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Abstract

In transportation networks with limited capacities and travel times on the arcs, a class of problems attracting a growing scientific

interest is represented by the optimal routing and scheduling of given amounts of flow to be transshipped from the origin points to

the specific destinations in minimum time. Such problems are of particular concern to emergency transportation where evacuation

plans seek to minimize the time evacuees need to clear the affected area and reach the safe zones.

Flows over time approaches are among the most suitable mathematical tools to provide a modelling representation of these

problems from a macroscopic point of view. Among them, the Quickest Path Problem (QPP), requires an origin-destination flow

to be routed on a single path while taking into account inflow limits on the arcs and minimizing the makespan, namely, the time

instant when the last unit of flow reaches its destination.

In the context of emergency transport, the QPP represents a relevant modelling tool, since its solutions are based on unsplittable

dynamic flows that can support the development of evacuation plans which are very easy to be correctly implemented, assigning

one single evacuation path to a whole population. This way it is possible to prevent interferences, turbulence, and congestions

that may affect the transportation process, worsening the overall clearing time. Nevertheless, the current state-of-the-art presents

a lack of studies on multicommodity generalizations of the QPP, where network flows refer to various populations, possibly with

different origins and destinations.

In this paper we provide a contribution to fill this gap, by considering the Multicommodity Quickest Path Problem (MCQPP),

where multiple commodities, each with its own origin, destination and demand, must be routed on a capacitated network with

travel times on the arcs, while minimizing the overall makespan and allowing the flow associated to each commodity to be routed

on a single path. For this optimization problem, we provide the first mathematical formulation in the scientific literature, based on

mixed integer programming and encompassing specific features aimed at empowering the suitability of the arising solutions in real

emergency transportation plans.

A computational experience performed on a set of benchmark instances is then presented to provide a proof-of-concept for our

original model and to evaluate the quality and suitability of the provided solutions together with the required computational effort.

Most of the instances are solved at the optimum by a commercial MIP solver, fed with a lower bound deriving from the optimal

makespan of a splittable-flow relaxation of the MCQPP.
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1. Introduction

In transportation networks with limited capacities and travel times on the arcs, a class of problems attracting

a growing scientific interest is represented by the optimal routing and scheduling of given amounts of flow to be

transshipped from the origin points to the specific destinations in minimum time. Such problems are of particular

concern to emergency transportation where evacuation plans seek to minimize the time evacuees need to clear the

affected area and reach the safe zones.

Flows over time approaches are among the most suitable mathematical tools to provide a modelling representation

of these transportation problems from a macroscopic point of view. Firstly introduced by Ford and Fulkerson (1958,

1962), these methods rightly capture the dynamic evolution of the scenario e.g. the flow variation over time and the

time needed for the transhippment, for a complete survey see Aronson (1989), Koehler et al. (2009). Polynomial-time

algorithms have been proposed to solve some of these problems; however, in many general cases their NP-hardness

has been proven, see Ford and Fulkerson (1962), Hoppe (1995), Hoppe and Tardos (2000), Hall et al. (2003), Klinz

and Woeginger (2004). Flows over time problems may be applied to various real-life situation, e.g. road and air traffic

control, communication networks, production systems, and financial flows, see Powell et al. (1995), Aronson (1989).

Among this class of approaches, the Quickest Flow Problem (QFP) asks for sending a s-t flow (namely, a flow

directed from a source node s to a sink node t) taking into account the limitations of inflow on the arcs and such that the

last unit of flow arrives at destination as quickly as possible, thus minimizing the makespan of the evacuation process.

The QFP was shown to be solvable in strongly polynomial time by Burkard et al. (1993). A recent formulation can be

found in Lin and Jaillet (2015). The Evacuation Problem is an extension of the QFP to multiple origins and a single

sink, see Chalmet et al. (1982), Hamacher and Tjandra (2002). For the multicommodity generalization of the QFP,

namely, the Quickest Multicommodity Flow Problem (MCQFP), a valid fully polynomial time approximation scheme

has been provided in Fleischer and Skutella (2002, 2003) and Hall et al. (2003). Nevertheless, in a real management

of emergency transportation operations, a relevant drawback of the solutions provided by the QFP lies in the frequent

assignment of multiple and bifurcated paths to the s-t flow demand, requiring thus a group of evacuees to be divided

and routed on different ways to destination.

The Quickest Path Problem (QPP), extensively treated in the literature, see Chen and Chin (1990) and Pascoal et

al. (2006), copes with this issue requiring the origin-destination flow to be routed on a single path.

State-of-the-art presents a lack of studies on the multicommodity generalization of the QPP, where each commod-

ity, with its own origin, destination, and flow demand, has to be routed on a single path sharing the same capacitated

arcs with the other commodities, while minimizing the makespan. We refer to this as the Multicommodity Quickest

Path Problem (MCQPP), which reveals its dramatic relevance when unsplittable dynamic flows are necessary to pre-

vent all those sources of interference and congestion that may affect the transportation process worsening the overall

clearing time.

The literature presents a related problem for static network flows, the Multicommodity Unsplittable Flow problem

introduced by Kleinberg (1996) and the Multicommodity k-splittable flow problem, see Baier et al. (2005), Caramia

and Sgalambro (2008, 2010), and Gamst (2014). The unsplittable flow request has been studied by Mawson (2005)

and Hamacher et al. (2011) for clusters of people evacuating an area in a single-source graph. Their Quickest Cluster

Flow Problem is formulated as a non-linear model that accounts for one cluster size and single flow units (clusters

with size 1). For each given cluster a unique path to destination is determined. The NP-hardness has been proven for

general and tree networks i.e. single source-multiple sinks directed networks and with several sizes for clusters, see

Leiner and Ruzika (2011).

In this paper we provide, to the best of our knowledge, the first mathematical formulation in the scientific literature

for the MCQPP, based on mixed integer linear programming. Our aim is providing a valid mathematical support

to the development of evacuation plans to be used in real emergency transportation scenarios. A relevant issue to

be considered is therefore the operational implementation of the evacuation plans, that could be affected by human

behaviour as a reaction to the emergency situation. To favour an easy compliance of the interested populations to the

emergency transport plans, it is important to avoid as much as possible phenomena such as interferences, turbulence,

and congestions, arising in some cases for both vehicles and crowd flows. To this aim, we introduce to the above
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mentioned problem additional features allowing each population to move along a continuous and unified path from

the origin to the destination, also avoiding those chaotic situations caused by the concurrent overlapping on the same

shared arcs of flows from different populations. More in detail, we assume that a whole population might wait at the

source before its evacuation process starts, but then all the members of the population are routed through the same

unique path in an uninterrupted time sequence and further holdovers are not allowed. Moreover, the concurrent as-

signment of flows from different commodities to the same arc at the same time is forbidden.

The MCQPP is described in detail in Section 2: preliminaries are introduced in Section 2.1, a complete description

of the features of the considered problem is provided in Section 2.2, while in Section 2.3 we give the notation and the

detailed mixed integer formulation of our constrained MCQPP. In Section 3 we present a computational experience

performed on a set of benchmark instances to study the effects of the unsplittable flow constraints and other additional

restrictions and to provide a proof-of-concept for our original model. Instances are solved by a commercial MIP solver

and fed with a lower bound deriving from the optimal makespan of the MCQFP. The quality and suitability of the

provided solutions are evaluated and compared with the MCQFP in terms of solution quality, optimal makespan, and

required computational effort. Section 4 presents our conclusions and further developments.

2. The problem

2.1. Preliminaries and notation

In this paper we focus on dynamic network flow models with a discrete representation of the time horizon. A

discrete-time dynamic network flow problem is defined on a directed graph D = (V,A,T ) with V representing the

set of nodes, A the set of arcs, and T the time horizon discretized into a finite number of intervals. For every arc

(i, j) ∈ A we assume its attributes to be time independent: the capacity ci j ∈ Q+ defines the maximum number of flow
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units that can enter the arc at the same time, and the delay λi j ∈ Z+ specifies the time intervals needed to traverse the

arc from node i to node j with the flow on the arc progressing at a uniform rate. We assume the capacity of each node

to be unlimited. A discrete-time dynamic network flow is the amount of flow at each time interval for each arc in the

digraph, formally:

x : (A,T ) −→ Q+

Thus, the value of the xi jt variable represents the rate of flow, per time unit, crossing arc (i, j) at time t.
A discrete-time dynamic network flow problem can be solved through a time-expansion procedure that transforms it

into a static network flow problem on a time-expanded graph, introduced by Ford and Fulkerson (1958, 1962). Given

a directed graph D = (V,A,T ) with constant attributes and a time horizon T = [0, . . . ,T ], its time-expanded network

(T EN) is a directed graph DT = (VT ,AT ) that contains T -replica of the original network. Formally:

VT := V × T = {(i, t) | i ∈ V, t ∈ T }
AM := A× T = {((i, t), ( j, t′)) | (i, j) ∈ A, t′ = t + λi j ≤ T }
AH := V × T = {((i, t), (i, t + 1)) | i ∈ V, t = 0, . . . ,T − 1}
AT = AM ∪AH .

whereVT contains one copy of the node set of the underlying ′static′ network for each discrete time step andAM

contains the replica for every discrete time step of the original arcs with the same constant attributes. The additional

set AH contains the holdover arcs that allow the flow to wait at a node over a one time period. The capacity of an

holdover arc (i, i) is set equal to the i-node capacity. A discrete dynamic network flow can be thus represented as a

static flow in the corresponding time-expanded network. This reduction allows to solve some dynamic network flow

problems with standard well-known pseudo-polynomial algorithms, see Koehler et al. (2009), Ford and Fulkerson

(1958, 1962). The drawback of this approach is the dimension of the static network flow problem to be solved: the

more discretized the time horizon is, the larger the time-expanded network is, with relevant consequence on the solv-

ability of the problem (even prohibitive in many cases). On the other side a non accurate partition of the time horizon

usually presents a lack of precision to give consistent solutions to real applications.

Figure 2 depicts the time-expansion procedure of the digraph in Figure 1 over a time horizon of three time intervals:

the original five nodes, placed in the first vertical column, and arcs are reproduced along the time dimension (the

horizontal axis) making a separate copy for every discrete time instant and according to the arcs attributes. Holdover

arcs are added to connect each node in the time-expanded network with its replica at the next time layer.

2.2. Problem Description

In this paper we consider the Multicommodity Quickest Path Problem (MCQPP) providing a formal definition as

follows. We are given a time horizon discretized into a finite number of intervals, a network with constant attributes

over time (limited capacities and travel times on the arcs), and a set of commodities, each with its own source and

destination node and with an associated flow demand. Flows must be routed and scheduled on the network in such a

way as to respect at any interval time the inflow capacity of shared arcs and minimize the makespan, namely, the time

instant when the last unit of flow reaches its destination. Furthermore, each commodity must be assigned to a single

path, that is, the entire flow of a commodity has to be enrouted through the same unique path.

The problem represents a relevant and easy to implement tool in the context of emergency transport as it strictly

assigns a unique evacuation path to a whole population. Due to operational reasons related to the need of minimizing

situations of interferences, turbulence, and congestion during the transportation process, we account for the following

additional constraints.

Uninterrupted Scheduling. The presence of limited inflow capacities on the arcs may not allow an entire population to

leave its source at the same instant. In this case a commodity can be split into subsets, each of them being scheduled at

different time intervals. The first unit of flow leaving the source univocally determines the path for the whole original

demand of the commodity. The Uninterrupted Scheduling feature forces subsets of the same commodity to be sched-

uled on consecutive and uninterrupted time intervals and it prohibits further holdovers. This first additional request is
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meant to increase the regularity of the evacuation process and reduce every possible interruption and perturbation in

the process once it started. Note that by these constraints a feasible flow for a given commodity corresponds in the

time-expanded network to a temporarily and compact repetition of the path, where the number of copies depends on

how the flow demand has been scheduled at its origin.

Non-contemporaneity of flows. When more commodities share the same arc at the same time, there is a node in the

time-expanded network where the flows coming from different arcs have to be merged. This situation is a recognized

source of turbulence in flow dynamics. Hence, in our formulation we impose the non-contemporaneity of differ-

ent flows on the same arc. This way we also prevent commodities from being mixed, allowing a safer routing of

populations through the network.

2.3. Problem Formulation

In the remainder of this section we present our formulation in detail.

Nomenclature

D = (V,A,T ) original network

K = {1, . . . ,K} set of commodities

(sk, dk, σk) = (origin, destination, demand) of commodity k
S = {sk : k ∈ K} origin nodes

D = {dk : k ∈ K} destination nodes

N intermediate nodes

V = {S ∪ N ∪D} set of nodes

A = {(i, j) : i, j ∈ V} set of arcs

T = {1, . . . ,T } time horizon

ci j capacity of the arc (i, j)
λi j delay of the arc (i, j)
δ+(i) = { j : (i, j) ∈ A} outbound arcs from node i
δ−(i) = { j : ( j, i) ∈ A} inbound arcs of node i

xk
i jt units of flow of commodity k leaving node i at time t heading to node j

yk
i jt binary variable equals 1 iff commodity k leaves node i at time t heading to node j

Basic Assumptions. For each commodity k ∈ K we suppose that no arc is departing from the destination node, that is

δ+dk
= ∅ and no arc enters the origin node except loops, δ−sk

= {sk}. Furthermore, loops at source nodes have by default

delay equal to one, λsk sk = 1 ∀k ∈ K . We optimize the evacuation process asking for each commodity to reach its

safe destination within a time horizon T .

Objective function. The MCQPP seeks to minimize the makespan, namely, the time needed to completely clear the

given network with each unit of flow demands arrived at its destination. The makespan is represented in the objective

function by the ν term.

We also consider an additional term defined as a weighted sum of all the arcs among the time horizon, where

holdover arcs at the source nodes present a smaller weight than the other arcs, see (1):

C :=
∑

k∈K ,t∈T

∑

(i, j)∈A: i� j

λi jyk
i jt +

∑

(i, j)∈A: i= j

λi j

2
yk

i jt

D |A| |T |
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where D = max
(i, j)∈A

λi j represents the maximal value of delay among all arcs. The aim of this term is to improve the

quality of the proposed solutions penalising evacuation plans that present long evacuation paths, in terms of number

of visited nodes, and forcing when possible the model to select solutions with equal makespan and lower number of

nodes.

min ν +C (1)

c̃k
jt(y

k
jdkt − yk

jdk(t+1)) ≤ ν ∀k ∈ K , t ∈ T , j ∈ δ−(dk). (2)
∑

j∈δ+(sk)

xk
sk j0 = σk ∀k ∈ K . (3)

∑

j∈δ−(dk)

T−λ jdk∑

t=0

xk
jdkt = σk ∀k ∈ K . (4)

∑

j∈δ+(sk), j�sk

yk
sk j0 ≤ 1 ∀k ∈ K . (5)

yk
sk sk(t+1) ≤ yk

sk skt ∀k ∈ K , t ∈ T . (6)
∑

j∈δ+(sk), j�sk

yk
sk j(t+1) ≤ yk

sk skt ∀k ∈ K , t ∈ T . (7)

∑

j∈δ+(i)

yk
i jt ≤ 1 ∀k ∈ K , i ∈ N , t ∈ T . (8)

yk
iit = 0 ∀k ∈ K , i ∈ N , t ∈ T . (9)

1 + yk
sk j(t+1) ≥ yk

sk skt + yk
sk jt ∀k ∈ K , j ∈ δ+(sk), j � sk, t ∈ T . (10)

2 + yk
i j(t+1) ≥ yk

i jt + yk
mi(t−λmi)

+ yk
mi(t+1−λmi)

∀k ∈ K , i ∈ N , j ∈ δ+(i),m ∈ δ−(i), t ∈ T : t − λmi ≥ 0. (11)
∑

k∈K
yk

i jt ≤ 1 ∀(i, j) ∈ A, i � j, t ∈ T . (12)

∑

k∈K
xk

i jt ≤ ci j ∀(i, j) ∈ A, t ∈ T . (13)

∑

j∈δ−(i)

xk
ji(t−λ ji)

−
∑

j∈δ+(i)

xk
i jt = 0 ∀k ∈ K , i ∈ N , t ∈ T : t − λ ji ≥ 0. (14)

∑

j∈δ−(i)

yk
ji(t−λ ji)

−
∑

j∈δ+(i)

yk
i jt = 0 ∀k ∈ K , i ∈ N , t ∈ T : t − λ ji ≥ 0. (15)

∑

j∈δ−(sk)

xk
jsk(t−λ jsk ) −

∑

j∈δ+(sk)

xk
sk jt = 0 ∀k ∈ K , t ∈ T : t > 0. (16)

xk
i jt ≤ ci jyk

i jt ∀k ∈ K , (i, j) ∈ A, t ∈ T . (17)

yk
i jt ∈ {0, 1} ∀k ∈ K , (i, j) ∈ A, t ∈ T . (18)

xk
i jt ≥ 0 ∀k ∈ K , (i, j) ∈ A, t ∈ T . (19)

ν ≥ 0. (20)

Constraints. Linear Constraints (2) estimate the makespan of the transportation process. Specifically, they deter-

minate the clearing time of each commodity, i.e. the exact instant time in which the last unit of flow reaches its

destination. The parameters are defined as c̃k
jt = (t + λ jdk ). Constraints (3) impose the origin evacuation node for

each commodity; note that they don’t force the flow to start the evacuation process at time zero as the set of outbound

arcs includes loops. Constraints (4) impose the destination node for the flow of each commodity. Constraints (5),

(6) and (7) cope with the path conservation at the source nodes. Specifically, they allow to postpone the start of the

transportation process of each commodity by enrouting the original demand through the holdover arc of the source
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Fig. 4. Effect of constraints (11).

node. The evacuation starts whenever the entire flow or a subset of it is enrouted through a single path. Constraints (8)

ensure that every commodity doesn’t further split its flow into subsets among the evacuation process. Constraints (9),

(10), and (11) represent the core of our formulation as they deal with the routing of each commodity through the same

unique path with no holdovers at intermediate nodes and the uninterrupted scheduling of its flow demand. Figures 3

and 4 clarify how these constraints work for a given commodity. We refer to the same original and time-expanded

network of Figures 1 and 2 with node 1 as the source and node 5 as the destination. Intermediate nodes are labelled

as a, b, and c. Bold arcs in Figure 3 show that at time zero a subset of the original flow demand has been scheduled to

start its evacuation through the arc (s1, b) whereas the rest waits at the source. In this situation the constraint of type

(10) with t = 0, sk = s1, j = b forces to enroute at the next time interval another subset through the same arc (bold

dashed arc). This constraint ensures the uniqueness of the path right from the source avoiding large distances between

subsets of the same original flow.

The same idea is applied to intermediate nodes: Figure 4 depicts the effect of Constraints (11) in an hypothetical

next step with t = 1, i = b, m = s1, j = d1. Two subsets of flow of the same commodity are enrouted through the same

arc in consequent time intervals and the leading subset is further enrouted through the arc (b, d1) at time 1. Again, the

subset behind is forced to be assigned to the same arc at the next time interval (bold dashed arc). The combination of

Constraints (10) and (11) ensures that once a first unit of flow starts its evacuation process, parallel and uninterrupted

paths are assigned till the entire original flow has been routed. Constraints (12) impose the non-contemporaneity of

flows associated to different commodities for each arc at the same time.

The remainder of the formulation simply impose standard flow constraints in a capacitated time-dependent net-

work: constraints (13) impose the inflow arc capacity limitations; Constraints (14) and (16) ask for the conservation

of flows for each commodity both at intermediate and source nodes, Constraints (15) ensure the path conservation at

intermediate nodes. For each commodity at any time Constraints (17) impose the amount of flow to be null whenever

the arc is not assigned.

In some networks sources might be transition points in the evacuation path of other different commodities. To

account for this general situation, we simply have to extend for each commodity k ∈ K our Constraints (8), (9), (11),
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(14), (15) to the case i ∈ N∪S with i � sk. We still suppose this cannot happen for destination nodes as they represent

safe areas.

3. Computational Results

In this section we present results obtained by optimizing evacuation processes both with the Multicommodity

Quickest Flow Problem (MCQFP) and with the presented formulation of the Multicommodity Quickest Path Problem

(MCQPP). The computational tests have been conducted on a benchmark set solved to optimality using ILOG CPLEX

v. 12.6.0.0 solver in parallel opportunistic mode (up to 20 threads) on a 64bit Intel Xeon CPU at 2.80GHz with 32 GB

memory, running Ubuntu 14.04.2, with a time limit of 3 hours for each test.

Our benchmark testbed is represented by a set of 20 instances based on two directed grid networks, the first with

50 nodes and 186 arcs and the second with 100 nodes and 292 arcs. Networks are populated with k = 1, 2, 3, 4, 5
commodities and two different levels of flow, namely Level a and Level b, with the second presenting a higher volume

of flows. The time horizon considered for the evacuation is divided into 16 time intervals and the length of all arcs is

fixed as equal to one time period.

The aim of this section is to provide a proof-of-concept for the presented model and to evaluate the quality of

the provided solutions. Note that the value of the optimal solution of the MCQFP model represents a valid lower

bound for the makespan of the MCQPP model on the same instance. Hence, we improve the resolution process of

our MCQPP model by feeding the solver with the optimal solution of the MCQFP on the same instance as a lower

bound.

In Table 1 we report for each instance the structure of the network: number of nodes |V|, arcs |A|, and commodities

|K|. Column MCQFP Makespan represents the optimal objective function obtained with the MCQFP and the CPU
Time column the computation time, expressed in seconds, required to solve the instance. The remaining columns

similarly refer to the MCQPP model. If the instance is solved to proven optimality within the time limit we provide

the GAP as a percentage. The last column represents the ratio of the MCQPP makespan over the MCQFP makespan

values. This way we compare the MCQFP makespan with the best optimal feasible solution obtained with our

MCQPP model.

The computational experiments show how the MCQFP was able to solve all instances to optimality in a very low

computational time, on average 0.5 seconds with both levels of population.

The introduction of the additional specific constraints related to the MCQPP, such as flow unsplittability, Non-

contemporaneity, and Uninterrupted Scheduling, produced a moderately increase in the makespan of all the instances

and a considerable increase in the computational time with a total of 17 out of 20 instances solved to proven optimality

within the time limit. In terms of objective function values, the makespan of the MCQPP deteriorated by less than

50% on the average, with a mean ratio equal to 1.49 with the Level a of population and by less than 70% with a

ratio equal to 1.68 with the Level b. With these values the MCQPP proves to be more sensitive than the MCQFP to

changes in the level of population.

The overall experiments prove the validity of our model to correctly represent the original presented problem.

Furthermore, one can argue that the MCQPP proposed in this paper provides solutions with a limited increase in

the makespan offering a drastic reduction of the risk of interferences, congestions, bottlenecks and the production of

chaotic situations with respect to the MCQFP solutions.

Additional computational tests were performed in order to evaluate the impact of Constraints (12) on the quality

of the solutions. All of the considered instances present an equal value for the makespan (objective function) when

Contraints (12) are relaxed, while the only remarkable difference is related to the computational effort, that is increased

by the presence of Constraints (12).

4. Conclusion and outlook

In this paper we considered the Multicommodity Quickest Path Problem (MCQPP). Our research is motivated by

real applications to emergency transportation processes that aim at providing a decision support system for the routing

and scheduling of populations with their own origin, destination, and flow through single unique paths. We presented

an original mixed integer linear programming formulation for the MCQPP with specific constraints introduced in
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Table 1. Computational experiments with Level a and Level b of population.

Instance MCQFP MCQPP

Name |V| |A| |K| Makespan CPU Time Makespan CPU Time GAP Ratio

(opt ∗) (sec.) (opt ∗) (sec.)

2-1-a 50 186 1 6∗ 0.06 8∗ 11.75 – 1.33

2-2-a 50 186 2 5∗ 0.15 8∗ 6.75 – 1.60

2-3-a 50 186 3 6∗ 0.25 9∗ 69.42 – 1.50

2-4-a 50 186 4 5∗ 0.30 8∗ 1058.89 – 1.60

2-5-a 50 186 5 6∗ 0.41 9∗ 1247.52 – 1.50

3-1-a 100 292 1 6∗ 0.19 9∗ 109.60 – 1.50

3-2-a 100 292 2 6∗ 0.36 10∗ 862.62 – 1.67

3-3-a 100 292 3 6∗ 0.55 7∗ 7472.38 – 1.17

3-4-a 100 292 4 6∗ 0.57 9∗ 3705.80 – 1.50

3-5-a 100 292 5 7∗ 2.13 – 10800.00 ∞ –

2-1-b 50 186 1 6∗ 0.03 10∗ 5.18 – 1.67

2-2-b 50 186 2 6∗ 0.09 10∗ 15.30 – 1.67

2-3-b 50 186 3 6∗ 0.11 11∗ 54.53 – 1.83

2-4-b 50 186 4 6∗ 0.17 9∗ 990.41 – 1.50

2-5-b 50 186 5 6∗ 0.19 10∗ 3388.02 – 1.67

3-1-b 100 292 1 6∗ 0.10 11∗ 54.87 – 1.83

3-2-b 100 292 2 6∗ 0.21 12∗ 5169.38 – 2.00

3-3-b 100 292 3 6∗ 0.31 8∗ 1016.92 – 1.33

3-4-b 100 292 4 6∗ 0.39 16 10800.00 61.82% –

3-5-b 100 292 5 8∗ 2.20 – 10800.00 ∞ –

order to prevent the generation of interferences, turbulence, and congestions: Uninterrupted Scheduling of subsets of

flows from the same commodity and Non-contemporaneity of different populations on the same arcs at the same time.

We then performed a computational experience to provide a proof-of-concept of our proposed model and evaluate

the quality of its solutions. The benchmark testbed collects connected grid networks with increasing number of

commodities and values of populations. We compared the makespan for the Multicommodity Quickest Flow Problem

(MCQFP) with the complete formulation of the Multicommodity Quickest Path Problem (MCQPP) introduced in

this paper. The results of the computational experiments confirm the suitability and the quality of the solutions of

the proposed model for the specific applications arising in the field of emergency transportation which motivated our

work.

An important direction for future researches in this field consists in the improvement of the proposed formulation,

by studying the relevant properties of the model, and the design of meta-heuristic approaches to compute valid upper

bounds for the considered problem. Moreover, both micro-simulation and macro-simulation approaches (see for

instance Barcelo (2005) (AIMSUN) and Caramia et al. (2010) (Fluidsim)) could be adopted to assess and compare

the expected outcomes of the transportation plans produced by the MCQFP and the MCQPP optimization problems.
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