling that 𝜃𝑇(𝜂) and 𝜓𝑇(𝜂) are the satellite aspect and 

elevation angles of the satellite [see Fig. 2(b)], both possibly 

changing with time, (16) can be rearranged as (17) shown 

bottom of previous page. 

Further, 𝜃𝑇(𝜂) and 𝜓𝑇(𝜂) can be expanded in series as a 

function of the temporal variable. In this case, the series is 

arrested to the first order, namely 𝜃𝑇(𝜂) ≅ 𝜃𝑇0 + 𝜃̇𝑇 ∙ 𝜂 and 

𝜓𝑇(𝜂) ≅ 𝜓𝑇0 + 𝜓̇𝑇 ∙ 𝜂, since the variation of the satellite 

aspect and elevation is limited (or even null in the case of 

geostationary transmitters) due to the high satellite altitude. 

Thus, we have (18) as shown bottom of previous page. 

Finally, from (15) and (18), the bistatic range for the 𝑘th 

antenna element can be written as (19) shown bottom of this 

page. Therefore: (20) as shown bottom of this page. 

It is apparent from (20) that the DFR has a constant value 

during the whole 𝑇𝑎, which is independent of both spatial and 

temporal variables 𝑘 and 𝜂. In contrast, the initial phase 

depends on 𝑘, so that signals received at the different antenna 

elements have a relative phase shift. Moreover, the DC values 

clearly depends on the antenna element 𝑘, so that the bistatic 

Doppler frequency changes with the antenna element inside the 

array. This latter consideration shows that the coherent 

integration of the signals received at the K antenna elements 

requires more than a constant rephasing before the coherent 

sum.  

It must also be noticed that the linear frequency modulation 

of the chirp signals implies that the Doppler frequency changes 

with time. Therefore, different values of the average DC are 

observed at the N successive temporal frames; namely, the 

bistatic Doppler centroid is both function of the spatial index, 

𝑘, and temporal frame index, 𝑛. This is easily observed by 

writing (19) as a function of the temporal variable 𝜂′ spanning 

the individual frame as (21) shown bottom of this page.  

𝑅𝑘(𝜂) ≅ 𝑟0 (1 − cos𝜓𝑇0 cos(𝜃𝑇0 − 𝜃0)) −  (𝑘𝑑 +
𝑑

2
) 𝑠𝑖𝑛 𝜃0 + [𝑣𝑟 + (𝑘𝑑 +

𝑑

2
)
𝑐𝑜𝑠 𝜃0 𝑣𝑝 

𝑟0
 + 𝑟0 cos𝜓𝑇0 sin(𝜃𝑇0 − 𝜃0) ∙ 𝜃̇𝑇 +    

+𝑟0 sin 𝜓𝑇0 cos(𝜃𝑇0 − 𝜃0) ∙ 𝜓̇𝑇 − cos𝜓𝑇0 ∙ (𝑣𝑟 𝑐𝑜𝑠(𝜃𝑇0 − 𝜃0)−𝑣𝑝 sin(𝜃𝑇0 − 𝜃0))] ∙  𝜂 + 𝑣𝑝
2 𝜂2

2𝑟0
                  (19) 

{
  
 

  
 𝑅𝑘

0 ≅ 𝑟0(1 − cos𝜓𝑇0 cos(𝜃𝑇0 − 𝜃0)) −  (𝑘𝑑 +
𝑑

2
) 𝑠𝑖𝑛 𝜃0

𝑓𝑘̅
𝑑𝑐 = −

1

𝜆
(

𝑣𝑟 + (𝑘𝑑 +
𝑑

2
)
𝑐𝑜𝑠 𝜃0 𝑣𝑝 

𝑟0
 + 𝑟0 cos𝜓𝑇0 sin(𝜃𝑇0 − 𝜃0) ∙ 𝜃̇𝑇 +

+𝑟0 sin 𝜓𝑇0 cos(𝜃𝑇0 − 𝜃0) ∙ 𝜓̇𝑇 − cos𝜓𝑇0 ∙ (𝑣𝑟 𝑐𝑜𝑠(𝜃𝑇0 − 𝜃0)−𝑣𝑝 sin(𝜃𝑇0 − 𝜃0))
)

𝑓𝑘̅
𝑑𝑟 = −

1

𝜆

𝑣𝑝
2

𝑟0
= 𝑓̅𝑑𝑟

    

𝑅𝑘(𝜂
′ + 𝑛 · 𝑇𝐶𝑃𝐼) ≅ 𝑟0(1 − cos𝜓𝑇0 cos(𝜃𝑇0 − 𝜃0)) −  (𝑘𝑑 +

𝑑

2
) 𝑠𝑖𝑛 𝜃0 + [𝑣𝑟 + (𝑘𝑑 +

𝑑

2
)
𝑐𝑜𝑠 𝜃0 𝑣𝑝 

𝑟0
 +   

+𝑟0 cos𝜓𝑇0 sin(𝜃𝑇0 − 𝜃0) ∙ 𝜃̇𝑇 + 𝑟0 sin 𝜓𝑇0 cos(𝜃𝑇0 − 𝜃0) ∙ 𝜓̇𝑇 − cos𝜓𝑇0 ·   

 (𝑣𝑟 𝑐𝑜𝑠(𝜃𝑇0 − 𝜃0)−𝑣𝑝 sin(𝜃𝑇0 − 𝜃0))] ∙  (𝜂
′ + 𝑛 · 𝑇𝐶𝑃𝐼) + 𝑣𝑝

2   
(𝜂′+𝑛·𝑇𝐶𝑃𝐼)

2

2𝑟0
             

𝑅𝑛 = 𝑟0(1 − cos𝜓𝑇0 cos(𝜃𝑇0 − 𝜃0)) + [𝑣𝑟 + 𝑟0(cos𝜓𝑇0 sin(𝜃𝑇0 − 𝜃0))𝜃̇𝑇 + sin𝜓𝑇0 cos(𝜃𝑇0 − 𝜃0) 𝜓̇𝑇 +  

−cos𝜓𝑇0 (𝑣𝑟 𝑐𝑜𝑠(𝜃𝑇0 − 𝜃0)−𝑣𝑝 sin(𝜃𝑇0 − 𝜃0))] ∙ 𝑛 𝑇𝐶𝑃𝐼 +
𝑣𝑝
2

2 𝑟0
𝑛2 𝑇𝐶𝑃𝐼

2            

𝑅𝑘(𝜂
′ + 𝑛 · 𝑇𝐶𝑃𝐼) ≅ 𝑅𝑛 −  (𝑘𝑑 +

𝑑

2
)  [𝑠𝑖𝑛 𝜃0 −

𝑣𝑝 𝑐𝑜𝑠 𝜃0

𝑟0
 𝑛 𝑇𝐶𝑃𝐼)]  + [𝑣𝑟 + (𝑘𝑑 +

𝑑

2
)
𝑣𝑝 𝑐𝑜𝑠 𝜃0

𝑟0
 +     

+𝑟0(cos𝜓𝑇0 sin(𝜃𝑇0 − 𝜃0))𝜃̇𝑇 + sin𝜓𝑇0 cos(𝜃𝑇0 − 𝜃0) 𝜓̇𝑇 − cos𝜓𝑇0 (𝑣𝑟 𝑐𝑜𝑠(𝜃𝑇0 − 𝜃0)−𝑣𝑝 sin(𝜃𝑇0 − 𝜃0)) +   

+𝑣𝑝
2  
𝑇𝐶𝑃𝐼

𝑟0
𝑛]  𝜂′ + 𝑣𝑝 

2  
𝜂′
2

2𝑟0
    

𝑓𝑘̅,𝑛
𝑑𝑐 = −

1

𝜆
 [𝑣𝑟 + (𝑘𝑑 +

𝑑

2
)
𝑣𝑝 𝑐𝑜𝑠 𝜃0

𝑟0
 + 𝑟0(cos𝜓𝑇0 sin(𝜃𝑇0 − 𝜃0))𝜃̇𝑇 + sin𝜓𝑇0 cos(𝜃𝑇0 − 𝜃0) 𝜓̇𝑇 +  

−cos𝜓𝑇0 (𝑣𝑟 𝑐𝑜𝑠(𝜃𝑇0 − 𝜃0)−𝑣𝑝 sin(𝜃𝑇0 − 𝜃0)) + 𝑣𝑝
2   

𝑇𝐶𝑃𝐼

𝑟0
𝑛]  

{
 
 
 

 
 
 tan 𝛼̅ =

𝑇𝐶𝑃𝐼

𝑃𝑅𝐹
𝑓̅𝑑𝑟 = −

𝑇𝐶𝑃𝐼

𝑃𝑅𝐹

𝑣𝑝
2

𝜆 𝑟0

𝑓𝛼̅ = 𝑓𝑘̅,𝑛
𝑑𝑐 cos 𝛼̅ =

      = −
𝑣𝑟 +(𝑘𝑑+

𝑑

2
)
𝑣𝑝 cos𝜃0

𝑟0
 +𝑟0(cos𝜓𝑇0 sin(𝜃𝑇0−𝜃0))𝜃̇𝑇+sin𝜓𝑇0 cos(𝜃𝑇0−𝜃0)𝜓̇𝑇−cos𝜓𝑇0(𝑣𝑟 cos(𝜃𝑇0−𝜃0)−𝑣𝑝 sin(𝜃𝑇0−𝜃0))+𝑣𝑝

2 
𝑇𝐶𝑃𝐼
𝑟0

𝑛

𝜆√1+(
𝑇𝐶𝑃𝐼
𝑃𝑅𝐹

𝑣𝑝
2

𝜆𝑟0
)

2

   

  

                                 

(21) 

 

(22) 
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By setting (22), this yields (23), as shown bottom of previous 

page. Therefore, the Doppler frequency measured by the 𝑘th 

receiving antenna element at the 𝑛th frame time is given by 

(24), implying that the output of the FrFT is expected to provide 

a peak at (25), as shown bottom of previous page. 

This means that the K rotated frequency-angle maps at the 

different antenna elements have the peak at the same angle but 

at different values of 𝑓𝛼̅. The shift in the value of 𝑓𝛼̅ between the 

𝑘th antenna element and the reference position (hereafter 

referred to as spatial 𝑓𝛼-shift) is given by 

Δ𝑓𝛼̅
𝑘 = −

1

𝜆
(𝑘𝑑 +

𝑑

2
) 
𝑣𝑝 𝑐𝑜𝑠 𝜃0

𝑟0
  /√1 + (

𝑇𝐶𝑃𝐼

𝑃𝑅𝐹

𝑣𝑝
2

𝜆𝑟0
)
2

    (26) 

By inspecting (26), it is easy to see that Δ𝑓𝛼̅
𝑘 depends on the 

target Doppler rate. Recalling the relationship between the 

target DFR and the optimum rotation angle of the FrFT in (25), 

we have |𝑣𝑝| = √−𝜆 𝑟0
𝑃𝑅𝐹

𝑇𝐶𝑃𝐼
tan 𝛼̅. Therefore, for a generic 

DFR (i.e., for a generic rotation angle), we obtain 

Δ𝑓𝛼
𝑘 = −𝑠𝑖𝑔𝑛[𝑣𝑝] (𝑘𝑑 +

𝑑

2
) cos 𝜃0  √−

sin 2𝛼

2𝜆 𝑟0

𝑃𝑅𝐹

𝑇𝐶𝑃𝐼
       (27) 

From the above equation, we can observe that the spatial 𝑓𝛼-

shift depends on the rotation angle corresponding to the DFR of 

the target as well as its distance from the array, namely in the 

(𝑓𝛼 , 𝛼) plane a shift in 𝑓𝛼 that depends on 𝛼. However, 

inspecting (27) we can note that Δ𝑓𝛼
𝑘 also depends on the 

unknown target DOA. Even though the search procedure to 

perform the estimation of the DOA (addressed in the following) 

may include also this frequency alignment step, taking into 

account the relative slow motion of the targets of interest, the 

dependence of Δ𝑓𝛼
𝑘 on 𝜃0 can be neglected. Specifically, from 

(24), if 𝑚𝑎𝑥 |
[(𝑘𝑑 +

𝑑

2
) (1 − cos 𝜃0)𝑣𝑝]

𝜆𝑟0
⁄ | < 1

𝑇𝐶𝑃𝐼
⁄ , the 

residual frequency offset uncompensated by neglecting the 

effect of the DOA will be certainly confined in the DC 

resolution cell. Therefore, Δ𝑓𝛼
𝑘 can be approximated as 

Δ𝑓𝛼
𝑘 ≈ −𝑠𝑖𝑔𝑛[𝑣𝑝] (𝑘𝑑 +

𝑑

2
)√−

sin 2𝛼

2𝜆 𝑟0

𝑃𝑅𝐹

𝑇𝐶𝑃𝐼
     (28) 

While the coherent time integration is nicely performed by 

the FrFT for each receiving antenna element, to obtain the 

desired space-time coherent integration of the K maps, these 

must be coherently combined. To this purpose, we need to keep 

into account the expected shift of the peak in the K maps, so 

that we coherently integrate the appropriate (𝑓𝛼 , 𝛼) cell, where 

most of the target energy locates, and we want to add coherently 

the values in these (𝑓𝛼 , 𝛼) locations (namely on a pixel-by pixel 

basis) over the spatial dimension 𝑘 to increase the target energy.  

It is to be noticed that the compensation of the rotated 

frequency shift change among antenna elements also depends 

on the sign of the parallel velocity, which might be unknown. 

In this case, also this sign must be estimated from the collected 

signals, by attempting the compensation with both possible 

values and comparing the two resulting peaks. 

According to the phased array theory [37], the K maps can 

be coherently combined accounting for a set of delay phase 

terms (i.e., the steering vector) that lineup the returns from a 

given direction. If such a direction coincides with the actual 

target DOA, the maximum gain will be obtained. Therefore, the 

integration of the K maps of the individual frames can be 

performed after appropriate phase compensation, i.e., from 

(23), by multiplying the 𝑘th map for the term:  

𝜙𝑘,𝑛 = 𝑒𝑥𝑝 {−𝑗
2𝜋

𝜆
(𝑘𝑑 +

𝑑

2
) [ 𝑠𝑖𝑛 𝜃0 −

𝑣𝑝 𝑇𝐶𝑃𝐼

𝑟0
𝑛 · 𝑐𝑜𝑠 𝜃0]} (29) 

This clearly depends on 𝑛, so that a different compensation 

must be applied to each frame. Moreover, we can observe that 

the phase terms in (29) depend on the target parallel velocity, 

and therefore, from (25), on the optimum rotation angle. After 

simple manipulations, for a target with generic DFR, we obtain 

𝜙𝑘,𝑛 = exp {−𝑗
2𝜋

𝜆
(𝑘𝑑 +

𝑑

2
) [sin 𝜃0 − 𝑠𝑖𝑔𝑛(𝑣𝑝) 𝑛 · cos 𝜃0 ·

√−
𝜆

𝑟0
𝑃𝑅𝐹 𝑇𝐶𝑃𝐼 tan 𝛼 ]}           (30) 

From the above equation, we can observe that the steering 

vector depends on the rotation angle corresponding to the DFR 

of the target as well as its distance from the array. However, 

since 𝜃0 is unknown, a search procedure has to be carried out: 

(i) the angle spanning the receiving antenna beamwidth Θ is 

quantized with a step equal to a fraction of the expected angular 

resolution (
Θ

𝐾
); then, (ii) for each value of 𝜃 under test, a 

different integrated map 𝑺𝑛(𝑓𝛼 , 𝛼; 𝜃) is obtained as 

𝑺𝑛(𝑓𝛼 , 𝛼; 𝜃) =
1

𝐾
∑ 𝑺𝑘,𝑛(𝑓𝛼 + Δ𝑓𝛼

𝑘, 𝛼) ·
𝐾

2
−1

𝑘=−
𝐾

2

exp {−𝑗
2𝜋

𝜆
(𝑘𝑑 +

𝑑

2
) ·  [ 𝑠𝑖𝑛 𝜃 − 𝑠𝑖𝑔𝑛(𝑣𝑝) 𝑛 𝑐𝑜𝑠 𝜃 ·

√−
𝜆

𝑟0
𝑃𝑅𝐹 𝑇𝐶𝑃𝐼 tan 𝛼)]}               (31) 

by varying the phase terms in the (𝑓𝛼 , 𝛼) plane and (iii) the 

space-time coherent integration is provided by the maximum 

value, which is obtained for the value of 𝜃 corresponding to the 

actual target DOA. Clearly, while looking for the peak in the 

FrFT maps provides a search in the 2D plane of the DC-DFR 

values and performs the temporal coherent integration, the 

selection of the combination of the K maps providing the 

maximum value extends the search to 3D and provides the final 

space-time coherent integration. As for the frequency shift 

compensation, when the sign of 𝑣𝑝 is unknown both possible 

values are attempted and the corresponding outputs compared. 

C. Frame to frame processing 

Because of its motion, the target locates in different positions 

when observed in different frames. The KT accomplished at the 

pre-processing stage allows correcting the range migration for 

the entire dwell. Nevertheless, the target motion still implies 

Doppler migration. Consequently, even though the 

compensation of the spatial 𝑓𝛼-shift allows having the target 

energy located onto the same 𝑓𝛼 position for the K maps 



 

 

 

pertaining to the individual frames, the 𝑓𝛼 location (namely, the 

DC) of the target energy will be different frame by frame. 

Let Δ𝑓𝑛 be the shift in DC position measured at the 𝑛th frame 

interval with respect to the reference instant. Such a shift 

depends on the different positions of the target when observed 

at different time instants, therefore we refer to it as to temporal 

DC-shift. From (24), we have the temporal DC-shift as:  

𝛥𝑓̅𝑛 = −𝑣𝑝
2   

𝑇𝐶𝑃𝐼

𝜆 𝑟0
𝑛 = 𝑓̅𝑑𝑟𝑇𝐶𝑃𝐼𝑛 = 𝑃𝑅𝐹  𝑡𝑎𝑛 𝛼̅  𝑛    (32) 

and therefore, for the generic DFR, in the (𝑓𝛼 , 𝛼) plane a 

temporal 𝑓𝛼-shift equal to 

𝛥𝑓𝛼
𝑛 = 𝑃𝑅𝐹  𝑠𝑖𝑛 𝛼  𝑛         (33) 

To perform the incoherent integration, we need to 

compensate for the displacement of the DC (namely of 𝑓𝛼) from 

frame to frame. Therefore, the N maps pertaining the tested 𝜃 

are non-coherently combined to obtain the final integrated map 

as: 

𝑺𝑡𝑜𝑡𝑎𝑙(𝑓𝛼 , 𝛼; 𝜃) =
1

𝑁
∑ |𝑺𝑛(𝑓𝛼 + Δ𝑓𝛼

𝑛, 𝛼; 𝜃)|2
𝑁−1

2

𝑛=−
𝑁−1

2

     (34) 

Thanks to the effect of both coherent and incoherent 

integration, the equivalent signal to disturbance ratio is largely 

increased and the presence of a mover can be reliably detected 

in the 𝑺𝑡𝑜𝑡𝑎𝑙(𝑓𝛼 , 𝛼; 𝜃) map corresponding to its actual DOA. As 

is apparent, this jointly provides the target detection and the 

target DOA estimation. 

A few considerations apply to the implementation of the total 

incoherent sum. As is apparent, the final sum can be rewritten 

as 

𝑺𝑡𝑜𝑡𝑎𝑙(𝑓𝛼 , 𝛼; 𝜃) =
1

𝑁
∑ |𝑺𝑛(𝑓𝛼 + Δ𝑓𝛼

𝑛 , 𝛼; 𝜃)|2
𝑁−1

2

𝑛=−
𝑁−1

2

=  

=
1

𝑁
∑ |

1

𝐾
∑ 𝑺𝑘,𝑛(𝑓𝛼 + Δ𝑓𝛼

𝑘 + Δ𝑓𝛼
𝑛 , 𝛼) · 𝜙𝑘,𝑛(𝜃)

𝐾

2
−1

𝑘=−
𝐾

2

|

2𝑁−1

2

𝑛=−
𝑁−1

2

  

 (35) 

and, by defining the realigned rotated frequency-angle maps 

𝑺𝑘,𝑛
𝑎𝑙 (𝑓𝛼 , 𝛼) = 𝑺𝑘,𝑛(𝑓𝛼 + Δ𝑓𝛼

𝑘 + Δ𝑓𝛼
𝑛, 𝛼)      (36) 

the total sum is given by: 

𝑺𝑡𝑜𝑡𝑎𝑙(𝑓𝛼 , 𝛼; 𝜃) =
1

𝑁
∑ |

1

𝐾
∑ 𝑺𝑘,𝑛

𝑎𝑙 (𝑓𝛼 , 𝛼) · 𝜙𝑘,𝑛(𝜃)
𝐾

2
−1

𝑘=−
𝐾

2

|

2𝑁−1

2

𝑛=−
𝑁−1

2

  

         (37) 

The main problem is related with the evaluation of the 

realigned maps 𝑺𝑘,𝑛
𝑎𝑙 (𝑓𝛼 , 𝛼). This is the FrFT of the 𝑛th frame 

received at the 𝑘th receiving antenna, evaluated at the rotated 

frequency 𝑓𝛼 + Δ𝑓𝛼
𝑘 + Δ𝑓𝛼

𝑛 = 𝑓𝛼 ±
2𝑘+1

2
 𝑐𝑜𝑠 𝜃√−

sin 2𝛼

2𝜆 𝑟0

𝑃𝑅𝐹

𝑇𝐶𝑃𝐼
+

PRF  sin 𝛼  𝑛, which is simplified into 𝑓𝛼 + Δ𝑓𝛼
𝑘 + Δ𝑓𝛼

𝑛 = 𝑓𝛼 ±

2𝑘+1

2
𝑑 √−

sin 2𝛼

2𝜆 𝑟0

𝑃𝑅𝐹

𝑇𝐶𝑃𝐼
+ PRF  sin 𝛼  𝑛 when the effect of the 

DOA is negligible. 

Two alternative strategies can be applied to perform the map 

realignment: 

(a) Evaluate the FrFT 𝑺𝑘,𝑛(𝑓𝛼 , 𝛼) of the signal received at 

each of the N frames and of the K antenna elements; then obtain 

the shifted value by resorting to an interpolation along the 𝑓𝛼 

axis to evaluate its value at frequency 𝑓𝛼 ± (𝑘𝑑 +

𝑑

2
) 𝑐𝑜𝑠 𝜃√−

sin 2𝛼

2𝜆 𝑟0

𝑃𝑅𝐹

𝑇𝐶𝑃𝐼
+ PRF  sin 𝛼  𝑛. 

(b) Apply a phase ramp in the 𝑢 domain with slope 

±(𝑘𝑑 +
𝑑

2
) 𝑐𝑜𝑠 𝜃√−

sin 2𝛼

2𝜆 𝑟0

𝑃𝑅𝐹

𝑇𝐶𝑃𝐼
+ PRF  sin 𝛼  𝑛,  according to 

(27) and (33) before evaluating the FT over 𝑢 so that the shifted 

FrFT is directly obtained after the FT. 

Solution (a) requires an interpolation along the 𝑓𝛼 dimension 

that is dependent on the value of 𝛼, namely a different shift is 

applied for different values of 𝛼. The accuracy of the required 

interpolation depends on the acceptable loss in the maps 

combination. As apparent, if the exact shift is to be considered, 

as a function of 𝜃, this approach allows the FrFT to be evaluated 

only once and a different interpolation to be performed for 

different values of 𝜃. Obviously a single interpolation is 

required for each frame and antenna element if the shift can be 

approximated as ±(𝑘𝑑 +
𝑑

2
)√−

sin 2𝛼

2𝜆 𝑟0

𝑃𝑅𝐹

𝑇𝐶𝑃𝐼
+ PRF  sin 𝛼  𝑛. 

Solution (b) implies a phase shift that is dependent on the 

value of 𝛼, namely a different shift is applied for different 

values of 𝛼. Taking into account both the spatial and temporal 

shifts, the realigned maps can be obtained by evaluating directly 

𝑺𝑘,𝑛
𝑎𝑙 (𝑓𝛼 , 𝛼) = ∫ 𝑠𝛼(𝑢) · exp{−𝑗2𝜋(𝑓𝛼 − Δ𝑓𝛼

𝑘 − Δ𝑓𝛼
𝑛)𝑢} 𝑑𝑢

+∞

−∞
  

 (38) 

We notice that the FT with a constant phase shift can also be 

interpreted as a very specific case of Chirp Zeta Transform 

(CZT). When Δ𝑓𝛼
𝑘 + Δ𝑓𝛼

𝑛 can be approximated as ±(𝑘𝑑 +

𝑑

2
)√

sin 2𝛼

2𝜆 𝑟0

𝑃𝑅𝐹

𝑇𝐶𝑃𝐼
+ PRF  sin 𝛼  𝑛, this is certainly a 

computationally convenient implementation of the realignment. 

In contrast, when the variation with 𝑐𝑜𝑠 𝜃 cannot be neglected, 

the evaluation of the realigned maps for the different values of 

𝜃 requires repeating the FT over 𝑢. 

Independent of the selected solution, three considerations are 

in order:  

(i) It should be pointed out that the selection of the rotated 

frequency shift (27)/(28), or of the equivalent slope of the phase 

ramp to be applied, and of the phase term (30) to carry out the 

space-time coherent processing, requires the knowledge of the 

target distance from the array, 𝑟0. So far, we assumed as known 

this value, because the processing is separately applied to each 

range cell composing the surveillance area. Nevertheless, the 

range value associated to the generic cell under test represents 

the differential bistatic value measured by the system, and 

therefore it differs from 𝑟0. However, from (23), we can observe 

that the relationship between the target to receiver distance 𝑟0 

and the differential bistatic range depends on the satellite 

position with respect to the receiver and on the target DOA. In 

particular, from (23) the bistatic range measured at the 𝑛th 



 

 

 

frame interval is given by 𝑅𝑛 − (𝑘𝑑 +
𝑑

2
) · [𝑠𝑖𝑛 𝜃0 −

𝑣𝑝 𝑐𝑜𝑠 𝜃0

𝑟0
 𝑛 𝑇𝐶𝑃𝐼)] thus it depends on both the considered frame 

and antenna element. However taking into account the keystone 

reformatting at the pre-processing stage, which compensates 

the target range migration over the different frames aligning all 

contributions in the same range bin, and observing that the 

range variations due to the different antenna element positions 

are much less than the range resolution cell, (9), the above 

dependence can be neglected. Considering the transmitter to 

target distance much higher than the target to receiver distance, 

the relation between 𝑟0 and the measured range value 𝑅0 (i.e., 

the value corresponding to the range cell under test) can be 

written as 

𝑟0 =
𝑅0

(1−cos𝜓𝑇0 cos(𝜃𝑇0−𝜃0))
        (39) 

Therefore, a DOA-dependent scale factor according to (39) 

can be considered to compensate the difference between the 

measured bistatic range and the required monostatic value for 

the correct application of (27) or (28) and (30). However, it is 

easy to see that: 

 for targets at relatively short ranges, 𝑅𝑇𝑥(𝜂) ≈ 𝑅𝑏(𝜂), 
thus the measured bistatic range is very close to the target 

to array distance, whereas the same consideration does 

not apply for targets quite far from the receiver; 

 the difference of the DC measured from the different 

antennas depends on the different angles under which the 

target is observed: when the target is sufficiently far from 

the array, it offers approximately the same DOA to each 

element of the array.  

On this basis 𝑟0 ≅ 𝑅0 could be considered in (28), namely the 

DOA-dependent correction factor could be neglected in the 

maps realignment. With regard to the rephasing of the 

individual maps for the DOA estimation procedure, (30), this 

already requires a search procedure over the different possible 

target DOAs. Therefore, the DOA-dependent correction factor 

can be easily taken into account in the K maps coherent 

summation (31). 

(ii) The application of the rotated frequency shift, or the 

equivalent slope of the phase ramp to be applied, which depends 

on the value of 𝛼 shows that the selected operation in the (𝑢, 𝛼) 
plane provided by the FrFT is the most natural domain to 

perform the integration, since it allows to easily apply the 

desired phase compensations by operating only on matrix rows 

or columns. 

(iii) Because the selection of the rotated frequency shift slope 

depends on the value of the angle 𝛼, the application of the 

rotated frequency shifts results not only in a translation of the 

spectrum of the signal in the (𝑓𝛼 , 𝛼) plane, but also in a rotation. 

The entity of such a rotation depends on both 𝑘 and 𝑛, so that 

the spectrums of the KN signals (i.e., |𝑺𝑘,𝑛
𝑎𝑙 |

2
) are differently 

rotated around the reference (𝑓𝛼̅ , 𝛼̅) position. Therefore, the 

Fig. 5. Proposed processing scheme. 



 

 

 

summations of the 𝑺𝑘,𝑛
𝑎𝑙  maps in (37) provide also an 

improvement of the concentration of the signal energy, namely 

a narrower peak, in the final integrated map 𝑺𝑡𝑜𝑡𝑎𝑙. 
The complete processing scheme obtained by selecting 

solution (b), under the assumption that an approximate rotated 

frequency shift (independent of 𝜃) is enough, is reported in Fig. 

5. As is apparent the application of the linear phase terms to 

compensate spatial and temporal rotated frequency shifts, 

inside the FrFT block, allows to appropriately realigning the 

KN (𝑓𝛼 , 𝛼) maps so that both coherent space-time integration 

and incoherent frame-to-frame integration can be applied on a 

pixel-by-pixel basis. 

As a final comment on the proposed processing scheme in 

Fig. 5, we observe explicitly that the temporal DC-shift depends 

on the square of the parallel velocity. Therefore, the alignment 

of the maps pertaining the different frames can be accomplished 

by making use of solution strategy (a) or (b) independently from 

the sign of the parallel velocity. In contrast, the space-time 

coherent processing depends on the sign of the velocity, both 

for the compensation of the spatial 𝑓𝛼-shift, (28), and for the 

rephasing of the maps, (30). Obviously, since this information 

is generally unknown, both the compensations pertaining to a 

positive or a negative parallel velocity have to be tested, with 

the maximum integration gain achieved for the actual sign. 

Therefore, the branches of the scheme of Fig. 5 corresponding 

to the space-time compensation are duplicated. Thus, the 

procedure is potentially able to recover not only the absolute 

parallel speed, as achieved with the single receiver scheme in 

[36], but also the direction of the motion. 

IV. PERFORMANCE ANALYSIS 

In this section, simulation results are presented to illustrate the 

proposed technique and verify its effectiveness in detecting and 

identifying the direction-of-arrival of ship targets. In the 

simulated scenario we consider an array receiver composed by 

K = 14 elements with inter-element distance 𝑑 = 2𝜆. This 

entails grating lobes at ±30° of steering direction [37], which 

is supposed to be sufficiently larger than the antenna 

beamwidth. 

A navigation satellite is considered as transmitter of 

opportunity. The reason of this choice is that this represents 

maybe the worst case for the system under consideration in 

terms of power budget. Indeed, GNSS are very low EIRP 

sources, with a power density near the surface of the Earth down 

to -135 dBW/m2 [24], thus requiring dwell times in the order of 

tens of seconds to reach acceptable level of signal to disturbance 

ratios [27][28]. The parameters of the simulations are listed in 

Table I. 

First, for sake of illustration, we provide simulated results in 

noise-free background. We consider a ship target with position 

𝒑0 = [1300,100] m at the reference instant, which corresponds 

to a DOA 𝜃0 = 4.40°, and moving with velocity 𝒗 =
[7.07,7.07] kn. During the dwell time 𝑇𝑎 = 62 s, signal 

reflections are collected by the array, while the direct signal 

recorded by the reference channel is exploited to perform the 

signal synchronization with equivalent 𝑃𝑅𝐹 =  1 kHz [18], 

[26]. By cross-correlation of the reference signal with the signal 

received by each element of array, K range-compressed&slow-

time matrices are obtained. Keystone reformatting is applied, 

thus compensating the RCM for the entire dwell time. Then, 

data segmentation is performed with frame duration 𝑇𝐶𝑃𝐼 = 2 s, 

resulting in N = 31 frames, and the multiple frames are 

processed making use of the processing in Fig. 5. Fig. 6 shows 

the results obtained at different steps of the processing chain, as 

described ahead.  

First, we focus on the space-time coherent integration for an 

individual frame. Let us consider the reference frame 𝑛 = 0 and 

suppose we have selected the range cell containing the target. 

By means of FrFT, K (𝑓𝛼 , 𝛼) maps can be obtained. Fig. 6(a) 

shows the map in the DC-DFR domain obtained for the 

reference antenna of the array. We can observe that the target 

energy is concentrated along a slice in the Doppler frequency 

direction corresponding to −16.658 Hz, with a peak value 

around the DFR −0.045 Hz/s. Let us consider for this frame the 

antenna elements at the edges of the array, i.e. 𝑘 = −
𝐾

2
 and 𝑘 =

𝐾

2
− 1. Such antennas measure target Doppler frequencies 

different from the measurement of the reference antenna. In 

particular, we found 𝑓
−
𝐾

2

𝑑𝑐 = −16.690 Hz and 𝑓𝐾
2
−1

𝑑𝑐 = −16.626 

Hz, whereas the maximum difference in Doppler rate could be 

show to be about 0.0001 Hz/s, therefore much lower than 
1

𝑇𝐶𝑃𝐼
2  

thus in accordance with our hypothesis [see (4)]. Therefore, in 

the K maps, target energy occupies slices centered on the same 

angle but on different 𝑓𝛼 positions. To assure the alignment of 

the maps pertaining to different antennas, a phase ramp with 

slope according to the rotated frequency shift in (28) for each 

angle can be applied in the (𝑢, 𝛼) plane. It is worth to notice 

that for this target the maximum variation of the DC measured 

by the array is about 0.035 Hz, therefore lower than the Doppler 

resolution cell (equal to 
1

𝑇𝐶𝑃𝐼
= 0.5 Hz). In such conditions, the 

alignment in the frequency domain of the elements of the array 

has a limited impact on the system performance and ultimately 

it could be neglected here. In the following, we will consider a 

different scenario where such an alignment is mandatory to 

collect correctly the signal energy over the array. 

At this point, the K maps can be coherently integrated 

accounting for a phase term according to (30) and the obtained 

DC-DFR map pertaining to the actual DOA is shown in Fig. 

TABLE I. SIMULATION PARAMETERS 

Transmitter 

Satellite GPS 

Carrier frequency 1575.42 MHz 

Signal bandwidth (chip-rate L1 channel) 1.023 MHz 

Power density over Earth ‘surface -135 dBW/m2 

 

Receiver 

Number of elements 14 

Inter-element distance 38 cm 

Beamwidth 30° 

Effective area of each element 0.14 m2 

 



 

 

 

6(b): the improvement in signal energy is apparent and 

specifically it is equal to 22.9 dB; since K = 14, it is in line with 

the theoretical expectation. 

Let us now consider the integration over the multiple frames. 

By the compensation of the spatial 𝑓𝛼-shift, the K maps 

concerning the 𝑛th frame are co-registered, namely the peaks of 

the signal energy occupy the same (𝑓𝛼 , 𝛼) position. 

Nevertheless, Doppler migration still exists among the different 

frames. In the considered case study, the target DC position is 

−15.108 Hz for the first processed frame 𝑛 = -(N-1)/2, whereas 

in the last frame 𝑛 = (N-1)/2 it is −17.839 Hz. Therefore, a 

spread of the target energy will occur if the integration over the 

long dwell time is performed without any compensation of such 

a shift. For illustrative purposes only, we show in Fig. 6(c) the 

final integrated DC-DFR map that would be obtained if the N 

single-frame maps were non-coherently integrated without 

compensating the temporal 𝑓𝛼-shift. We can observe a blurring 

effect due to the uncompensated Doppler migration among the 

frames. By multiplying the data in the (𝑢, 𝛼) domain for a phase 

ramp with slope according to (33), the temporal 𝑓𝛼-shift among 

the frames can be adaptively compensated by varying 𝛼 in the 

(𝑢, 𝛼) plane. Fig. 6(d) shows the final integrated map, where 

we can observe that the signal energy has been well 

concentrated in the DC-DFR domain. Fig. 6(e) compares the 

Doppler frequency cross sections around the actual DFR for the 

multi-frame integration non-compensating (black dotted line) 

or compensating (red full line) the temporal 𝑓𝛼-shift among the 

frames. From the figure, it is easy observing how the correct 

compensation of the target Doppler migration during the dwell 

time provided a gain of about 5 dB. 

As mentioned, in the previous case study although the 

different elements of the array measure different DC, the 

maximum variation was lower than a fraction of the Doppler 

resolution cell, thus making superfluous the frequency 

alignment of the data pertaining different array elements in the 

individual frame. However, for targets moving with higher 

Fig. 6. Simulated results in noise-free background - a) Single-antenna single frame DC-DFR map, b) multi-antenna single frame, c) multi-antenna multi-frame 

without temporal 𝑓𝛼-shift compensation, d) multi-antenna multi-frame, e) comparison Doppler frequency cut for the multi-antenna multi-frame case. 

(a) (b) 

(c) (d) (e) 

(a) (b) (c) 

Fig. 7. Single frame results for a fast and close moving target – integration of the multi-frame without (a) and with (b) 𝑓𝛼-shift compensation and Doppler 

frequency cross-sections (c). 



 

 

 

speeds and/or at closer ranges the compensation of the spatial 

𝑓𝛼-shift is a mandatory step. Let us consider a second target in 

the field of view of the radar antenna with position 𝒑0 =
[299,23] m at the reference time, which was moving with very 

high velocity 𝑉 = 30 kn parallel to the array. In such 

conditions, at the reference frame the elements at the edges of 

the array measure 𝑓
−
𝐾

2

𝑑𝑐 = 14.90 Hz and 𝑓𝐾
2
−1

𝑑𝑐 = 16.24 Hz. 

Therefore, in this case the DC shift over the array is larger than 

the DC resolution cell and it needs to be compensated (whereas 

the maximum difference in DFR is around 0.015 Hz/s, therefore 

still lower than the DFR resolution). Fig. 7(a) shows the DC-

DFR map obtained by performing the space-time coherent 

integration when not any spatial 𝑓𝛼-shift compensation has been 

carried out. In contrast, the result obtained by applying the 

spatial 𝑓𝛼-shift compensation procedure driven by the rotation 

angle of the FrFT in (28) is shown in Fig. 7(b). As it is apparent, 

the realignment of the K maps enables the correct coherent 

integration over the array elements, providing a significant 

integration gain, as can be well observed looking at the 

comparison of the Doppler frequency cross-sections in Fig. 

7(c). 

Now, a disturbance background has been also included in the 

simulation. In particular, we considered the same simulated 

scenario in Fig. 6 and the target RCS is set equal to 24 dB. As 

disturbance background, we assume an additive white Gaussian 

noise occupying the useful signal bandwidth. Assuming a 

receiver noise figure of 1.5 dB and system losses of 6 dB, the 

SNR after matched filter in the range-compressed&slow-time 

domain is about -24 dB. 

Fig. 8 shows the obtained results in terms of DC-DFR 

surfaces, where 0 dB denotes the mean noise power. Fig. 8(a) 

shows the map concerning the reference antenna and the 

reference frame, where we can observe that the integration gain 

provided by the FrFT at the single element-frame level does not 

suffice to extract the target from the disturbance. Fig. 8(b) 

shows the result achieved from the coherent integration of the 

maps pertaining the K antennas in a single frame for the actual 

DOA in (31). As it is apparent, the coherent integration gain 

allowed collecting enough signal power to compete with the 

disturbance. Nevertheless, the strong noise fluctuations still 

make the detection of the target a challenging task. By carrying 

out the non-coherent integration of the multi-frame maps, Fig. 

8(c), the disturbance fluctuations are reduced. At the same time, 

the signal energy is correctly collected over the long dwell. 

Moreover, we can observe the higher concentration of the 

energy achieved in the final integrated map in Fig. 8(c), thanks 

to the rotation of the individual element/frame spectrum 

resulting from the application of the 𝛼-dependent spatial and 

temporal 𝑓𝛼-shifts: ultimately, a clear and isolated peak is well 

visible in the final integrated map and therefore the target can 

be reliably detected. 

In order to show results in a more realistic scenario, we 

removed here the hypothesis of a single point target and we 

considered a ship with length 30 m and width 6 m composed by 

13 dominant scatterers. Moreover, in addition to the 

translational motion, we considered the ship undergoing 

rotations induced by the sea waves. The ship rotations are 

modelled as sinusoidal yaw (amplitude = 0.3°, frequency = 0.07 

Hz), pitch (amplitude = 0.3°, frequency = 0.06 Hz) and roll 

(amplitude = 1.7°, frequency = 0.03 Hz). The remainder 

parameters of the simulation are as the case study in Fig. 8. Fig. 

9 shows the resulting final integrated map. With respect to the 

ideal case of single point-like target and null rotations, some 

losses in peak power occurred. Specifically, we found a loss of 

about 1.6 dB moving from the scenario in Fig. 8 to this more 

complex one. Such limited losses indicate the robustness of the 

proposed technique, thus supporting its practical application in 

real environments. 

So far, we considered the coherent summation with the phase 

terms (30) pertaining for the actual target DOA. Now, we 

(a) (b) (c) 

Fig. 8. Simulated results in noise background – a) single antenna and single frame, b) multi-antenna and single frame, c) multi-antenna and multi-frame. 

Fig. 9. Final integrated DC-DFR map for the complex target with yaw, pitch 

and roll motions. 



 

 

 

investigate the DOA estimation procedure. The phases of the 

steering vectors in (30) are composed by two terms: a constant 

term representing the target DOA at the aperture center 𝜃0 and 

an 𝛼-dependent offset that takes into account the variation of 

the target DOA during the long dwell. The latter term can be 

adaptively compensated by varying its value in each (𝑓𝛼 , 𝛼) 
map, thus an integrated map (37) can be obtained for each tested 

𝜃: the estimated DOA 𝜃̂0 is the achieved by looking for the 

maximum value among the final integrated maps.  

The above procedure has been applied to the same simulated 

scenario in Fig. 6. Fig. 10 shows the achieved array patterns as 

a function of the DOA estimation error 𝛿𝜃 = 𝜃̂0 − 𝜃0, which 

has been obtained by storing the peak power of the 

corresponding integrated map. Fig. 10(a) shows the array 

pattern obtained when only the reference frame has been 

considered. Red line represents the ideal case. Because we are 

not considering any tapering applied to the array, the ideal 

pattern is a sinc function, centered on 𝛿𝜃 = 0°, with a mainlobe 

(at the -4 dB cut) equal to Θ 𝐾⁄ = 2.14°. Blue markers represent 

the estimated points and we can observe a good coincidence 

with the theoretical pattern (red line). The estimated pattern is 

centered on 𝛿𝜃 = 0° and its beamwidth is 2.15°. Fig. 10(b) 

shows the results obtained considering the integration of all the 

frames. We can observe the worsening of the performance with 

respect to the single frame pattern, due to a partial mismatch 

between the considered signal model and the actual conditions. 

Indeed in the considered scenario, because of the particularly 

long dwell considered in this simulation (~1 min), the target 

DFR slightly changes over the different frames (specifically, we 

found a difference of about 0.0245 Hz/s moving from the first 

to the last frame considered), thus entailing a worse angular 

resolution than the theoretical value. Nevertheless, the 

technique still provides a good capability in estimating the 

target DOA, with a resolution of about 2.17°. It is also worth to 

notice that the considered case is particularly unfavorable 

because of the very long dwell considered. By considering 

shorter dwell, the variation of the target DFR will be confined 

in the resolution cell, thus achieving DOA estimation 

performance closer to the theoretical expectations. 

Finally, the DOA estimation performance is investigated. 

Specifically the theoretical estimation performance is firstly 

quantified by evaluating the Cramer Rao Bound (CRB). 

Starting from results in [39], it could be shown that the CRB of 

the DOA estimation for a single frame is given by 

𝜎𝜃
2
𝑠.𝑓.

=
6

𝐾 𝑆𝑁𝑅 (
2𝜋

𝜆
𝑑 cos 𝜃)

2
(𝐾2−1)

       (40) 

being SNR the signal-to-noise ratio evaluated at the single 

(𝑓𝛼 , 𝛼) map level. When multiple frames are considered, the 

evaluation of the CRB is less straightforward, because of the 

non-coherent integration. As benchmark of the lower bound of 

the estimation accuracy achievable with the multi-frame 

processing, we evaluate the CRB in the hypothesis of a full 

coherent combination of the multi-frame maps, namely by 

assuming a sensitivity gain equal to N (thus replacing in the 

above CRB SNR with NSNR). Theoretical results are then 

compared to those from a simulated analysis. For the same 

scenario in Fig. 8, Fig. 11 compares the standard deviation of 

the DOA estimation error to the corresponding CRB (both 

normalized to the actual DOA value). Specifically, the dotted 

lines represent the CRB assuming the estimation realized over 

a single frame (blue line) or over the multiple frames in the 

hypothesis of a full coherent combination (red line), whereas 

the full lines represent the performance of the proposed 

Fig. 10. Array pattern for the single frame (a) and the multi-frame (b) cases. 

(a) 

(b) 

Fig. 11. Normalized standard deviation of the DOA estimation error. 



 

 

 

technique as evaluated by means of Monte Carlo simulations 

(10000 independent trials for each tested value of SNR). As it 

is apparent, in the single frame case the proposed technique 

reaches performance close to the CRB for SNR of about 10 dB, 

whereas the same level of performance is reached for 

significantly lower SNR levels in the case of multiple frames 

(namely, longer dwell times), thanks to the proper frequency 

and phase compensation carried out by the proposed technique. 

Noticeably, the estimation performance achieved with the 

multiple frames integration is quite close to the benchmark 

represented by the ideal full coherent processing, thus showing 

the effectiveness of the proposed long integration time 

technique for the joint detection and DOA estimation of targets 

of interest in the considered satellite-based configuration. 

V. CONCLUSIONS 

This paper addressed the detection of surface slow moving 

targets by means of an array passive radar based on low-EIRP 

satellite illuminators of opportunity. In addition to the 

exploitation of long integration times, the use of the receiving 

array provides both an increase in signal-to-noise ratio and the 

capability to estimate the target DOA with respect to the 

receiver. A full processing scheme has been proposed that 

performs a coherent space-time integration of the signals 

received at the K antenna elements during frames short enough 

so that the target behavior can be considered fully correlated, 

followed by an incoherent frame to frame integration. 

The presented analysis illustrated that the DFR is 

approximately constant over receiving antenna elements and 

temporal frames, whereas the DC is subject to a shift depending 

on the antenna element number 𝑘 and on the frame number 𝑛. 

These shifts are shown to be directly related to the actual DFR 

and to the bistatic range, therefore by applying a FrFT on each 

range cell, the shift is only present along the rotated frequency 

axis. Even more important, the shift depends on the FrFT angle 

(which is in a monotonic relationship with DFR), so that its 

compensation is especially natural in the FrFT rotated 

frequency-angle plane. After FrFT maps compensation, both 

coherent and incoherent integrations required for target 

detection are easily performed on a pixel-by-pixel basis, as well 

as the target DOA estimation, which is intrinsically provided by 

the integration procedure, as the compensation DOA angle 

providing the maximum output. 

The implementation of the DC shift compensation is 

discussed with reference to different strategies. Moreover, a 

few case studies are presented to illustrate the presented 

analysis of the behavior of the received signals and the 

effectiveness of the proposed processing technique. 
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