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Chapter 1

Introduction

Cancer is still a major cause of serious damage to the organs in the human body.
Surgery, chemotherapies and radiotherapies have played key roles in medical care.
However, these methods of treatment do not obviously represent a real cure, based
on experiences. Surgery will scarcely suffice all by itself for a complete and long-term
elimination of tumours. Radiotherapy and chemotherapy influence both malignant
and healthy cells and make side effect issues. Preventive methods of cancer treatment
and more successful strategies are obviously required observing. In recent decades,
cancer immunotherapy has been the line, along which a lot of efforts are made to
achieve the goal. Cancer immunotherapy aims at stimulating the human immune
system in order to be able to fight cancer cells. Immunotherapy refers to the use
of external sources of cytokines commonly with adoptive cellular immunotherapy
(ACI therapy). The elimination of cancer cells and simultaneously the avoidance of
side effects is a problem which must be dealt with, by formulation of an optimal
control. Obviously, the optimality criteria are the minimization of cancer cells
during and at the end of treatment, maximization of natural killer cells during
clinical treatment and minimization of the administration. Over decades of research,
knowledge of optimal control theory has advanced significantly. The highlights
of these advancement are the introduction of calculus of variations elaborated by
Leonhard Euler [53], dynamic programming pioneered by Richard Bellman [14] and
maximum principle of Lev Pontryagin [120] for dealing with optimal control problem
with constrained states and bounded controls. On the other hand, the numerical
approaches to the optimization have developed significantly during recent years.

1.1 Research Topics and Motivations

The interaction between cancer cells and immune system can be modeled by dy-
namical systems. Various models describing the dynamics of cancer immunotherapy
have been introduced. The model presented by Kirschner and Panetta [87] is one of
the most famous mathematical models of cancer-immune interaction. An advanced
version of the model may include a time dependent external sources of medical
treatment. During the last three years, the focus of this research has been the
presentation of an optimal therapeutic protocol for cancer-immunotherapy with
using the state trajectories governed by the Kirschner and Panetta model. Solutions
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to the optimal control problems, considered in this thesis, are usually piecewise
continuous controls and more specifically, in most cases the optimal controls switch
between the lower and upper bounds, the so-called bang-bang controls. The nature
of these problems leads mainly to the reduction in the possibility of obtaining the
optimal solution, generally related to numerical cause. Furthermore, these optimal
problems belong to the class of two-point boundary value problems. In order to
seek for the solution, an initial guess is required to initialize the process of finding
the optimal control. But, the key issue is that any initial guess for control does not
necessarily leads to finding the optimal control. In most cases, the initial guess is
such that the process does not even converge to a solution and more important, the
convergence to the optimal control is almost impossible. Therefore, in this thesis, a
hybrid of the particle swarm optimization and the numerical methods of solving the
optimal control problems is used to find the optimal therapeutic protocols.

Since most physical phenomena such as biological systems possess in their nature
after-effect or persistent memory, they could be more appropriately described by
fractional differential equations. This is the motivation behind consideration of a
fractional model based on the Kirschner and Panetta model. In the thesis, the
fractional optimal control problems have been dealt with, by using the particle swarm
optimization, where the input functions are considered to be bang-bang controls.

The population of cancer cells can be described by a limit-growing function such
as logistic equation. The sigmoidal behaviour of this function makes it useful to
be utilized in a wide variety of applications and caused it to be one of the most
versatile models in natural sciences and therefore the fractional logistic equation
would be a relevant problem to be dealt with. The discussion of the fractional logistic
equation is motivated by the relevance of this function to a wide range of applications
and in addition, by the difficulties involved in the analysis of nonlinear fractional
equations emerging from the biological systems. As it is known, the exact solution to
fractional logistic equation is still an open problem to be solved. The only possible
approach in solving the fractional logistic equation is numerical methods of solving
fractional equations. In this regard, a fractional integro-differential equation is
introduced, namely modified fractional logistic equation, for which an exact solution
is represented. The behaviour of the solution to the modified fractional logistic
equation (is illustrated that) is in good agreement with numerical solution of the
fractional logistic equation. Indeed, finding the exact solution of fractional differential
equations is even more difficult than those of classical differential equations. In the
majority of cases, it is only possible to treat the fractional differential equations
numerically. The interesting feature of the proposed integro-differential equation is
that it possesses a term related to the classical logistic equation. The method which
has been utilized for the fractional logistic equation may be suitable for the analysis
of nonlinear fractional differential equations in any field of applied mathematics.

The fractional differential equations are much more difficult than classical dif-
ferential equations to be numerically dealt with. As it is known, computational
software such as MATLAB and MATHEMATICA have provided robust built-in
codes to solve ordinary differential equations. On the other hand, solutions to the
fractional differential equations have not been considered in almost all computing
environments. Thus, researchers must try to solve these equations and to provide
codes by themselves in order to numerically treat these equations. Non-local property
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of fractional differentiation operators is a major difficulty in devising methods for
numerical solutions to fractional differential equations. Another non-trivial issue
is related to solutions of equations involved in implicit methods. It can be obvi-
ously seen that many researchers take the incorrect approach in solving fractional
differential equations. Taking no notice of what the nature of fractional differential
equations is, polynomial approximation based method are used to represent solutions
to this kind of problems. This motivated us to describe in detail, for the first time,
the incorrect basis on which these methods are devised.

As the fractional differential equations are proved extremely important for
modeling natural phenomena such as biological systems, the inverse problem of
determination of fractional order of these equations have been under specific consid-
eration. Such problems have been investigated, for instance, in fractional diffusion
equation and inverse boundary value problem for semi-linear fractional telegraph
equation. Motivated by this, the inverse problem of order estimation of some classes
of fractional linear differential equations is considered, based on asymptotic behaviour
of solutions to these type of fractional equations. This topic includes also the linear
fractional differential equations in the sense of sequential fractional derivatives. The
fractional order estimation is, in addition, applied to the modified fractional logistic
equations and asymptotic behaviour of its solution is analysed.

1.2 Publications Related to this Thesis

• Mirko D’Ovidio, Paola Loreti, and Sima Sarv Ahrabi. Modified fractional
logistic equation. Physica A: Statistical Mechanics and its Applications, 505,
818–824, (2018)

• Sima Sarv Ahrabi and Alireza Momenzadeh. On Failed Methods of Frac-
tional Differential Equations: the Case of Multi-step Generalized Differential
Transform Method, (Accepted in Mediterranean Journal of Mathematics)

• Sima Sarv Ahrabi, Alireza Momenzadeh. Approximate solution of a cancer-
immunotherapy model by the application of differential transform and Adomian
decomposition methods, (submitted 2018)

• Sima Sarv Ahrabi. A hybrid method for optimal control applied to cancer-
immunotherapy (submitted 2018).

• Sima Sarv Ahrabi. Optimal control in fractional model of cancer-immunotherapy
(submitted 2018).

• Mirko D’Ovidio, Paola Loreti, Alireza Momenzadeh, and Sima Sarv Ahrabi.
Determination of order in linear fractional differential equations (submitted
2017)

1.3 Contributions

The main contributions of the thesis are:
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• Providing the optimal therapeutic protocols for cancer immunotherapy based
on the KP model, by providing a MATLAB code devised on the basis of a
hybrid of the PSO and numerical approaches to Pontryagin maximum principle

• Providing the optimal therapeutic protocols for cancer immunotherapy based
on the fractional KP model, by providing a MATLAB code devised by using
the PSO.

• Inverse problem of determination of fractional order for several types of frac-
tional linear differential equations.

• Introduction of a novel fractional integro-differential equation, to which the
exact solution is in good agreement to numerical solution to FLE in such a
way that while the order tends to one, the proposed solution tends to the
numerical solution to the FLE.

• A detailed explanation of some famous but failed methods of FDEs is provided
such as MSGDTM. It is proved that the basis on which these type of approaches
are devised, will be unfit to FDEs.

1.4 Thesis Outline
• Chapter 2 is allocated to introduce a model of cancer immunotherapy and

finding the solutions by using methods based on polynomials approximations.

• In chapter 3 some preliminaries to fractional calculus are discussed and a
fractional model of cancer immunotherapy is introduced. then the existence of
the solutions and stability analysis are represented.

• Chapter 4 discusses numerical methods for fractional differential equations
and. Then, a commonly used method, which has been constructed on incorrect
basis, is described and illustrated to be unfit to fractional equations.

• In chapter 5, a fractional integro-differential equation, which is mentioned as
modified fractional logistic equation, and its exact solution are introduced.

• Chapter 6 is allocated to the estimation of fractional-order in some linear
fractional differential equations and in addition.

• Chapter 7 describes optimal control of the Kirschner and Panetta model in
two cases: ordinary and fractional model of Kirschner and Panetta.

• Chapter 8 represents a brief review on the obtained results.



Chapter 2

Cancer Immunotherapy

Cancer is one of the most serious illnesses in all of the world. It is still a major
cause of serious damage to the organs in the human body. Surgery, chemotherapies
and radiotherapies have played key roles in medical care. However, these methods
of treatment do not obviously represent a real cure, based on experiences. Surgery
will scarcely suffice all by itself for a complete and long-term elimination of tumours.
Radiotherapy and chemotherapy influence both malignant and healthy cells and
make side effect issues. Preventive methods of cancer treatment and more successful
strategies are obviously required observing. In recent years, wide research is con-
ducted related to experimental and theoretical immunology. Pioneering research
has been undertaken into the cancer immunotherapy as a method of enhancing the
features of cancer treatment, leading to major medical advances [87,127–129,140].
Immunotherapy has been considered as one of the most effective methods of dealing
reasonably with cancer by reinforcing humans’ natural defenses in order to cope
with cancer. Immunotherapy refers to the use of natural and synthetic substances to
boost the immune response. The way that immunotherapy functions is as follows:

• restraining or decreasing the growth of tumours.

• preventing cancer cells from spreading to adjoining organs.

• increasing the immune system’s capability to destroy cancer cells.

Stimulation of immune system could be achieved by using cytokines in addition to
adoptive cellular immunotherapy (ACI). The main cytokine which regulates white
blood cells and is mainly produced by CD4+ T cells is named interleukin-2 (IL-2).
If lymphocytes are cultured in the presence of IL-2, it leads to the development of
effector cells (or simply effectors) such as lymphokine-activated killer cells (LAK
cells) which are capable of killing cancer cells. Effector T cells are a particular case
of effector cells. LAK cells are then injected into tumour bearing host. This is
mentioned as IL-2 and is usually done in conjunction with large amounts of IL-2.

The dynamics of tumour-immune interaction have been studied over the past
years and several theoretical models have been developed by researchers to indicate
and analyse the influence of immune system and tumour on each other. In [89],
the authors have presented a mathematical model involving ordinary differential
equations describing the T lymphocyte response to the growth of an immunogenic



6 2. Cancer Immunotherapy

tumour. Adam [2] has developed and analysed a system consisting of two ordinary
differential equations, which represents the effect of vascularization within a tumour.
In [36] the authors have introduced some detailed models including 8-11 differential
equations and 3-5 algebraic equations to illustrate the T lymphocyte interactions,
which generates anti–tumour immune response. Kirschner and Panetta [87] have
investigated the cancer dynamics and presented a model, which richly describes the
interaction between the effector cells, the tumour cells and the concentration of IL-2
and addresses long-term and tumour recurrence and short-term tumour oscillations.
Banerjee and Sarkar [13] have enhanced a system of delay ordinary differential
equations to describe the reciprocal interaction between tumour, T-lymphocytes
and T-helper cells. More mathematical models, incorporating delay and stochastic
models could be observed in [51]. The Kirschner-Panetta model (KP), which has
been first introduced in [87], has selected rich immune-tumour dynamics, nevertheless
remains as straightforward as possible and incorporates crucial factors of cancer
immunotherapy. The model will be described in more detail in Section 2.1.

2.1 Kirschner-Panetta Model
The KP model indicates the dynamics of immune-cancer by defining three popu-
lations, namely E (t), the effector cells such as cytotoxic T-cells; T (t), the tumour
cells; and I (t), the concentration of IL-2:

dE
dt = cT − µ2E + p1EI

g1 + I
+ s1 , (2.1)

dT
dt = r (T )− aET

g2 + T
, (2.2)

dI
dt = p2ET

g3 + T
− µ3I + s2 , (2.3)

with the initial conditions:

E (0) = E0 , T (0) = T0 , I (0) = I0 . (2.4)

Equation (2.1) represents the rate of change in effector cells. The first and third
term on the right-hand side of (2.1), show the stimulation of effector cells. The
parameter c indicates the immunogenicity of the tumour, i.e. the ability of the
tumour to provoke an immune response. The third term, which is the model of
Michaelis-Menten kinetics shows the saturated effects of the immune response. The
parameter s1 represents an external source of effector cells as medical treatments.
The parameter µ2 indicates the decay rate of the effectors. The natural lifespan of
the effector cells is in fact 1

µ2
days. The rate of change of the tumour is described in

(2.2). The tumour growth, r (T ), can be described in terms of a linear function or
a limiting-growth function. The parameter a represents the ability of the immune
system to resist the tumour, i.e. the rate of interaction between tumour and effector
cells. Equation (2.3) indicates the rate of change of IL-2 concentration. The first
term on the right-hand side of (2.3) has Michaelis-Menten kinetics and illustrates
that effector cells are stimulated by the interaction with tumour cells and therefore
this interaction will be a source of IL-2. The decay rate of IL-2 is expressed by the
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parameter µ3 and finally s2 is an external source of IL-2 as medical treatment. The
units of g1, g2, g3 and b are volume and the units of the other parameters are day−1.

2.1.1 Logistic Equation

The rate of change of the tumour cells, r (T ), can be described by a linear growth
term such as r (T ) = r2T , or by a type of limiting-growth term such as logistic growth
or Gompertz model. The logistic equation (LE), which is mentioned on occasion
as the Verhulst model, is a population growth model introduced and published by
Pierre Verhulst [143], which is based on the competition between proliferation and
death of the population. The model represents a well-known nonlinear differential
equation in the field of biology and social sciences:

dN (t)
dt = kN (t)

(
1− 1

Nmax
N (t)

)
, t ≥ 0 , (2.5)

where k is the rate of maximum population growth constrained to be a real positive
number, N (t) is the population and Nmax is the carrying capacity, i.e. the maximum
attainable value of population. Carrying capacity can be defined as maximum
number of individuals in a population that can be supported by the environment.
Both sides of (2.5) are divided by Nmax, and the normalization of population to its
maximum sustainable value is named u = N(t)

Nmax
:

du
dt = ku (1− u) , t ≥ 0 , (2.6)

for which there is an exact solution

u (t) = u0
u0 + (1− u0) e−kt , t ≥ 0 , (2.7)

where u0 is the initial state at the time t = 0. The sigmoidal behavior of the solution
to the LE has been used to model the tumor growth [55] and so forth. The logistic
function is, therefore, utilized to show the rate of change of tumour cells in (2.2):

r (T ) = r2T (1− bT ) . (2.8)
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Figure 2.1. Graph of Tumour (T ), for the initial condition T0 = 104, the carrying capacity
1
b = 109 and the immune response a = 0 .

The value of the parameter c, which is defined as the immunogenicity, varies
from patient to patient and depends greatly upon the cancer type. Larger values of
c represent tumour cells showing a well-recognized antigen. The tumour immuno-
genicity plays the key role in the dynamics. As mentioned before, the parameter a,
in (2.2), indicates the immune response. If the immune response is neglected, i.e.
a = 0, the dynamics of the tumour cells will be governed by the LE:

dT
dt = r2T (1− bT ) , (2.9)

where r2 = 0.18 and b = 10−9 are given in Table 2.1. The graph of tumour cells is
illustrated in Fig. 2.1. By referring to (2.8) and Table 2.1, it is observed that the
carrying capacity of the tumour cells, 1

b , is equal to 109.

2.1.2 Scaling

The values of the parameters in (2.1)-(2.3) and (2.8) are given in Table 2.1.

Table 2.1. Values of parameters.

Parameters in (2.1) Parameters in (2.2) Parameters in (2.3)
0 ≤ c ≤ 0.05 r2 = 0.18 p2 = 5
µ2 = 0.03 b = 1× 10−9 g3 = 1× 103

p1 = 0.1245 a = 1 µ3 = 10
g1 = 2× 107 g2 = 1× 105
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The KP model is a stiff system of ordinary differential equations, since a very
small disturbance in time results in very large changes in some of the variables.
Thus, without an appropriate scaling, the prevalent numerical methods of solving
differential equations may fail. The following scaling could be utilized in order to
normalize the model:

x = E

E0
, y = T

T0
, z = I

I0
,

with E0 = T0 = I0 = 104. The non-dimensionalized coefficients are given in Table
2.2. The scaled model is obtained by eliminating the overbar notation:

Table 2.2. Scaled Coefficient.

Coefficients in (2.1) Coefficients in (2.2) Coefficients in (2.3)

c̄ = cT0
E0

r̄2 = r2 p̄2 = p2E0
I0

µ̄2 = µ2 b̄ = bT0 ḡ3 = g3
T0

p̄1 = p1 ā = aE0
T0

µ̄3 = µ3

ḡ1 = g1
I0

ḡ2 = g2
T0

s̄2 = s2
I0

s̄1 = s1
E0

dx
dt = cy − µ2x+ p1xz

g1 + z
+ s1 ,

dy
dt = r2y (1− by)− axy

g2 + y
,

dy
dt = p2xy

g3 + y
− µ3z + s2 , (2.10)

with the initial condition

x (0) = 1 , y (0) = 1 , z (0) = 1 . (2.11)

The values for scaled parameters is represented in Table 2.3.

Table 2.3. Values of scaled parameters.

Parameters in Eq. (2.1) Parameters in Eq. (2.2) Parameters in Eq. (2.3)
0 ≤ c ≤ 0.05 r2 = 0.18 p2 = 5
µ2 = 0.03 b = 1× 10−5 g3 = 0.1
p1 = 0.1245 a = 1 µ3 = 10
g1 = 2× 103 g2 = 10
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2.2 Existence of Solutions

An improved version of KP model may include a time-dependent external sources of
treatment. In this case, the KP model is expressed as follows:

dx
dt =cy − µ2x+ p1xz

g1 + z
+ s1u (t) ,

dy
dt =r2y (1− by)− axy

g2 + y
, (2.12)

dz
dt = p2xy

g3 + y
− µ3z + s2u (t) .

In fact, the external sources of drugs are considered as the control functions. The
control function u (t) shows the percentage of the maximum amount of drugs. Thus,
u (t) belongs to the set of admissible controls, U , such that

U = { u (t) piecewise continuous | 0 ≤ u (t) ≤ 1 ,∀ t ∈ [0, tf ] , tf ∈ R } . (2.13)

In this section, the goal is to show the existence of solution to (2.12). At first, it is
shown that the solutions to (2.12) are bounded. A detailed stability analysis and the
positivity of solutions to (2.10) have been discussed in [87]. Solutions to (2.12) are
positive for all t ∈ [0, tf ] and therefor bounded below. The supersolution of (2.12)
can be represented by the solution of

dx̄
dt =cȳ + p1x̄+ s1 ,

dȳ
dt =r2ȳ ,

dz̄
dt =p2x̄+ s2 , (2.14)

which can be written as  ˙̄x
˙̄y
˙̄z

 =

p1 c 0
0 r2 0
p2 0 0


x̄ȳ
z̄

+

s1
0
s2

 . (2.15)

Equation (2.15) represents a linear system with constant coefficients in a finite time
interval. Thus, the supersolutions x̄, ȳ and z̄ are bounded and consequently the
solution to system (2.12) is bounded.

Equation (2.12) can be represented as

Ẋ = f(t,X, u) , (2.16)

with the initial condition

X0 =

x (t0)
y (t0)
z (t0)

 , (2.17)
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where (t0, X0) ∈ D, and D is a nonempty open subset of R×R3, and the vectors X
and f : D → R3 denote respectively

X (t) =

x (t)
y (t)
z (t)

 , (2.18)

and

f =


f1

f2

f3


=



cy − µ2x+ p1xz

g1 + z
+ s1u (t)

r2y (1− by)− axy

g2 + y

p2xy

g3 + y
− µ3z + s2u (t)


. (2.19)

Vector f , represented in (2.19), is bounded above. The reason is as follows. Equation
(2.19) is expressed as

f =


f1

f2

f3


=



cy − µ2x+ p1xz

g1 + z

r2y (1− by)− axy

g2 + y

p2xy

g3 + y
− µ3z


+


s1u (t)

0

s2u (t)


,

which is in the form of

f (t,X, u) = f̄ (X) + [s1 0 s2]T u (t) ,

where f̄ is a vector valued function of X. The coefficients in f are bounded. Thus,
it is obtained that

|f (t,X, u)| ≤

∣∣∣∣∣∣∣∣∣∣∣∣∣


p1 c 0

0 r2 0

p2 0 0




x

y

z



∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣


s1u (t)

0

s2u (t)



∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ C |X|+ s |u|

where C and s are bounded constants, which depend on the coefficients in (2.19).
Thus f is bounded above. The existence of solution to (2.16) and (2.17) could be
shown by referring to the well-known Carathéodory’s existence theorem [102, theorem
9.2.1]. The hypothesis is stated in terms of the rectangular subset of R×Rn centred
about (t0, x0):

Ra,b = {(t, x) : |t− t0| ≤ a , |x− x0| ≤ b} , a, b > 0 . (2.20)

In the following theorem the norm of x ∈ Rn with coordinates xi (i = 1, 2, . . . , n) is

|x| = max
1≤i≤n

|xi| . (2.21)
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Theorem 2.2.1 (Carathéodory’s existence theorem). The Cauchy problem ẋ =
f (t, x (t)) and x (t0) = x0 has a solution if for some Ra,b ⊂ D centred about (t0, x0),
the restriction of f to Ra,b is continuous in x for fixed t, measurable with respect to
t for fixed x, and satisfies

|f (t, x)| ≤ m (t) , (t, x) ∈ Ra,b,

for some Lebesgue integrable function m over the interval [t0 − a, t0 + a].

Each denominator in (2.12) is strictly positive. Thus, f is continuous with
respect to x, y, and z. The function u (t) belongs to a set of bounded and piecewise
continuous functions. Thus, it can be easily shown that f is measurable in t. Each
component of f in (2.19) has been demonstrated to be bounded above. Therefore,
according to Theorem 2.2.1 there exists a solution to (2.12).

2.3 Solution to KP Model by Polynomial Approxima-
tions

It is obvious from (2.10) that the complicated nonlinearity of KP model causes the
use of methods such as differential transform and Adomian decomposition to require
more involved processes. In this section, for the sake of brevity, the basic concepts of
differential transform method (DTM) and Adomian decomposition method (ADM)
are discussed, then these two methods are utilized to present approximated solution
to the KP model in the neighbourhood of initial condition.

2.3.1 Differential Transform Method

The DTM was first introduced in [122,123,152] and results in approximated poly-
nomial solutions of differential equations based on the use of Taylor expansion.
Although the concept of the technique is based on Taylor series expansion, it leads
to solving recursive algebraic equations instead of the evaluation of derivatives. The
main focus of attention is placed on the first order nonlinear ordinary differential
equations: 

dx (t)
dt = f (x (t) , t) ,

x (t0) = α .
(2.22)

The DTM leads to representing the solution to (2.22) in the form of a power series:

x (t) =
∑
k≥0

Xk(t− t0)k , (2.23)

where the unknown coefficients Xk are straightforwardly evaluated by the recurrence
equation:

(k + 1)Xk+1 = F (Xk, k) , k = 0, 1, · · · . (2.24)

The first coefficient, X0, is assessed to be equal to the initial state x (t0), i.e.
X0 = α (see [11]) and F (Xk, k) is evaluated by using the rules and techniques briefly
mentioned below:
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1. If f (t) = ẋ (t), then the differential transform of f (t) is

Fk = (k + 1)Xk+1.

2. If f (t) = c x (t), then Fk = cXk, where c is a real constant.

3. If f (t) = x (t)± y (t), then Fk = Xk ± Yk.

4. If f (t) = x (t) y (t), then Fk =
∑k
i=0XiYk−i.

5. If f (t) = x (t)
y (t) , then

Fk = 1
Y0

(
Xk −

∑k−1
i=0

FiYk−i

)
, k ≥ 1, F0 = X0

Y0
.

6. f (t) = [x (t)]a, then

Fk =
∑k

i=1

(
a+ 1
k

i− 1
)
Xi

X0
Fk−i, k ≥ 1, F0 = Xa

0 , a ∈ R.

7. If f (t) = tn, then Fk = δk−n, where δk−n =
{

1 if k = n
0 if k 6= n .

8. If f (t) = exp (λt), then F (k) = λk

k! , λ ∈ R.

Proofs and more detailed descriptions can be observed in [9, 18]. By evaluating
the coefficients Xk up to the nth–order, the approximate solution to Eq. (2.22) is
x (t) =

∑n
k=0Xk(t− t0)k.

2.3.1.1 Application to KP model

The coefficients in system (2.10) are evaluated by referring to Table 2.3, where the
initial conditions are:

x (0) = 1 , y (0) = 1 , z (0) = 1 . (2.25)

By applying the DTM, the differential transform of (2.10) could be obtained as
follows: 

Xk+1 = 1
k + 1

(
cYk − µ2Xk + p1X̄k + s1δk

)
,

Yk+1 = 1
k + 1

(
r2Yk − r2b

∑k

i=0
YiYk−i − aȲk

)
,

Zk+1 = 1
k + 1

(
p2Z̄k − µ3Zk + s2δk

)
,

(2.26)

where X̄k, Ȳk and Z̄k are respectively equal to

X̄k =


X0Z0
g1 + Z0

if k = 0 ,
1

g1 + Z0

(∑k

i=0
XiZk−i −

∑k−1
i=0

X̄iZk−i

)
if k ≥ 1 ,

(2.27)
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Ȳk =


X0Y0
g2 + Y0

if k = 0 ,
1

g2 + Y0

(∑k

i=0
XiYk−i −

∑k−1
i=0

ȲiYk−i

)
if k ≥ 1 ,

(2.28)

Z̄k =


X0Y0
g3 + Y0

if k = 0 ,
1

g3 + Y0

(∑k

i=0
XiYk−i −

∑k−1
i=0

Z̄iYk−i

)
if k ≥ 1 ,

(2.29)

δk =
{

1 if k = 0 ,
0 if k ≥ 1 (2.30)

and, as it was stated, the coefficients X0, Y0 and Z0 are:

X0 = x (0) = 1 ,
Y0 = y (0) = 1 ,
Z0 = z (0) = 1 .

Case 1– No treatment (s1 = 0, s2 = 0): Without considering medical treatment, i.e.
the external sources of effector cells and IL-2, s1 and s2, are both equal to zero, the
approximated solution to (2.10) with initial conditions (2.25) is:

x (t) = 1.0 + 0.0050622 t+ 0.0013137 t2 + 0.0005999 t3 − 0.0014141 t4 ,
y (t) = 1.0 + 0.0890891 t+ 0.0041064 t2 + 0.0001009 t3 − 0.0000126 t4 ,
z (t) = 1.0− 5.4545450 t+ 27.302640 t2 − 91.007170 t3 + 227.51860 t4 . (2.31)

where the immunogenicity of the tumour cells is c = 0.035 (see Table 2.3). The poly-
nomials in (2.31) represent the solution to the KP model for a small neighbourhood
of t = 0. In order to extend the solution to a large time T , the DTM can be utilized
step-by-step, by a small step-size h.

Case 2– Immunotherapy (s1 > 0, s2 = 0): This involves the use of an external
source of effectors for instance lymphokine-activated killer cell or tumor infiltrating
lymphocyte, without using IL-2. For the sake of simplicity, the source of IL-2 is
not considered (s2 = 0). It must be mentioned that a detailed stability analysis of
KP model has represented in [87]. In the absence of IL-2, there is one non-tumour
equilibrium point, E = (x, 0, z). This equilibrium point will be stable where s1 is
greater than its critical value s1 cr. According to Table 2.1, this critical value is
s1 cr = 540. The approximated solutions to (2.10) with the initial conditions (2.25)
is:

x (t) = 1.0 + 0.0700622 t+ 0.0007861 t2 + 0.0005702 t3 − 0.0013962 t4 ,
y (t) = 1.0 + 0.0890891 t+ 0.0011518 t2 − 0.0001385 t3 − 0.0000181 t4 ,
z (t) = 1.0− 5.4545450 t+ 27.450370 t2 − 91.500010 t3 + 228.75070 t4 , (2.32)

where c = 0.045, s1 = 550 and s2 = 0.
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2.3.2 Adomian Decomposition Method

One of the advantages of the ADM is presenting approximated polynomial solutions
to rather broad range of nonlinearities without necessitating massive numerical
procedures and restrictive assumptions. The method is widely used to solve problems
involving algebraic, differential, integro differential, delay and partial differential
equations and systems [3–5]. Equation (2.22) is first rewritten as follows

Lx = g (t) +Rx+Nx , (2.33)

where L denotes the first order differential operator, R and N represent respectively
the linear and nonlinear part of f , and g (t) denotes the remainder part of f as
an explicit function of t. Applying the inverse operator L−1 to (2.33), another
expression of (2.22) is obtained:

L−1 [Lx] = L−1 [g (t)] + L−1 [Rx] + L−1 [Nx] , (2.34)

where L−1 expresses the definite integral from t0 to t, thus:

x(t) = x(t0) +
∫ t

t0
g (t) dt︸ ︷︷ ︸

x0

+L−1 [Rx] + L−1 [Nx]

= x0 + L−1 [Rx] + L−1 [Nx] . (2.35)

The function x, which is the approximate solution to (2.22), and the nonlinear term
Nx are respectively decomposed to

x =
∑
k≥0

xk , (2.36)

and
Nx =

∑
k≥0

Ak , (2.37)

thus (2.35) is written as follows:

∑
k≥0

xk = x0 + L−1

R∑
k≥0

xk

+ L−1

∑
k≥0

Ak

 , (2.38)

and consequently

x1 = L−1 [Rx0] + L−1A0

x2 = L−1 [Rx1] + L−1A1
...

xk+1 = L−1 [Rxk] + L−1Ak . (2.39)

The polynomials An are generated for each nonlinearity by using the formula

Ak = 1
k!

dk

dλk
[
N
(∑

i≥0
xiλ

i
)]
λ=0

. (2.40)
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For instance, a few terms of Adomian polynomials will be:

A0 = N (x0)
A1 = x1N (x0)

A2 = x2N (x0) + 1
2!x

2
1N (x0)

A3 = x3N (x0) + x1x2N (x0) + 1
3!x

3
1N (x0) .

If the series in (2.36) converges, the function φn =
∑n
i=0 xi will be the approximate

solution to (2.22).

2.3.2.1 Application to the KP model

The Adomian polynomials must be evaluated for each nonlinearity in the KP model.
These nonlinearities are

Mxz = xz

g1 + z
,

Ny = y2 ,

Pxy = xy

g2 + y
,

Qxy = xy

g3 + y
.

By using (2.40), the Adomian polynomials forMxz andNy are calculated as below and
the other two nonlinearities can be evaluated similar to Mxz. Since this nonlinearity
includes a complex interaction between the variables x and z, the implementation
of the ADM is very complicated. A MATLAB routine has been coded to calculate
Adomian polynomials:

M0 = x0z0
g1 + z0

,

M1 = x0z1 + x1z0
g1 + z0

− x0z0z1

(g1 + z0)2 ,

M2 = x0z2 + x1z1 + x2z0
g1 + z0

− x0z
2
1 + x1z0z1 + x1z0z2

(g1 + z0)2 + z2
1

(g1 + z0)3 ,

M3 = −x0z3 + x1z2 + x2z1 + x3z0
g1 + z0

−2x0z1z2 + x1z0z2 + x1z
2
1 + x2z0z1 − x0z0z3

(g1 + z0)2

+x0z
3
1 + x1z0z

2
1 − 2x0z0z1z2

(g1 + z0)3 + x0z0z
3
1

(g1 + z0)4 , (2.41)

and

N0 = y2
0 ,

N1 = 2y0y1 ,

N2 = y2
1 + 2y0y2 ,

N3 = 2 (y1y2 + y0y3) . (2.42)
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Case 1– No treatment (s1 = 0, s2 = 0): According to (2.35), x0, y0 and z0 are
equal to the initial state of (2.10), i.e.

x0 = 1 ,
y0 = 1 ,
z0 = 1 ,

and therefore the approximate solution to the KP model is:

x (t) = 1.0 + 0.0050622 t+ 0.0013136 t2 + 0.0005998 t3 − 0.0014141 t4 ,
y (t) = 1.0 + 0.0890891 t+ 0.0041063 t2 + 0.0001008 t3 − 0.0000126 t4 ,
z (t) = 1.0− 5.4545450 t+ 27.302640 t2 − 91.007170 t3 + 227.51860 t4 . (2.43)

The solutions to (2.10) for y (t) are illustrated in Fig. 2.2. The approximate solutions
are compared with the numerical solution to the system, which are evaluated by
using the explicit fourth order Runge-Kutta method.
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Figure 2.2. Approximate analytical solutions to KP model by using DTM and ADM, in
comparison with Runge-Kutta method, for c = 0.035, s1 = 0 and s2 = 0.

Case 2– Immunotherapy (s1 > 0, s2 = 0): In this case, the first terms of the
solution to the KP model are

x0 = 1 +
∫ t

0
s1dt ,

y0 = 1 ,
z0 = 1 .
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The Approximate solution to the system is then as follows:

x (t) = 1.0 + 0.0700622 t+ 0.0007861 t2 + 0.0005702 t3 − 0.0013962 t4

−5× 10−5 t5 + 5× 10−7 t6 + 2.9× 10−11 t7 − 3.6× 10−15 t8 ,

y (t) = 1.0 + 0.0890891 t+ 0.0011518 t2 − 0.0001385 t3 − 0.0000181 t4

−1× 10−7 t5 + 4.3× 10−9 t6 + 4.2× 10−11 t7 − 3.2× 10−13 t8 ,

z (t) = 1.0− 5.4545455 t+ 27.450366 t2 − 91.500006 t3 + 228.75065 t4

−2.0877809 t5 − 0.0000492 t6 + 1.6× 10−8 t7 − 4.8× 10−12 t8 .(2.44)

Fig. 2.3 illustrates the approximate polynomial solutions to (2.10) for y (t), which
are compared with the numerical method obtained by using the explicit Runge-Kutta
method.
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Figure 2.3. Approximate analytical solutions to KP model by using DTM and ADM, in
comparison with Runge-Kutta method, for c = 0.045, s1 = 550 and s2 = 0.

The DTM and ADM are two reliable methods based on polynomial approxi-
mations. As it was stated, the complicated nonlinearity in KP causes the use of
these methods to be very difficult. Specially, this difficulty is due to the presence
of the variables in the numerator and denominator of the Michaelis-Menten term.
All the processes to calculate Adomian polynomials and the solutions are coded in
MATLAB environment.



Chapter 3

Fractional Model of Cancer
Immunotherapy

Fractional calculus and its origin could be traced to the end of the seventeenth
century, the time when G. W. Leibniz (1646-1716) introduced the symbol

dn

dxn f (x)

to indicate the nth derivative of a function f , on the assumption that n ∈ N. Marquis
de L’Hospital (1661-1704) debated what dn

dxn means if n = 1
2 , and this is the first

occurrence of what is today mentioned as fractional derivative. Marquis de L’Hospital
specifically considered a fraction (rational number), which gave rise to the specific
name of this branch of mathematics: “fractional calculus”, even though there is no
reason to restrict n to rational numbers only, and Indeed, any real number — rational
or irrational — could be counted. Furthermore, any complex number may be allowed
at least for analytical considerations. Many celebrated mathematicians developed
the concept of fractional calculus, namely L. Euler (1707-1783), J.L. Lagrange (1736-
1813), P.S. Laplace (1749-1828), J.B.J. Fourier (1768-1830), J. Liouville (1809-1882),
B. Riemann (1826-1866), A.V. Letnikov (1837-1888), A.K. Grünwald (1838-1920)
and so forth.

The simulation of systems and processes and mathematical modeling of which,
based on the description of their attributes and properties in terms of fractional
derivatives leads to differential equations of fractional order and the necessity of
analysing and solving them. Over the last few decades the advancement of mathe-
matical knowledge about fractional calculus has been motivated by the enormous
applications of fractional differential equations in chemistry, physics, engineering,
finance, and other branch of science. For instance, modeling of mechanical properties
of materials has been observed in the research undertaken by Caputo [26,27], and
Caputo and Mainardi [29, 30]; research on the field of signal processing by Marks
and Hall [106]; the behaviour of viscoelastic and viscoplastic materials [44,45,57];
bioengineering [56, 103]; the theory of random walks [69, 134]; control theory of
fractional dynamical systems [25]. Several collections of such applications of frac-
tional calculus could be observed in, for instance, [68, 105, 109, 119, 131] and the
application of fractional calculus in various branch of mathematics has been also
studied, such as special functions [88]. Many researchers and mathematicians have
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pointed out that the behaviour of many physical phenomena could be appropriately
described and modeled by fractional derivatives and integrals. Fractional-order
differential equations have been demonstrated to be more adequate than classical
ordinary differential equations in order to analyse physical processes, since fractional
derivatives issue an sterling instrument for representation of memory and hereditary
properties of many real materials and physical phenomena. This constructs the
principal advantage of fractional derivatives over classical derivatives of integer-order.

3.1 Fractional Integral and Derivatives
As it is known, there is a very close relation between differential and integral
operators:

Theorem 3.1.1. Let f : [a, b]→ R be a continuous function and let F : [a, b]→ R
be defined by

F (x) =
∫ b

a
f (t) dt

then F is differentiable and
F ′ = f .

The basic idea behind fractional calculus is to preserve this relation in an
appropriately generalized sense.

Definition 3.1.1. The operator D denotes a mapping of a differentiable function
onto its derivative, i.e.

Df (x) = f ′ (x) .

Definition 3.1.2. The operator Ia denotes a mapping of an integrable function f
on the compact interval [a, b] onto its primitive centered at a for x ∈ [a, b], i.e.

Iaf (x) =
∫ x

a
f (t) dt .

Definition 3.1.3. For n ∈ N the symbols Dn and Ina are assumed to respectively
denote the n-fold iterates of D and Ia, i.e. D1 := D, I1

a := Ia, Dn = DDn−1 and
Ina = IaI

n−1
a for n ≥ 2 .

The key issue in fractional calculus is to extend the concepts of Definition 3.1.3
also to n /∈ N. There exist various generalizations of Definition 3.1.3, from which
the most significant ones for practical applications are discussed. It is well known
that the integral operator Ina can be expressed by

Ina f (x) = 1
(n− 1)!

∫ x

a
(x− t)n−1f (t) dt , (3.1)

and, moreover, the following relation is held true for the differential operator D and
the integral operator Ia:

Lemma 3.1.1. Let f be a function having a continuous nth derivative on the
interval [a, b] and let m,n ∈ N such that m > n. Then,

Dnf = DmIm−na f .
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Equation (3.1) and Lemma 3.1.1 are the base of generalization of integral and
derivative operators. The extension of factorial into non-integer values is well known,
provided by Euler gamma function. The Euler gamma function or briefly gamma
function is the cornerstone of the study of special functions in fractional calculus,
since many special functions could be represented in terms of gamma function.
The gamma function could be defined by the so-called Euler integral of the second
kind [85]

Γ (z) =
∫ ∞

0
tz−1e−tdt , < (z) > 0 . (3.2)

This integral is convergent on the right side of the complex plain. The reduction
formula

Γ (z + 1) = zΓ (z) , < (z) > 0 , (3.3)

is held true for the gamma function, which could be obtained from (3.2) with using
integration by parts. The gamma function may be extended to the left side of the
complex plain, where < (z) ≤ 0, by utilizing (3.3)

Γ (z) = Γ (z + n)
(z)n

, < (z) > −n , n ∈ N , z /∈ Z−0 , (3.4)

where Z−0 denotes the non-positive integers and (z)n denotes the Pochhammer symbol

(z)0 = 1 , (z)n = z (z + 1) . . . (z + n− 1) z ∈ C , n ∈ N . (3.5)

By using (3.3) and (3.5), for a natural number n ∈ N the gamma function results in

Γ (n+ 1) = n! , n ∈ N0 (3.6)

where 0! is defined to be equal to one. The most important property of this function
has been expressed in (3.6).

3.1.1 Riemann-Liouville Fractional Integral

in this section, a generalization of the classical integral operator, Ina , is presented.
The operator Iαa denotes the Riemann-Liouville fractional Integral, which is defined
on a finite interval of the real line as follows

Definition 3.1.4. Let Ω = [a, b] (−∞ < a < b <∞) be a finite interval on the real
axis R and let α ∈ R+. The operator Iαa , defined on L1 [a, b] by

(Iαa f) (x) = 1
Γ (α)

∫ x

a
(x− t)α−1f (t) dt , (a ≤ x ≤ b) , (3.7)

is called the Riemann-liouville fractional integral operator of order α.

The Riemann-Liouville fractional integral coincides with the classical integral
operator for α ∈ N, except the domain is extended from Riemann integrable functions
to Lebesgue integrable functions and the following theorem states firmly that the
definition is justified.

Theorem 3.1.2. Let f ∈ L1 [a, b] and n > 0. The fractional integral of the function
f (x), (Iαa f) (x), exists for almost every x ∈ [a, b] and, moreover, (Iαa f) (x) ∈ L1 [a, b].
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The following lemma [133] indicated the boundedness of the fractional integration
operator for functions in Lp (a, b):

Lemma 3.1.2. The fractional integral operator Iαa , with α > 0 is bounded in
Lp (a, b), p ≥ 1 .

Some properties of integer-order integrals are preserved by the fractional integral
operator of Riemann-Liouville.

Theorem 3.1.3. Let f ∈ L1 [a, b] and m,n ≥ 0. Then

Ima I
n
a f = Im+n

a f .

Corollary 3.1.1. Under the assumption of Theorem 3.1.3,

Ima I
n
a f = Ina I

m
a f .

It can be verified that the Riemann-Liouville fractional integral of the function
(x− a)β−1, leads to a power function of the same form.

Property 3.1.1. For α, β > 0 and f (x) = (x− a)β−1, then

Iαa f (x) = 1
Γ (α)

∫ x

a
(x− t)α−1(t− a)β−1dt

= Γ (β)
Γ (β + α)(x− a)β+α−1 . (3.8)

Specifically, for β = 1, the Riemann-Liouville integral of f (x) = 1 is

(Iαa 1) (x) = 1
αΓ (α)(x− a)α . (3.9)

3.1.2 Riemann-Liouville Fractional Derivative

Lemma 3.1.1 states Dnf = DmIm−na f , such that m,n ∈ N and m > n. By
assumption that n is not an integer, the meaningfulness ofDmIm−na f is still preserved.

Definition 3.1.5. Let α ∈ R+ and n = [α] + 1. The operator Dα
a , defined by

Dα
a f (x) := DnIn−αa f (x)

= 1
Γ (n− α)

(
d

dx

)n∫ x

a
(x− t)n−α−1f (t) dt , x > a . (3.10)

is called the Riemann-Liouville fractional differential operator of order α.

For α = 0, the operator D0
a is defined as the identity operator, i.e. D0

a ≡ I.
The operator Dα

a coincides with the ordinary differential operator Dn whenever
n ∈ N. The following two lemmas [41,85] illustrate the conditions for existence of
the Riemann-Liouville fractional derivative Dα

a :

Lemma 3.1.3. Let f ∈ A1 [a, b] and 0 < α < 1. Then Dα
a f exists almost everywhere

in [a, b]. Moreover Dα
a f ∈ Lp [a, b] for 1 ≤ p < 1

α and

Dα
a f (x) = 1

Γ (1− α)

(
f (a)

(x− a)α +
∫ x

a
f ′ (t) (x− t)−αdt

)
. (3.11)
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Lemma 3.1.4. Let α > 0 and n = [α] + 1. If f ∈ An [a, b], then Dα
a f exists almost

everywhere on [a, b] and is represented by

Dα
a f (x) =

n−1∑
k=0

f (k) (a)
Γ (1 + k − α)(x− a)k−α

+ 1
Γ (n− α)

(∫ x

a
f (k) (t) (x− t)n−α−1dt

)
. (3.12)

The following statement shows that the fractional differentiation is an inverse
operation to fractional integral [133]:
Lemma 3.1.5. Let α > 0 and f ∈ Lp [a, b] (p ≥ 1), then the following relation is
held true almost everywhere on [a, b]

Dα
a I

α
a f (x) = f (x) . (3.13)

Property 3.1.2. If α > β > 0, then, for f ∈ Lp [a, b] (p ≥ 1) the relation

Dβ
a I

α
a f (x) = Iα−βa f (x) , (3.14)

is held true almost everywhere on [a, b].
Theorem 3.1.4. Let f1 and f2 be two functions defined on [a, b] such that the
Riemann-Liouville fractional derivative of them, i.e. Dα

a f1 (x) and Dα
a f2 (x) exist

almost everywhere. Moreover, let c1, c2 ∈ R. Then Dα
a (c1f1 + c2f2) exists almost

everywhere and

Dα
a (c1f1 + c2f2) = c1D

α
a f1 + c2D

α
a f2 , α > 0 . (3.15)

3.1.2.1 Riemann-Liouville Fractional Derivative of a Constant

It can be verified whenever Riemann-Liouville fractional differentiation operates on
the power function, f (x) = (x− a)β−1, results in a power function of the same form:
Property 3.1.3. If α, β > 0, and f (x) = (x− a)β−1, then

Dα
a f (x) = Γ (β)

Γ (β − α)(x− a)β−α−1 . (3.16)

Specifically, whenever β = 1, the Riemann-Liouville fractional derivative of
a constant is not generally equal to zero, in contrast to the classical derivative
operators:

(Dα
a 1) (x) = 1

Γ (1− α)(x− a)−α , 0 < α < 1 . (3.17)

On the other hand, under particular circumstances, the fractional derivative of power
functions is equal to zero:
Corollary 3.1.2. Let α > 0 and n = [α] + 1. The equality Dα

a f (x) = 0 is valid if,
and only if,

f (x) =
n∑
k=1

ck(x− a)α−k , (3.18)

where ck ∈ R (k = 1, . . . , n) are arbitrary constants and in particular whenever
0 < α ≤ 1, the relation Dα

a f (x) = 0 is held true if, and only if, f (x) = c(x− a)α−1

with any c ∈ R.
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3.1.2.2 Riemann-Liouville Fractional Integral and Derivative on the
Half-Axis

The Riemann-Liouville fractional integral and derivative on the half-axis, R+, are
respectively defined as follows:

Iα0 f (x) := 1
Γ (α)

∫ x

0
(x− t)α−1f (t) dt , x > 0, α > 0 , (3.19)

and

Dα
0 f (x) := DnIn−α0 f (x)

= 1
Γ (n− α)

(
d

dx

)n∫ x

0
(x− t)n−α−1f (t) dt , x > 0, α > 0 , (3.20)

where n = [α] + 1. Specifically whenever 0 < α < 1 and x > 0, then

Dα
0 f (x) = 1

Γ (1− α)
d

dx

∫ x

0
(x− t)−αf (t) dt . (3.21)

Theorem 3.1.5. Let α, β > 0, p ≥ 1 and α + β < 1
P . If f ∈ Lp

(
R+), then the

semigroup property
Iα0 I

β
0 f (x) = Iα+β

0 f (x) , (3.22)

is held true.

Lemma 3.1.6. Let α > 0 and f ∈ L1
(
R+), then the relation

Dα
0 I

α
0 f (x) = f (x) , (3.23)

is held true.

Property 3.1.4. If α > β > 0, then, for f ∈ L1
(
R+), the relation

Dβ
0 I

α
0 f (x) = Iα−β0 f (x) , (3.24)

is held true.

There is a fundamental distinction between differential operators of integer-order
and the Riemann-Liouville fractional derivative. The classical differentiation operator
is local in nature. Unlike integer-order derivatives, it is needed to know the function
f throughout the interval [a, x] in order to calculate Dn

af (x). This fact is shown
even more appropriate in the following Lemma, where an alternative definition
of Riemann-Liouville fractional derivative is represented. This expression is more
practical for the development of certain numerical methods of solving fractional
differential equations.

Lemma 3.1.7. Let α > 0, α /∈ N and n = [α] + 1. Moreover, let f ∈ Cn [a, b]. then

Dα
a f (x) = 1

Γ (−α)

∫ x

a
(x− t)−α−1f (t) dt , x ∈ [a, b] . (3.25)

In Lemma 3.1.7, the integrand has a singularity of order n+ 1. Such an integral
is defined according to Hadamard’s finite-part integral concept [41].
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3.1.3 Caputo Fractional Derivative

Fractional differentiation operator of Caputo type was first introduced in [26, 27]
by Michele Caputo. In this section, the definition and some properties of Caputo
fractional derivative, CDα

a are presented:

Definition 3.1.6. Let [a, b] be a finite interval of the real line, and let α > 0,
n−1 < α < n (n ∈ N). Moreover, assume the function f is such that Dnf ∈ L1 [a, b].
The operator CDα

a defined by

CDα
a f (x) := In−αa Dnf (x)

= 1
Γ (n− α)

∫ x

a
(x− t)n−α−1f (n) (t) dt , x > a , (3.26)

is called the Caputo fractional differential operator of order α.

Whenever α ∈ N, n will be equal to α and CDα
a f (x) indicates

Dα
a f (x) = I0

aD
nf (x) = Dnf (x) , (3.27)

that recovers the integer-order differential operator. The following Theorem states an
important connection between fractional differential operators of Riemann-Liouville
and Caputo types:

Theorem 3.1.6. Let α ≥ 0 and n = dαe. Moreover let f ∈ An [a, b]. Then,

CDα
a f (x) = Dα

a

[
f (x)−

n−1∑
k=0

f (k) (a)
k! (x− a)k

]
. (3.28)

In particular, whenever 0 < α < 1, Eq. (3.28) will be in the following form:

CDα
a f (x) = Dα

a [f (x)− f (a)] , (3.29)

and also if the Caputo and Riemann-Liouville fractional derivatives of the function
f exist and if α /∈ N, then CDα

a f (x) and Dα
a f (x) are connected with each other by

the following relation:

CDα
a f (x) = Dα

a f (x)−
n−1∑
k=0

f (k) (a)
Γ (k − α+ 1)(x− a)k−α , (3.30)

and specifically, for 0 < α < 1, Eq. (3.30) is in the following form:

CDα
a f (x) = Dα

a f (x)− f (a)
Γ (1− α)(x− a)−α . (3.31)

Equation (3.31) shows that the Caputo fractional derivative coincides with the
Riemann-Liouville fractional derivative whenever f (a) = 0. Some properties
of Caputo fractional differential operator are described below. Before that, let
CDα

a [f (t)] (x) ≡ CDα
a f (x):
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Property 3.1.5. Let α, β > 0 and n = dαe. For f (x) = (x− a)β−1 the following
relation is held true:

CDα
a

[
(t− a)β−1

]
(x) = Γ (β)

Γ (β − α)(x− a)β−1 , β > n . (3.32)

and for g (x) = (x− a)m, it is obtained that
CDα

a [(t− a)m] (x) = 0 , (m = 0, 1, . . . , n− 1) . (3.33)

Specifically, for m = 0, it is concluded that the Caputo derivative of a constant is
equal to zero:

CDα
a [1] (x) = 0 . (3.34)

The Caputo fractional derivative provides an operator inverse to the fractional
integral operator of Riemann-Liouville, from the left:
Lemma 3.1.8. Let α > 0 and f (x) ∈ C [a, b], then

CDα
a I

α
a f (x) = f (x) . (3.35)

Lemma 3.1.9. Let α > 0 and n = dαe, and assume f (x) ∈ Cn [a, b], then

Iαa
CDα

a f (x) = f (x)−
n−1∑
k=0

f (k) (a)
k! (x− a)k , (3.36)

In particular, if 0 < α ≤ 1 and f (x) ∈ C [a, b], then

Iαa
CDα

a f (x) = f (x)− f (a) . (3.37)

Lemma 3.1.10. Let α > 0, α /∈ N and n = dαe, and assume f (x) ∈ Cn [a, b].
Then CDα

a f (x) ∈ C [a, b].
The principal computational rules for the Caputo derivative are similar to those for
the Riemann-Liouville derivative.
Theorem 3.1.7. Let f1, f2 : [a, b]→ R such that the Caputo fractional derivative of
them, i.e. CDα

a f1 (x) and CDα
a f2 (x) exist almost everywhere. Moreover, let c1, c2 ∈ R.

Then CDα
a (c1f1 + c2f2) (x) exists almost everywhere and
CDα

a (c1f1 + c2f2) (x) = c1
CDα

a f1 (x) + c2
CDα

a f2 (x) , α > 0 . (3.38)

The following Lemma represents the Caputo derivative of Mittag-Leffler function,
Eα [λ(t− a)α] (x), and indicates why Mittag-Leffler functions (more specifically those
with one parameter) are very important in fractional calculus. The eigenfunctions of
Caputo differential operator can be represented in terms of Mittag-Leffler functions.
The so-called one parameter Mittag-Leffler function Eα (z) is defined as a power
series, denoted by

Eα (z) =
∞∑
k=0

zk

Γ (αk + 1) , α > 0 z ∈ C . (3.39)

which was first introduced by G. M. Mittag-Leffler and could be considered as the
generalization of the exponential function due to the replacement of Γ (k + 1) by
Γ (αk + 1) in the exponential series formula (for instance, see [67, 119]). It could be
obviously perceived that Eα (0) = 1. The Mittag-Leffler function will be discussed
in Section 5.1.1 in more detail.
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Lemma 3.1.11. If α > 0 and a, λ ∈ R, then

CDα
aEα [λ(t− a)α] (x) = λEα [λ(x− a)α] , α /∈ N, x ≥ a , (3.40)

Particularly, whenever α = n ∈ N,

DnEα [λ(x− a)n] = Eα [λ(x− a)n] . (3.41)

3.1.3.1 Caputo Fractional Derivative on the Half-Axis

Equation (3.26) can be used to define the fractional derivative of Caputo type on
the half axis R+. The Caputo fractional derivative of the function f (x) with the
order α > 0 (α /∈ N) is defined as follows:

CDα
0 f (x) = 1

Γ (n− α)

∫ x

0
(x− t)n−α−1f (n) (t) dt , x > 0 . (3.42)

Whenever 0 < α < 1, (3.42) takes the form below:

CDα
0 f (x) = 1

Γ (1− α)

∫ x

0
(x− t)−αf ′ (t) dt , x > 0 . (3.43)

The Laplace transform of Caputo fractional derivative, CDα
a f (x), is asserted by the

following:

Lemma 3.1.12. Let α > 0 and n− 1 < α ≤ n (n ∈ N) such that f ∈ Cn
(
R+) and

f (n) ∈ L1 (0, b), for some b > 0 and the following estimate∣∣∣f (n) (x)
∣∣∣ ≤ BeAx , (x > b > 0) , (3.44)

is held true for constants A,B > 0. Moreover assume the Laplace transforms Lf
and L

[
f (n)

]
exist and

lim
x→+∞

f (n) (x) = 0 , k = 0, 1, . . . , n− 1 , (3.45)

Then the relation

(
L CDα

0 f
)

(s) = sα (Lf) (s)−
n−1∑
k=0

sα−k−1f (n) (0) . (3.46)

In particular, whenever 0 < α ≥ 1, then(
L CDα

0 f
)

(s) = sα (Lf) (s)− sα−1f (0) . (3.47)

Existence and uniqueness theorems of fractional differential equations (FDEs) are
discussed in next section.
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3.2 Existence and Uniqueness Theorems for FDEs

The investigations and examinations in the field of the existence and uniqueness
of solutions to fractional differential equations have been carried out for mainly
Riemann-Liouville and then Caputo fractional differentiation operators. Many
researches have been conducted on the topic, the most popular of which are as
follows:
An initial value problem (the so-called Cauchy problem) was studied in [7], by
Al-Bassam for 0 < α ≤ 1, in the space of continuous functions C [a, b]. Al-Bassam
reduced the initial value problem

Dα
a y (x) = f (x, y (x)) , 0 < α < 1 , x > a , (3.48)

equipped with the initial condition

I1−α
a y (a) = b , b ∈ R , (3.49)

to the Volterra nonlinear integral equation

y (x) = b(x− a)α−1

Γ (α)

+ 1
Γ (α)

∫ x

a
(x− t)α−1f (t, y (t)) dt , x > a, 0 < α < 1 . (3.50)

and established existence of the continuous solution y (x) . He indicated, but not
proved the equivalence of the Cauchy type problem and the Volterra integral equation
(VIE). It is noted that the conditions suggested in [7] are not suitable for a general
Cauchy type problem. Several other theorems of existence and uniqueness of solution
to fractional differential equations could be observed in, for instance, [38, 46, 119].
In [20, 77] the fractional initial value problems with complex order, α ∈ C, were
studied in the space L1 (a, b) and the obtained results were extended to the system of
such problems in [21]. The conditions for a unique solution to Cauchy type problems
were established in [76,79,84]. The uniqueness and existence of a local continuous
solution to fractional initial value problems was proved in [40].

These mentioned studies are devoted to ordinary fractional differential equations
with Riemann-Liouville differentiation operator. But, such equations with Caputo
derivative, CDα

a f (x), are not investigated extensively. The authors in [101] used the
operational method to prove the uniqueness of solution to Cauchy type problems.
Diethelm and Ford [42] investigated the nonlinear initial value problems in the
sense of Caputo derivative for the fractional order α > 0 and proved existence and
uniqueness of a local continuous solution to the problem. Kilbas and Marzan [78,83]
studied the Cauchy problem with Caputo differentiation operator for α ∈ C on a
finite interval of R and established conditions for a unique solution to the problem

CDα
0 y (x) = f (x, y (x)) , (a ≤ x ≤ b) ,

y(k) (0) = bk ∈ C , (k = 0, 1, . . . , n− 1) ,
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where n = [< (α)]+1 for α /∈ N and n = α for α ∈ N. In [150], the author considered
the Cauchy problem

CDα
0 y (x) = f (x, y (x)) , (0 < x < 1) ,

y (0) = 0 ,

where the function f is continuous, and proved the uniqueness of a positive solution,
y (x) > 0, to the problem. Additional aspects of the existence and uniqueness
problems could be observed in [41,81,82,133].

3.2.1 Equations with Riemann-Liouville Derivative

In this section, the conditions for a unique global solution to the Cauchy type
problem

Dα
a y (x) = f (x, y (x)) , α > 0 , x > a , (3.51)

equipped with the initial conditions

Dα−k
a y (a) = bk , bk ∈ R , (k = 1, . . . , n) , n = dαe , (3.52)

in the space of functions Lα (a, b), defined for α > 0 by

Lα (a, b) := {y ∈ L1 (a, b) : Dα
a ∈ L1 (a, b)} (3.53)

are given, where L1 (a, b) is the space of integrable functions in a finite interval [a, b]
of the real axis R. The notation Dα−k

a y (a) means

Dα−k
a y (a) = lim

x→a+
Dα−k
a y (x) , 1 ≤ k ≤ n− 1 , (3.54)

Dα−n
a y (a) = lim

x→a+
In−αa y (x) , α 6= n , (3.55)

D0
ay (a) = y (a) , α = n . (3.56)

The approach is based on introducing the VIE equivalent to the Cauchy problem,
in the sense that, if the function y (x) ∈ L1 (a, b) satisfies the Eqs. (3.51)-(3.52) then
it also satisfies the VIE

y (x) =
n∑
j=1

bj
Γ (α− j + 1)(x− a)α−j

+ 1
Γ (α)

∫ x

a
(x− t)α−1f (t, y (t)) dt , x > a , (3.57)

and vice versa.
By Lemma 3.1.2, the fractional integration operator, Iαa , with α > 0 is bounded

in L1 (a, b):

‖Iαa y‖1 ≤
(b− a)α

Γ (α+ 1)‖y‖1 . (3.58)

Theorem 3.2.1. Let α > 0, n = dαe, and let G be an open subset of R. Moreover
assume that the function f : (a, b]×G→ R is such that f ∈ L1 (a, b) for any y ∈ G.
If y (x) ∈ L1 (a, b), then the function y (x) satisfies a.e. (3.51) and (3.52) if, and
only if, y (x) satisfies a.e. (3.57).
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Corollary 3.2.1. Let 0 < α < 1 and G be an open subset of R. Moreover let the
function f : (a, b]×G→ R be such that f ∈ L1 (a, b) for any y ∈ G.
If y (x) ∈ L1 (a, b), then the function y (x) satisfies a.e. (3.48) and (3.49) if, and
only if, y (x) satisfies a.e. (3.50).

The existence of a unique solution to the Cauchy problem (3.51) and (3.52)
is established under the conditions of Theorem 3.2.1 and an additional Lipschitz
condition on the function f (x, y (x)) with respect to the second variable, y (x), i.e.
for all x ∈ (a, b] and for all y1, y2 ∈ G ⊂ R

|f (x, y1)− f (x, y2)| ≤ L |y1 − y2| , 0 < L <∞ , (3.59)

where the constant L does not depend on x ∈ [a, b].

Theorem 3.2.2. Let α > 0, n = dαe, and let G be an open subset of R. Moreover
let the function f : (a, b]×G→ R be such that f ∈ L1 (a, b) for any y ∈ G and (3.59)
be satisfied. Then there is a unique solution y (x) to the initial value problem (3.51)
and (3.52) in the space Lα (a, b).

3.2.2 Equations with Caputo Derivative

In this section, the existence and uniqueness of solutions to the initial value problem

CDα
0 y (x) = f (x, y (x)) , α > 0, (3.60)

combined with the initial conditions

Dky (0) = bk , bk ∈ R , (k = 0, 1, . . . , n− 1) , n = dαe , (3.61)

are discussed. All the results presented here can be extended to vector valued
functions, i.e. systems of differential equations [41]. In many applications in Science
and engineering, the fractional order α is constrained up to one, i.e. 0 < α ≤ 1. In
this case (3.60) and (3.61) will be reduced to the Cauchy problem

CDα
0 y (x) = f (x, y (x)) , 0 < α ≤ 1, (3.62)

with the initial conditions
y (0) = b , b ∈ R . (3.63)

Lemma 3.2.1. Let α > 0, n = dαe and bk ∈ R (k = 0, 1, . . . , n− 1). Let K > 0,
and h∗ > 0. Define the set R as

R =
{

(x, y) : x ∈ [0, h∗] ,
∣∣∣∣∣y −

n−1∑
k=0

xkbk
k!

∣∣∣∣∣ ≤ K
}
.

Let the function f : R→ R be continuous. Define

M := sup
(x,z)∈R

|f (x, z)|
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and

h :=


h∗ if M = 0 ,

min
{
h∗,

(
KΓ(n+1)

M

) 1
n

}
otherwise.

The function y ∈ C [0, h] is a solution of (3.60) and (3.61) if and only if it is a
solution to the nonlinear VIE of the second kind

y (x) =
n−1∑
k=0

xkbk
k! + 1

Γ (α)

∫ x

0
(x− t)α−1f (t, y (t)) dt

Theorem 3.2.3. Assume the hypotheses of Lemma 3.2.1. There exists a function
y ∈ C [0, h] solving the initial value problem (3.60) and (3.61).

Theorem 3.2.4. Assume the hypotheses of Lemma (3.2.1), except that the set R,
the domain of definition of the function f on the right-hand side of (3.60), is now
considered to be R = R2. In addition, let f be continuous and there exist constants
c1 ≥ 0, c2 ≥ 0 and 0 ≤ µ < 1 such that

|f (x, y)| ≥ c1 + c2 |y|µ for all (x, y) ∈ R.

Then, there exists a function y ∈ C [0,∞) solving the initial value problem (3.60)
and (3.61).

Theorem 3.2.5. Let α > 0, n = dαe and bk ∈ R (k = 0, 1, . . . , n− 1). Let K > 0,
and h∗ > 0. Define the set R as

R =
{

(x, y) : x ∈ [0, h∗] ,
∣∣∣∣∣y −

n−1∑
k=0

xkbk
k!

∣∣∣∣∣ ≤ K
}
.

Let the function f : R→ R be continuous and fulfil a Lipschitz condition with respect
to y:

|f (x, y1)− f (x, y2)| ≥ L |y1 − y2|

where L > 0 is a constant independent of x, y1 and y2. Define h as

h :=


h∗ if M = 0 ,

min
{
h∗,

(
KΓ(n+1)

M

) 1
n

}
otherwise ,

where M is defined as
M := sup

(x,z)∈R
|f (x, z)| .

Then, there exists a unique solution y ∈ [0, h] to the initial value problem (3.60) and
(3.61).

Theorem 3.2.6. Assume the hypotheses of Theorem 3.2.5, except that the set R,
the domain of the definition of the function f on the right-hand side of (3.60), is
defined as R = [0,∞)× R. Then, there exists a uniquely defined function y ∈ [0,∞)
solving initial value problem (3.60) and (3.61).



32 3. Fractional Model of Cancer Immunotherapy

The following theorem [95], guarantees the existence of solution to the Cauchy
problem {

CDα
t0x (t) = f (t, x (t)) , 0 < α ≤ 1

x (t0) = x0
(3.64)

where (t0, x0) ∈ D, with D a nonempty open subset of R × Rn and f : D → Rn.
The hypothesis is stated in terms of the rectangular subset of R×Rn centred about
(t0, x0), defined by (2.20). The norm of x ∈ Rn with coordinates xi (i = 1, 2, . . . , n)
is defined by (2.21).

Theorem 3.2.7. The Cauchy problem (3.64) has a solution if for some Ra,b ⊂ D
centred about (t0, x0), the restriction of f (t, x) to Ra,b is continuous in x for fixed t,
measurable with respect to t for fixed x, and satisfies

|f (t, x)| ≤ m (t) , (t, x) ∈ Ra,b,

for some Lebesgue integrable function m ∈ L2 (I) for almost every t in I =
[t0 − a, t0 + a].

3.2.3 Existence of solution to the fractional KP model

The FKP can be expressed as follows

CDα
0 x (t) = cy − µ2x+ p1xz

g1 + z
+ s1 ,

CDα
0 y (t) = r2y (1− by)− axy

g2 + y
, (3.65)

CDα
0 z (t) = p2xy

g3 + y
− µ3z + s2 ,

with the initial condition

x (0) = x0 , y (0) = y0 , z (0) = z0 . (3.66)

where CDα
0 denotes the Caputo differentiation operator. Equation (3.65) can be

expressed as {
CDα

0X (t) = f (t,X (t)) , 0 < α ≤ 1
X (0) = X0

(3.67)

where f (t,X) = (f1, f2, f3)T , X (0) = (x0, y0, z0)T , and

f1 = cy − µ2x+ p1xz

g1 + z
+ s1 ,

f2 = r2y (1− by)− axy

g2 + y
, (3.68)

f3 = p2xy

g3 + y
− µ3z + s2 .

The existence and uniqueness of solution to (3.67) is guaranteed by Theorem 3.2.6.
While the external sources of drugs are expressed as control functions, then the
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vector f will be as follows:

f1 = cy − µ2x+ p1xz

g1 + z
+ s1u (t) ,

f2 = r2y (1− by)− axy

g2 + y
, (3.69)

f3 = p2xy

g3 + y
− µ3z + s2u (t) .

The existence of solution to the Cauchy problem (3.67), in which f is defined by
(3.69), is guaranteed by Theorem 3.2.7. This can be shown by following the procedure
which has been mentioned in Section 2.2.

3.3 Stability of Fractional Differential Equations
The attention is restricted here to the class of nonlinear fractional differential
equations

CDα
0 y (x) = f (x, y (x)) , α ∈ (0, 1) , (3.70a)
y (0) = y0 . (3.70b)

where CDα
a y (x) denotes the Caputo fractional derivative of the function y (x). While

the stability of a given differential equation is discussed, the behaviour of the
solution to (3.70) is analysed for x → ∞. Thus, only the problems, solutions of
which exist on [0,∞) are considered. Furthermore, it is assumed that the initial
value problem (3.70) has a unique solution on [0, b) with some b ≤ ∞. This implies
that f : [0,∞) × Ω → Rn, Ω ⊂ Rn is continuous in x and Lipschitz in y on its
domain.

Definition 3.3.1. The constant yeq is an equilibrium point of (3.70), if and only if
CDα

0 y (x)
∣∣∣
y(x)=yeq

= f (x, yeq) . (3.71)

Without loss of generality, the equilibrium point could be supposed to be yeq = 0.
This condition means that y (x) = 0 is a solution of (3.70), which could be done by
the change of variable ȳ (x) = y (x)− yeq, by referring to Theorem 3.1.7 and (3.34)

CDα
0 y (x) = f (x, y (x)) ,

CDα
0 [ȳ (x) + yeq] = f (x, ȳ (x) + yeq) ,

CDα
0 ȳ (x) + CDα

0 [yeq] = g (x, ȳ (x)) ,
CDα

0 ȳ (x) = g (x, ȳ (x)) .

Definition 3.3.2. The solution y (x) = 0 of (3.70a) is called stable if, for every
ε > 0 there exists some δ > 0 such that for any initial condition (3.70b), the solution
of (3.70) satisfies

∀x ≥ 0, ‖y0‖ < δ → ‖y (x)‖ < ε .

The solution y (x) = 0 of (3.70a) is asymptotically stable if, it is stable and there
exists some γ > 0 such that

‖y0‖ < γ → lim
x→∞
‖y (x)‖ = 0 .
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For 0 < α < 1, system (3.70) has the same equilibrium points as the integer-order
system ẏ (x) = f (x, y (x)). The stability analysis of the homogeneous linear fractional
differential equations with constant coefficients was studied by Matignon [107],
where the necessary and sufficient condition of stability was proved. Consider the
n-dimensional system of linear fractional differential equations CDα

0 y (x) = Ay (x),
where A ∈ Rn×n. The solution y (x) = 0 of the system CDα

0 y (x) = Ay (x) is
stable if and only if the eigenvalues λk (k = 1, 2, . . . , n) of the matrix A satisfy
|arg λk| ≥ nπ/2 and all eigenvalues with |arg λk| = nπ/2 have a geometric multiplicity
that coincides with their algebraic multiplicity. In addition, the solution y (x) = 0 of
the system CDα

0 y (x) = Ay (x) is asymptotically stable if and only if all eigenvalues
λk satisfy |arg λk| > nπ/2.

The stability of linear fractional systems has been studied in the last decades [115,
124,125]. By contrast, the stability of nonlinear fractional differential equations is very
complex. Exponential stability cannot be applied in order to characterize asymptotic
stability of fractional order systems [108]. Some researchers have weakened the
criterion of stability, where the Mittag-Leffler stability [1,92] and the Lp-stability [90]
were considered. Finally, in [39], the author proved the sufficient condition for the
local asymptotical stability of nonlinear autonomous FDEs in the sense of Caputo
derivative, where the order of fractional differentiation operator is restricted to one,
i.e. α ∈ (0, 1):

Theorem 3.3.1. The equilibrium yeq = 0 of autonomous nonlinear fractional
differential equation CDα

a y (x) = f (y (x)) with f ′ (y) ∈ C [a,+∞) and α ∈ (0, 1) is
locally asymptotically stable if λ = f ′ (0) < 0.

Consider the system of FDEs:
CDαi

a xi (t) = fi (x1, x2, . . . , xn) , i = 1, 2, . . . , n , (3.72)

Equation (3.72) is called a system of incommensurate FDEs if all αi’s are rational
numbers, i.e. αi = vi

ui
, where vi, ui ∈ Z+ for i = 1, 2, . . . , n. If in addition, αi = αj

for i, j = 1, 2, . . . , n, then (3.72) is called a system of commensurate FDEs. The
authors in [138] have proved the sufficient condition of asymptotical stability of
commensurate fractional differential equations. Then, they presented a sufficient
condition for incommensurate fractional differential equations [139]:

Theorem 3.3.2. Let α1 = α2 = · · · = αn ≡ α. Then, the equilibrium point xeq
of (3.72) is asymptotically stable if all the eigenvalues λi’s (i = 1, 2, . . . , n) of the
Jacobian matrix J = ∂f/∂x|xeq , where f = [f1, f2, . . . , fn]T , satisfy the condition

|arg (eig (J))| = |arg (λi)| > α
π

2 , i = 1, 2, . . . , n . (3.73)

Theorem 3.3.3. Let m be the lowest common multiple of the denominators ui’s
of αi’s, where αi = vi/ui, vi, ui ∈ Z+ and (ui, vi) = 1 for i = 1, 2, . . . , n. Then, the
equilibrium point xeq of (3.72) is asymptotically stable if

|arg (λ)| > π

2m (3.74)

for all roots λ,s of

det (diag ([λmα1λmα2 . . . λmαn ])− J) = 0 (3.75)
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The notation diag ([λmα1λmα2 . . . λmαn ]) expresses the n× n diagonal matrix

diag ([λmα1λmα2 . . . λmαn ]) =


λmα1 0 · · · 0
0 λmα2 · · · 0
...

... . . . ...
0 0 · · · λmαn

 .

3.4 Stability of the FKP Model

In this section, asymptotical stability of the FKP model is discussed according to
Theorems 3.3.2 and 3.3.3, where the fractional orders of all equations considered
to be rational numbers. The main goal is the tumour-free states and therefore the
equilibrium points, in which the tumour is zero, are only considered.

3.4.1 No treatment case

First, the commensurate FKP model is discussed, i.e. α1 = α2 = α3. In the case of
no treatment (s1 = 0 and also s2 = 0) the only tumour-free equilibrium point is the
trivial state, where all the populations are zero, namely E0 = (0, 0, 0). In this case,
the set of all eigenvalues of the Jacobian matrix is A = {−µ2, r2,−µ3} and

|arg (−µ2)| = π, |arg (r2)| = 0, |arg (−µ3)| = π.

By referring to (3.73), E0 is always unstable. Now, the incommensurate FKP
model is discussed. Since the optimal therapeutic protocols for FKP model are only
represented for four cases

(1):α1 = 1, α2 = 0.9, α3 = 1,

(2):α1 = 1, α2 = 0.8, α3 = 1,

(3):α1 = 1, α2 = 0.7, α3 = 1,

(4):α1 = 1, α2 = 0.6, α3 = 1,

thus, the stability of the FKP model is also examined for these special cases. By
referring to Theorem 3.3.3, the results are obtained as follows. The set of all the roots
of the polynomial in (3.75) is A =

{
(−µ2)

1
mα1 , r2

1
mα2 , (−µ3)

1
mα3

}
where m = 10

and α1 = 1, α2 = 0.9 and α3 = 1. Thus∣∣∣∣arg
(

(−µ2)
1

mα1

)∣∣∣∣ = π

10 ,
∣∣∣∣arg

(
r2

1
mα2

)∣∣∣∣ = 0,
∣∣∣∣arg

(
(−µ3)

1
mα3

)∣∣∣∣ = π

10 ,

therefore, according to Theorem 3.3.3, the equilibrium point is unstable. By the
same calculations, the similar results are obtained for α2 = 0.8, α2 = 0.7, α2 = 0.6.
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3.4.2 Adoptive cellular immunotherapy

In this case, the only external source of treatment is the effectors, i.e. s1 > 0, s2 = 0.
In this case, there exists a more realistic non-tumor state, E1 =

(
s1
µ2
, 0, 0

)
. This

implies that the tumour cells are removed if this equilibrium is stable. The set of
eigenvalues of Jacobian matrix is

A =
{
−µ2,

− as1 + g2r2µ2

g2µ2
,−µ3

}

and
|arg (λ1)| = π, |arg (λ2)| =

∣∣∣∣−as1 + g2r2µ2
g2µ2

∣∣∣∣ , |arg (λ3)| = π.

The arguments of λ1 and λ3 satisfy (3.73). Concerning λ2, Fig. 3.1 shows the change
of |argλ2| with respect to s1. The critical value of s1 is obtained as s1,cr = r2g2µ2

a .
For the case of incommensurate FKP model, by referring to Theorem 3.3.3, the

Figure 3.1. The change of |argλ2| with respect to s1, s1,cr = 540, Abs(Argλ2) ≡ |arg (λ2)|.

results are obtained as follows. The set of all the roots of the polynomial in (3.75) is

A =
{( 1
−µ2

)− 1
mα1

,

(−as1 + g2r2µ2
g2µ2

) 1
mα2

,

( 1
−µ3

)− 1
mα3

}
,

where m = 10 and α1 = 1, α2 = 0.9 and α3 = 1. The first and third roots, i.e.
λ1 =

(
1
−µ2

)− 1
mα1 and λ3 =

(
1
−µ3

)− 1
mα3 satisfy (3.74). The results for the root

λ2 =
(
−as1+g2r2µ2

g2µ2

) 1
mα2 are given in Figure 3.2. Obviously, for all values of α2, the

equilibrium point is stable if s1 > s1,cr, where s1,cr = 540.
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Figure 3.2. The change of |argλ2| with respect to s1. The critical value of s1 is 540.

3.4.3 Interleukin-2 therapy

The case, which will be discussed here, is s1 = 0, s2 > 0, where the only external
therapy is the IL-2. The non-tumour equilibrium point is E =

(
0, 0, s2

µ3

)
. The set of

eigenvalues of the Jacobian at this equilibrium point is

A =
{
r2,−µ3,

p1s2 − s2µ2 − g1µ2µ3
s2 + g1µ3

}

According to (3.73):

|arg (λ1)| = 0, |arg (λ2)| = π, |arg (λ3)| =
∣∣∣∣p1s2 − s2µ2 − g1µ2µ3

s2 + g1µ3

∣∣∣∣
Since the argument of λ1 does not satisfy (3.73), the equilibrium point is not stable.
For the case of incommensurate FKP model, by referring to Theorem 3.3.3, the
results are obtained as follows. The set of all the roots of the polynomial in (3.75) is

{(
p1s2 − s2µ2 − g1µ2µ3

s2 + g1µ3

) 1
mα1

, (r2)
1

mα2 , (−µ3)
1

mα3

}

where m = 10 and α1 = 1, α2 = 0.9 and α3 = 1. λ2 = (r2)
1

mα2 does not satisfy
(3.74) and therefore the equilibrium point is not stable and this implies that the
treatment with only IL-2 cannot remove the cancer cells.
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3.4.4 Multi-immunotherapy with ACI and IL-2

First, the commensurate FKP model is considered for the case of multiple therapy
(s1 > 0, s2 > 0). The tumor-free equilibrium is now

E =
(
− s1 (s2 + g1µ3)
p1s2 − s2µ2 − g1µ2µ3

, 0, s2
µ3

)
.

All the eigenvalues of the Jacobian matrix are:

λ1 = (−µ3) ,

λ2 =
(
p1s2 − s2µ2 − g1µ2µ3

s2 + g1µ3

)
,

λ3 =
(
g2p1r2s2 + as1s2 − g2r2s2µ2 + ag1s1µ3 − g1g2r2µ2µ3

g2 (−p1s2 + s2µ2 + g1µ2µ3)

)
From λ1 it is obtained that |arg (−µ3)| = π, which satisfies (3.73). Fig. 3.3 shows the
case for λ2. The results for λ3 are shown in Fig. 3.4. For the case of incommensurate

Figure 3.3. The change of |argλ2| with respect to s2.

FKP model, by referring to Theorem 3.3.3, the results are obtained as follows. The
set of all the roots of the polynomial in (3.75) is

λ1 = (−µ3)
1

mα3 ,

λ2 =
(
p1s2 − s2µ2 − g1µ2µ3

s2 + g1µ3

) 1
mα1

,

λ3 =
(
g2p1r2s2 + as1s2 − g2r2s2µ2 + ag1s1µ3 − g1g2r2µ2µ3

g2 (−p1s2 + s2µ2 + g1µ2µ3)

) 1
mα2
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Figure 3.4. The change of |argλ3| with respect to s1 and s2.

where m = 10 and α1 = 1, α2 = 0.9 and α3 = 1. The root λ1 satisfies (3.74). The
conditions for λ2 and λ3 are respectively illustrated in Figs. 3.5 and 3.6.

Figure 3.5. The change of |argλ2| with respect to s2.
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Figure 3.6. The change of |argλ3| with respect to s1 and s2.



Chapter 4

Numerical Methods for
Fractional Differential
Equations

Fractional differentiation operators (i.e. derivative operators of any real positive order)
have non-local property, in the sense that they depend on the all previous time history
and therefore are more appropriate to the systems, which possess persistent memory
characteristics. Increasing applications of fractional calculus has been a major cause
of the study and the development of numerical methods, which are specifically
devised to deal with FDEs. Compared with classical (integer-order) differential
equations, the construction of numerical methods of solving FDEs is much more
difficult. These difficulties are primarily related to the non-local property of fractional
differentiation operators, the low-order accuracy of the majority of the numerical
methods, and so forth. Due to the fact that the fractional derivatives are not local
in nature, multi-step methods are obvious choice for FDEs. In multi-step methods
(in contrast to one-step methods), more previously approximated evaluations are
required to compute the solution in each step. Fractional linear multi-step methods
(FLMMs) [58, 64, 99, 100] and product-integration (PI) rules [64, 148] are two of
the most effective and reliable classes of numerical methods for fractional-order
problems. Other approaches can be also mentioned such as Predictor-Corrector
approaches [43,45,59], generalized exponential integrators [65], spectral methods [149],
methods based on matrix functions [121] and so on. The main goal in this chapter
is to describe an inadequate approach, which has been proposed to be a method of
solving FDEs, and to demonstrate that the basis on which the method has been
devised is not appropriate to FDEs, the so-called multi-step generalized differential
transform method (MSGDTM). In order to clarify the issue, the MSGDTM will be
examined by referring to reliable and effective methods for FDEs such as FLMMs
and predictor-corrector method of Adams-Bashforth-Moulton (PC method of ABM).

4.1 PC Method of ABM and FLMMs

The PC method of ABM can be considered as a fractional variant of the classical
second-order Adams-Bashforth-Moulton method, which has been introduced in [45]
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and a detailed stability properties of the method has been discussed in [59]. The main
emphasis will be placed on the single-term Caputo fractional differential equations
for 0 < α ≤ 1, where α is the order of the fractional derivative. Consider the initial
value problem {

Dα
t0y (t) = f (t, y (t)) ,

y (t0) = y0 .
(4.1)

In order to assure the existence and uniqueness of the solution to (4.1), it is assumed
that f (t, y) is continuous and fulfils a Lipschitz condition with respect to the second
variable (Theorem 3.2.6. Initial value problem (4.1) can be reformulated in terms of
the weakly-singular VIE

y (t) = y0 + 1
Γ (α)

∫ t

t0
(t− s)α−1f (s, y (s)) ds . (4.2)

The method presents a numerical approach in solving (4.2) and is said to be PECE
(Predict, Evaluate, Correct and Evaluate) type because an initial approximation yPk
, the so-called predictor, is first evaluated:

yPk = y0 + 1
Γ (α)

k−1∑
j=0

bj,kf (tj , yj) , (4.3)

where the nodes tk = t0 + kh are used to calculate yPk with a constant step-size
h > 0 for the sake of simplicity. The weights bj,k are computed by

bj,k = hα

α
((k − j)α − (k − 1− j)α) . (4.4)

Then the method gives the corrector formula:

yk = y0 + 1
Γ (α)

ak,kf (tk, yPk )+
k−1∑
j=0

aj,kf (tj , yj)

 , (4.5)

where the weights aj,k are given by

a0,k = hα

α (α+ 1)
(
(k − 1)α+1 − kα (k − 1− α)

)
,

aj,k = hα

α (α+ 1)
(
(k + 1− j)α+1 + (k − 1− j)α+1 − 2(k − j)α+1

)
,

1 ≤ j ≤ k − 1,

ak,k = hα

α (α+ 1) .

(4.6)

The basic algorithm, the PC method of ABM, can be completely described by (4.3)
and (4.5) with the weights bj,k and aj,k defined by (4.4) and (4.6).

The FLMMs have been introduced by Lubich in [100]. The main feature of the
FLMMs is the generalization of quadrature rules, which are obtained from classical
linear multi-step methods (LMMs). They have been specifically developed in order
to yield a solid theoretical basis for the numerical treatment of FDEs. The FLMMs
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are one of the most effective methods of solving FDEs. Detailed explanations of
the methods have been given in [58, 63, 64]. The key element in FLMMs is the
approximation of Riemann-Liouville integral (on the interval [t0, t] and of the order
α > 0)

Iαt0f (t) = 1
Γ (α)

∫ t

t0
(t− τ)α−1f (τ) dτ , (4.7)

with the help of convolution quadrature. In the sense of Lubich, the generalization
about an linear multi-step method (LMM) in order to deal with (4.7) results in the
corresponding fractional linear multi-step method (FLMM) as

hI
α
t0f (tk) = hα

k∑
j=0

ωk−jf (tj) + hα
v∑
j=0

wk,jf (tj) , (4.8)

on uniform nodes tk = t0 + kh. The convolution and starting quadrature wights ωk
and wk,j are independent of h. Starting quadrature weights wk,j play the major role
in dealing successfully with the possible singularity of the integrand function at t0.
The features of the FLMM is specified by convolution quadrature weights ωk.

In this thesis, all the numerical results for the FKP have been obtained by using
MATLAB routines, which have been coded based on the PC method of ABM. The
MATLAB codes can deal with multi-order systems of FDEs (i.e. each equation of
the system has its own fractional order). When the MATLAB codes were written,
there had not been provided any routines in computational environments such as
MATLAB and Mathematica in order to deal with multi-order FDEs. For the sake
of convenience, it is mentioned that the MATLAB code fde12.m has been devised
to solve systems in which all equations have the same order. The MATLAB code
flmm2.m, which implements three different FLMMs (i.e. the generalizations of the
trapezoidal rule, the Newton-Gregory formula and the backward differentiation
formula) has been introduced in [63]. Then, the author of [64] represented several
more MATLAB routines to deal with multi-order FDEs, and multi-term FDEs.

4.2 MSGDTM
The DTM deals with the approximated solutions to integer-order differential equa-
tions and is based on polynomial approximations (a thorough literature on the
DTM is available in [18]). The authors of [10] extended the DTM in order to
solve non-integer differential equations, called as the fractional differential transform
method (FDTM). Then, a rather different formulation of generalizing the DTM was
introduced in [116], named as generalized differential transform method (GDTM).
The GDTM provides the expansion

y (t) =
∞∑
k=0

Yk(t− t0)kα , (4.9)

as the solution to (4.1), where the coefficients Yk are evaluated by the recurrence
equation

Yk+1 = Γ (αk + 1)
Γ (α (k + 1) + 1)F (k, Yk) . (4.10)
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The first coefficient Y0 is assessed to be equal to the initial condition, Y0 = y (t0). The
term F (k, Yk), mentioned as the differential transform of f (t, y (t)), is determined
by using the methods provided in [10,52,116].

Under general circumstances, these methods do not provide an accurate solution
to FDEs. As demonstrated by Lubich [98], the solution to (4.2) is expanded in mixed
(integer and fractional) powers, i.e.

∑
i,j∈N Yi,j(t− t0)i+jα and therefore shows a non-

smooth behaviour at t0. In the presence of non-smoothness at t = t0, the solution
cannot be properly approximated by methods based on polynomial approximations.

Moreover, these methods are originally based on Taylor expansion which allows
to obtain the results only in a small neighborhood of t0. In order to deal with
this restriction, the authors of [52] applied the GDTM to FDEs by using step-by-
step procedures, and mentioned it as MSGDTM. It is simply formed on the idea
of dividing the time interval [t0, T ] into n sub-intervals [tj , tj+1] with a constant
step-size h = tj+1 − tj (j = 0, 1, . . . , n− 1):

y (t) =



y1 (t) = y0 +
∑
k∈N

Y
(1)
k (t− t0)kα , t ∈ [t0, t1] ,

y2 (t) = y1 (t1) +
∑
k∈N

Y
(2)
k (t− t1)kα , t ∈ [t1, t2] ,

.

.

yn (t) = yn−1(tn−1) +
∑
k∈N

Y
(n)
k (t− tn−1)kα , t ∈ [tn−1, T ] ,

(4.11)

where the coefficients Y (i)
k (i = 1, 2, . . . , n) are computed by (4.10).

The MSGDTM takes the incorrect approach in numerical treatment of FDEs;
in fact, the MSGDTM implements a step-by-step procedure which is not adequate
to discretize nonlocal operators such as fractional derivatives (as it is normal for
integer-order differential equations). For initial value problem{

ẏ (t) = f (t, y (t)) ,
y (t0) = y0,

(4.12)

it is possible to compute the solution at any point tk+1 as

yk+1 = yk +
∫ tk+1

tk

f (s, y (s)) ds. (4.13)

Differently, the solution to (4.2) at any point tk+1 cannot be evaluated as the solution
at the previous point tk plus the increment term related to the interval [tk, tk+1]
(usually done in integer-order differential equations). This is due to the presence of
a real power in the kernel.

4.3 Illustrative Example

The statement about the MSGDTM is further verified by making a comparison with
other effective and accurate methods such as the FLMMs and the PC method of
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ABM. Thus, the MATLAB codes flmm2.m and fde12.m are employed to achieve the
goal. Consider the fractional Riccati differential equation:{

Dα
0 y (t) = 2y − y2 + 1 , t > 0 , 0 < α ≤ 1 ,

y (0) = 0 .
(4.14)

The goal is to follow the MSGDTM for the interval I = [0, 0.4] by dividing it into
two sub-intervals I1 = [0, 0.2] and I2 = [0.2, 0.4]. The differential transform of (4.14)
is

Γ (α (k + 1) + 1)
Γ (αk + 1) Yk+1 = 2Yk −

k∑
k1=0

(Yk1Yk−k1) + δk , (4.15)

where Y (0) = y (0) and δk is computed as

δk =
{

1 , if k = 0,
0 , otherwise

By using(4.9), (4.11), and (4.15) the results are obtained as:

y (t) = 1.10 t0.7 + 1.61 t1.4 + 1.14 t2.1

−0.60 t2.8 − 2.54 t3.5, 0 ≤ t ≤ 0.2 ,

and

y (t) = 0.55 + 1.98 (t− 0.2)0.7 + 1.30 (t− 0.2)1.4 − 1.54 (t− 0.2)2.1

−3.07 (t− 0.2)2.8 + 0.66 (t− 0.2)3.5 , 0.2 ≤ t ≤ 0.4 .

where α = 0.7. Fig. 4.1 illustrates the obtained results. The problem is solved one
more time, for t ∈ [0, 3] with a constant step-size h = 0.01 and the results are given
in Fig.4.2. Fig. 4.3 shows the inaccuracy of the MSGDTM in the neighbourhood of
the initial condition. As it was stated, methods based on polynomial approximations
fail to give the accurate solutions at the initial condition.
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Figure 4.1. The result obtained by the MSGDTM compared with the solutions to Eq.
(4.14) obtained by the FLMMs and the PC method of ABM, for α = 0.7.
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Figure 4.2. The result obtained by the MSGDTM compared with the solution to Eq.
(4.14) obtained by the FLMMs and the PC method of ABM, for α = 0.7.
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Figure 4.3. The result obtained by the MSGDTM compared with the solution to (4.14)
obtained by the FLMMs over the neighbourhood of initial condition, α = 0.7 .
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The MSGDTM fails obviously to give the solution of (4.14); in fact, in terms
of the accuracy there is no comparison. As stated, the MSGDTM approaches the
problem by dividing the solution at any time tn+1, into the sum of the solution of
previous time tn and the increment related to the interval [tn, tn+1].

This is a basic fact that, for α = 1, the MSGDTM returns to its classical origin
(i.e. the DTM for integer-order differential equations). In this case, solutions will be
in agreement with those obtained by other classical methods such as Runge-Kutta
approaches for integer-order differential equations. This fact cannot be referred to
as a proof of the effectiveness of the MSGDTM for FDEs. It must be mentioned
that there are several recently published papers on FDEs, in which MSGDTM and
similar incorrect approaches could be seen (for instance, see [114]).

Thus, in this chapter, the main reasons due to which the MSGDTM (or any
other similar approach) fails to solve FDEs, have been discussed. As proved by
Lubich [98], the solution of (4.2) presents an expansion in mixed (i.e. integer and
fractional) powers and shows a non-smooth behavior at t = t0. Furthermore, the
use of step-by-step procedures is not adequate to discretize nonlocal operators such
as fractional derivatives. Thus, the MSGDTM and other similar methods are not
suitable for FDEs.

4.4 Numerical Solution to KP Model
In this section, the numerical solutions to FKP model

CDα1
0 x (t) = cy − µ2x+ p1xz

g1 + z
+ s1 ,

CDα2
0 y (t) = r2y (1− by)− axy

g2 + y
, (4.16)

CDα3
0 z (t) = p2xy

g3 + y
− µ3z + s2 ,

with the initial condition

x (0) = x0 , y (0) = y0 , z (0) = z0 , (4.17)

are represented. In order to numerically solve the FKP model, a MATLAB routine
has been coded by using the PC method of ABM. The MATLAB code has been
prepared in such a way to be able to deal with multi-order FKP (while each equation
in (4.16) has its own order). Four different cases are taken to illustrate the solutions,
where the fractional orders change. The numerical solutions are shown in Figs.
4.4-4.7. The solution to classical KP model (i.e. the order of each equation in the
model is equal to one) is shown in Fig. 4.4. The maximum value of tumour cells for
this case is larger than the maximum value of cancer cells in other three cases. In
Fig. 4.5, all the fractional orders are equal to 0.9. The maximum value of tumour
is larger than that shown in Fig. 4.6, where the fractional orders are equal to 0.8.
These results show that the maximum value of cancer cells decreases by reducing
the fractional order of the system. The best case is illustrated in Fig. 4.7, where
the orders of first and third equations in (4.16) are equal to one, and the order of
the second equation in (4.16) changes. All these samples are related to the case of
no-treatment (s1 = 0, s2 = 0).
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Figure 4.4. Numerical solution to (4.16), α1 = 1, α2 = 1, α3 = 1, c = 0.035, s1 = 0,
s2 = 0.
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Figure 4.5. Numerical solution to (4.16), α1 = 0.9, α2 = 0.9, α3 = 0.9, c = 0.035, s1 = 0,
s2 = 0.
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Figure 4.6. Numerical solution to (4.16), α1 = 0.8, α2 = 0.8, α3 = 0.8, c = 0.035, s1 = 0,
s2 = 0.
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Figure 4.7. Numerical solution to (4.16), α1 = 1, α2 = 0.8, α3 = 1, c = 0.035, s1 = 0,
s2 = 0.
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It is obvious that the behaviour of tumor even without therapy has impressive
changed with decreasing the α.





Chapter 5

Modified Fractional Logistic
Equation

In [144], the author has obtained a function as the solution to FLE. As demonstrated
later in [8], the function which is mentioned here as WF is not exactly the solution
to FLE. nevertheless, it is in good agreement with the numerical solution to FLE.
The WF indicates a compelling feature, in which the exponentials are substituted
by Mittag-Leffler functions. In this chapter, a modified fractional logistic equation
(MFLE) is introduced [47], to which the WF is a solution. The proposed fractional
integro-differential equation possesses a nonlinear additive term related to the solution
of the LE. The method which is utilized here, may be appropriately applied to the
analysis of solutions to nonlinear fractional differential equations of mathematical
physics.

5.1 Fractional Logistic Equation
The LE, which is mentioned on occasion as the Verhulst model, is a population
growth model introduced and published by Pierre Verhulst. The model represents a
well-known nonlinear differential equation in the field of biology and social sciences
and was discussed in Section 2.1.1. The sigmoidal behavior of the solution to the LE
has been also used to model the tumor growth. Since the logistic growth is one of
the most versatile models in natural sciences, the FLE would be a relevant problem
to be dealt with:

CDα
t w (t) = kαw (1− w) , α ∈ (0, 1] , (5.1)

with the initial condition w (0) = u0 (the initial condition is expressed by u0 same
as the initial condition for classical LE described in (2.6)), where CDα

t denotes the
Caputo derivative with the fractional order, α, restricted to 0 < α ≤ 1. The Laplace
transform method cannot directly lead up to an exact solution of such a nonlinear
fractional differential equation. In [35,146], the authors represented some creative
techniques to approximate the solution to FLE. In [117], the authors have studied
the FLE with the Grünwald–Letnikov fractional derivative and assumed the solution
to be in the form of a fractional Taylor series (as it was discussed in Section 4.2,
these method fails to give an adequate solution to FDEs), where the coefficients in
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the series are evaluated by a recursive relation. The Carleman embedding technique
has been employed by West to construct a solution to (5.1). The proposed solution
is mentioned as WF:

w (t) =
∞∑
n=0

(
u0 − 1
u0

)n
Eα (−nkαtα) , α ∈ (0, 1] , (5.2)

where Eα denotes the so-called one parameter Mittag-Leffler function. In [8], the
authors have illustrated that the WF is not exactly the solution to (5.1). However,
as demonstrated in [144], the WF has been shown to be in good agreement with the
numerical solution of the FLE.

The discussion on the FLE is motivated by the relevance of the model to a wide
range of applications and by the mathematical difficulties involved in the analysis
of nonlinear fractional equations emerging in mathematical biology. The aim is to
investigate what equation may be satisfied by the WF (for the case k = 1), i.e. the
goal is to seek for an equation which could be satisfied by

w (t) =
∞∑
n=0

(
u0 − 1
u0

)n
Eα (−ntα) , (5.3)

In this regard, the fractional integro-differential equation

CDα
t w (t) = w (t) (1− w (t)) + u0

t−α

Γ (1− α)

+
∫ ∞

0

∫ ∞
0

(
u (s)u (z)− u2 (s)

)
lα (s, t)lα (z, t) ds dz , (5.4)

with the initial condition w (0) = u0 is represented and proved to be satisfied by the
function described in (5.3). In (5.4), which is called as MFLE, the function u is the
solution to the LE (2.6) for the case k = 1. Thus, (5.4) has an additive term related
to the solution of the classical logistic equation. The function lα (s, t) is in such a
way for which the Laplace transform is as follows:∫ ∞

0
e−λslα (s, t) ds = Eα (−λtα) , λ > 0 . (5.5)

The function lα (s, t) satisfies the following equation

CDα
t lα (s, t) = − ∂

∂s
lα (s, t) , (5.6)

with the initial condition
lα (s, 0) = δ (s) , (5.7)

where δ (s) stands for the Dirac’s delta function, and the boundary condition

lα (0, t) = t−α

Γ (1− α) . (5.8)

Furthermore ∫ ∞
0
lα (s, t) ds = 1 . (5.9)

Further details about lα (s, t) can be observed in, for instance, [17,19].
Some necessary preliminaries about Mittag-Leffler function will be briefly dis-

cussed in the next section.
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5.1.1 Mittag-Leffler Function

The exponential function, ez, performs a significant role in the theory of differential
equations with integer orders. The so-calledMittag-Leffler function is a generalization
of the exponential function, which was first introduced by M. G. Mittag-Leffler (1846–
1927) [113]

Eα (z) =
∞∑
k=0

zk

Γ (kα+ 1) , α, β, z ∈ C, < (α) > 0 . (5.10)

Specifically when α = 1, the Mittag-Leffler function is equal to the exponential
function

E1 (z) =
∞∑
k=0

zk

Γ (k + 1) = ez . (5.11)

The Mittag-Leffler type function, Eα,β (z), which is in addition mentioned as the
two-parameter Mittag-Leffler function, first appeared in an article by Wiman [145]
and then was introduced by Agarwal [6] and studied by Humbert and Agarwal [71]

Eα,β (z) =
∞∑
k=0

zk

Γ (kα+ β) , α, β, z ∈ C, < (α) > 0 . (5.12)

Henceforth, for the sake of simplicity, the two-parameter Mittag-Leffler function is
mentioned as only Mittag-Leffler function. This function produces the (5.10), while
β is equal to one, i.e. Eα,1 (z) = Eα (z).

The power series defined in Mittag-Leffler function, Eα,β (z), is convergent for all
z ∈ C, where <(α) > 0 and <(β) > 0. The radius of convergence of the power series
is infinity. In other words, the Mittag-Leffler function, Eα,β , is an entire function of
order [< (α)]−1 and type 1, and satisfies the following differentiation formulae, when
α is equal to a natural number n ∈ N( d

dz

)n [
zβ−1En,β (λzn)

]
= zβ−n−1En,β−n (λzn) , n ∈ N, λ ∈ C , (5.13)

and( d
dz

)n [
zn−βEn,β

(
λ

zn

)]
= (−1)nλ

zn+β En,β

(
λ

zn

)
, z 6= 0, n ∈ N, λ ∈ C . (5.14)

The usual derivative of Mittag-Leffler function could be calculated by( d
dz

)n
[Eα,β (z)] = n!En+1

α,β+αn (z) , n ∈ N , (5.15)

and specifically ( d
dz

)n
[Eα (z)] = n!En+1

α,1+αn (z) , n ∈ N , (5.16)

where the function, Enα,β (z), is called the generalized Mittag-Leffler function, which
is defined for all z ∈ C, α, β, ρ ∈ C and <(α) by

Eρα,β (z) =
∞∑
k=0

(ρ)k
k!

zk

Γ (kα+ β) , (5.17)
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where (ρ)k is the Pochhammer symbol. In particular, when ρ = 1, it coincides with
the two-parameter Mittag-Leffler function

E1
α,β (z) = Eα,β (z) , z ∈ C . (5.18)

For the generalized Mittag-Leffler function, the following differentiation formula is
held true ( d

dz

)n [
Eρα,β (z)

]
= (ρ)nE

ρ+n
α,β+αn (z) , n ∈ N , (5.19)

and ( d
dz

)n [
zβ−1Eρα,β (λzα)

]
= zβ−n−1Eρα,β−n (λzα) , λ ∈ C, n ∈ N . (5.20)

5.1.2 Fractional Derivative of Mittag-Leffler function

The following formula indicates that the Riemann-Liouville fractional derivative of
the Mittag-Leffler function results in the function of the same kind [119]:

Dγ
a

[
(x− a)β−1Eα,β (λ(x− a)α)

]
= (x− a)β−γ−1Eα,β−γ [λ(x− a)α] , (5.21)

where λ ∈ R, α, β > 0 and γ ≥ 0. If β = 1 and a = 0, by using the (5.21) the
Riemann-Liouville fractional derivative of Mittag-Leffler function, Eα (λxα) is:

Dα
aEα (λxα) = x−αEα,1−α (λxα) . (5.22)

Consequently the ordinary derivative of the function Eα (λxα) is obtained as follows:

d

dx
Eα (λxα) = x−1Eα,0 (λxα)

= λxα−1Eα,α (λxα) (5.23)

The function Eα,β could be expressed by the integral representation

Eα,β (z) = 1
2π

∫
C

tα−βet

tα − z
dt . (5.24)

The loop, C, which is the path of integration, starts and ends at −∞ and encircles the
disk |t| ≤ |z|1/α in the positive sense |arg (t)| ≤ π on C. Equation (5.24) is utilized
to obtain the asymptotic behaviour of Mittag-Leffler function, Eα,β , at infinity. This
behaviour is strongly influenced by the value of α [119]. The asymptotic formulae
are given in the following theorems, for 0 < α < 2 and α ≥ 2:

Theorem 5.1.1. Let 0 < α < 2, β, z ∈ C and µ be an arbitrary real number such
that

π

2α < µ < min (π, πα) ,

then for an arbitrary n ∈ N, the following expansion holds

Eα,β (z) = 1
α
z

1−β
α exp

(
z

1
α

)
−

n∑
k=1

1
Γ (β − kα) zk +O

(
|z|−n−1

)
,

|z| → ∞ , |arg (z)| ≤ µ . (5.25)
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Theorem 5.1.2. Let 0 < α < 2, β, z ∈ C and µ be an arbitrary real number such
that

π

2α < µ < min (π, πα) ,

then for an arbitrary n ∈ N, the following expansion holds

Eα,β (z) = −
n∑
k=1

1
Γ (β − kα) zk +O

(
|z|−n−1

)
,

|z| → ∞ , µ ≤ |arg (z)| ≤ π . (5.26)

Theorem 5.1.3. Let α ≥ 2, β, z ∈ C, then for an arbitrary n ∈ N, the following
expansion holds

Eα,β (z) = 1
α

∑
p

(
z

1
α exp

(2pπi
α

))1−β
exp

(
exp

(2pπi
α

)
z

1
α

)
,

−
n∑
k=1

1
Γ (β − kα) zk +O

(
|z|−n−1

)
,

|z| → ∞ , |arg (z)| ≤ απ

2 , (5.27)

where the first sum is taken over all integers p, satisfying the condition

|arg (z) + 2pπ| ≤
(
πα

2

)
.

The main focus of attention will be the function

Eα (−λzα) =
∞∑
k=0

(−1)kλk zkα

Γ (kα+ 1) , (5.28)

which provides the Laplace transform of lα (see (5.5)). The asymptotic behaviour of
the Mittag-Leffler function Eα (λzα), for 0 < α < 2 and z ∈ R+, could be stated by
using Theorems 5.1.1 and 5.1.2

Eα (λzα) = 1
α

exp
(
z

λα

)
−

n∑
k=1

z−kα

λkΓ (1− kα)

+O
(
|λzα|−1−n

)
, n ∈ N , λ > 0 , z → +∞ , (5.29)

and

Eα (λzα) = −
n∑
k=1

z−kα

λkΓ (1− kα)

+O
(
|λzα|−1−n

)
, n ∈ N , λ < 0 , z → +∞ . (5.30)

Furthermore the following inequality is held true for all non-negative real numbers,
i.e. z ∈ [0,∞) (e.g., see [119, theorem 1.6]):
For 0 < α < 2, there exists a constant C (α) such that

0 ≤ |Eα (−zα)| ≤ C (α)
1 + zα

, 0 < α < 2 , (5.31)
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where C (α) is a real positive constant. The Riemann-Liouville derivative of the
Mittag-Leffler function could be obtained by using (5.22)

Dα
aEα (λzα) = z−α

Γ (1− α) + λEα (λzα) , α ∈ R+ , λ ∈ C . (5.32)

5.1.3 Laplace Transform of Mittag-Leffler Function

Equation (5.11) shows obviously that the Mittag-Leffler function, Eα,β, is a gener-
alization of the exponential function. The Laplace transform of this function can
be obtained with the help of the analogy between this function and exponential
function:

L [Eα,β (t)] (s) =
∫ ∞

0
e−stEα,β (t) dt =

∞∑
k=0

k!
Γ (αk + β) sk+1 . (5.33)

The well-known Laplace transform of the functions tkeat and tke−at are respectively

L
[
tkeλt

]
(s) =

∫ ∞
0
e−sttkeλtdt = k!

(s− λ)k+1 , < (s) > |λ| , (5.34)

and

L
[
tke−λt

]
(s) =

∫ ∞
0
e−sttke−λtdt = k!

(s+ λ)k+1 , < (s) > |λ| . (5.35)

A pair of Laplace transform of the functions

tαm+β−1E
(m)
α,β (λtα)

and
tαm+β−1E

(m)
α,β (−λtα)

could be respectively calculated by using (5.34) and (5.35), where E(m)
α,β (t) denotes

the mth derivative of the Mittag-Leffler function, i.e. E(m)
α,β (t) ≡ dm

dtmEα,β (t):

L
[
tαm+β−1E

(m)
α,β (λtα)

]
(s) =

∫ ∞
0
e−sttαm+β−1E

(m)
α,β (λtα) dt

= m!sα−β

(sα − λ)m+1 , < (s) > |λ|
1
α (5.36)

and

L
[
tαm+β−1E

(m)
α,β (−λtα)

]
(s) =

∫ ∞
0
e−sttαm+β−1E

(m)
α,β (−λtα) dt

= m!sα−β

(sα + λ)m+1 , < (s) > |λ|
1
α (5.37)

Specifically, with the help of (5.36) and (5.37), the Laplace transform of the Mittag-
Leffler functions Eα (λtα) and Eα (−λtα) are obtained:

L [Eα (λtα)] (s) =
∫ ∞

0
e−stEα (λtα) dt = sα−1

sα − λ
, < (s) > |λ|

1
α , (5.38)

and

L [Eα (−λtα)] (s) =
∫ ∞

0
e−stEα (−λtα) dt = sα−1

sα + λ
, < (s) > |λ|

1
α . (5.39)
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5.2 Modified fractional logistic equation

In [144], the author has utilized the Carleman embedding technique to construct
an infinite–order system of linear fractional differential equations equivalent to the
nonlinear fractional differential equation (5.1) and has obtained a solution in terms of
a weighted sum over the Mittag-Leffler functions. The authors in [8] indicated later
that the Carleman embedding technique solves integer-order differential equations,
not the fractional ones. Nonetheless, for α = 1, the WF results in the solution to
classical LE. As illustrated in Fig. 5.1, it is observed that the WF for the case k = 1,
which is expressed in (5.3), is in good agreement with the numerical integration of
FLE. Fig. 5.1 shows the graph of the numerical solution to (5.40)

CDα
t w (t) = w (1− w) , α ∈ (0, 1] . (5.40)

and the WF represented in (5.3) for the fractional order α = 0.7. The MATLAB code
fde12.m [60] is used in order to represent the numerical solution of (5.40). The WF
is numerically evaluated by means of the MATLAB code ml.m [61], which is based
on the numerical inversion of the Laplace transform of Mittag-Leffler function [62].
The goal is to demonstrate that the WF, which has been expressed in (5.3), is the
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Figure 5.1. Comparison of the WF expressed in (5.3) and the numerical integration of the
FLE, for α = 0.7 and u0 = 0.75 .

solution to fractional integro-differential equation (5.4). In Section 2.1.1, the solution
to LE (2.6) was expressed. Equation (2.7), which represents the solution to LE, can
be reformulated as below

u (t) =
∞∑
k=0

(
u0 − 1
u0

)k
e−kt . (5.41)
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By using (5.5) and (5.41), the function w (t), represented in (5.3), can be expressed
in terms of lα (s, t)

w (t) =
∞∑
k=0

(
u0 − 1
u0

)k
Eα (−ktα)

=
∞∑
k=0

(
u0 − 1
u0

)k ∫ ∞
0
e−kslα (s, t) ds

=
∫ ∞

0

∞∑
k=0

(
u0 − 1
u0

)k
e−kslα (s, t) ds

=
∫ ∞

0
u (s) lα (s, t) ds . (5.42)

It could be obtained, by using (5.3), that

w2 (t) =
∞∑
k=0

∞∑
i=0

(
u0 − 1
u0

)k+i
Eα (−itα)Eα (−ktα)

=
∞∑
k=0

∞∑
i=0

(
u0 − 1
u0

)k+i∫ ∞
0
e−kslα (s, t) ds

∫ ∞
0
e−izlα (z, t) dz

=
∫ ∞

0

∫ ∞
0

∞∑
k=0

∞∑
i=0

(
u0 − 1
u0

)k+i
e−kse−izlα (s, t) lα (z, t) dsdz

=
∫ ∞

0

∫ ∞
0
u (s)u (z) lα (s, t) lα (z, t) dsdz . (5.43)

The substitution of (5.43) for the term w2 (t) in (5.4) leads to

CDα
t w (t) = u0t

−α

Γ(1− α) + w −
∫ ∞

0

∫ ∞
0
u2 (s) lα (s, t) lα (z, t) dsdz

= u0t
−α

Γ(1− α) + w −
∫ ∞

0

(
u2 (s) lα (s, t)

∫ ∞
0
lα (z, t) dz

)
ds , (5.44)

it is eventually obtained by using (5.6), (5.9), and (5.44) that

CDα
t w (t) = u0t

−α

Γ(1− α) + w −
∫ ∞

0
u2 (s) lα (s, t) ds

= u0t
−α

Γ(1− α) +
∫ ∞

0

(
u (s)− u2 (s)

)
lα (s, t) ds

= u0t
−α

Γ(1− α) +
∫ ∞

0
u′ (s) lα (s, t) ds

= u0t
−α

Γ(1− α) + u (s) lα (s, t)|∞s=0 −
∫ ∞

0
u (s) ∂slα (s, t) ds

= u0t
−α

Γ(1− α) +
(

0− u0
t−α

Γ (1− α)

)
+
∫ ∞

0
u (s) CDα

t lα (s, t) ds

= CDα
t

∫ ∞
0
u (s) lα (s, t) ds

= CDα
t w (t) . (5.45)
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Figure 5.2. Comparison of the WF expressed in (5.3) and the numerical integration of the
FLE, for α = 0.9 and u0 = 0.75 .

Therefore the function w (t), expressed in (5.3), satisfies (5.4). Fig. 5.2 illustrates
the graphs of the WF and numerical solution to (5.40) and shows that the WF is
in good agreement with the numerical solution of FLE. Specifically, as mentioned
in [144], the WF and numerical solution to FLE coincide for α = 1. As it is obvious
from (5.3), the solution to MFLE is obtained by means of a series of Mittag-Leffler
functions. Thus, series of Mittag-Leffler functions seem to play an interesting role in
the context of FLE. The properties of series of Mittag-Leffler functions have been
studied in [118].

5.3 Determination of Order for MFLE

The determination of the order of fractional differential equations is an issue, which
has been analysed and discussed in recent years [48,70] and it has a wide range of
applications in physical phenomena such as fractional diffusion equations. In [48],
fractional order estimation has been conducted for some classes of linear fractional
differential equations. The details is left until Chapter 6. In this section, the
relationship between the fractional order and the asymptotic behaviour of the
solution to MFLE is proved. The solution to (5.4) could be asymptotically expressed
by referring to (5.30):

w (t) =
∞∑
k=0

(
u0 − 1
u0

)k
Eα (−ktα)

= 1 +
∞∑
k=1

(
u0 − 1
u0

)k
Eα (−ktα) , (5.46)
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and for large t, by using (5.30), w (t) will be approximately equal to

w (t) ≈ 1 +
∑
k≥1

(
u0 − 1
u0

)k∑
s≥1

(−1)s+1
( 1
ktα

)s 1
Γ (1− αs)

≈ 1 +
∑
k≥1

∑
s≥1

(−1)s+1
(
u0 − 1
u0

)k t−sα
ks

1
Γ (1− αs)

≈ 1 + t−α

Γ (1− α)
∑
k≥1

(
u0 − 1
u0

)k 1
k

+
∑
s≥2

(−1)s+1 t−sα

Γ (1− αs)
∑
k≥1

(
u0 − 1
u0

)k 1
ks
, (5.47)

Remark 5.3.1. By observing (5.47), it is obviously found that the function w (t)
has the limit w∞ = 1, which is independent of the fractional order, α, as time tends
to infinity.

t
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Figure 5.3. The graph of the WF for α = 0.7, α = 0.8, α = 0.9 .

Fig. 5.3 shows that the solution to MFLE is asymptotically independent of the
fractional order, α, and its limit is equal to one as t goes to infinity. For u0 ≥ 1

2 ,
(5.47) is as follows

w (t) ≈ 1 + t−α

Γ (1− α) ln u0 +

∑
s≥2

(−1)s+1 t−sα

Γ (1− αs)
∑
k≥1

(
u0 − 1
u0

)k 1
ks
, u0 ≥

1
2 (5.48)
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As t tends to infinity, by neglecting the third term of the right-hand side of (5.48),
the function w (t) is asymptotically equal to

w(t) ≈ 1 + t−α

Γ(1− α) ln u0 , u0 ≥
1
2 . (5.49)

Therefore, by using the asymptotic behaviour of the function w (t), the order of (5.4)
is determined

lim
t→+∞

tw′ (t)
1− w (t) = α . (5.50)





Chapter 6

Determination of Order in
Linear FDEs

In this chapter, the order of some classes of fractional linear differential equations
is determined, based on asymptotic behaviour of the solution as time tends to
infinity. The order of fractional derivative has been proved to be of great importance
in an accurately appropriate simulation of the system under study. Specifically,
by representing the asymptotic expansion of the solution, it could be obviously
demonstrated that the decay rate of the solution is influenced by the order of
fractional differentiation. The numerical investigation is conducted into the proven
formulae. The practical significance of fractional calculus has been recently discerned
as a vastly superior method of describing the long-memory processes and had a
remarkable development over the last few years, both in mathematical and non-
mathematical fields [12,28,41,80,105,131].

More specifically, FDEs have been proven extremely important for more accu-
rately modelling of many physical phenomena [31,72,104,130]. Inverse problems to
FDEs occur in many branches of science. Such problems have been investigated, for
instance, in fractional diffusion equation [33,70,97,132,151] and inverse boundary
value problem for semi-linear fractional telegraph equation [96]. Specifically in [70],
it has been demonstrated that determination of β, the order of fractional differential
operator, is definitely crucial to the appropriate simulation of the anomalous dif-
fusion in order to specify that the transport phenomenon exhibits sub-diffusion or
super-diffusion for respectively β < 1 and β > 1. The authors in [70] have presented
and proven a theorem, the idea behind which is seeking solutions to an inverse
problem, i.e. determination of the order of a fractional diffusion equation; therefore,
this persuaded us to prove formulae indicating the relationship between the fractional
order and the asymptotic behaviour of the exact solutions to several different class
of fractional differential equations. The following sections are allocated to some
necessary preliminaries, the main results and numerical simulation.
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6.1 Preliminaries
It is appropriate to briefly recall some critical bases of fractional calculus. The
Mittag-Leffler function Eα,β (z) satisfies the recurrence property

Eα,β (z) = − 1
zΓ (β − α) + 1

z
Eα,β−α (z) . (6.1)

By the fractional differentiation operator of the Riemann-Liouville type Dγ
0f (γ ∈ R),

the Mittag-Leffler function satisfies the following differentiation formula [119]

Dγ
0

(
zαk+β−1E

(k)
α,β (λzα)

)
= zαk+β−γ−1E

(k)
α,β−γ (λzα) . (6.2)

The particular case of the relationship (6.2) for n ∈ N has the form below(
d

dz

)n (
zβ−1Eα,β (λzα)

)
= zβ−n−1Eα,β−n (λzα) , (6.3)

and the following practical formulae could be directly derived from (6.3):
d

dz
Eα (λzα) = 1

z
Eα,0 (λzα) = λzα−1Eα,α (λzα) , (6.4)

d

dz
(Eα,α (λzα)) = 1

z
Eα,α−1 (λzα) + (1− α)

z
Eα,α (λzα) , (6.5)

d

dz

(
zβ−1Eα,β (λzα)

)
= zβ−2Eα,β−1 (λzα) , (6.6)

d

dz
(zEα,2 (λzα)) = Eα (λzα) . (6.7)

6.1.1 Asymptotic behaviour of Mittag-Leffler function

In this section, the asymptotic behaviour of Mittag-Leffler function is briefly stated
for the case 0 < α < 2. Suppose that 0 < α < 2, β, z ∈ C and µ be an arbitrary real
number such that π

2α < µ < min (π, πα). Then the following expansions hold

Eα,β (z) = 1
α
z

1−β
α exp

(
z

1
α

)
−

n∑
k=1

1
Γ (β − kα) zk +O

(
|z|−n−1

)
,

|z| → ∞, |arg (z)| ≤ µ.
(6.8)

and

Eα,β (z) = −
n∑
k=1

1
Γ (β − kα) zk+O

(
|z|−n−1

)
,

|z| → ∞, µ ≤ |arg (z)| ≤ π.
(6.9)

By applying the expansion (6.9) to the reals (z ∈ R), the following advantageous
formulae could be acquired

Eα (λzα) = − z−α

λΓ (1− α) +O

(
1

|λ|2z2α

)
, z →∞, z > 0, λ < 0, (6.10)

Eα,α (λzα) = αz−2α

λ2Γ (1− α) +O

(
1

|λ|3z3α

)
, z →∞, z > 0, λ < 0. (6.11)
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6.1.2 Sequential Fractional Derivative

The main idea of fractional calculus, which was mentioned before, is to replace the
integer-valued parameter n in the symbol

dn

dxn f (x) ,

with a non-integer parameter α. However, there is another approach which is a
matter of great importance to many applications. This approach states that in fact,
an nth order derivative is a series of first order derivative:

dnf
dxn = d

dx
d

dx . . .
d

dx︸ ︷︷ ︸
n

f .

Replacing the first order derivative, d
dx , with the derivative of non-integer order,

Dα, where 0 < α ≤ 1, results in another fractional differentiation operator, which is
called as sequential fractional derivative [85] denoted by

Dnαf (x) = DαDα . . . Dα︸ ︷︷ ︸
n

f (x) ,

where Dβ could be Riemann-Liouville, Caputo or any other type of fractional
differential operator. For instance, for the Riemann-Liouville fractional derivative,
the operator Dnαa f (x) denotes the Riemann-Liouville sequential fractional derivative:

Dαa f = Dα
a f

Dnαa f = DαaD(n−1)α
a f , (n = 2, 3, . . . ) . (6.12)

The general theory of sequential linear fractional differential equations is essen-
tially discussed in [85, 112]. In this section, the fractional order, α, is considered
to be a real number restricted to one, i.e. 0 < α ≤ 1 and Dα

a y (x) denotes the
Riemann-Liouville fractional derivative of the function y (x).

Definition 6.1.1. Let n ∈ N. The equation

n∑
k=0

ak (x)Dkαa y (x) = f (x) a < x < b , (k = 1, . . . , n) , (6.13)

is called as linear sequential fractional differential equation of order nα, where ak (x)
are known real functions and Dkαa denotes the fractional sequential derivative, i.e.

D0
ay := y ,

Dαa y := Dα
a y ,

Dkαa y := DαaD(k−1)α
a (k = 2, 3, . . . ) .

If an (x) 6= 0 for all x ∈ [a, b], (6.13) may be presented by

Lnαy (x) = f (x) ,
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where Lnαy (x) denotes

Lnαy (x) = Dnαa y (x) +
n−1∑
k=0

ak (x)Dkαa y (x)

= Dnαa y (x) + an−1 (x)D(n−1)α
a y (x) + · · ·+ a1 (x)Dαa y (x) + y (x)

Definition 6.1.2. Any solution to the equation Lnαy (x) = f (x) is referred to as
the general solution of this equation, which depends on n independent constants.

The next theorem represents the existence and uniqueness of global solutions to
the equation Lnαy (x) = f (x) with specified initial conditions:

Theorem 6.1.1. Let x0 ∈ (a, b) and yk0 ∈ R (k = 0, 1, . . . , n− 1) be given real
numbers, and let ai (x) ∈ C ([a, b]) (i = 0, 1, . . . , n− 1) and f (x) ∈ C ([a, b]). Then,
there exists a unique solution y (x) ∈ C ([a, b]) of the initial value problem

Lnαy (x) = f (x) (6.14a)
Dkαa y (x0) = yk0 (k = 0, 1, . . . , n− 1) . (6.14b)

Proposition 6.1.1. Any linear combination of solutions to the homogeneous equa-
tion

Lnαy (x) = 0 , (6.15)
is also a solution to this equation.

Proposition 6.1.2. If the function yp (x) is a particular solution to the equation

Lnαy (x) = f (x) ,

then the general solution to this equation will be given by

y (x) = yp (x) + yh (x) ,

where yh (x) is the general solution to the corresponding homogeneous equation

Lnαy (x) = 0 .

Consider the homogeneous equation

Lnαy (x) = Dnαa y (x) +
n−1∑
k=0

akDkαa y (x) = 0 , (6.16)

in which ak (k = 1, . . . , n− 1) are real constants. The solution to (6.16) can be
sought in the form of

y (x) = eλ(x−a)
α = (x− a)α−1Eα,α (λ (x− a)α) .

By referring to Eq. (6.16), it follows that

Lnαeλ(x−a)
α = Pn (λ) eλ(x−a)

α ,

where

Pn (λ) = λn +
n−1∑
k=1

akλ
k , (6.17)

is the characteristic polynomial associated with the equation Lnαy (x) = 0, where
λ ∈ C.
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Lemma 6.1.1. If λ is a root of the characteristic polynomial (6.17), then

∂

∂λ

(
Lnαeλ(x−a)

α

)
= Lnα

(
∂

∂λ
eλ(x−a)
α

)
,

and
∂l

∂λl
eλ(x−a)
α = (x− a)lα eλ(x−a)

α,l ,

where l ∈ N and

e
λ(x−a)
α,l = l! (x− a)(α−1)El+1

α,(l+1)α (λ (x− a)α)

Proposition 6.1.3. If λ1 is a root of multiplicity µ1 of the characteristic polynomial
(6.17), then the functions

y1,l (x) = (x− a)lα eλ1(x−a)
α,l , (l = 0, . . . , µ1 − 1)

are solutions to the equation Lnαy (x) = 0.

Corollary 6.1.1. Let λj j = 1, . . . , k be k distinct roots of the characteristic
polynomial (6.17) with multiplicity µj j = 1, . . . , k. Then the functions

k⋃
m=1

{
(x− a)lα eλm(x−a)

α,l

}µm−1

l=0

are linearly independent solutions of (6.15).

Proposition 6.1.4. If λ1 and λ̄1 (λ1 = b+ ic, c 6= 0) are two complex solutions of
multiplicity σ1 of the characteristic polynomial (6.17), then the functions

∞∑
j=0

(−1)j c2j

(2j)! (x− a)(2j+l)α e
b(x−a)
α,l+2j


σ1−1

l=0

and 
∞∑
j=0

(−1)j c2j+1

(2j + 1)! (x− a)(2j+l+1)α e
b(x−a)
α,l+2j+1


σ1−1

l=0

form 2σ1 linearly independent real solutions of Eq. (6.15).

Corollary 6.1.2. Assume that
{
λm, λ̄m

}p
m=1

, (λm = bm + icm, cm 6= 0) are all dis-
tinct pairs of complex conjugate solutions of multiplicity {σm}pm=1 of the characteristic
polynomial (6.17) for Eq. (6.15). Then the functions

p⋃
m=1


∞∑
j=0

(−1)j c2j
m

(2j)! (x− a)(2j+l)α e
bm(x−a)
α,l+2j


σm−1

l=0

and
p⋃

m=1


∞∑
j=0

(−1)j c2j+1
m

(2j + 1)! (x− a)(2j+l+1)α e
bm(x−a)
α,l+2j+1


σm−1

l=0

determine a linearly independent set of solutions to (6.15)
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Theorem 6.1.2. Assume the characteristic polynomial, represented by (6.17), for
Eq. (6.15). Let {λj}kj=1 be the all distinct real roots of (6.17) of the multiplicity
{µj}kj=1, and let {rj , r̄j}pj=1, (rj = bj + icj) be the set of the all distinct pairs of
complex conjugate roots of (6.17) of the multiplicity {σj}pj=1 such that

k∑
j=1

µj + 2
p∑
j=1

σj = n .

Then the functions
k⋃

m=1

{
(x− a)lα eλm(x−a)

α,l

}µm−1

l=0
, (6.18)

p⋃
m=1


∞∑
j=0

(−1)j c2j
m

(2j)! (x− a)(2j+l)α e
bm(x−a)
α,l+2j


σm−1

l=0

, (6.19)

and
p⋃

m=1


∞∑
j=0

(−1)j c2j+1
m

(2j + 1)! (x− a)(2j+l+1)α e
bm(x−a)
α,l+2j+1


σm−1

l=0

(6.20)

form the fundamental system of solutions of (6.15).

6.2 Order Estimation of Linear FDEs

This section is intended to determine the order of several classes of fractional
differential equations by using the asymptotic behaviour of the exact solutions, as
time tends to infinity.

Theorem 6.2.1. Let 0 < β ≤ 1, t0 > 0 and also let Dβ
t0u represents the Riemann-

Liouville differentiation operator. Consider the sequential linear differential equation
of fractional order

D2β
t0 u+ a1Dβt0u+ a0u = 0, (6.21)

with the initial condition u (t0) = u0 and Dβt0u (t0) = u1, and let a0 and a1 are reals
such that r1 and r2, the roots of the characteristic equation r2 + a1r + a0 = 0, are
distinct and real negative numbers. The following formula holds

β = −1− lim
t→∞

tu′

u
(6.22)

Proof. The exact solution to (6.21) has the form [80]

u (t) = c1t
β−1Eβ,β

(
r1t

β
)

+ c2t
β−1Eβ,β

(
r2t

β
)
. (6.23)

where c1 and c2 depend on the initial conditions. The first derivative of u (t) could
be calculated by using (6.6) as below

u′ (t) = c1t
β−2Eβ,β−1

(
r1t

β
)

+ c2t
β−2Eβ,β−1

(
r2t

β
)
. (6.24)
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By referring to (6.9), the asymptotic expansion of u (t) and u′ (t) are respectively

u (t) = −t
−β−1

Γ (−β)

(
c1
r2

1
+ c2
r2

2

)
+ c1t

β−1O
(
|r1|−3t−3β

)
+ c2t

β−1O
(
|r2|−3t−3β

)
(6.25)

and

u′ (t) = (β + 1) t−β−2

Γ (−β)

(
c1
r2

1
+ c2
r2

2

)
+ c1t

β−2O
(
|r1|−3t−3β

)
+ c2t

β−2O
(
|r2|−3t−3β

)
.

(6.26)

Therefore

tu′

u
=

(β+1)t−β−1

Γ(−β)

(
c1
r2

1
+ c2

r2
2

)
+ c1t

β−1O
(
|r1|−3t−3β

)
+ c2t

β−1O
(
|r2|−3t−3β

)
−t−β−1

Γ(−β)

(
c1
r2

1
+ c2

r2
2

)
+ c1tβ−1O

(
|r1|−3t−3β

)
+ c2tβ−1O

(
|r2|−3t−3β

) (6.27)

As t→∞, (6.27) leads to

− lim
t→∞

tu′

u
= − lim

t→∞

(β+1)t−β−1

Γ(−β)

(
c1
r2

1
+ c2

r2
2

)
−t−β−1

Γ(−β)

(
c1
r2

1
+ c2

r2
2

) = β + 1 (6.28)

and proof is completed.

Theorem 6.2.2. Let 0 < β < 1
2 , γ, µ ∈ R such that 0 < γ < µ2, and let Dβ

t u
indicates the Caputo differentiation operator. For the initial value problem

D2β
t u (t) + 2µDβ

t u (t) + γu (t) = 0 (6.29)

with the initial condition u (0) = 1, and also for sequential linear differential equation
of fractional order

D2β
t u+ 2µDβt u+ γu = 0 (6.30)

with the initial condition Dβt u (0) = 0 and u (0) = 1, the following formula holds

β = − lim
t→∞

tu′

u
(6.31)

Remark 6.2.1. If Dβt u (0) = 0, then c1r1 + c2r2 = 0 and D2β
t u = D2β

t u. The case
of Dβt u (0) 6= 0 leads to c1r1 + c2r2 6= 0 and therefore, the coefficients c1 and c2
are not the same as those represented in the proof of Theorem 6.2.2 and must be
calculated.

Proof. The equations (6.29) and (6.30) have the exact solution [49], represented by

u (t) = c1Eβ
(
r1t

β
)

+ c2Eβ
(
r2t

β
)
, (6.32)

where the coefficients c1 and c2 are respectively equal to 1
2

(
1 + µ√

µ2−γ

)
and

1
2

(
1− µ√

µ2−γ

)
, and the parameters r1 and r2 equal to −µ +

√
µ2 − γ < 0 and
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−µ−
√
µ2 − γ < 0 respectively. The asymptotic behaviour of Mittag-Leffler function

at infinity is applied to (6.32). By using (6.10)

u (t) = − t−β

Γ (1− β)

(
c1
r1

+ c2
r2

)
+ c1O

(
r−2

1 t−2β
)

+ c2O
(
r−2

2 t−2β
)
. (6.33)

The first derivative of (6.32) could be obtained by referring to (6.4)

u′ (t) = c1r1t
β−1Eβ,β

(
r1t

β
)

+ c2r2t
β−1Eβ,β

(
r2t

β
)
, (6.34)

and using (6.11) and applying the asymptotic behaviour of Mittag-Leffler function
to (6.34), leads to

u′ (t) = βt−β−1

Γ (1− β)

(
c1
r1

+ c2
r2

)
+tβ−1

(
c1r1O

(
r−3

1 t−3β
)

+ c2r2O
(
r−3

2 t−3β
))
. (6.35)

Therefore

tu′

u
= t

βt−β−1

Γ(1−β)

(
c1
r1

+ c2
r2

)
+ tβ−1

(
c1r1O

(
r−3

1 t−3β
)

+ c2r2O
(
r−3

2 t−3β
))

− t−β

Γ(1−β)

(
c1
r1

+ c2
r2

)
+ c1O

(
r−2

1 t−2β
)

+ c2O
(
r−2

2 t−2β
) . (6.36)

As t→∞, from (6.36) the result could be obtained

− lim
t→∞

tu′

u
= − lim

t→∞
t

βt−β−1

Γ(1−β)

(
c1
r1

+ c2
r2

)
− t−β

Γ(1−β)

(
c1
r1

+ c2
r2

) = β. (6.37)

Theorem 6.2.3. Let 1 < β < 2, and r be a real negative number. For the fractional
differential equation with Caputo derivative

Dβ
t u− ru = 0, (6.38)

with the initial condition u (0) = 1 and u′ (0) = 1, the following relationship holds

β = 1− lim
t→∞

tu′

u
(6.39)

Proof. The exact solution to (6.38) is

u (t) = Eβ
(
rtβ
)

+ tEβ,2
(
rtβ
)
. (6.40)

The first derivative of u (t) could be calculated by referring to (6.4) and (6.7)

u′ (t) = rtβ−1Eβ,β
(
rtβ
)

+ Eβ
(
rtβ
)
. (6.41)

The asymptotic expansions of u (t) and u′ (t) at infinity are respectively

u (t) = − t−β

rΓ (1− β)

(
1 + t

1− β

)
+O

(
|r|−2t−2β

)
+ tO

(
|r|−2t−2β

)
(6.42)
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and

u′ (t) = t−β

rΓ (1− β)

(
β

t
− 1

)
+ rtβ−1O

(
|r|−3t−3β

)
+O

(
|r|−2t−2β

)
(6.43)

therefore

tu′

u
=

t−β

rΓ(1−β) (β − t) + rtβO
(
|r|−3t−3β

)
+O

(
|r|−2t−2β

)
− t−β

rΓ(1−β)

(
1 + t

1−β

)
+O

(
|r|−2t−2β

)
+ tO

(
|r|−2t−2β

) . (6.44)

As t→∞, (6.44) leads to

lim
t→∞

tu′

u
= lim

t→∞

tu′

u

t−β

rΓ(1−β) (β − t)

− t−β

rΓ(1−β)

(
1 + t

1−β

) = 1− β (6.45)

and proof is completed.

Theorem 6.2.4. Let 0 < β < 1, and r be a real negative number. For the frac-
tional differential equation (6.38) with the initial condition u (0) = 1, the following
relationship holds

β = − lim
t→∞

tu′

u
(6.46)

Proof. The exact solution to (6.38), with 0 < β < 1 is in the form [94]

u (t) = Eβ
(
rtβ
)
. (6.47)

The first derivative of u (t) could be calculated by referring to (6.4)

u′ (t) = rtβ−1Eβ,β
(
rtβ
)
. (6.48)

The asymptotic expansions of u (t) and u′ (t) are respectively

u (t) = − t−β

rΓ (1− β) +O
(
|r|−2t−2β

)
, (6.49)

and
u′ (t) = βt−β−1

rΓ (1− β) + rtβ−1O
(
|r|−3t−3β

)
. (6.50)

Therefore
tu′

u
=

βt−β

rΓ(1−β) + rtβ−1O
(
|r|−3t−3β

)
− t−β

rΓ(1−β) +O
(
|r|−2t−2β

) . (6.51)

As t→∞, (6.51) results in

lim
t→∞

tu′

u
= lim

t→∞

βt−β

rΓ(1−β)

− t−β

rΓ(1−β)
= −β. (6.52)
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6.3 Numerical Investigation
Example: Consider the initial value problem

D2β
t u+ 2Dβ

t u+ 0.7u = 0, t ≥ 0, 0 < β <
1
2 (6.53)

with the initial condition u (0) = 1. The exact solution to (6.53) has the form

u (t) = c1Eβ
(
r1t

β
)

+ c2Eβ
(
r2t

β
)
, (6.54)

where r1 = −0.4523, r2 = −1.5477, c1 = 1.4129, c2 = −0.4129. Fig. 6.1 represents
the graph of − tu′

u , which has been evaluated for several different values of β, by using
the exact representation of u′ and u. It could be obviously seen that − tu′

u tends
asymptotically to β, as t goes to infinity. Numerical results coincide exactly with
the result of the Theorem 6.2.2 and the rate of the convergence of − tu′

u is greatly
influenced by the value of β.

t

0 1000 2000 3000 4000 5000

-t
 d

u
/u

0

0.1

0.2

0.3

0.4

Beta = 0.35

t

0 1000 2000 3000 4000 5000

-t
 d

u
/u

0

0.1

0.2

0.3

0.4

Beta = 0.40

t

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

-t
 d

u
/u

0

0.1

0.2

0.3

0.4

0.5

Beta = 0.45

Figure 6.1. Graph of − tu′

u for β = 0.35, β = 0.40 and β = 0.45.

Example: Consider the fractional differential equation
Dβ
t u+ 2u = 0

u (0) = 1
u′ (0) = 1

(6.55)
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where 1 < β < 2 and Dβ
t u is in the sense of Caputo derivative. The exact solution

is in the form of
u (t) = Eβ

(
−2tβ

)
+ tEβ,2

(
−2tβ

)
. (6.56)

According to Theorem 6.2.3, the term 1− tu′

u tends to the order β as t goes to the
infinity. The numerical evaluation of 1− tu′

u has been conducted for different values
of β, by using the exact expressions of u′ and u, shown in Fig. 6.2. As it could be
seen, 1− tu′

u converges to β with a rate, which is obviously affected by the value of
β, i.e. the convergence will be faster if the fractional order β tends to 2.

t
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Figure 6.2. Graph of 1− tu′

u for β = 1.2, β = 1.5 and β = 1.7.

Inverse problem occurs in many branches of science and have been also examined
in fractional differential systems. For instance, determination of the order of fractional
systems has been indicated to be of such crucial importance that it could influence
how anomalous diffusion equations must be appropriately simulated. Thus, the
exact solution to several classes of linear fractional differential equations represented,
for which the fractional order determination was demonstrated by using asymptotic
expansion of Mittag-Leffler functions.





Chapter 7

Optimal Control to Cancer
Immunotherapy

This chapter is allocated to representation of therapeutic controls for cancer im-
munotherapy model of KP and FKP.

7.1 Variational approach to optimal control

7.1.1 Introduction

Optimal control theory deals with the control of an operating dynamical system,
while its objective is to determine the inputs of the system in such a way that
physical constraints and simultaneously, the minimization (or maximization) of some
performance criterion are satisfied during the process of the system. An optimal
control problem requires in general:

• The mathematical model of dynamical process to be controlled.

• Statements of physical constraints.

• Specification of a performance criterion to be optimized.
A crucial part of a control problem is the mathematical model describing the
dynamical process. The discussion is restricted to the models specified by the
ordinary differential equations. If

x1 (t) , x2 (t) , . . . , xn (t)

are the state variables (or simply the states) of the dynamical process at time t, and

u1 (t) , u2 (t) , . . . , um (t)

are the inputs (or control inputs) to the process at time t, then the process is
described by the system of ordinary differential equations

ẋ1 (t) = f1 (x1 (t) , . . . , xn (t) , u1 (t) , . . . , un (t) , t) ,
ẋ2 (t) = f2 (x1 (t) , . . . , xn (t) , u1 (t) , . . . , un (t) , t) ,
...
ẋn (t) = fn (x1 (t) , . . . , xn (t) , u1 (t) , . . . , un (t) , t) .

(7.1)
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The state vector of the system could be defined as

x (t) =


x1 (t)
x2 (t)

...
xn (t)

 (7.2)

and the control vector as

u (t) =


u1 (t)
u2 (t)

...
um (t)

 (7.3)

therefore (7.1), can be represented in the vector state form:

ẋ (t) = f (x (t) ,u (t) , t) , (7.4)

where the initial state of the system is

x0 = x (t0) =


x1 (t0)
x2 (t0)

...
xn (t0)

 , (7.5)

and the vector f is apparently equal to

f (t) =


f1 (t)
f2 (t)
...

fn (t)

 . (7.6)

Definition 7.1.1. Let the system (7.4) be defined for the time interval [t0, tf ], where
t0 and tf denote respectively the initial and the final time. an input, u (t), to the
system satisfying all the control constraints during the entire time interval [t0, tf ] is
called an admissible control.

Definition 7.1.2. A trajectory which satisfies the state variable constraints during
the entire time interval [t0, tf ], is called an admissible trajectory.

The set of all admissible controls is denoted by U and therefore the notation
u ∈ U means that the control, u, is admissible. In order to quantitatively evaluate
the performance quality of a system, an index must be considered to be minimized
or maximized during the process of control. This index is called as performance
measure or performance index. It is assumed that the performance of a system is
evaluated by a performance index in the form

J = h (x (tf ) , tf ) +
∫ tf

t0
g (x (t) ,u (t) , t) dt, (7.7)

where t0 and tf are the initial and final time respectively. The final time (or terminal
time), tf , is either fixed or free. The scalar functions g and h are respectively called
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running cost and terminal cost. The system starts from an initial state, x0 = x (t0),
then by applying a control input for the time interval [t0, tf ], the system follows
a state trajectory to the final or terminal state xf = x (tf ) which is either fixed
or free. The performance index defined by (7.7) assigns a unique real value to the
state trajectory. The structure of an optimal control problem consists in finding
an admissible control which causes the system to follow an admissible trajectory in
order to minimize the performance measure (7.7). The control and the state which
minimize the performance index are respectively called the optimal control and the
optimal trajectory, and are expressed by u∗ and x∗.

While the performance index is determined for a system, the next step is to find
an optimal control. The methods of dynamic programming, which was developed
by R. Bellman [15], and Pontryagin maximum principal [120] have been developed
to accomplish the minimization. The variational approach of Pontryagin leads to
solving nonlinear two-point boundary value problems, which must be solved to
obtain an optimal control.

7.1.2 Fundamental Concepts

Suppose Ω is an open subset of Rn, i.e. Ω ⊆ Rn and suppose x∗ ∈ Ω to be the local
minimum of the function f ∈ C1 (Ω). For a fixed d ∈ Ω, where d 6= 0, and for all
ε ∈ R, where ε is small enough in such a way that x∗ + εd ∈ Ω, the function g (ε) is
defined as follows:

g (ε) = f (x∗ + εd) . (7.8)

Obviously ε∗ = 0 is the minimum of the function g (ε). By using the first-order
Taylor expansion for g around ε∗ = 0:

g (α) ≈ g (0) + g′ (0) ε. (7.9)

It can be proved that g′ (0) = 0 and

g′ (ε) =
[
∂f (x∗ + εd)

∂x

]T
d . (7.10)

Setting ε = 0 in (7.10) it is obtained that

g′ (0) =
[
∂f (x∗)
∂x

]T
d = ∇f (x∗) d , (7.11)

and therefore
∇f (x∗) = 0 , (7.12)

which is derived from the first-order Taylor expansion and therefore is called the
first-order necessary condition for optimality. The point x∗, which satisfies the
(7.12), is called a stationary point. The second-order necessary condition can be
obtained by using the second-order Taylor expansion of the function f (x), under
the stronger hypothesis that f ∈ C2 (Ω):

g (α) ≈ g (0) + g′ (0) ε+ 1
2g
′′ (0) ε2 . (7.13)
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It can be indeed proved that g′′ (0) ≥ 0. By differentiating the (7.10), g′′ is obtained

g′′ (ε) = dT∇2f (x∗ + εd) d , (7.14)

and therefore
g′′ (0) = dT∇2f (x∗) d , (7.15)

where ∇2f is defined as

∇2f :=


∂2f

∂x1∂x1
· · · ∂2f

∂x1∂xn... . . . ...
∂2f

∂xn∂x1
· · · ∂2f

∂xn∂xn

 , (7.16)

and is called the Hessian matrix of f . Since g′′ (0) ≥ 0, it is concluded that ∇2f (x∗)
must be positive semidefinite:

∇2f (x∗) ≥ 0 . (7.17)
At a local maximum, the Hessian must be negative semidefinite, i.e.

∇2f (x∗) ≤ 0 . (7.18)

The combination of the strengthened second-order necessary condition with the
first-order necessary condition results in the second-order sufficient condition. If the
function f ∈ C2 (Ω) satisfies

∇f (x∗) = 0 and ∇2f (x∗) > 0 , (7.19)

then x∗ is a strict local minimum of the function f . The objective of an optimal
control problem is to determine a function, by which a specified functional–the
so-called performance index–is minimized.

Definition 7.1.3. A rule of correspondence, which assigns a unique real number to
each function x of a certain class of functions Ω is called a functional.

Definition 7.1.4. The increment of the functional J , denoted by ∆J , is defined as

∆J (x, δx) = J (x + δx)− J (x) , (7.20)

where x and x + δx are functions for which the functional J is defined. The function
δx by an infinitesimal but arbitrary amount, is called the variation of the function x.

Suppose J : D → R to be a real-valued functional defined on a function space D,
and consider some function x ∈ D. The derivative of the functional J at x, which is
a linear functional on D, is called the first variation of J and is denoted by δJ . the
function x+ εy is considered in D, where y ∈ D and ε is a very small real parameter,
then definition of first variation is as follows

Definition 7.1.5. The functional δJ |x : D → R is called the first variation of J at
x, if for all y ∈ D and for all ε the relation

J (x+ εy) = J (x) + εδJ |x (y) + o (ε) , (7.21)

is held true, where o (ε) satisfies

lim
ε→0

o (ε)
ε

= 0.
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For all admissible perturbation y, the first-order necessary condition for optimality
is as follows [93]:

δJ |x∗ (y) = 0 . (7.22)

Definition 7.1.6. A quadratic form δ2J
∣∣
x : D → R is called the second variation

of J at x, if for all y ∈ D and for all ε the relation

J (x+ εy) = J (x) + εδJ |x (y) + ε2 δ2J
∣∣∣
x

(y) + o2 (ε) , (7.23)

is held true.

The second-order necessary condition for optimality can be established. If x∗ is
a local minimum of J over D, then for all admissible perturbations y:

δ2J
∣∣∣
x∗

(y) ≥ 0 . (7.24)

7.1.3 Pontryagin’s Maximum Principle

The control system, which is studied, takes the form

ẋ = f (t,x,u) , x (t0) = x0 , (7.25)

where x ∈ Rn is the state vector, u ∈ U ⊂ Rm is the control vector, t ∈ R is
the time, t0 is the initial time, and x0 is the initial state. Both the state and
control vector are functions of time, i.e. x = x (t) and u = u (t). The set of
admissible controls U is normally a closed subset of or the entire Rm. The methods
of variational calculus [86] is utilized to determine necessary conditions for optimal
control problem. The problem is to find an admissible control u∗ that causes (7.25)
to follow an admissible trajectory x∗ maximizing the performance measure

J(u) = h (tf ,xf ) +
∫ tf

t0
g (t,x,u) dt, (7.26)

where tf and xf = x (tf ) are respectively the final (terminal) time and state,
g : R × Rn × U → R is the running cost and h : R × Rn → R is the terminal cost.
Such optimal problem, in which the performance measure is introduced by (7.26)
are mentioned as problems in the Bolza form. An important special case of Bolza
problem is the Lagrange problem, for which there is no terminal cost function, i.e.
h ≡ 0. The terminal cost can be rewritten as follows:

h (tf ,xf ) = h (t0,x0) +
∫ tf

t0

d
dth (t,x) dt

= h (t0,x0) +
∫ tf

t0

(
∂h (t,x)
∂x ẋ + ∂h (t,x)

∂t

)
dt , (7.27)

therefore the (7.26) can be expressed in the Lagrange form:

J(u) = h (t0,x0) +
∫ tf

t0

(
g (t,x,u) + d

dth (t,x)
)

dt . (7.28)



82 7. Optimal Control to Cancer Immunotherapy

Since the term h (t0,x0) is a constant, thus the functional

J(u) =
∫ tf

t0

(
g (t,x,u) + d

dth (t,x)
)

dt , (7.29)

is only considered to be minimized. As a prior assumption, the set of admissible
controls, U , and the region of admissible states are considered to be unbounded. By
using the (7.27), the performance measure (7.29) can be written as follows:

J(u) =
∫ tf

t0

(
g (t,x,u) +

[
∂h (t,x)
∂x

]T
ẋ + ∂h (t,x)

∂t

)
dt , (7.30)

It is known that the optimal control problem is a constraint problem subjected to
ẋ = f (t,u,x). In order to convert the problem to an unconstraint problem, the
Lagrange multiplier

λ (t) =


λ1 (t)
λ2 (t)

...
λn (t)

 , (7.31)

is defined. Multiplication of Lagrange multiplier and the state system leads to:

λT (f (t,x,u)− ẋ) = 0 . (7.32)

By adding the (7.32) to the integrand of (7.30), the augmented performance measure,
which is denoted by Ja (u), will be as below:

Ja(u) =
∫ tf

t0

(
g (t,x,u) +

[
∂h (t,x)
∂x

]T
ẋ + ∂h (t,x)

∂t
+ λT (f (t,x,u)− ẋ)

)
dt ,

(7.33)
The integrand in (7.33) is denoted by ga:

ga (t,x, ẋ,u, λ) = g (t,x,u) +
[
∂h (t,x)
∂x

]T
ẋ + ∂h (t,x)

∂t

+λT (f (t,x,u)− ẋ) , (7.34)

therefore, the augmented performance index, Ja(u), can be expressed by the integral:

Ja(u) =
∫ tf

t0
ga (t,x, ẋ,u, λ) dt , (7.35)

where the integrand in (7.35) is mentioned as the Lagrangian and by introducing
Hamiltonian

H (t,x,u, λ) = g (t,x,u) + λT f (t,x,u) , (7.36)

then, ga can be expressed by Hamiltonian as follows:

ga (t,x, ẋ,u, λ) = H (t,x,u, λ) +
[
∂h (t,x)
∂x

]T
ẋ + ∂h (t,x)

∂t
− λT ẋ . (7.37)
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It is mentioned that the terminal time, tf , and the terminal state, xf , are both
considered to be free. The state x∗ and the control u∗ are considered as the optimal
state and control respectively. For perturbed condition, it is needed to introduce
the variations of δx, δu, δẋ, δtf and δxf . Under the condition of perturbation, the
performance measure will be as follows:

Jp(u) =
∫ tf+δtf

t0

(
g (t,x∗ + δx,u∗ + δu) +

[
∂h (t,x∗)

∂x

]T
(ẋ + δẋ)

+∂h (t,x∗)
∂t

+ λT (f (t,x∗ + δx,u∗ + δu)− (ẋ + δẋ))
)

dt , (7.38)

The integrand in (7.38) is denoted by gp (t,x∗ + δx,u∗ + δu, ẋ + δẋ), therefore

gp (.) = g (t,x∗ + δx,u∗ + δu) +
[
∂h (t,x∗)

∂x

]T
(ẋ + δẋ)

+∂h (t,x∗)
∂t

+ λT (f (t,x∗ + δx,u∗ + δu)− (ẋ + δẋ)) , (7.39)

Equation (7.38) can be written as follows:

Jp(u) =
∫ tf

t0
gp (.) dt+

∫ tf+δtf

tf

gp (.) dt . (7.40)

The increment of the performance function is

∆J(u) = Jp(u)− Ja(u∗) . (7.41)

By using the (7.34) and (7.40), it is obtained that

∆J(u) =
∫ tf

t0
gp (.) dt+

∫ tf+δtf

tf

gp (.) dt−
∫ tf

t0
ga (.) dt , (7.42)

The second term on the right-hand-side of the (7.42) can be approximated by the
area under the curve of ga from tf to tf + δtf . Thus

∆J(u) ≈
∫ tf

t0
gp (.) dt+

(
ga (t,x∗, ẋ∗,u∗, λ∗)|t=tf δtf

)
−
∫ tf

t0
ga (.) dt

≈
∫ tf

t0
(gp (.)− ga (.)) dt+

(
ga (t,x∗, ẋ∗,u∗, λ∗)|t=tf δtf

)
. (7.43)

By using the Taylor series for ∆g = gp − ga in (7.43), the first variation of the
performance measure, J (u), is obtained:

δJ =
∫ tf

t0

[
∂ga (t,x∗, ẋ∗,u∗, λ∗)

∂x − d
dt
∂ga (t,x∗, ẋ∗,u∗, λ∗)

∂ẋ

]T
δx dt

+
∫ tf

t0

[
∂ga (t,x∗, ẋ∗,u∗, λ∗)

∂u

]T
δu dt

+
[
∂ga (t,x∗, ẋ∗,u∗, λ∗)

∂ẋ

]T ∣∣∣∣∣
t=tf

δx (tf )

+ga (t,x∗, ẋ∗,u∗, λ∗)|t=tf δtf (7.44)
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The variation of x can be expressed by the variation of the state at the terminal
time, i.e.

δxf = δx (tf ) + ẋ (tf ) δtf , (7.45)

or
δx (tf ) = δxf − ẋ (tf ) δtf . (7.46)

By putting (7.46) into (7.44) it is attained that

δJ =
∫ tf

t0

[
∂ga (t,x∗, ẋ∗,u∗, λ∗)

∂x
− d

dt
∂ga (t,x∗, ẋ∗,u∗, λ∗)

∂ẋ

]T
δx dt

+
∫ tf

t0

[
∂ga (t,x∗, ẋ∗,u∗, λ∗)

∂u

]T
δu dt

+
[
∂ga (t,x∗, ẋ∗,u∗, λ∗)

∂ẋ

]T ∣∣∣∣∣
t=tf

(δxf − ẋ (tf )) δtf

+ga (t,x∗, ẋ∗,u∗, λ∗)|t=tf δtf (7.47)

The following lemma is utilized to derive the first order necessary conditions for the
optimal control problem:

Lemma 7.1.1. If a continuous function ξ : [a, b]→ R is such that∫ b

a
ξ (t) η (t) dt = 0

for all function η ∈ C1 [a, b] with η (a) = η (b) = 0, then ξ ≡ 0 .

Using Lemma 7.1.1 and (7.44) it is concluded that

∂ga (t,x∗, ẋ∗,u∗, λ∗)
∂x − d

dt
∂ga (t,x∗, ẋ∗,u∗, λ∗)

∂ẋ = 0 , (7.48)

and also
∂ga (t,x∗, ẋ∗,u∗, λ∗)

∂u = 0 , (7.49)

therefore (7.47) will be in the form below

δJ =
[
∂ga (t,x∗, ẋ∗,u∗, λ∗)

∂ẋ

]T ∣∣∣∣∣
t=tf

(δxf − ẋ (tf )) δtf

+ga (t,x∗, ẋ∗,u∗, λ∗)|t=tf δtf (7.50)

or

δJ =
(
ga (t,x∗, ẋ∗,u∗, λ∗)−

[
∂ga (t,x∗, ẋ∗,u∗, λ∗)

∂ẋ

]T
ẋ
)∣∣∣∣∣

t=tf

δtf

+
[
∂ga (t,x∗, ẋ∗,u∗, λ∗)

∂ẋ

]T ∣∣∣∣∣
t=tf

δxf (7.51)
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Equation (7.51) is called the transversality conditions or boundary condition. As a
conclusion, the necessary conditions for the optimal control problem are expressed
by (7.48), (7.49) and (7.51).

The mentioned necessary conditions could be more appropriate to be represented
by referring to the notation of Hamiltonian. By referring to (7.36), the necessary
conditions in Hamiltonian system are as follows:

∂H (t,x∗,u∗, λ∗)
∂x = −λ̇∗ (t) , (7.52)

which is called adjoint (costate) equation,

∂H (t,x∗,u∗, λ∗)
∂u = 0 , (7.53)

mentioned as optimality condition (Hamiltonian maximization property) and

∂H (t,x∗,u∗, λ∗)
∂λ

= ẋ (t) , (7.54)

which is known as state equation, and the transversality condition(
H (t,x∗,u∗, λ∗) + ∂h (x, t)

∂t

)∣∣∣∣
t=tf

δtf +
[
∂h (x∗, t)

∂x − λ∗ (t)
]T ∣∣∣∣∣

t=tf

δxf = 0 . (7.55)

Whenever the terminal time is fixed and the terminal state is free, meaning that
δtf = 0 and δxf 6= 0, the transversality condition (7.55) will be as follows:[

∂h (x∗, t)
∂x − λ∗ (t)

]∣∣∣∣
t=tf

= 0 . (7.56)

Equation (7.53) provides the necessary condition (but not sufficient) for u∗ to be an
optimal control. If (7.53) is satisfied, then the sufficient condition, which guarantees
the Hamiltonian to be a local minimum, is expressed by

∂2H (t,x∗,u∗, λ∗)
∂u2 > 0 . (7.57)

where the notation ∂2H
∂u2 > 0 means that the matrix

[
∂2H
∂u2

]
m×m

is positive definite.
The variational approach, which was presented in Section 7.1.2, leads to necessary

conditions for the optimal problem. The necessary conditions were expressed by state
and adjoint equations, Hamiltonian maximization property, and the transversality
condition. However the variational approach are based on several restrictions.
Bounded controls: in (7.38), the starting point is to consider a perturbed u in the
form δu. Such a perturbation is allowed where the control u is an interior element
of the set of admissible controls U . This may not be the case while the set U has a
boundary. Bounded controls are prevalent in control applications and achievable
controls are restricted to physical constraints. The effect of bounded controls defi-
nitely influences the necessary conditions of the optimal control problem. Even in
such a situation the Hamiltonian function must be maximized at u∗, nonetheless,
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this cannot be achieved by using the variational approach. In fact, the optimality
condition expressed in (7.53) i.e. ∂H

∂u = 0, need not be equal to zero while the
maximum is achieved at a boundary point of the set U .
Differentiability: while the first and second variation of performance index is estab-
lished, it is assumed that the Hamiltonian function is differentiable with respect to u
in addition to the state variables x. In other words, the variational approach requires
restrictive regularity assumptions to be imposed on the system, and in addition, to
the performance index. Instead, the Hamiltonian maximization property is desired
to be established not via derivatives.

In brief, some restrictive assumptions of variational approach must be dealt with
such as differentiability and more specifically it is required to apply constraints on
the controls and final state of the system. The Pontryagin maximum principle [120],
which extends the variational approach, was established and introduced by Lev
Pontryagin and his students in 1956.

Assume that the system and the performance index, which must be maximized,
are respectively as below:

ẋ (t) = f (x (t) ,u (t) , t) , (7.58)

with the initial state x0 and

J = h (x (tf )) +
∫ tf

t0
g (x (t) ,u (t) , t) dt , (7.59)

in which the final time, tf , is considered to be fixed. The Hamiltonian function is:

H (t,x,u, λ) = g (t,x,u) + λT f (t,x,u) . (7.60)

For this special optimal problem, the statement of Pontryagin maximum principle is
as follows:

Pontryagin Maximum Principle. Let u∗ : [t0, tf ] → U be an optimal control
and let x∗ : [t0, tf ]→ Rn be the corresponding optimal state trajectory. Then there
exists a vector λ∗ : [t0, tf ]→ Rn, such that the following conditions are satisfied:
1) The vectors x∗ and λ∗ satisfy respectively the equations

ẋ∗ (t) = ∂H (t,x∗,u∗, λ∗)
∂λ

, (7.61)

with the initial state x0, and

λ̇∗ (t) = −∂H (t,x∗,u∗, λ∗)
∂x . (7.62)

2) For all t ∈ [t0, tf ] and all u ∈ U

H (t,x∗,u∗, λ∗) ≥ H (t,x∗,u, λ∗) . (7.63)

3) Transversality condition:

λ∗ (tf ) = dh (x)
dx

∣∣∣∣
t=tf

. (7.64)
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A special case of the Maximization of Hamiltonian occurs while the Hamiltonian
function is time-independent, i.e. ∂H∂t = 0 [135]. In this case:

H (t,x∗,u∗, λ∗) = constant . (7.65)

The characterization of the optimal control can be constructed as follows [91]:
Consider the performance index (7.59), subject to system (7.58) and a ≤ u (t) ≤ b,
where a and b are real constants (a < b). Assume that u∗ and x∗ are respectively
the optimal control and optimal state trajectory. Suppose that v (t) is a piecewise
continuous function and there exists a positive constant ε0, such that a ≤ uε (t) =
u∗ + εv (t) ≤ b for all ε ∈ (0, ε0]. The performance index corresponding to uε is

J = h (x (tf )) +
∫ tf

t0
g (xε, uε, t) + λT f (xε, uε, t) + xTε λ̇dt

−λ (t0) x0 + λ (tf ) + h (x (tf )) , (7.66)

where xε corresponds with uε and λ is the adjoint variable. Since the maximization
of J occurs at u∗, therefore,

dJ
dε

∣∣∣∣
ε=0

= lim
ε→0+

J (uε)− J (u∗)
ε

≤ 0 . (7.67)

By using (7.62), (7.66) and (7.67) are reduced to∫ tf

t0

(
gu + λT fu

)
v (t) dt ≤ 0 . (7.68)

Assume that u∗ is continuous at time t1 and gu + λT fu > 0 at t1. There is a small
interval I including the point t1, such that gu + λT fu is strictly positive on the
interval I and u∗ < b. Suppose that umax is the maximum value of u∗ on the interval
I

umax = max {u∗ (t) : t ∈ I} .

By defining

v̄ (t) =
{
b− umax if t ∈ I
0 otherwise.

Therefore ∫ tf

t0

(
gu + λT fu

)
v̄ (t) dt =

∫
I

(
gu + λT fu

)
v̄ (t) dt > 0 ,

which is in contradiction to (7.68). This implies that gu + λT fu ≤ 0 at t1. Now, it
is assumed that gu + λT fu < 0 at t1. In a similar way, it can be shown that this
assumption is not true, therefore, gu + λT fu = 0 where a < u∗ < b. In summary:

u∗ (t) = a implies ∂H

∂u
≤ 0 at t ,

a < u∗ (t) < b implies ∂H

∂u
= 0 at t , (7.69)

u∗ (t) = b implies ∂H

∂u
≥ 0 at t .



88 7. Optimal Control to Cancer Immunotherapy

7.2 Optimal Control Applied to the KP Model

In this section the goal is to determinate an optimal therapeutic protocol in cancer
immunotherapy, by applying the Pontryagin maximum principle to the KP model.
Thus the optimal control problem is described as below:
Maximize the given objective functional (performance index)

max
u∈U

J (u) , (7.70)

where J (u) is described by

J (u) = −Ay (tf ) +
∫ tf

0

(
x (t)− y (t) + z (t)− 1

2B(u (t))2
)

dt , (7.71)

subject to

dx
dt =cy − µ2x+ p1xz

g1 + z
+ s1u (t) ,

dy
dt =r2y (1− by)− axy

g2 + y
,

dz
dt = p2xy

g3 + y
− µ3z , (7.72)

with the initial state
x (0) = 1, y (0) = 1, z (0) = 1 , (7.73)

where the final state is free.
The parameters appeared in (7.72) are represented in Table 2.3. It has been

assumed that there is no external source of IL-2 and the function u (t) is the control
which represents the percentage of the external effector cells for medical treatment.
Thus the set of admissible control functions, U , is defined as (2.13). The term
−Ay (tf ) denotes the goal of minimization of tumour cells at the final time tf , where
A is a real positive constant. The aim of maximization of the performance index
in (7.71) is to keep the effector cells and IL-2 concentration at the maximized level,
and to minimize the level of cancer cells during the medical treatment, while the
cost of the control is minimized. The weight parameter B represents the importance
of minimization of u (t) in the performance index. The function J , represented in
(7.71), is concave with respect to u.

7.2.1 Existence of Optimal Control

The existence of an optimal control with finite performance index represented
by (7.71) can be guaranteed by the existence theorem developed by Fleming and
Rishel [54]:

Theorem 7.2.1. Let (7.72) be represented in the form of

Ẋ = f (t,X, u) ,
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with the initial state x (0) = 1, y (0) = 1, z (0) = 1 and free final state. Assume the
performance index J (u) is represented by

J (u) = −Ay (tf ) +
∫ tf

0
g (t,X, u) dt , (7.74)

where g (t,X, u) is

g (t,X, u) = x (t)− y (t) + z (t)− 1
2B(u (t))2 , (7.75)

and the control u belongs to the convex and closed set of admissible controls U , on the
interval [0, tf ]. Then, there exists an optimal control u∗ such that J (u∗) = max

u∈U
J (u)

if the following conditions are satisfied:

1. there exists α (t,X) and β (t,X) such that

f (t,X, u) = α (t,X) + β (t,X)u (t) .

2. There exists constants C1 > 0 and C2 > 0 such that

|f (t,X, u)| ≤ C1 |X|+ C2 |u|

3. g (t,X, u) is concave in u and bounded above by C3 − C4 |u|2, where C3 > 0
and C4 are constants.

Proof. The first and second conditions were proved in Section 2.2. The function
g (t,X, u) is obviously concave in u. Furthermore, x (t), y (t), and z (t) are bounded
above. Thus there exists a constant C3 > 0 such that

x (t)− y (t) + z (t) ≤ x (t) + z (t) ≤ C3 ,

therefore
g (t,X, u) ≤ C3 − C4

∣∣∣u (t)2
∣∣∣ ,

where C4 = B/2.

7.2.2 Characterization of Optimal Control

Since the main goal in immunotherapy is to remove the tumour cells with the least
probable medication side effects, an advanced version of the model may include a
time dependent external sources of medical treatment, meaning that the parameters
s1 and s2 could be considered as control functions of time and therefore the optimum
use of medical sources can be evaluated in order to achieve the optimal measure of
an objective function (the so-called performance index). Thus the main goal, the
elimination of cancer cells by using the minimum amount of medical sources, can be
expressed in terms of an optimal control problem.

Burden et al. [24] have investigated the Kirschner-Panetta model by using optimal
control theory in order to examine under what circumstances the tumor could be
removed. They have considered a single ACI therapy in which there is not an external
source of IL-2. In [66], the authors have presented an optimal ACI therapy for the
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same model by making a slight modification to the performance index considered
in [24]. Then, the results were compared with those of the article [24]. In this section
the optimal control problem, which has been represented in [66], has been improved
by using Pontryagin maximum principle and also the problem is solved in Section
7.4 by utilizing a hybrid method of the particle swarm optimization (PSO) and
a method for two-point boundary value problems (TPBVPs), it is demonstrated
that the obtained results are more appropriate for cancer treatment than those
represented in [66].

The necessary conditions, represented in Section 7.1.3, is now utilized to find an
optimal control u∗ for the problem stated in Section 7.2. The goal is to organise a
therapeutic protocol in order to eliminate the tumour at the end of treatment. A
payoff term, i.e. −Ay (tf ) is considered due to this reason. In addition, the integrand
of the performance index includes the term x (t)− y (t) + z (t) with the intention of
keeping the cancer cells at the lower (and the effectors and IL-2 at the higher) level,
during the therapy. A quadratic term −1

2Bu
2 is considered to minimize the amount

of external source of the effectors. Referring to Pontryagin’s maximum principle and
characterization of optimality condition, expressed in (7.69), the optimality system
is constructed. By using (7.71) and (2.12), the Hamiltonian function is obtained as
follows:

H = x− y + z − 1
2Bu

2 + λT f

= x− y + z − 1
2Bu

2 + λ1

(
cy − µ2x+ p1xz

g1 + z
+ s1u

)
+λ2

(
r2y (1− by)− axy

g2 + y

)
+ λ3

(
p2xy

g3 + y
− µ3z

)
. (7.76)

The state equation is

dx
dt =cy − µ2x+ p1xz

g1 + z
+ s1u (t) ,

dy
dt =r2y (1− by)− axy

g2 + y
,

dz
dt = p2xy

g3 + y
− µ3z ,

with the initial state
x (0) = 1, y (0) = 1, z (0) = 1 .

Equation (7.62) gives the adjoint equations as below:

dλ1
dt =−

[
1 + λ1

(
−µ2 + p1z

g1 + z

)
− ay

g2 + y
λ2 + p2y

g3 + y
λ3

]
,

dλ2
dt =−

[
−1 + cλ1 + (r2 − 2r2by)λ2 −

ag2x

(g2 + y)2λ2 + p2g3x

(g3 + y)2λ3

]
,

dλ3
dt =−

[
1 + p1g1x

(g1 + z)2λ1 − µ3λ3

]
,
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where the values of adjoint variables at time tf can be evaluated by using the
transversality condition (7.64):

λ1 (tf ) = 0 , λ2 (tf ) = −A , λ3 (tf ) = 0 .

The characterization of optimality is obtained by (7.69). The derivative of Hamilto-
nian (7.76) with respect to u is

∂H

∂u
= −Bu+ λ1s1 ,

and u is in the set U defined by (2.13). There are three cases:

1. If u (t) = 0, then ∂H
∂u ≤ 0, therefore λ1 ≤ 0 .

2. If 0 < u (t) < 1, then ∂H
∂u = 0, therefore u = s1

B λ1, where 0 < λ1 <
B
s1

.

3. If u (t) = 1, then ∂H
∂u ≥ 0, therefore λ1 ≥ B

s1
.

Thus the characterization of optimality is:

u (t) =


0 if λ1 ≤ 0
s1
B λ1 if 0 < λ1 <

B
s1

1 if λ1 ≥ B
s1

7.2.3 Solution to optimality system

In summary, the optimality system is as follows:

State equations:

dx
dt =cy − µ2x+ p1xz

g1 + z
+ s1u (t) ,

dy
dt =r2y (1− by)− axy

g2 + y
, (7.77)

dz
dt = p2xy

g3 + y
− µ3z ,

with the initial states x (0) = 1, y (0) = 1, z (0) = 1.

Adjoint equations:

dλ1
dt =− 1−

(
−µ2 + p1z

g1 + z

)
λ1 + ay

g2 + y
λ2 −

p2y

g3 + y
λ3 ,

dλ2
dt =1− cλ1 −

(
r2 − 2r2by −

ag2x

(g2 + y)2

)
λ2 −

p2g3x

(g3 + y)2λ3 , (7.78)

dλ3
dt =− 1− p1g1x

(g1 + z)2λ1 + µ3λ3 ,

with the transversality condition λ1 (tf ) = 0 , λ2 (tf ) = −A , λ3 (tf ) = 0.
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Optimality conditions

u (t) =


0 if λ1 ≤ 0 ,
s1
B λ1 if 0 < λ1 <

B
s1 ,

1 if λ1 ≥ B
s1 .

(7.79)

It is obvious that there is an initial condition for state system (7.77). On the other
hand, there is a final time condition for adjoint system (7.78). Thus the optimal
problem is in fact of TPBVPs. The shooting method [32] can be used to solve this
type of problems. Nonetheless, since the state system is independent of the adjoint
variables, it can be solved as an initial value problem by using, for instance, fourth
order Runge-Kutta method or any other numerical method of solving initial value
problems. Thus, instead of application of standard methods of solving TPBVPs, an
intuitive method, referred to as forward-backward sweep method (FBSM), is used
to solve the optimality system. an outline of the algorithm is mentioned as follows:

Step 1. An initial guess is made for u over the interval.

Step 2. Using the control u and the initial state, the state system is solved forward
in time.

Step 3. Using the transversality condition and the values of state, the adjoint
system is solved backward in time.

Step 4. The control u is updated by using the adjoint variables and the optimality
conditions.

Step 5. If the differences of the current and previous values of the states variables,
adjoint variables and control are within an acceptable error range, output the
current values as the solutions. If not, return to Step 2.

In order to numerically solve state system (7.77), the forth order Runge-Kutta
method is used. A simple description of the method is given. Assume the state
system has the form

x = f (t,x, u) .

Given a step size h, in order to evaluate xi+1 = x (ti + h) by using xi = x (ti), the
fourth-order formula of Runge-Kutta method is as follows:

k1 = f (ti,xi, ui) ,

k2 = f
(
ti + h

2 ,xi + h

2k1,
1
2 (ui + ui+1)

)
,

k3 = f
(
ti + h

2 ,xi + h

2k2,
1
2 (ui + ui+1)

)
,

k4 = f (ti + h,xi + hk3, ui+1) ,

where i denotes the evaluation of the variable at ith step, ui = u (ti), and ui+1 =
u (ti + h) and

xi+1 = xi + h

6 (k1 + 2k2 + 2k3 + k4) .
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In order to solve the adjoint system (7.78) backward in time, suppose that the
system is in the form of

λ = f (t,x, λ) .

The fourth-order formula of Runge-Kutta method, backward in time is as follows:

k1 = f (ti, λi,xi) ,

k2 = f
(
ti −

h

2 , λi −
h

2k1,
1
2 (xi + xi−1)

)
,

k3 = f
(
ti −

h

2 , λi −
h

2k2,
1
2 (xi + xi−1)

)
,

k4 = f (ti − h, λi − hk3,xi−1) ,

and
λi−1 = λi −

h

6 (k1 + 2k2 + 2k3 + k4) .

Assume that u is the current evaluated control in numerical simulation, and uold is
the previous control. In order to test the convergence of the solution, the relative
error must be negligibly small, i.e.

‖u− uold‖
‖u‖

≤ δ , (7.80)

where δ is the accepted tolerance. In order to include the zero controls, the previous
relation is rewritten as below:

δ ‖u‖ − ‖u− uold‖ ≥ 0 , (7.81)

and this requirement must be considered for all variables, not just the control. For
multiple-therapy, the critical values for s1 and s2 in order to be able to remove the
tumor is [87]

s2 <
g1µ2µ3
p1 − µ2

= sCrit2 (7.82)

and
s1 >

g2r2
a

[
s2 (µ2 − p1) + g1µ2µ3

g1µ3 + s2

]
(7.83)

For the parameters given in Table 2.1, the critical value for IL-2 is s2,cr = 63492063.

7.3 Particle Swarm Optimization
The PSO is one of the most noticeable features of the field of nature-inspired
metaheuristics. In optimization problems, a metaheuristic is a procedure which
select or generate a search algorithm in order to provide solutions to optimization
problems. The PSO deals with an optimization problem by iteratively trying to
improve the solutions. In a basic PSO algorithm, an imaginary population (swarm) of
particles is defined. The particles move in the search space. Each particle represents
a suggestion (solution) for the optimization problem. any particle is able to save its
best solution and its best position, while moving around and compares them with
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the best solutions and the best positions of the neighbour particles. All particles are
controlled to move towards the best local positions and then update their suggested
solutions. This process is reiterated until the best solution will be obtained. The
PSO was originally introduced in [73,136] and was first planned to simulate social
behaviour as a representation of the movement of organisms in a bird flock or fish
school. The PSO is mentioned by some authors to belong to the concept of swarm
Intelligence [16]. In [50], Kennedy and Eberhart describe many philosophical aspects
of PSO and swarm intelligence. Swarm intelligence is based on a population (referred
to as a swarm) of particles. There is a local interaction and information flow between
the particles. The swarm possesses the ability to arrange its particles in a purposeful
manner (self-organization). Particle swarm optimization [73] is an optimization
algorithm dealing with problems, for which an optimal solution can be represented in
an n-dimensional space. Nonetheless, the algorithm is categorised as a metaheuristic,
since it makes few or no assumptions about the problem, which is intended to be
optimized and searches a large space of candidate solutions. The differentiability
of the problem is not required by PSO as it is required by classical optimization
methods such as gradient descent method and so forth.

Presume that the optimal control problem is to minimize (or maximize) a
performance index, J (u), where u denotes the input of a system, which governs the
performance index. The proposed swarm consists of n particle, where n ∈ N and
n > 1. The ith particle possesses five characteristics, namely the current position
of the particle, xi (k), at the kth iteration, the performance index evaluated at the
position xi (k), the current direction of the particle’s movement, vi (k), the best
position experienced by the particle up to the kth iteration, xi,best (k), and finally
the best performance index evaluated by the particle up to the kth iteration. The
next direction (or velocity) of the ith particle is evaluated based on a combination
of its current direction, the direction towards its best position and the direction
towards the best position among all particles, which is represented by xgbest (k).
This can be mathematically formulated as follows:

vi (k + 1) = wvi (k) + c1r1 (xi,best (k)− xi (k))
+c2r2 (xgbest (k)− xi (k)) , (7.84)

where w is called as the inertia weight (w1 < w < w2). The lower and upper bound
of the inertial weight are respectively w1 and w2. The coefficients r1 and r2 are
both random constants uniformly distributed in [0, 1], which provide the element
of randomness into the movement of the swarm. The coefficients c1 and c2 are
mentioned as acceleration coefficients. The next position of each particle is obtained
by the formula

xi (k + 1) = xi (k) + vi (k + 1) . (7.85)

Equations (7.84) and (7.85) represent the self-organization for the PSO, meaning
that each particle of the whole swarm will update its position by the rule expressed
in (7.84) and (7.85).

The PSO algorithm has experienced many changes since its introduction in [73].
Many research has been conducted on the theoretical effects of the various parameters
and aspects of the algorithm. For instance, a neighbour set of particle i can be
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defined, which is denoted by Ti (k):

Ti (k) ⊆ {1, 2, · · · , n} . (7.86)

where n denotes the total amount of particles. The set Ti (k) is a subset of all
particles which contribute to the velocity update rule of particle i at iteration k. The
strategy which is employed to construct Ti (k), is called the topology of the swarm.
The topology might be different for various types of PSO algorithm [74, 75, 110].
Many topologies have been defined for the PSO, namely the traditional particle
swarm topology known as global best topology, ring lattice, wheel topology, pyramid
topology ; each of them has advantages and disadvantages over the others [23].
Global best topology (gbest) provides the most immediate connection between
particles and the best solution over the search space. On the opposite side, the
ring lattice, which is mentioned as “lbest", provide the most indirect and slowest
pattern [74,111].

In order to implement the PSO algorithm, the following procedure can be used:

1. Assign a random position to each particle for initialization of the swarm.

2. Evaluate the objective function (or functional) for each particle and save the
particle’s evaluation.

3. For every particle, compare the particle’s evaluation with its best previous
evaluation. If the current evaluation is better that its best previous evaluation,
then assign this value as the best evaluation.

4. Find the particle with the best global value of the objective function.

5. Update the velocity and position of each particle.

6. Repeat steps 2 to 5 until a stopping criterion is satisfied.

7.3.1 Inertia Weight

The strategy to incorporate the inertia weight, w, in (7.84), has been first suggested
in [136]. The inertia weight represents the influence of the previous velocity on the
current velocity of the particle. assigning the upper bound of the inertia weight to
w gives this opportunity to the particle i to move more freely in the search space
and globally search for the optimization, without considering the communication
with other particles. In this case, the PSO relies on the global exploration in the
search space and therefore the connection between the particle i and its neighbour
particles decreases. On the other hand lower values of w help in searching the local
search area, as the communication between particle i and other neighbour particles
increases. In fact, the particle is influenced by the information received from the
neighbor particles and is able to exploit this information. Thus the smaller values of
w causes the PSO algorithm to locally converge faster.

The PSO relies on the global exploration (upper values of w) and the local
exploitation (lower values of w) in order to achieve a good performance. More
exploration must be conducted in the early stages, where the algorithm deals with a
low level of information about the search space. In contrast, during the later stages,
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the algorithm must be able to exploit the previous information and therefore the
connection between neighbour particles must be increased. The concept of adaptive
w is discussed in [137,147]. One strategy for adapting the inertia weight is to allow
it to linearly decrease from the upper bound, w2, to the lower bound ,w1. Thus the
value of w at kth iteration is obtained by:

w (k) = (w2 − w1) kmax − k
kmax

+ w1 . (7.87)

where kmax denotes the maximum iteration.

7.3.2 Acceleration Coefficients

In (7.84), the parameters c1 and c2 are called as the acceleration coefficients. The
parameter c1 is mentioned as the cognitive acceleration coefficient, while the other
parameter, c2 is called as the social acceleration coefficient. Higher values of c1
allow particle i to deviate from its neighbourhood and therefore improve the global
exploration of the PSO algorithm. On the other hand the higher values of c2 make
the particle move in the direction of the current best global solution and therefore
this causes the algorithm to globally converge faster to the current best solution.
In [126] the time variant acceleration coefficients have been formulated in order to
maintain an appropriate balance between global exploration and local exploitation:

c1 (k) = (c1,lb − c1,ub)
k

kmax
+ c1,ub , c1,lb ≤ c1 ≤ c1,ub ,

c2 (k) = (c2,ub − c2,lb)
k

kmax
+ c1,lb , c2,lb ≤ c2 ≤ c2,ub , (7.88)

where c1 is reduced from its upper bound, c1,ub, to the lower bound, c1,lb; and c2 is
increased from its lower bound, c2,lb, to the upper bound, c2,ub.

7.3.3 Coefficients of Constriction

In traditional particle swarm optimization, a divergence of swarm may occur. The
convergence, in relation to PSO, refers to two different definitions. The first definition
states that the best position of the particles tends to an optimum. The other definition
refers to the convergence of the sequence of solutions, in which all particles tend to
a point in the search-space, whether or not the point is the optimum. Convergence
of the sequence of solutions has been investigated in [141]. These analyses have
leaded to formulae which give the parameters of PSO in such a way that prevent
divergence of the swarm’s particles. In [22, 34, 142], the authors have proven that
PSO need some modification to guarantee a local optimum. A possible strategy to
prevent the divergence of the swarm population is to define a maximum velocity
in order to restrict the step size or velocity. In [34], it is demonstrated that the
implementation of appropriately defined constriction coefficients prevents explosion
of the swarm and furthermore, these coefficients cause particles to converge on local
optima. The general idea is to define an intermediate parameter φ = φ1 + φ2, by
which the acceleration coefficients c1 and c2 are expressed to observe the criterion of
convergence. The parameters φ1 and φ2 are assumed to be real positive variables.
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The stability analysis was conducted to find the best situation in order to achieve
a fast convergence. the research in [34] resulted in finding what are called as
constriction coefficients:

φ = φ1 + φ2 > 4 ,
φ1 > 0 ,
φ2 > 0 ,

w = 2
φ− 2 +

√
φ2 − 4φ

,

c1 = 2φ1

φ− 2 +
√
φ2 − 4φ

,

c2 = 2φ2

φ− 2 +
√
φ2 − 4φ

, (7.89)

which result in a good performance of convergence to optima. It was obtained that
the best performance is achieved, while φ1 = φ2 = 2.05.

7.3.4 Advantage of the PSO

Particle swarm optimization is an evolutionary computation technique inspired by
the social behaviour of bird flocking and fish schooling. The algorithm has some
advantages over the other similar algorithm like genetic algorithm (GA). The GA
algorithm is another technique, which is used in engineering to evaluate approximately
optimization problems, inspired by evolutionary biology like inheritance, mutation,
natural selection and recombination [37]. The PSO is not mainly influenced by
the nonlinearity of the problem, and could converge to the solution in many cases.
Furthermore, PSO has several advantages over the other similar techniques:

• easy to implement, since there are less parameters to adjust

• each particle saves its best values, in addition to the best value of neighbours
and therefore having more effective memory capability than GA.

• in PSO, all the particles receive information from the best particle at each
iteration, whereas in GA, worse solutions are removed and therefore the
particles evolve around a subset of the best individuals.

The concept behind PSO is based on both social and computer science. It uses the
swarm intelligence concept, where the particles interact locally with neighbours to
create coherent global patterns. In swarm intelligence, the population must evaluate
space and time computations, respond to quality factors in the environment and not
change its mode while the environment changes [50].

7.3.5 Topology of the Particle Swarm

Particles may be in an interaction with each other in two general types of neighbour-
hood, namely global best (mentioned as gbest) or local best (called as lbest) [50,75].
While the particles are attracted to the position of the particle with best evaluation
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among the whole swarm, the topology of the neighbourhood is gbest. This type of
topology represents a fully connected network, in which every single particle interacts
with all other particles. On the other hand, in an lbest topology, each particle will
interacts with only its neighbour particles, according to a certain topology, which
define the concept of the neighbourhood. The two most common local best topologies
are mentioned as ring topology, in which each particle is in an interaction with two
neighbours, an the wheel topology, in which all the particles are isolated from one
another and the information is communicated to a central particle.

7.4 Immunotherapy Protocols
In this section, the optimal control problems formulated based on the Pontryagin
maximum principle, are solved by using an approach which is a hybrid of the PSO
and FBSM. The results are compared with those of [66]. It is explained how the
FBSM could be enlisted to improve the process of obtaining the optimal controls,
then the obtained optimal controls are demonstrated to be more appropriate to the
elimination of cancer cells by using fewer amounts of external sources of medicines.

7.4.1 Results and Discussion

The results are obtained for three different cases, based on the choice of different
values for c, s1, and B. The duration of therapy is consider to be 350 days, i.e.
tf = 350:

Case 1: c = 0.04, s1 = 500, and B = 1. Fig. 7.1 shows the state variables,
i.e. tumor cells (x), the effector cells (y), and the concentration of IL-2 (z). The
non-tumor equilibrium point in this case is unstable because the value of s1 is smaller
than critical value s1,cr = 540 [87]. Nonetheless, the control pushes the system to
the area with smaller cancerous cells. In this work, in comparison with the work
done in [66], the amount of total used drug has been decreased (Fig. 7.2), and the
maximum value of IL-2 is larger. The most important thing, in this work, is that
the objective function is maximized (J = 6449194) which is larger than the objective
function obtained in [66].

Case 2: c = 0.025, s1 = 550, and B = 1. The results are shown in Figs. 7.3 and
7.4. Since s1 > s1,cr, the non-tumour state is stable. Thus, it is expected that the
tumor completely inhibited. Fig. 7.3 shows that the maximum value of the tumour
has been minimized over the treatment. In addition, as it is illustrated in Fig. 7.4,
The performance index has been maximized in comparison with [66].

Case 3: c = 0.04, s1 = 550, and B = 10000. The results are shown in Figs.
7.5 and 7.6. Since s1 > s1,cr, the non-tumour state is stable. The stress is here on
minimizing the total amount of administration, since the parameter B has been
chosen to be very large. The performance index has been maximized in comparison
with the work done in [66]. The maximum value of tumour cells are at a lower level
compared with [66].
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Figure 7.1. State variables, (a): in this work, (b): in [66], (c): in [87] for c = 0.04, s1 = 500,
B = 1.
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Figure 7.2. Optimal Control, (a): in this work, (b): in [66], (c): in [87] for c = 0.04,
s1 = 500, B = 1.
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Figure 7.3. State variables, (a): in this work, (b): in [66], (c): in [87] for c = 0.025,
s1 = 550, B = 1.
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Figure 7.4. Optimal Control, (a): in this work, (b): in [66], (c): in [87] for c = 0.025,
s1 = 550, B = 1.
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Figure 7.5. State variables, (a): in this work, (b): in [66], (c): in [87] for c = 0.04, s1 = 550,
B = 10000.
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Figure 7.6. Optimal Control, (a): in this work, (b): in [66], (c): in [87] for c = 0.04,
s1 = 550, B = 10000.
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As it was shown, by using the hybrid method of PSO-FBSM the obtained results
are much better and more acceptable than those represented in other research. Using
the PSO algorithm along with classical methods for numerical solution of optimal
controls definitely improves the performance of finding the optimal control. It is a
fact that classical approaches are very time-consuming, since any initial guess cannot
guarantee the convergence.

7.5 Immunotherapy Protocols for FKP Model
Since the FDEs better indicate physical phenomena, the optimal control applied
to fractional models is definitely more real and reliable. First, the solutions to the
FKP model are represented in Figs.7.7 and 7.8 for different fractional order. The
numerical observation shows that when α2 changes, and α1 and α1 are fixed to one,
the maximum value of the tumour is reduced. In fact, by reducing the value of
alpha2, the persistent effect of drugs administration is considered in the model, which
is more real than the model described by classical integer-order differential equations.
When the order of equation, which describes the change of tumour with respect to
drugs, is considered to be a fractional order, the memory effect of administration
is appropriately considered. Thus, for the optimal control problem, the fractional
order in (2.2) changes while the other two orders set to be equal to one. In Fig. 7.7,
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Figure 7.7. Graph of tumour in FKP model for different values of α2, s1 = 550 and s2 = 0.

three cased are compared with each other:

• Case 1: all the orders are fractional and equal to each other.

• Case 2: all the orders are integer ( classical KP model).
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• Case 3: only α2 is fractional.

The results in Fig. 7.7 show that the best case is case 3, in which the fractional
order is only considered for tumour. The value of α2 is equal to 0.9. Fig. 7.8 shows
the same results as Fig. 7.7, except that the value of α2 is equal to 0.8. The results
illustrate that the maximum value of cancer cells decreases when the fractional order
of (2.2) is reduces. Figs.7.7 and 7.8 illustrate that the maximum value of cancer
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Figure 7.8. Graph of tumour in FKP model for different values of α2, s1 = 550 and s2 = 0.

cells reduces by considering a fractional order for (2.2).
The approach in solving the optimal control problem for FKP is the use of PSO,

where the solutions are considered to be bang-bang controls. All the three cases in
Section 7.4.1 are examined for FKP.
Case 1:

• Fig. 7.9: c = 0.04, s1 = 500, B = 1, α2 = 0.9, and α1 = α3 = 1.

• Fig. 7.10: c = 0.04, s1 = 500, B = 1, α2 = 0.8, and α1 = α3 = 1.

• Fig. 7.11: c = 0.04, s1 = 500, B = 1, α2 = 0.7, and α1 = α3 = 1.

In Figs. 7.9, 7.10, and 7.11 it is shown that the tumour has significantly decreased
during and at the end of treatment by decreasing the fractional order alpha2. As it is
illustrated in Fig. 7.11, the amount of tumor has been minimized, and simultaneously
the level of IL-2 increases by making a reduction in α2. Compared to the ordinary
optimal control (Fig. 7.1 and 7.2), the total use of drugs are a bit larger, but the
tumour has dropped to a lower level during treatment. Case 2:

• Fig. 7.12: c = 0.04, s1 = 550, B = 10000, α2 = 0.9, and α1 = α3 = 1.
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Figure 7.9. a: optimal states, b: optimal control, α2 = 0.9, c = 0.04, s1 = 500, B = 1.
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Figure 7.10. a: optimal states, b: optimal control, α2 = 0.8, c = 0.04, s1 = 500, B = 1.
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Figure 7.11. a: optimal states, b: optimal control, α2 = 0.7, c = 0.04, s1 = 500, B = 1.

• Fig. 7.13: c = 0.04, s1 = 550, B = 10000, α2 = 0.8, and α1 = α3 = 1.

• Fig. 7.14: c = 0.04, s1 = 550, B = 10000, α2 = 0.7, and α1 = α3 = 1.

The value of the parameter B is set to 10000. The results are depicted in Figs. 7.12,
7.13, and 7.14. Reduction in α2 causes a significant reduction in the tumour, i.e.
under the same condition, lower values of α2 cause the amount of tumor during
and at the end of treatment decreases a lot. A higher value of B shows that the
stress is on the minimizing the total use of drugs. Consumption of drug seems to be
increased in comparison with classical KP model. Case 3:

• Fig. 7.12: c = 0.025, s1 = 550, B = 1, α2 = 0.9, and α1 = α3 = 1.

• Fig. 7.13: c = 0.025, s1 = 550, B = 1, α2 = 0.8, and α1 = α3 = 1.

Figures 7.15 and 7.16 show that in case 3, the tumour level during the treatment is
low as possible, even for α2 = 0.9. In Fig. 7.16, it is shown that for α2 = 0.9, the
value of IL-2 increases without any external source of IL-2.
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Figure 7.12. a: optimal states, b: optimal control, α2 = 0.9, c = 0.04, s1 = 550, B = 10000.
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Figure 7.13. a: optimal states, b: optimal control, α2 = 0.8, c = 0.04, s1 = 550, B = 10000.
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Figure 7.14. a: optimal states, b: optimal control, α2 = 0.7, c = 0.04, s1 = 550, B = 10000.
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Figure 7.15. a: optimal states, b: optimal control, α2 = 0.9, c = 0.025, s1 = 550, B = 1
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Figure 7.16. a: optimal states, b: optimal control, α2 = 0.8, c = 0.025, s1 = 550, B = 1

7.5.1 Immunotherapy with both ACI and IL-2

The stability analysis of the FKP illustrated that the chance of destruction of the
tumor will be higher in the case of multiple-therapy, i.e. administration of both the
ACI and IL-2 shows a more effective treatment in suppressing the tumour cells and
simultaneously increasing the effector cells and IL-2.

Fig. 7.17 shows that even a very small administration of IL-2 (s2 = 25000) makes
a situation in which the tumour is completely eliminated. This result is expected
because the values of s1 and s2 are in the range, for which the non-tumor state is
stable (see Fig. 3.6). Fig. 7.18 shows the case, where a large amount of IL-2 is used,
i.e. s2 = 5. In this case, it is observed that the total number of days, for which
there is no drug administration is reduced. Fig. 7.19 illustrates a case for which
the tumour-free steady state is not stable, i.e. the case s1 = 450. A rather large
amount of IL-2 (s2 = 1e5) is used. Although the level of tumour is very low during
the treatment, but this case is not capable of completely destroying the tumour. At
the end of the therapy, the growth of tumor is obvious. This result was anticipated,
since the value of s1 is in the range of unstable non-tumor state (See Fig. 3.6).
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Figure 7.17. a: optimal states, b: optimal control, case of multi-therapy, α2 = 0.9, c = 0.04,
s1 = 550, s2 = 25000, B = 1
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Figure 7.18. a: optimal states, b: optimal control, case of multi-therapy, α2 = 0.9, c = 0.04,
s1 = 550, s2 = 5e7, B = 1
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Figure 7.19. a: optimal states, b: optimal control, case of multi-therapy, α2 = 0.8,
c = 0.025, s1 = 450, s2 = 1e5



Chapter 8

Conclusion

This thesis is focused on the representation of therapeutic protocols for cancer
immunotherapy based on the well-known model of Kirschner and Panetta. The
approach in optimal control has been based on Pontryagin maximum principle. Two
general cases have been analysed, namely the KP and FKP models. The results
obtained for the classical KP model show that the common controls for these type
of problems are bang-bang. As mentioned, common methods of solving optimal
control problem, formulated based on Pontryagin maximum principle, do not lead
to convergence in most cases. The key issue here is the initial guess for the control
function in order to initialize the precess of solution. Any initial guess does not
guarantee the convergence to the optimal control and even in most cases it is almost
impossible to find the solution by using this approach. Finding the most appropriate
initial guess is time-consuming. Thus the approach in solving the problem has been
devised on a hybrid of PSO and the usual numerical methods for TPBVPs. First,
the problem is solved by using the PSO. When the solution converges, the algorithm
switches to the FBSM, where the control found at the previous stage is used as
an initial guess for the next stage. The optimal control problem for FKP model
has been dealt with, by using the PSO algorithm while the control functions are
considered to be of the bang-bang form. The results are much better than those
obtained for KP model in terms of the use smaller amount of medicine and the
perfect elimination of the tumour, during and at the end of treatment.

Since the tumour population is described by logistic function and in addition,
this type of limiting-growth function is frequently used in many biological and other
physical applications, it is appropriate to consider fractional logistic equation. In
this regard, the function mentioned as WF was demonstrated to behave in good
agreement with numerical solution to FLE. Therefore, a fractional integro-differential
equation has been presented which is satisfied by the proposed equation, namely
MFLE. It is known that solutions of FDEs are much more difficult to be find in
comparison with classical integer-order differential equations. The approach taken
here, may be appropriate to nonlinear fractional differential equations which arisen
in mathematical physics.

The inverse problem for order estimation of several classes of linear fractional
differential equations has constructed another part of this thesis. The determination
of order in FDEs is very important in such a way that, for instance, in fractional
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diffusion equations whether or not the fractional order is smaller or greater that unit,
it is very important to the appropriate simulation of the anomalous diffusion in order
to specify that the transport phenomenon exhibits sub-diffusion or super-diffusion.
For those linear fractional differential equations discussed in this thesis, the order
estimation have been conducted based on the asymptotic behaviour of Mittag-leffler
functions involved in their solutions.

Solutions to nonlinear FDEs are much more difficult than ordinary differential
equations to be calculated, and also numerical treatment to FDEs is also more
challenging. These non-trivial difficulties are mainly related to the persistent memory
of FDEs and the non-smoothness of solutions to them at the initial time. a wide
variety of numerical approaches have been devised based on incorrect assumptions
and it is seen that many researcher use these methods to find the numerical solutions
of FDEs. Thus a general description of such methods are presented. A specific case,
the so-called MSGDTM, is explained in details, then it is stated that the basis on
which the method has been devised is incorrect and unfit to FDEs.
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