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Abstract

Let Ω be a compact Riemannian manifold with smooth boundary and let ut be the
solution of the heat equation on Ω, having constant unit initial data u0 = 1 and Dirichlet
boundary conditions (ut = 0 on the boundary, at all times). If at every time t the normal
derivative of ut is a constant function on the boundary, we say that Ω has the constant flow
property. This gives rise to an overdetermined parabolic problem, and our aim is to classify
the manifolds having this property. In fact, if the metric is analytic, we prove that Ω has
the constant flow property if and only if it is an isoparametric tube, that is, it is a solid
tube of constant radius around a closed, smooth, minimal submanifold, with the additional
property that all equidistants to the boundary (parallel hypersurfaces) are smooth and have
constant mean curvature. Hence, the constant flow property can be viewed as an analytic
counterpart to the isoparametric property. Finally, we relate the constant flow property
with other overdetermined problems, in particular, the well-known Serrin problem on the
mean-exit time function, and discuss a counterexample involving minimal free boundary
immersions into Euclidean balls.

1 Main results

In Riemannian geometry, an overdetermined problem gives rise to the following question:
is it possible to identify the geometry of a domain Ω in a Riemannian manifold assuming
the existence of a solution u of a certain PDE such that both u and its normal derivative
are constant on the boundary of Ω ? Perhaps the most famous example of overdetermined
problem is the so-called Serrin problem :∆v = 1 on Ω,

v = 0,
∂v

∂ν
= const. on ∂Ω.

(1)

J. Serrin celebrated rigidity result [35] states that the only compact Euclidean domains
supporting a solution to (1) are Euclidean balls. Another famous problem is the so-called
Schiffer problem ∆u = λu on Ω

u = const,
∂u

∂ν
= 0 on ∂Ω;

(2)
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the Schiffer conjecture states that the only compact Euclidean domains supporting a non-
trivial solution to (2) for some eigenvalue λ > 0 are balls. It is well-known that proving
this conjecture is equivalent to solving the famous Pompeiu problem (see [3], [42]). Only
partial solutions are known (among them, see [4]) and we refer the reader to the papers
[1], [2], [3] for related results. We remark that not much is known about these problems
for domains in a general Riemannian manifold.
The study of overdetermined problems is a very active and interesting field of research,
lying at the border between geometry and analysis; for an overview, see for example [36],
and then [7], [10], [11], [18], [19], [20], [23], [33], [34], [37], [41], [42], [43]; for problems
in Riemannian manifolds see for example [12] and [13]. We stress that we assume com-
pactness of Ω in this paper. The non-compact situation (for example, exterior domains
in Euclidean space) is quite rich and interesting, and we refer for example to [8], [29] and
the preprint [30]. The list is very incomplete, due to the many interesting contributions
to this problem since Serrin’s seminal paper [35].

In this paper we classify compact Riemannian manifolds with analytic metric and smooth
boundary satisfying a certain overdetermined problem for the heat kernel (defined in (5))
: we show that the class of such manifolds (which are said to have the constant flow
property) coincides with the class of the so-called isoparametric tubes (see Definition 2).
This generalizes to Riemannian manifolds the results of [33], obtained in the standard
sphere. Thus, this is one case in which it is possible to give a precise description, in the
general Riemannian setting, of the geometry of manifolds supporting a solution to the
given overdetermined problem, so that the constant flow property (5) could be seen as
an analytic counterpart to the isoparametric property, very much studied in differential
geometry.

Let us see the contents of this introduction. In Section 1.1 we define and discuss the
overdetermined problem at hand and the class of isoparametric tubes, while in Section
1.2 we recall the main results from [33] . In Section 1.3 we state our main equivalence
result and in Section 1.4 we recall that if a manifold has the constant flow property then
it satisfies also the classical Serrin problem (1) ; then, we prove that the converse does not
hold for the class of (minimal) free boundary immersion into a Euclidean 3-ball having
more than 2 boundary components.

1.1 The constant flow property

Let (Ωn, g) be a compact Riemannian manifold of dimension n with smooth boundary
∂Ω. Consider the solution u = u(t, x) : [0,∞) × Ω → R of the heat equation on Ω with
initial data 1 and Dirichlet boundary conditions:

∆u+
∂u

∂t
= 0 on Ω,

u(0, x) = 1 for all x ∈ Ω,

u(t, y) = 0 for all y ∈ ∂Ω and t > 0,

(3)
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where ∆ is the Laplace-Beltrami operator defined by the Riemannian metric g and acting
on the space variable x. We will often write u(t, x) as ut(x) so that u0 = 1. The function
u is a basic object in heat diffusion : in fact it can be written

u(t, x) =

∫
Ω

k(t, x, y)dy, (4)

where k : (0,∞)× Ω× Ω→ R is the heat kernel of Ω (that is, the fundamental solution
of the heat equation with Dirichlet boundary conditions). About the physical meaning,
u(t, x) is the temperature at time t, at the point x ∈ Ω, assuming that the initial temper-
ature distribution is constant, equal to 1, and that the boundary ∂Ω is subject to absolute
refrigeration.
Now let ν be the unit normal vector field of ∂Ω, pointing inward, and let y ∈ ∂Ω. Then,
∂u

∂ν
(t, y) can be interpreted as the heat flow at time t, at the boundary point y. A complete

asymptotic expansion for the heat flow
∂ut
∂ν

at any fixed boundary point has been obtained

in [32] (this result was used in the paper [33]).

Definition 1. We say that Ω has the constant flow property if, for all fixed t > 0, the
heat flow

∂u

∂ν
(t, ·) : ∂Ω→ R

is a constant function on ∂Ω.

In other words, a manifold has the constant flow property if and only if it supports a
solution to the following overdetermined problem:

∆u+
∂u

∂t
= 0 on Ω,

u(0, x) = 1 for all x ∈ Ω,

u(t, y) = 0,
∂u

∂ν
(t, y) = c(t) for all y ∈ ∂Ω and t > 0,

(5)

where c(t) is a function depending only on t. Manifolds with the constant flow property
are perfect heat diffusers, as defined in the introduction of [33] (see Theorem 9 in [33] for
a characterization in terms of the heat content with zero mean boundary data).

In this paper, assuming that Ω is analytic, we will show the equivalence of this property
with the following geometric property.

Definition 2. We say that the compact manifold with boundary Ω is a smooth tube
around P if there exists a smooth, closed submanifold P of M and a number R > 0 such
that:

a) Ω is the set of points at distance at most R from P ,
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b) For each s ∈ (0, R], the equidistant

Σs = {x ∈ Ω : d(x, P ) = s}

is a smooth hypersurface of Ω.

We say that the smooth tube Ω is an isoparametric tube if every equidistant Σs as above
has contant mean curvature.

• The submanifold P is called the soul of Ω, and can have dimension dimP = 0, . . . , n−1.
The soul is then an embedded submanifold.

• For example, a solid revolution torus in R3 with radii a > b > 0 is a smooth tube (the
soul P is a circle), but is not an isoparametric tube because equidistants have variable
mean curvature. In fact, the only (compact) isoparametric tubes in Euclidean spaces are
the balls, in which case P reduces to a point. This follows from the general fact that the
soul of an isoparametric tube is always a minimal submanifold (see Theorem 3 below)
and in Euclidean space the only compact minimal submanifolds are points.

• We don’t assume that the boundary of an isoparametric tube Ω is connected. In fact, it
is easy to show that ∂Ω can have at most two boundary components (see Proposition 11);
moreover, if ∂Ω has two components, as the mean curvature is constant on the boundary,
it must take the same value on each of the two components. In particular, a domain in a
standard sphere, bounded by two geodesic spheres, is an isoparametric tube if and only
if the two boundary spheres are isometric and have equal (or antipodal) centers : in that
case, the soul is an equatorial (i.e. totally geodesic) hypersurface.

• Obvious examples of isoparametric tubes are given by geodesic balls in space forms :
in that case, the soul is a point. More generally, any geodesic ball in a locally harmonic
manifold is (more or less by definition) an isoparametric tube around its center.

• A revolution manifold with boundary is a Riemannian manifold (Ω, g) isometric to
[a,R]× Sn−1 endowed with the metric g = dr2 + θ2(r)gSn−1 , where gSn−1 is the standard
metric on the sphere and θ2(r) is a smooth, positive function on [a,R]. Note that ∂Ω has
two components, namely {a}×Sn−1, {R}×Sn−1. Now, rotational invariance implies that
the temperature function ut defined in (3) depends only on the radial variable r, which
immediately implies that every such manifold has the constant flow property.

If we instead assume that the metric of Ω is smooth and that there is a distinguished
point p ∈ Ω such that (Ω \ {p}, g) is isometric to (0, R]× Sn−1 endowed with the metric
g = dr2 + θ2(r)gSn−1 , then ∂Ω has only one component, namely {R} × Sn−1: also this
manifold has the constant flow property.

In the next subsection we will discuss the main class of examples of isoparametric tubes,
namely, spherical domains bounded by isoparametric hypersurfaces. We finish this section
by pointing out the following fact, which is proved in [16] (and first proved in [25] when
the ambient manifold is the sphere). We discuss it in more detail in the last part of the
Appendix.

Theorem 3. The soul of an isoparametric tube is always a minimal submanifold.
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1.2 Some comments on the results of [33]

Let Σ be a closed hypersurface of the Riemannian manifold M . In [33], Σ is called isopara-
metric if all parallel hypersurfaces sufficiently close to Σ have constant mean curvature.
Note that the definition is local in nature, and refers to the behavior of the mean curvature
only in a neighborhood of Σ. We proved the following fact.

Theorem 4. ([33], Theorem 2) Let Ω be a compact domain with smooth boundary in an
analytic Riemannian manifold M . Assume that it has the constant flow property. Then
each component of ∂Ω is an isoparametric hypersurface of M .

Isoparametric hypersurfaces were mostly studied when the ambient manifold M is a space
form, starting from the classical works of Segre, Cartan and Münzner. It is a classical fact,
due to Cartan [6], that Σ is isoparametric if and only if it has constant principal curvatures
(that is, the characteristic polynomial of the shape operator of Σ is the same at all points).
We refer to [38] and [39] for overviews. However, it is well-known that the only closed
isoparametric hypersurfaces of Euclidean and Hyperbolic space are geodesic spheres; so,
the only interesting case which remains to be discussed is that of the sphere Sn. There,
we have plenty of isoparametric hypersurfaces and a beautiful result of Münzner shows
that the number g of distinct principal curvatures can only be 1, 2, 3, 4, 6. Moreover, each
Σ is a level set of the restriction to Sn of a suitable polynomial in Rn+1 (Cartan-Münzner
polynomial). See [24]. Thus, the classification reduces to a (difficult) algebraic problem.
Now, the constancy of the principal curvatures imply that the focal sets M± of Σ are
regular submanifolds at constant distance from Σ. The conclusion is :

• Any connected isoparametric hypersurface of Sn bounds two domains Ω±, each being
an isoparametric tube over the respective focal set (soul) M±. Moreover, as showed by
Nomizu in [25], M± are minimal submanifolds.

Then, in the sphere Theorem 4 becomes :

• Any compact domain in Sn having the constant flow property and connected boundary
is an isoparametric tube.

The converse statement is also true, thanks to a previous result of Shklover’s.

Theorem 5. (See [36]) Let Ω be a compact spherical domain bounded by a connected
isoparametric hypersurface. Then Ω has the constant flow property.

The proof of Theorem 5 uses a suitable ODE, coming from the existence of an isopara-
metric function. Combining Theorem 4 and Theorem 5 one finds the following character-
ization, which is just a restatement of Corollary 3 in [33].

Corollary 6. (Corollary 3 in [33]) Let Ω be a compact domain in Sn having connected
boundary. Then, Ω has the constant flow property if and only if it is an isoparametric
tube.
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We remark that Theorem 4 is a consequence of Theorem 7 in [33], which is valid on any
smooth Riemannian manifold and will be recalled in Theorem 16 below.
This is the state of the art. The scope of the present paper is to generalize the previous
results and extend Corollary 6 from the sphere to the general Riemannian case, for analytic
manifolds with smooth (not necessarily connected) boundary.

1.3 Main result

Here is the main result of this paper.

Theorem 7. Let Ω be a compact, analytic manifold with smooth boundary. Then, Ω
has the constant flow property if and only if it is an isoparametric tube around a smooth,
compact, connected submanifold P of Ω.

Theorem 7 improves Theorem 4 because it gives a description of the geometry of a domain
with the constant flow property not just near its boundary but also at points far from it.
This is achieved by showing that in fact the cut locus CutΩ of the normal exponential map
of the boundary of Ω is a regular submanifold, which coincides with the set of points that
are at maximum distance to the boundary. Moreover, the whole domain Ω is a smooth,
isoparametric tube over the soul P

.
= CutΩ.

In the converse statement we extend Shklover’s result (Theorem 5) to arbitrary smooth
(not necessarily analytic) isoparametric tubes ; even in the sphere, the proof is differ-
ent from Shklover’s in the sense that it uses the procedure of averaging a function over
the equidistants from the boundary, instead of using the ODE coming from an explicit
isoparametric function, as in [36].

1.4 Constant flow property vs. harmonicity

In [33] we discussed in a certain detail the relation of the constant flow property with
other well-known overdetermined problems. Here we will focus on Serrin problem :∆v = 1 on Ω,

v = 0,
∂v

∂ν
= const on ∂Ω.

(6)

A manifold with boundary supporting a solution to problem (6) is termed a harmonic
domain in [27] because it has the following property: for any harmonic function h, the
mean values of h on Ω and ∂Ω are the same. In this terminology, Serrin rigidity result
[35] can be stated as follows:

• Any (compact) harmonic Euclidean domain is a ball.

Then, we could ask if there is a classification of harmonic domains in the general Rieman-
nian context, and not just in the Euclidean case. This is of interest for various reasons:
harmonic domains are critical points for the torsional rigidity functional; in spectral geom-
etry, they are extremal for a certain Steklov eigenvalue problem for differential forms (see
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[27]) and also for a fourth order Steklov problem on functions (see [28]). Finally, minimal
free boundary immersions (or, more generally, capillary hypersurfaces) in Euclidean balls
are in fact harmonic domains (see below).
To our knowledge, no such classification exists, at the moment, even for harmonic domains
in the standard sphere. For partial results, we recall that Serrin’s rigidity result was
extended to domains in the hyperbolic space and in the hemisphere by Molzon in [23] : any
harmonic domain there is a geodesic ball. The method is the same as Serrin’s: Alexandrov
reflection. This method breaks down in the whole sphere and the classification problem
is still open there. Note that there are plenty of harmonic domains in Sn which are not
balls: just take any isoparametric tube in Sn (see [36] or Section 2 below).
We now discuss the relation between harmonicity and the constant flow property. We
first remark the following fact.

Theorem 8. ([33], Theorem 10). Any domain with the constant flow property is also
harmonic.

In particular, any isoparametric tube is a harmonic domain thanks to Theorem 7 and
Theorem 8. The question is if the converse to Theorem 8 holds, that is :

Q1 Is it true that any harmonic domain has the constant flow property ?

Thanks to our classification result (Theorem 7) the above is equivalent to asking:

Q2 Is it true that any harmonic domain is also an isoparametric tube ?

The answers to both questions are negative, and we wish to point out here an interesting
class of counterexamples. Let Bn be the unit ball in Rn. A minimal free boundary
hypersurface is a minimal hypersurface Ω of Bn such that ∂Ω ⊆ ∂Bn and Ω meets ∂Bn

orthogonally. We will verify in Appendix 4.4 that any free boundary hypersurface is a
harmonic domain. As minimality implies analiticity, any free boundary hypersurface is
an analytic manifold with boundary. Now, it is easy to see that any smooth tube has at
most two boundary components (see Proposition 11), and from the above we conclude
that:

• Any minimal free boundary surface in B3 with more than two boundary components is
a harmonic domain, but not an isoparametric tube.

We remark that Fraser and Schoen proved in [15] that, given any positive integer k, there
exists a minimal free boundary embedding of a (genus zero) surface with k boundary com-
ponents into B3 ⊂ R3. These domains are therefore harmonic, but can’t be isoparametric
tubes, which give the desired counterexamples.

Finally we spend few words on the following question:

Q3 Is it true that any harmonic domain in Sn is an isoparametric tube ?

In S2 this fact is true under the additional assumption that the domain is simply con-
nected (see [9]). In an earlier version of this paper, we conjectured that this fact is true in
any dimension. But recently we learned about paper by Fall, Minlend and Weth (see [11])

7



where examples of harmonic domains in Sn which are not isoparametric tubes are con-
structed: these examples are perturbations of tubular neighborhoods of totally geodesic
hypersurfaces. Of course their construction gives another counterexample to questions
Q1 and Q2 above.

In conclusion, it seems that the Serrin condition is, in the general Riemannian framework,
rather flexible; a stronger condition is needed to imply some stricter rigidity, and we proved
in this paper that the constant flow property is one such.

1.5 Organization of the paper

The rest of the paper is organised as follows.

In Section 2 we show that any isoparametric tube has the constant flow property, in
particular, we generalize (with a different proof) the results of [36] from the sphere to a
general Riemannian setting. On any isoparametric tube one can define the class of radial
functions as those which are constant on the equidistants to the soul P . Then, the proof
is obtained by using the tool of averaging a function over the equidistants, which enables
us to show the crucial property of isoparametric tubes : the class of radial functions is
invariant under the action of the Laplace-Beltrami operator.

In Section 3 we prove that, if the metric of Ω is analytic, and if Ω has the constant
flow property, then Ω is an isoparametric tube. We use here in an important way the
results of [33], where we proved that the equidistants which are close to the boundary
have constant mean curvature. However, to describe the global property of such domains,
also at points far from the boundary, one needs to take care of the cut-locus CutΩ of the
normal exponential map at the boundary. The conclusion is that Ω is an isoparametric
tube over the soul P = CutΩ.

Finally, in the Appendix we put the proofs of some technical results, to lighten the flow
of the exposition.

Acknoweldegments. I am grateful to Sylvestre Gallot for useful discussions and precise
remarks.

2 Isoparametric tubes have the constant flow property

The scope of this section is to prove the first half of the main theorem.

Theorem 9. Let Ω be a (not necessarily analytic) compact manifold with smooth bound-
ary. Assume that Ω is an isoparametric tube. Then Ω has the constant flow property.

We point out one consequence. The following overdetermined problem is known as Schiffer
problem (D) : ∆u = λu on Ω

u = 0,
∂u

∂ν
= c 6= 0 on ∂Ω
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In [33] it is proved that a domain with the constant flow property supports a solution to
the above problem for infinitely many eigenvalues (see Theorem 11 in [33]). Then:

Corollary 10. Any isoparametric tube supports a solution to the Schiffer problem (D)
for infinitely many eigenvalues λ.

The proof of Theorem 9 is divided in several steps.

2.1 Normal coordinates

Let Ω be a smooth tube of radiusR around the closed submanifold P k, so that codim(P k) =
n − k. In particular, codim(P ) = 1 corresponds to a hypersurface of Ω. We start by in-
troducing normal coordinates based on P .
Let U(P ) be the unit normal bundle of P ; then, U(P ) is locally isometric with P ×Sn−k−1

and we can write an element ξ ∈ U(P ) as a pair:

ξ = (x, ν(x))

where x ∈ P and ν(x) is a unit vector in TxM normal to TxP . We will often write simply
ν(x) ∈ U(P ), with the understanding that x is the base point of the normal vector ν(x).
Consider the normal exponential map Φ : [−R,R]× U(P )→ Ω defined by

Φ(r, ν(x)) = expx(rν(x)).

Then, Φ is smooth, and by restriction it gives rise to a diffeomeorphism

Φ1 : (0, R]× U(P )→ Ω \ P.

• If y = Φ1(r, ξ) we say that (r, ξ) are the normal coordinates of y.

For ξ = (x, ν(x)) ∈ U(P ) we define

−ξ = (x,−ν(x)) ∈ U(P ). (7)

The map ξ 7→ −ξ is an isometry of U(P ) and one sees that

Φ(r, ξ) = Φ(−r,−ξ) (8)

for all (r, ξ) ∈ [−R,R]× U(P ).

We introduce the smooth function θ : [−R,R]× U(P )→ R defined by the identity

Φ?dvΩ(r, ξ) = θ(r, ξ) · drdvU(P ), (9)

where dvU(P ) is the Riemannian measure of U(P ). Restricted to (0, R]×U(P ), the function
θ is positive, and gives the density of the Riemannian measure in normal coordinates. So,
for any integrable function f on Ω:∫

Ω

f(x)dvΩ(x) =

∫
U(P )

∫ R

0

f(Φ(r, ξ))θ(r, ξ)drdvU(P )(ξ).
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Let us denote by ρ : Ω→ R the distance function to P :

ρ(x) = d(x, P ).

Then ρ is continuous, and is smooth on Ω \ P . For any fixed r ∈ (0, R] the set ρ−1(r) is
a smooth hypersurface of Ω, which is also called the equidistant at distance r to P . For
x ∈ Ω \ P , we denote by Σx the unique equidistant containing x, that is

Σx = ρ−1(ρ(x)).

Observe that, if ρ(x) = r > 0, then Σx = Φ({r} × U(P )); moreover, the unit vector field
N

.
= ∇ρ is everywhere orthogonal to Σx. The following facts are well-known.

Proposition 11.

(a) If codim(P ) ≥ 2, or codim(P ) = 1 and P is one-sided, then U(P ) is connected and
so is each equidistant Σx.

(b) If codim(P ) = 1 and P is two-sided, then U(P ), as well as all the equidistants, has
two connected components.

(c) In particular, any smooth tube over a connected submanifold P has at most two bound-
ary components.

Recall that if codim(P ) = 1, then P is said to be two-sided if the normal bundle of
P is trivial, and one-sided otherwise. If two-sided, one can define a global unit normal
vector field on P , and U(P ) is isometric to {−1, 1} × P . We remark that, if the ambient
manifold Ω is orientable, then P is one-sided if and only if it is non-orientable. If Ω is
simply connected, then any closed, embedded hypersurface is automatically orientable
hence also two-sided.
We define the shape operator S : T (Σx) → T (Σx) (with respect to the unit normal
N = −∇ρ) by

S(X) = −∇NX

and the mean curvature function of Σx by H = 1
n−1

trS. We make use of the following
fact.

Proposition 12. Let Ω be a smooth tube around P k and let θ be the density function as
defined in (9). Let x = Φ1(r, ξ) so that the point x ∈ Ω \ P has normal coordinates (r, ξ)
and ρ(x) = r.

(a) One has:

−θ
′(r, ξ)

θ(r, ξ)
= ∆ρ(x) = −(n− 1)H(x)

where H(x) is the mean curvature at x of the equidistant Σx containing x.

(b) In particular, Ω is an isoparametric tube if and only if θ = θ(r) depends only on the
radial coordinate r.
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Proof. The assertion (a) follows from a calculation done in [17]. From (a) one sees easily
that if Ω is an isoparametric tube, then H is constant on Σx and the function H depends
only on the distance to P ; in normal coordinates it can be written H = H(r) and by
integration one sees that θ(r, ξ) depends only on r and not on ξ.

2.2 Averaging a function over equidistants

Let Ω be a smooth tube around P and let f ∈ C∞(Ω). We say that f is radial if it depends
only on the distance to P , that is, if there exists a smooth function ψ : [0, R] → R such
that

f = ψ ◦ ρ.

Given a function f on Ω, radial or not, we can construct a radial function Af simply by
averaging f over the equidistants. That is, if x ∈ Ω \ P we define

Af(x)
.
=

1

|Σx|

∫
Σx

f,

while if y ∈ P we define

Af(y)
.
=

1

|P |

∫
P

f.

• The function Af is the radialization of f . Clearly f is radial if and only if Af = f .

Proposition 13. Let Ω be an isoparametric tube around P , let f ∈ C∞(Ω) and let Af
be its radialization. Then:

a) Af is smooth and radial on Ω.

b) The radialization commutes with the Laplacian: for all f ∈ C∞(Ω) one has A∆f =
∆Af.

Proof. We start by proving (a). We can write

Af = f̂ ◦ ρ, (10)

where f̂ : [0, R]→ R is the function:

f̂(r) =
1

|ρ−1(r)|

∫
ρ−1(r)

f, (11)

hence Af is radial.

Next, we give the expression of Af in normal coordinates. Define the smooth function
F : [0, R]× U(P )→ R by

F (r, ξ) = f(Φ(r, ξ));
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note that F extends to a smooth function on [−R,R]× U(P ). If r > 0 one has:∫
ρ−1(r)

f =

∫
U(P )

F (r, ξ)θ(r, ξ) dξ

where we have set dξ = dvU(P )(ξ) for simplicity. As the tube is isoparametric, θ depends
only on r and one has: ∫

ρ−1(r)

f = θ(r)

∫
U(P )

F (r, ξ) dξ.

On the other hand |ρ−1(r)| = θ(r)|U(P )|, hence we get the following expression of f̂ for
r > 0:

f̂(r) =
1

|U(P )|

∫
U(P )

F (r, ξ) dξ. (12)

Note that f̂ is defined for r ∈ (0, R] and is smooth there; as ρ is smooth on Ω \ P we
immediately get from (10) that

• Af is smooth on Ω \ P .

It remains to show that Af , as defined above, extends to a smooth function everywhere
on Ω.

As F (r, ξ) extends smoothly to [−R,R]× U(P ), the function f̂ extends smoothly to the
interval [−R,R]. Now:

f̂(0) =
1

|U(P )|

∫
U(P )

F (0, ξ) dξ.

But F (0, ξ) = f(π(ξ)) where π : U(P ) → P is the natural projection; then, F (0, ξ) does
not depend on ξ but only on the base point; moreover, it is constant on the fiber, which
is isometric to Sd, with d = dim Ω− dimP − 1. This gives:∫

U(P )

F (0, ξ) dξ =

∫
U(P )

f(π(ξ)) dξ = |Sd|
∫
P

f.

Clearly |U(P )| = |Sd||P | and therefore

f̂(0) =
1

|P |

∫
P

f.

Now, for any sequence {xn} of points with ρ(xn) = rn > 0 converging to a given point
x ∈ P one has:

lim
n→∞

Af(xn) = lim
n→∞

f̂(rn) = f̂(0) =
1

|P |

∫
P

f = Af(x).

Thus, Af is continuous at all points of P .

12



We now show that Af is C∞-smooth also at the points of P . First, we observe that the
function f̂ : [−R,R]→ R is smooth and even at 0 : f̂(r) = f̂(−r). For that, we use the
identity Φ(−r, ξ) = Φ(r,−ξ) which implies that F (−r, ξ) = F (r,−ξ); we also use the fact
that the map which sends ξ to −ξ is an isometry of U(P ). Then:

f̂(−r) =
1

U(P )

∫
U(P )

F (−r, ξ) dξ

=
1

U(P )

∫
U(P )

F (r,−ξ) dξ

=
1

U(P )

∫
U(P )

F (r, ξ) dξ

= f̂(r)

Now, in Appendix 4.1 we will show the following fact:

• Let f = f̂ ◦ ρ be a radial function on the smooth tube Ω. Assume that f̂ : [0, R]→ R
is smooth and has vanishing derivatives of odd orders at 0. Then f is C∞- smooth
everywhere on Ω.

Applying the above remark to our situation proves part (a) of the Proposition.

Proof of (b): commutation property. We use the following formula, valid for any
smooth function on a smooth tube Ω and for all r ∈ (0, R] (for a proof, see Appendix
4.2).

d

dr

∫
ρ−1(r)

f =

∫
ρ−1(r)

(
〈∇f,∇ρ〉 − f∆ρ

)
(13)

For r ∈ (0, R], the level set ρ−1(r) is a smooth hypersurface, which is the boundary
of the domain {ρ < r} having N

.
= −∇ρ as inner unit normal. As the domain is an

isoparametric tube, the mean curvature H is constant on ρ−1(r), say H = H(r), hence
∆ρ is a radial function which can be written:

∆ρ = −η ◦ ρ

where η(r) = (n− 1)H(r). For example, when ρ is the distance to a point in Rn we have
η(r) = n−1

r
. Then, (13) becomes:

d

dr

∫
ρ−1(r)

f = −
∫
ρ−1(r)

∂f

∂N
+ η(r)

∫
ρ−1(r)

f = −
∫
ρ<r

∆f + η(r)

∫
ρ−1(r)

f

where we have used Green formula in the last step. Setting ψ(r) =
∫
ρ−1(r)

f and V (r) =

|ρ−1(r)| we see that (13) gives :

ψ′ = −
∫
ρ<r

∆f + ηψ, V ′ = ηV.

13



Now, by definition, f̂ = ψ/V hence

f̂ ′ = − 1

V

∫
ρ<r

∆f, f̂ ′′ = − 1

V

∫
ρ−1(r)

∆f +
η

V

∫
ρ<r

∆f,

which can be rewritten:
f̂ ′′ + ηf̂ ′ = −∆̂f

On the other hand,

∆(f̂ ◦ ρ) = −f̂ ′′ ◦ ρ+ (f̂ ′ ◦ ρ)∆ρ = −(f̂ ′′ + ηf̂ ′) ◦ ρ.

We conclude that ∆(f̂ ◦ ρ) = ∆̂f ◦ ρ, which means precisely, thanks to definition (10):

∆Af = A∆f,

on the set of regular points, that is, on Ω \ P . We need to verify this relation also at the
points of P . But this follows from a standard continuity argument using the fact that Af
is smooth everywhere and that the commutation relation holds a.e. (that is, on Ω \ P ).
We omit the straightforward details.

The following consequence is more or less immediate from Proposition 13.

Corollary 14. Let Ω be an isoparametric tube, and assume that the function ft(x) is a
solution of the heat equation on Ω with Dirichlet boundary conditions (and initial condition
f0): ∆ft +

∂ft
∂t

= 0

ft = 0 on ∂Ω, for all t > 0.

Then the radialization Aft of ft is the solution of the heat equation on Ω with Dirichlet
boundary conditions and initial condition Af0.

In particular, if the initial condition f0 of f is a radial function, then ft is radial for all

times t > 0 and consequently
∂ft
∂ν

is constant on ∂Ω, for all fixed t > 0.

2.3 Proof of Theorem 9

Assume that Ω is an isoparametric tube and consider the temperature function ut as in
(3). As u0 = 1 is a radial function, ut must be radial for all t thanks to the previous

corollary and then
∂ut
∂ν

must be constant on the boundary at all times. Thus, Ω has the

constant flow property.

14



3 Geometric rigidity of constant heat flow

The scope of this section is to prove the second half of the main theorem, that is:

Theorem 15. Let Ω be an analytic manifold with smooth boundary. Assume that Ω
has the constant flow property. Then Ω is an isoparametric tube over a smooth, closed,
connected submanifold P of Ω.

In this section we denote by ρ the distance function to the boundary of Ω:

ρ(x) = dist(x, ∂Ω),

and we let
R = max

x∈Ω
ρ(x)

denote the inner radius of Ω. We denote by CutΩ the cut-locus of the normal exponential
map of ∂Ω (recalled below). It is well-known that CutΩ is closed in Ω and has measure
zero. We will show that, if Ω has the constant flow property, then CutΩ is a compact,
connected, smooth submanifold of Ω, and that Ω is a isoparametric tube over CutΩ.

These are the main steps.

Step 1. One has that CutΩ = ρ−1(R), the set of points at maximum distance to ∂Ω.

If v denotes the mean exit time function (see (17)) then CutΩ coincides with the critical
set of v and actually CutΩ = v−1(m), where m is the maximum value of v on Ω (see
Lemma 18 below). By flowing Ω along the integral curves of ∇v, we conclude that CutΩ

is a deformation retract of Ω, hence it is connected.

• From now on we set P
.
= CutΩ. Hence P is a closed, connected subset of Ω.

We consider the ”focal map” Φ : ∂Ω→ Ω, defined by

Φ(y) = expy(Rν(y)).

From Step 1 we see that Φ(∂Ω) = P .

Step 2. dΦ has locally constant rank.

Hence, any point x ∈ ∂Ω has an open neighborhood U such that Φ(U) is a smooth
submanifold of Ω. The next step is to show the following global result.

Step 3. P is a smooth submanifold of Ω.

The final result follows:

Step 4. Ω is a an isoparametric tube around P .

15



3.1 Some preliminary results

The following preliminary facts apply to any compact manifold Ω with smooth boundary
∂Ω. One could always think of Ω as being a domain with smooth boundary in a complete
Riemannian manifold M (see for example [26]).
For δ > 0 and small enough we can define the normal exponential map Φ : [0, R+δ]×∂Ω→
Ω by:

Φ(r, x) = expx(rν(x)).

Define the cut-radius map c : ∂Ω→ (0, R] as follows:

• for any x ∈ ∂Ω the normal geodesic arc γx(t)
.
= expx(tν(x)), where t ∈ [0, R + δ],

minimizes distance to ∂Ω if and only if t ≤ c(x).

The cut-locus is the set
CutΩ = {Φ(c(x), x) : x ∈ ∂Ω}.

Hence a normal geodesic arc, starting at the boundary, minimizes distance to the boundary
till it meets the cut-locus, and looses this property immediately after. Let dvg be the
volume form of Ω, and dv∂Ω the induced volume form on the boundary. Define a smooth
function θ : [0, R + δ]× ∂Ω by

Φ?dvg = θ(r, x) · drdv∂Ω. (14)

• Observe that a point y = Φ(r, x) is a focal point along the normal geodesic γx if and

only if θ(r, x) = 0. A focal point necessarily belongs to the cut-locus.

The distance function to the boundary, denoted ρ, is smooth on the regular set

Ωreg = Ω \ CutΩ,

in particular, near the boundary. Observe that

Ωreg = {Φ(r, x) ∈ Ω : x ∈ ∂Ω, r ∈ [0, c(x))},

and θ is positive on Ωreg. On Ωreg we consider the smooth vector field ν = ∇ρ which,
restricted to ∂Ω, is the inner unit normal; in general, if y ∈ Ωreg then ∇ρ(y) is a unit
normal vector to the equidistant Σy = ρ−1(ρ(y)) through y, hence Σy ∩ Ωreg is a regular
hypersurface. On the regular set one can split the Laplace operator into its normal and
tangential parts; precisely, for any smooth function u on Ωreg one has:

∆u(y) = −∂
2u

∂ν2
(y) + η(y)

∂u

∂ν
(y) + ∆Tu(y), (15)

where η = ∆ρ and ∆Tu is the Laplace operator of the equidistant Σy applied to the
restriction of u to Σy. Moreover:

η(y) = ∆ρ(y) = (n− 1) times the mean curvature of Σy at y
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(here the shape operator is the one associated to the unit normal vector N = ∇ρ). Finally,
a calculation in [17] shows that, for all x ∈ ∂Ω and r < c(x) one has

η(Φ(r, x)) = −θ
′(r, x)

θ(r, x)
(16)

where θ′ is differentiation with respect to the variable r. We will use the following fact
from our previous paper [33].

Theorem 16. Assume that Ω has the constant flow property, and let η = ∆ρ (we don’t
assume that the metric is analytic). Then, for all k ≥ 0:

∂kη

∂νk
= ck on ∂Ω,

where ck is a constant depending only on k.

3.2 On the mean exit time function

We assume from now on that Ω is a compact manifold with analytic metric and smooth
boundary. By the regularity results in [19] (which we can apply in our case, see [33]) the
boundary is analytic as well. As remarked in [33] the function η is radial on its domain
of definition Ωreg. We will give another proof of this fact in Lemma 17 below.

We will draw the following consequence of Theorem 16. Recall the mean-exit time function
v, solution of the problem: {

∆v = 1 on Ω

v = 0 on ∂Ω.

As η has normal derivatives of all orders which are constant on ∂Ω, one proves by the
local splitting of the Laplacian near the boundary that also v has normal derivatives of
all orders which are constant on the boundary. Analyticity will then imply that v is a
radial function.

Lemma 17. a) For all k ≥ 0 and x ∈ ∂Ω one has
∂kv

∂νk
(x) = c̃k where c̃k is a constant

depending only on k.

b) The function v is radial, and its restriction to Ωreg can be written v = ψ ◦ ρ for a
smooth function ψ : [0, R)→ R.

For the proof, we refer to Appendix 4.3.

Lemma 18.

a) p is a critical point of v if and only if ρ(p) = R. In other words, the critical set of v
coincides with the set of points at maximum distance to the boundary.
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b) The function η is radial, that is, on Ωreg one has η = g ◦ ρ for a smooth function
g : [0, R)→ R.

c) The density function θ is also radial on Ωreg, that is, θ = θ(r), and is positive on [0, R).
In particular, any focal point must be at maximum distance R to the boundary.

Proof. a) It clearly suffices to show that, if p is a critical point of v, then ρ(p) = R. In fact,
once we have shown that, we see that any point where v attains its absolute maximum
must be at distance R; since v is constant on ρ−1(R) we conclude that any point of ρ−1(R)
is a maximum of v, hence it is critical.

Then let p be a critical point of v which is closest to ∂Ω and set ρ(p) = r: now p is an
interior point because on the boundary |∇v| = ψ′(0) > 0. If γ is a geodesic arc which
minimizes distance from p to the boundary, and if x ∈ ∂Ω is the foot of γ, then v is
increasing when moving from x to p. As v is radial we see that the equidistant ρ−1(r)
consists entirely of critical points of v. Assume that ρ−1(r) is a regular hypersurface.
Then, by Green’s formula : ∫

ρ>r

∆v =

∫
ρ−1(r)

〈∇v,∇ρ〉 = 0,

because ∇v = 0 on ρ−1(r). As ∆v = 1 one would get |ρ > r| = 0 which can hold only
when r = max ρ = R.
It remains to prove the lemma when ρ−1(r) is not known to be regular. By assumption,
p is a critical point of v closest to the boundary. If v(p) = a, let {an} be any increasing
sequence converging to a; obviously each an is a regular value of v. On the geodesic arc
γ, the function v increases from 0 to a: then, there is a sequence of points {pn ∈ γ}
converging to p and such that v(pn) = an for all n. Set ρ(pn) = rn: as ρ−1(rn) is (possibly,
a component of) the regular hypersurface v−1(an), it is regular as well. We apply Green
formula to the domain {ρ > rn} and get:∫

ρ>rn

∆v =

∫
ρ−1(rn)

〈∇v,∇ρ〉 = |ρ−1(rn)|ψ′(rn) (17)

because, by the previous lemma, v = ψ ◦ ρ hence ∇v = (ψ′ ◦ ρ)∇ρ. Note that ψ′(rn)→ 0
as n → ∞. Now |ρ−1(rn)| is uniformly bounded above by a finite constant depending
only on Ω; in fact, standard comparison theorems on the density function θ show that the
volume of any level set of ρ can be controlled in terms of the volume of ∂Ω and : a lower
bound of the mean curvature of ∂Ω, a lower bound of the Ricci curvature of Ω and the
inner radius R. Taking the limit as n→∞ in (17) we obtain as before |ρ > r| = 0 which
implies, again, that r = R.

We prove b). From formula (15) one sees that on Ωreg one has:

η
∂v

∂ν
=
∂2v

∂ν2
− 1
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because ∆Tv = 0 (v is radial). As v = ψ ◦ ρ we have
∂v

∂ν
= ψ′ ◦ ρ and

∂2v

∂ν2
= ψ′′ ◦ ρ.

Since the critical set of v is at maximum distance to the boundary, one has ψ′ > 0 on the
interval [0, R). From the above equation we get

η =
ψ′′ − 1

ψ′
◦ ρ .

= g ◦ ρ

with g smooth on [0, R), showing that η is indeed radial.

c) Integrating (16) and knowing that θ(0, x) = 1 we see that, for all x ∈ ∂Ω:

θ(r, x) = e−
∫ r
0 η(Φ(s,x)) ds = e−

∫ r
0 g(s) ds

the last equality following from b). Hence θ depends only on r. Finally, pick a point y
at maximum distance R to the boundary, and observe that y = γx(R) for some x ∈ ∂Ω.
Any point γx(t) with t ∈ [0, R) is a regular point, hence θ(r)

.
= θ(t, x) > 0 for all t < R.

3.3 Proof of Step 1

Proposition 19. Let R be the maximum distance of a point of Ω to the boundary. Then:
CutΩ = ρ−1(R).

Proof. We first prove that ρ−1(R) ⊆ CutΩ.

In fact, assume to the contrary that ρ(p) = R and p /∈ CutΩ. Then, as the cut locus is
closed, there is a whole neighborhood U of p not meeting the cut locus. Let γ be the
unique geodesic segment minimizing the distance from the boundary to p and extend
γ a little bit beyond p. This extended geodesic segment is still minimizing distance to
the boundary, because it does not meet the cut-locus, and it has length greater than
R. This implies that there are points at distance greater than R, which contradicts the
assumption.

It remains to show that CutΩ ⊆ ρ−1(R).

It is enough to show that if p is a point of the cut-locus which is closest to the boundary
then ρ(p) = R. It is known that, if p minimizes distance from the cut-locus to the
boundary, then there are only two possibilities:

1. either p is a focal point or

2. p is the midpoint of a geodesic starting and ending at the boundary, and meeting the
boundary orthogonally.

First case. This is an immediate consequence of Lemma 18, part c) (any focal point is at
maximum distance to the boundary).

Second case. Assume ρ(p) = r. We parametrize γ by arc-length t on the interval [−r, r]
so that we have

γ(0) = p, γ(±r) ∈ ∂Ω.
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We know that v depends only on the distance to the boundary, so that if ψ : [−r, r]→ Ω
is the function ψ(t) = v(γ(t)) then ψ is even : ψ(t) = ψ(−t) for all t ∈ [−r, r]. Hence
ψ′(0) = 0 and the vectors ∇v(γ(t)) and γ′(t) are collinear for any t ∈ [−r, 0), which
implies

|ψ′(t)| = |〈∇v(γ(t)), γ′(t)〉| = |∇v(γ(t))|.

Then:
|∇v(p)| = lim

t→0
|∇v(γ(t))| = lim

t→0
|ψ′(t)| = |ψ′(0)| = 0

Hence p must be a critical point of v and ρ(p) = R as asserted.

3.4 Proof of Step 2.

The proof follows an argument in [40]. Step 2 will be a consequence of Claims 1 and 2
below.

Claim 1. Each y0 ∈ ∂Ω has a neighborhood U0 such that rk(dΦ(y)) ≥ rk(dΦ(y0)) for all
y ∈ U0.

For the proof, fix orthonormal frames (e1, . . . , en−1) in Ty0∂Ω (resp. (E1, . . . En) in TΦ(y0)Ω)
and extend them by parallel trasport in a nhbd Wy0 of y0 (resp. W ′ of Φ(y0)). In these
bases, the matrix of dΦ(y) depends continuously on y ∈ Wy0 . It is clear that, if Wy0 is
sufficiently small one has rk(dΦ(y)) ≥ rk(dΦ(y0)) for all y ∈ Wy0 , showing the claim.

We now show the reverse inequality. The previous argument shows that, if the rank of Φ
at y0 is maximum (that is, equal to n− 1), then it will be maximum (hence constant) in
a neighborhood of y0. Then, we can assume that Φ(y0) (hence every y ∈ ∂Ω) is a focal
point. For y ∈ ∂Ω let γy[0, t] be the geodesic segment of length t starting at y and going
in the inner normal direction. By the Morse index theorem, the set of focal points on each
finite geodesic segment is discrete; by compactness of ∂Ω, there exists ε > 0 (independent
of y) such that the geodesic segment

αy
.
= γy[0, R + ε]

will have only one focal point, namely, Φ(y). Its Morse index Ind(αy) is precisely the null
space of dΦ(y). Consequently :

Ind(αy) = n− 1− rk(dΦ(y))

for all y ∈ ∂Ω.

Claim 2. Each y0 ∈ ∂Ω has a neighborhood V0 such that Ind(αy) ≥ Ind(αy0) for all
y ∈ V0. Consequently, on that neighborhood:

rk(dΦ(y)) ≤ rk(dΦ(y0)).
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For the proof, we observe that the index form on the geodesic αy depends continuously
on y. Recall that the index form is a quadratic form:

Qy : V (αy)× V (αy)→ R,

where V (αy) is the vector space of piecewise-smooth vector fields which are orthogonal to
αy and tangent to ∂Ω at y; the Morse index of αy is then the index of Qy, and equals the
maximal dimension of a subspace of V (αy) on which Qy is negative definite. Now, if E is
a k-dimensional subspace of V (αy0) on which Qy0 is negative definite, and if y is a point
of ∂Ω near y0, we can parallel transport the vector fields of E to obtain a k-dimensional
subspace τ(E) of V (αy); as Qy depends continuously on y, it will still be negative definite
on τ(E) provided that y is close enough to y. Hence, the index cannot decrease locally,
proving the claim.

3.5 Proof of Step 3

• We say that p is a smooth point of P if there exists an open nghbd V of p in Ω such that
V ∩ P is a smooth k-dimensional submanifold of Ω. Clearly P is a smooth submanifold
if and only if every point of P is smooth.

We wish to show that any point p0 ∈ P is smooth. Fix one such point, and pick x0 ∈ ∂Ω
such that p0 = Φ(x0) (recall that Φ is surjective). By Step 2, the rank of Φ is locally
constant; then, by the constant rank theorem, we can find a neighborhood U of x0 such
that W

.
= Φ(U) is a k-submanifold of Ω, and p0 ∈ W . Next we claim

Proposition 20. Let Uε(W ) denote the open ε-nghbd of W . Then, if ε > 0 is small
enough one has :

Uε(W ) ∩ P = W.

Clearly, Step 3 follows from the above Proposition, because, taking V = Uε(W ), we see
that p0 is a smooth point of P . We state two lemmas.

Lemma 21. Consider the Taylor expansion of θ(r) at r = R:

θ(r) = c(R− r)d +O((R− r)d+1), c 6= 0, (18)

where d is a non-negative integer (the order of vanishing of θ at R). Write v = ψ ◦ ρ,
where ψ is smooth on [0, R). Then, for all r ∈ [0, R):

ψ′(r) =

∫ R
r
θ(s) ds

θ(r)
and then lim

r→R
ψ′′(r) = − 1

d+ 1
.

Proof. For r < R set:
Ωr = {ρ > r}, ∂Ωr = {ρ = r}.

21



Now ∇v = (ψ′ ◦ ρ)∇ρ and ∇ρ is the inner unit normal to ∂Ωr. As
∫

Ωr
∆v =

∫
∂Ωr

∂v
∂N

we
see that

ψ′(r) =
|Ωr|
|∂Ωr|

.

Now

|∂Ωr| =
∫
∂Ω

θ(r)dv∂Ω = |∂Ω|θ(r) and hence |Ωr| = |∂Ω|
∫ R

r

θ.

Then ψ′(r) =

∫ R
r
θ

θ(r)
and the calculation of the limit is straightforward from (18).

Again let γx : [0, R]→ Ω be the geodesic such that γx(0) = x and γ′x(0) = ν(x). Define a
map σ : ∂Ω→ UN(Ω) by

σ(x) = γ′x(R). (19)

Then σ(x) belongs to TΦ(x)Ω.

Lemma 22. σ(x) is an eigenvector of ∇2v associated to the eigenvalue µ = − 1
d+1

, for all
x ∈ ∂Ω.

Proof. Note that γx is an integral curve of v. For r ∈ [0, R) we write T (r) = γ′x(r) =
∇ρ(γx(r)) and observe that ∇v = (ψ′ ◦ ρ)T. Then:

∇T∇v = ∇T ((ψ′ ◦ ρ)T ) = (T · (ψ′ ◦ ρ))T + (ψ′ ◦ ρ)∇TT

Now T · (ψ′ ◦ ρ) = ψ′′ ◦ ρ and ∇TT = 0 hence

∇T∇v = (ψ′′ ◦ ρ)T.

This shows that T (r) is an eigenvector of ∇2v associated to the eigenvalue ψ′′(r). This
holds for all r < R, and by continuity it holds also when r → R. As T (R) = σ(x), and
ψ′′(r)→ µ by the previous lemma, we see ∇σ(x)∇v = µσ(x) and the assertion follows.

Proof of Proposition 20.

Proof. We retain the notation given before the proposition and recall that, if m is the
(absolute) maximum of v in Ω, then P = v−1(m) (Lemma 18 and Step 1). The aim is
to show that, if y ∈ Uε(W ) \W then v(y) < m: this implies y /∈ P and the proposition
follows.

For all q ∈ W we have the splitting TqΩ = TqW ⊕NqW , where NqW is the normal space
at q. Let Eq(µ) ⊆ TqΩ be the eigenspace of ∇2v associated to µ. We want to show that

Nq(W ) ⊆ Eq(µ). (20)

In fact, consider the subset of ∂Ω given by

F = Φ−1(q) ∩ U.
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If the rank of Φ on U is k, then F is an (n− k− 1)-dimensional open submanifold of ∂Ω.
If x ∈ F , then σ(x) = γ′x(R) is normal to W , because the geodesic γx is an integral curve
of v and W ⊆ P , hence v is constant on W . Then σ restricts to a map

σ : F → UNq(W ).

Since TqW is k-dimensional, we see that UNq(W ) is (n−k−1)-dimensional, hence F and
UNq(W ) have the same dimension. By the uniqueness of geodesics, σ is injective. Thus,
by invariance of domain:

• σ(F ) is open in UNq(W ).

From the previous lemma we know that σ(F ) ⊆ UEq(µ), hence UEq(µ) contains an open
subset of UNq(W ). Now Eq(µ) is the cone over UEq(µ); taking the respective cones one
sees that the subspace Eq(µ) contains an open subset of Nq(W ), hence it must contain
the whole of Nq(W ). In conclusion, we showed that for all y ∈ W one has (20).

We can now finish the proof. Given y ∈ Uε(W )\W , let q ∈ W be the foot of the geodesic
minimizing the distance to W . We write y = γX(t) for some t ∈ (0, ε), where γX is the
geodesic such that

γX(0) = q, γ′X(0) = X ∈ UNq(W ).

By (20), X ∈ Eq(µ). Let fX(t) = v(γX(t)). Then:

fX(0) = m, f ′X(0) = 0, f ′′X(0) = ∇2v(X,X) = µ = − 1

d+ 1
< 0

and Taylor formula at t = 0 writes:

fX(t) = m− 1

d+ 1
t2 +O(t3)

where O(t3) depends onX ∈ UNq(W ). However it is clear, using a compactness argument,
that if ε > 0 is small enough, then fX(t) < m for all 0 < t < ε and X ∈ UN(W ). With
that choice of ε, one has v(y) < m for all y ∈ Uε(W ) \W . The proposition follows.

3.6 Proof of Step 4.

It is enough to show that, for all r ∈ (0, R) one has:

{x ∈ Ω : d(x, P ) = r} = {x ∈ Ω : d(x, ∂Ω) = R− r}. (21)

Then, the family of equidistants to P coincides with the family of equidistants to ∂Ω;
as each of these is a smooth hypersurface with constant mean curvature the assertion
follows.

The proof of (21) is clear: as P is the set of points at distance R to the boundary, and
since P is a smooth submanifold, we see that any point x ∈ Ω \ P belongs to a unique
geodesic arc γ meeting ∂Ω and P orthogonally, and having total length R. The geodesic
subarcs γ1 ⊆ γ, joining P with x, and γ2 ⊆ γ, joining ∂Ω with x, have respective lengths
r and R− r, and obviously minimize the respective distance. (21) follows.
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4 Appendix

4.1 Smoothness of radial functions

Let Ω be a smooth tube around the smooth submanifold P , and let ρ : Ω → R be the
distance function to P .

Lemma 23. Consider a radial function f on Ω, such that f = f̂◦ρ where f̂ : [0, R]→ R is
smooth and has vanishing derivatives of odd orders at zero. Then f is smooth everywhere
on Ω.

We first prove the Lemma when P is a k-dimensional plane in Rn, then we prove the
general case by using Fermi coordinates in a neighborhood of any point of P .
So, let P be a k-dimensional plane in Rn, where k = 0, . . . , n− 1. We can fix coordinates
so that

P : xk+1 = · · · = xn = 0,

and therefore

ρ(x) =
√
x2
k+1 + · · ·+ x2

n.

As ρ is continuous, it is clear that f(x) = f̂(ρ(x)) is also continuous. We use the easily

proven fact that, under the assumptions on f̂ , the function F̂ : [0, R]→ R

F̂ (r) =


f̂ ′(r)

r
if r > 0

f̂ ′′(0) if r = 0

is smooth on [0, R] and even at zero. One sees that
∂f

∂xi
= 0 everywhere for all i = 1, . . . , k,

and
∂f

∂xj
=

{
(F̂ ◦ ρ)xj if x /∈ P, j = k + 1, . . . , n

0 if x ∈ P
(22)

which shows that f is C1 everywhere. We now prove any f as in the hypothesis of the
lemma is Ck-smooth for all k by induction on k. The statement is true for k = 1; then,
assume that the statement is true for the integer k. We apply the inductive hypothesis to

F̂ ◦ρ (we can do that because it is even at 0); as F̂ ◦ρ is Ck, equation(22) shows that
∂f

∂xj
is also Ck for all j, being the product of two Ck functions. Then f is Ck+1, as asserted,
which completes the induction process : f is C∞-smooth.

For the extension to the Riemannian case, we use Fermi coordinates which we recall here.
Let p be a point of P and U a neighborhood of p in P , on which we can introduce
normal coordinates (x1, . . . , xk). Let (e1, . . . , ek) be an orthonormal basis of TpP , and let
(ν1, . . . , νn−k) be an orthonormal basis of T⊥p P , which we can extend by parallel transport
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in the normal bundle along any radial geodesics starting at p. We thus obtain a local
orthonormal frame (ν1, . . . , νn−k) in T⊥U .

Fix ε > 0 and small, and consider the open tube W of radius ε around U . If x ∈ W ,
we consider the point q ∈ U closest to x, and assume that it has normal coordinates
(x1, . . . , xk). If ε is small enough, for each such x ∈ W there exists a unique vector
ξ ∈ T⊥q P such that x = expq ξ. One can write

ξ = xk+1ν1 + · · ·+ xnνn−k.

The Fermi coordinates of x ∈ W are then, by definition,

(x1, . . . , xk, xk+1, . . . , xn).

Now it is clear that on W we have

P : xk+1 = · · · = xn = 0, ρ(x) =
√
x2
k+1 + · · ·+ x2

n.

If f = f̂(ρ(x)) is a radial function with the above properties one can apply the argument
in Euclidean space and conclude.

4.2 Proof of formula (13)

Let ε be small and positive, and let

Ωr,ε = {x ∈ Ω : r ≤ ρ(x) ≤ r + ε}.
Denote by N the inner unit normal to ∂Ωr,ε, so that N = ∇ρ on ρ−1(r) and N = −∇ρ
on ρ−1(r + ε). Then:∫

ρ−1(r+ε)

f −
∫
ρ−1(r)

f = −
∫
ρ−1(r+ε)

f
∂ρ

∂N
−
∫
ρ−1(r)

f
∂ρ

∂N

= −
∫
∂Ωr,ε

f
∂ρ

∂N

=

∫
Ωr,ε

〈∇f,∇ρ〉 −
∫

Ωr,ε

f∆ρ

(23)

By the co-area formula:

lim
ε→0

1

ε

∫
Ωr,ε

〈∇f,∇ρ〉 = lim
ε→0

1

ε

∫ r+ε

r

(∫
ρ−1(s)

〈∇f,∇ρ〉
)
ds =

∫
ρ−1(r)

〈∇f,∇ρ〉 (24)

Similarly one gets:

lim
ε→0

1

ε

∫
Ωr,ε

f∆ρ =

∫
ρ−1(r)

f∆ρ (25)

From (23),(24),(25) one gets

lim
ε→0

(∫
ρ−1(r+ε)

f −
∫
ρ−1(r)

f
)

=

∫
ρ−1(r)

〈∇f,∇ρ〉 −
∫
ρ−1(r)

f∆ρ

as asserted. The same argument can be applied when ε < 0.
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4.3 Proof of Lemma 17

We first recall some definitions and facts used in the proof of Proposition 17 in [33]. Fix
ε > 0 and small so that the collar neighborhood of ∂Ω

U = {x ∈ Ω : ρ(x) < ε}

does not contain points in the cut-locus. Set ν = ∇ρ. We say that φ ∈ C∞(U) has level k

if k is the largest integer (including possibly k = +∞) such that φ,
∂φ

∂ν
, . . . ,

∂kφ

∂νk
restrict

to constant functions on ∂Ω. By convention, if φ|∂Ω is not constant we say that φ has
level −∞; clearly, if φ is radial then it has level +∞.

By arguing with Taylor expansion along the geodesic exiting a given boundary point, and
going in the normal direction, one sees that φ ∈ C∞(U) has level at least k if and only if
there exist smooth functions ψ : [0, ε)→ R and f ∈ C∞(U) such that one has on U :

φ = ψ ◦ ρ+ ρk+1f. (26)

This has the following consequences:

• If φ has level at least k, then
∂φ

∂ν
has level at least k− 1 and ∆Tφ has level at least k.

In fact, the first assertion is clear; for the second, knowing that φ satisfies (26) one sees
that ∆Tφ = ρk+1∆Tf , showing the claim.

We now proceed to prove (by induction on k) that v has level at least k for all k. This
will imply the first part of the Lemma.
First, observe that, as Ω has the constant flow property, it is also harmonic by Theorem

8, hence
∂v

∂ν
is constant on ∂Ω and v has level at least one. The assertion is then true for

k = 1. Now assume that v has level at least k: we need to show that then it has level at
least k + 1. Recall the identity

∂2v

∂ν2
= η

∂v

∂ν
− 1 + ∆Tv.

We know from Theorem 16 that η has level +∞. Then one sees easily from the above

formula that
∂2v

∂ν2
has level at least k − 1. The identity

∂k+1v

∂νk+1
=

∂k−1

∂νk−1

∂2v

∂ν2

shows that
∂k+1v

∂νk+1
has level at least zero, that is, is constant on ∂Ω, hence v has level at

least k + 1 and the induction step is complete.
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We then prove b). As Ω is analytic, with analytic boundary, and since v is a solution of an
elliptic equation with analytic coefficients, we see that v is analytic up to the boundary.
We fix a point y ∈ ∂Ω and the normal geodesic γy : [0, R]→ Ω with γy(0) = y and initial
velocity given by ν(y). The function ψy(t) = v(γy(t)) is then analytic on [0, R) and one
has:

ψy(r) =
∞∑
k=0

1

k!

∂kv

∂νk
(y)rk =

∞∑
k=0

c̃k
k!
rk

.
= ψ(r)

As the right-hand side is independent on y, the value of v at any point at distance r to
the boundary is constant, equal to ψ(r). Hence v is radial.

4.4 Free boundary hypersurfaces are harmonic

Let Ω be a minimal free boundary hypersurface of the unit ball Bn+1. We choose a unit
normal vector NΩ to Ω in Rn+1 and let as usual ν be the unit normal to ∂Ω in Ω. Denote

the position vector by x; this is the radial vector field x =
∑n+1

j=1 xj
∂

∂xj
. Then, since Ω

meets ∂Bn+1 orthogonally, we see that ν = −x on ∂Ω. If r denotes the distance to the
origin in Rn+1, then x = r∇̄r, where ∇̄ is the Levi-Civita connection on Rn+1.
We want to show that, if r denotes the distance to the origin in Rn+1 then the function:

f =
1

2n
(1− r2)

when restricted to Ω, is a solution of∆f = 1 on Ω

f = 0,
∂f

∂ν
=

1

n
on ∂Ω

which shows that Ω is harmonic. Now it is clear that f = 0 on ∂Ω. Since

∇f = − 1

n
r∇r = − 1

n
xT ,

where ξT is the orthogonal projection of x onto Ω, we see that, on ∂Ω:

∂f

∂ν
= 〈∇f, ν〉 = − 1

n
〈xT , ν〉 =

1

n

because on the boundary x = xT = −ν. It remains to show that ∆f = 1. Now ∆f =
− 1
n
δxT . Let {ei} be a local orthonormal frame which is ∇-geodesic at a given point x0.
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Then, at x0:

δxT = −
n∑
i=1

ei · 〈xT , ei〉

= −
n∑
i=1

ei · 〈x, ei〉

= −
n∑
i=1

〈∇̄eix, ei〉 −
n∑
i=1

〈x, ∇̄eiei〉

Now ∇̄eix = ei for all i; moreover, if L is the second fundamental form, we have

n∑
i=1

∇̄eiei =
n∑
i=1

∇eiei +
n∑
i=1

L(ei, ei) = 0

because, at the given fixed point, ∇eiei = 0 and, by assumption, Ω is minimal so that
trL = 0. We conclude that δxT = −n hence ∆f = 1 as asserted.

4.5 Proof of Theorem 3

In the sphere the result has been proved by Nomizu ([25]) and in the Riemannian case it
has been announced (without proof) in [40]. A formal proof was given by Ge and Tang
in [16].

Under some conditions, this minimality phenomenon seems to hold even when there exists
a family of constant mean curvature hypersurfaces condensing to a submanifold P in the
sense of [22]: then P has to be minimal even when the members of this family are not
necessarily parallel, as in Definition 2 (see [22]).

Finally, we sketch a direct argument, in the language of this paper. Recall the density
function θ(r, ν) which gives the Riemannian measure in normal coordinates around P :
here r > 0 is the distance to P and ν(x) ∈ U(P ) (x is the base point). We remark
(without proof) that if dimP = k, then we have an asymptotic expansion, as r → 0:

θ(r, ν(x)) = rn−k−1
(

1− k〈H(x), ν(x)〉r +O(r2)
)

where H is the mean curvature vector of the immersion of P into Ω. Now, if the tube
is isoparametric then θ(r, ν) depends only on r and not on the direction ν : this forces
〈H, ν〉 = 0 for all ν ∈ U(P ), which in turn can hold only when H = 0 identically. Then
P is minimal.
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Via Antonio Scarpa 16
00161 Roma, Italy

E-Mail: alessandro.savo@uniroma1.it

31


