
Contents lists available at ScienceDirect

Psychiatry Research: Neuroimaging

journal homepage: www.elsevier.com/locate/psychresns

Network abnormalities in generalized anxiety pervade beyond the
amygdala-pre-frontal cortex circuit: Insights from graph theory

Elena Makovaca,b,c, Matteo Mancinic,d, Sabrina Fagiolic,e, David R. Watsonb, Frances Meetenb,f,
Charlotte L. Raeb,g, Hugo D. Critchleyb,g,h, Cristina Ottavianic,i,⁎

a Centre for Neuroimaging Science, Kings College London, London, UK
b Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer, UK
cNeuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
d Centre for Medical Image Computing, University College London, London, UK
e Department of Education, University of Roma Tre, Rome, Italy
fDepartment of Psychology, Kings College London, London, UK
g Sackler Centre for Consciousness Science, University of Sussex, Falmer, UK
h Psychiatry, BSMS Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Falmer, UK
i Department of Psychology, Sapienza University of Rome, Rome, Italy

A R T I C L E I N F O

Keywords:
Generalized anxiety disorder
Functional connectivity
Graph theory
Longitudinal
Global efficiency
Network-based statistics

A B S T R A C T

Generalized anxiety disorder (GAD) has excessive anxiety and uncontrollable worry as core symptoms.
Abnormal cerebral functioning underpins the expression and perhaps pathogenesis of GAD:. Studies implicate
impaired communication between the amygdala and the pre-frontal cortex (PFC). Our aim was to longitudinally
investigate whether such network abnormalities are spatially restricted to this circuit or if the integrity of
functional brain networks is globally disrupted in GAD. We acquired resting-state functional magnetic resonance
imaging data from 16 GAD patients and 16 matched controls at baseline and after 1 year. Using network
modeling and graph-theory, whole-brain connectivity was characterized from local and global perspectives.
Overall lower global efficiency, indicating sub-optimal brain-wide organization and integration, was present in
patients with GAD compared to controls. The amygdala and midline cortices showed higher betweenness cen-
trality, reflecting functional dominance of these brain structures. Third, lower betweenness centrality and lower
degree emerged for PFC, suggesting weakened inhibitory control. Overall, network organization showed im-
pairments consistent with neurobiological models of GAD (involving amygdala, PFC, and cingulate cortex) and
further pointed to an involvement of temporal regions. Such impairments tended to progress over time and
predict anxiety symptoms. A graph-analytic approach represents a powerful approach to deepen our under-
standing of GAD.

1. Introduction

Generalized anxiety disorder (GAD) is a chronic condition char-
acterized by excessive anxiety, in which uncontrollable anticipation of
negative outcomes (i.e. worry) may develop as a response to manage
emotional distress. GAD is the most frequent anxiety disorder in pri-
mary care, imposing an enormous human and economic burden on
society (Hoffman et al., 2008). Abnormal cerebral functioning is evi-
dent and implicated in the pathogenesis of anxiety, with a clear role of
the amygdala (Mochcovitch et al., 2014). Indeed, functional brain
imaging studies show heightened activation of the amygdala across
anxiety disorders when compared to healthy controls (HC). Similarly,

enhanced amygdala reactivity correlates with trait anxiety in both
clinical and healthy populations. Thus, hyper-responsiveness of the
amygdala is putatively a trans-diagnostic neural correlate of disposi-
tional anxiety (e.g. Etkin et al., 2009). The role of the amygdala in the
pathophysiology of GAD is less clear, with some studies reporting over-
reactivity (e.g. greater anticipatory amygdala activity preceding aver-
sive and neutral stimuli; Nitschke et al., 2009), and others diminished
activity of the amygdala, for example during the evaluation of angry
faces (Blair et al., 2008). Similarly, other studies have failed to report a
hyperactivation of the amygdala during the presentation of threatening
stimuli in GAD (Monk et al., 2006; Palm et al., 2011). The results ap-
pear to be more coherent in pediatric GAD, where hyperactivation of
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the amygdala is evident during the elaboration of emotional stimuli and
correlated with the severity of GAD symptoms (Monk et al., 2008;
McClure et al., 2007).

On its own, the quantification of amygdala dysfunction yields lim-
ited insights to the pathophysiology of anxiety disorders in general and
of GAD in particular (Paulus and Stein, 2006). In recent years, under-
standing of GAD pathophysiology has been enriched by the investiga-
tion of abnormal patterns of communication within and between brain
networks, capitalizing upon resting state functional connectivity ap-
proaches (Sylvester et al., 2012). Moreover, resting-state connectivity
tools can be successfully used to demonstrate functional differences and
similarities in neural characteristics of distinct anxiety disorders
(Peterson et al., 2014). Aberrant communication between amygdala
and pre-frontal cortex (PFC) emerges repeatedly as a signature of GAD
(Makovac et al., 2016a; Mochcovitch et al., 2014). Crucially, in non-
clinical populations, amygdala activity is tonically suppressed by in-
hibitory inputs from the PFC, enabling the efficient regulation of
emotional states (Nomura et al., 2004). Therefore, the emotional dys-
regulation typical of GAD may plausibly reflect dysfunctional commu-
nication between PFC and amygdala, in which the failure of the PFC to
down-regulate the amygdala in safe contexts leads to the maintenance
of core symptoms of worry and anxiety (Etkin et al., 2009; Makovac
et al., 2016a). Such a mechanism illustrates how specific patterns of
network dysfunction can contribute to core deficits in cognitive and
affective functioning that underlie the expression of clinical symptoms.

Nevertheless, focusing only on the communication between PFC and
amygdala (as with focusing on amygdala activation alone) may be too
reductive and obscure the recognition of more subtle abnormalities
distributed across the brain, of potentially equivalent pathoaetiological
significance. Indeed, GAD involves dysfunction of cognitive and emo-
tion regulation processes relying on distributed brain regions spanning
multiple lobes (Menon, 2011). For example, other studies have reported
a crucial role of the communication between amygdala and temporal
pole in GAD (Li et al., 2016). Similarly, recent data have pointed to an
involvement of the communication between amygdala and temporal
areas in the mediation of the negative affectivity that accompanies
worry in GAD (Makovac et al., 2018).

A graph theory analytic approach permits a more global perspective
on functional neural connectivity, as only large-scale brain network
analytics can provide integrative models of cognitive and affective
dysfunction in GAD (Menon, 2011). Within this network-modeling
framework, brain regions are represented as nodes of a mathematical
graph, and the functional couplings between them constitute its edges
(Bullmore and Sporns, 2009; Rubinov and Sporns, 2010). Metrics from
graph theory are employed to characterize specific network properties
including segregation, i.e. the capability of specialized local processing,
and integration, i.e. the capability of distributed global processing.
Importantly, a consequence of network organization is that it supports
spreading processes between connected regions. It follows that a loca-
lized brain dysfunction can cause pathological alterations within re-
gions that are distant, yet functionally linked to the original site of
dysfunction (Fornito et al., 2015).

Human ‘neural connectomics’ has yielded plausible biomarkers for
Alzheimer's disease (Bergeron et al., 2016) and psychiatric disorders
including schizophrenia (Kambeitz et al., 2016), social anxiety disorder
(Yun et al., 2017), post-traumatic stress disorder (Lei et al., 2015), and
major depression (Gong and He, 2015). Despite the promise of this
approach, and the conceptualization of anxiety disorders as “dysfunc-
tion in brain networks” (Sylvester et al., 2012), to date no study has yet
applied graph theory to whole brain network connectivity in GAD pa-
tients. The present paper addresses this need. We examined whole brain
functional connectivity in GAD patients and HC by applying specific
quantitative graph measures. We hypothesized that global and local
brain network topological properties are disrupted in GAD compared to
controls, and that these disruptions extend beyond the PFC-amygdala
interactions proposed as a canonical circuit dysfunction. Given the

absence of previous studies applying this approach in GAD, we opted
for both a data- and theory-driven approach. The latter specifically
involved the exploration of brain regions that have emerged as playing
a significant role in prior studies on the neurobiology of GAD, i.e., re-
gions within the PFC, and cingulate gyrus (e.g., Makovac et al., 2016a;
Via et al., 2018).

The progression of a clinical anxiety disorder is directly coupled to
time dependent expression and modification of symptoms (van Beljouw
et al., 2010). Correspondingly, we tested for changes in organizational
features of whole brain networks at two time points over a 1-year
period. Abnormalities in global network organization have the capacity
to be clinically important biomarkers for disease progression, for ex-
ample mapping the transition to psychosis in an at-risk sample
(Lord et al., 2012) or mirroring daily affective instability in remitted
patients with major depressive disorder (Servaas et al., 2017). In a
previous study, we found that longitudinal changes in dorsolateral PFC-
amygdala functional connectivity mirrored changes in anxiety symp-
toms in GAD patients over time (Makovac et al., 2016b). Here, we
aimed to extend these findings moving “from connectivity to con-
nectomics”.

2. Materials and methods

2.1. Participants

The present study is based on a secondary analysis of data from a
larger longitudinal fMRI study (Makovac et al., 2016b). The study was
approved by the National Research Ethics Service for the UK National
Health Service with university sponsorship granted via the Brighton
and Sussex Medical School Research Governance and Ethics Committee.
All participants provided written informed consent at both time points.
The final sample undergoing both assessments encompassed 16 patients
(14 women; mean age=29.6 ± 7.5 years) who met DSM-IV diag-
nostic criteria for GAD and 16 HC (13 women; mean age=28.1 ±
10.1 years). The average illness duration at time 0 was 16.8 ± 8.0
years. Patients and controls were medication free, with the exception of
two patients with GAD who used long-term medications (one citalo-
pram, one pregabalin) at both sessions of the study. Wash-out was not
applied. At time 0, forty individuals (19 GAD, 21 HC) were recruited by
public advertisement; after one-year (time 1), eight participants had
dropped-out from the study (3 GAD and 5 HC). All participants were
right-handed and native English speakers. Exclusion criteria were: age
younger than 18 years, past head injury or neurological disorders, prior
history of major medical or psychiatric disorder (other than GAD for the
patient group), cognitive impairment, history of substance or alcohol
abuse or dependence, diagnosis of heart disease, obesity, pregnancy,
claustrophobia or other general magnetic resonance imaging (MRI)
exclusions. None of our participants had a formal diagnosis of co-
morbid major depressive disorder.

2.2. Procedure

At both time 0 and time 1, all participants underwent the Structured
Clinical Interview for DSM-IV to confirm or exclude a current diagnosis
of GAD. Then, participants completed a series of online questionnaires
and underwent the MRI protocol. Participants completed the same
procedure about 1 year later (time 1) (average time between ses-
sions= 10.5 ± 2.2 months). The 1-year time frame was chosen for
both practical and theoretical reasons. Given our small sample size and
difficulties in recruiting anxious patients for a brain imaging study, we
opted for a time frame that allowed us to detect changes in symptoms
(DSM-5 criteria require a minimum of 6 months of persistent worry for
the diagnosis of GAD), while at the same time minimizing the risk of
losing patients at follow-up.
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2.3. Questionnaires

A series of lifestyle (nicotine consumption, alcohol and caffeine
intake, and physical activity) socio-demographic (age, years of educa-
tion), and dispositional questionnaires (STAI, PSWQ) were adminis-
tered at both time points (Makovac et al., 2016a).

The State Trait Anxiety Inventory (STAI; Spielberger, 1983) consists
of two 20-item self-report measures to assess state (“I am tense”) and
trait (“I feel like a failure”) levels of anxiety. Respondents indicate how
they feel right now (state version) or how they generally feel (trait
version) using four-point Likert scales.

The Penn State Worry Questionnaire, (PSWQ; Meyer et al., 1990), is
a 16-item self-report questionnaire mainly focused on future outcomes
(“As soon as I finish one task, I start to worry about everything else I
have to do”) and commonly used to assess the dispositional tendency to
engage in worrisome thoughts.

2.4. fMRI design

At both time points, participants underwent a 5 min resting-state
period, during which they were instructed to rest with their eyes open
without thinking of anything in particular and not falling asleep.
Previous studies have shown that the resting condition (i.e. eyes open
vs eyes closed) can affect resting state fMRI reliability (e.g. Patriat et al.,
2013). With the aim of replicability, we have opted for the most com-
monly used condition in this specific field of research i.e., eyes open. At
both time points, the resting-state periods were followed by a series of
tasks beyond focus of the present article and described elsewhere
(Ottaviani et al., 2016).

2.5. MRI acquisition and pre-processing

MRI images were acquired on a 1.5-Tesla Siemens Magnetom
Avanto scanner (Siemens AG, Munich, Germany). Functional datasets
used T2×weighted echoplanar imaging (EPI) sensitive to blood oxy-
genation level dependent (BOLD) signal (TR=2.52 s, TE= 43ms, flip-
angle 90°, 34 slices, 3 mm slice thickness, 192mm FOV, voxel size
3× 3×3mm). T1 weighted (MPRAGE) volumes (0.9 mm isometric
voxels, 192 sagittal slices, repetition time 11.4ms, echo time 4.4ms,
inversion time 300ms) were also acquired from each participant and
visually reviewed to exclude the presence of macroscopic artefacts. T1
data were pre-processed using FreeSurfer (v.5.3.0, https://surfer.nmr.
mgh.harvard.edu) for tissue classification and whole-brain parcellation
using the Desikan–Killiany atlas into 82 (14 subcortical, 68 cortical)
anatomical regions (Desikan et al., 2006). Resting-state data were pre-
processed using FSL (v.5.0.7, https://fsl.fmrib.ox.ac.uk/fsl/). Briefly,
the first four volumes were discarded to ensure field homogeneity,
while the remaining volumes were corrected for ascendant slice-timing,
entered to MCFLIRT to estimate motion parameters, and spatially
smoothed using a Gaussian kernel with a width of 5mm. AROMA was
used to reject motion-related artefacts using an independent component
approach based on MELODIC (Pruim et al., 2015). In line with recent
papers (Alakörkkö et al., 2017; Chen and Calhoun, 2018; Liu et al.,
2017), we limited the width of the spatial smoothing to reach a trade-
off between avoiding overestimation and enhancing motion artefacts
detection (Pruim et al., 2015). CSF and white matter signals were re-
gressed out. Lastly, the clean data were co-registered using an inverse
transformation from the EPI to the native space in order to match the
parcellation scheme.

2.6. Network modeling

The resulting pre-processed images were used for constructing the
connectivity matrices. For each region, the average BOLD time-course
was calculated using the maximum-overlap discrete wavelet transform
(MODWT) such that a time-course was decomposed into specific

frequency bands. Following previously published works (Bassett and
Bullmore, 2006), we selected the coefficients of the second scale, which
provided information on the frequency band 0.05–0.1 Hz. Then, for
every possible pair of regions, the correlation between the wavelet
coefficients and the related p-value were calculated and arranged in
matrices. We then used false discovery rate (FDR) with p<0.05 on the
obtained p-values to take into account multiple comparison and we
built a connectivity matrix using only the correlation values that passed
the FDR test (Bassett et al., 2011b). We applied this statistical threshold
to all the matrix elements regardless of the sign of the correlation. In
this way, we were able to describe brain networks by means of math-
ematical graphs, where each node represented a region from the Desi-
kan–Killiany atlas and each edge the presence or absence of functional
coupling.

2.7. Network-based statistics

To characterize differences edge-wise while taking into account
multiple comparisons, we used a network-based statistics (NBS) ap-
proach for computing a mixed two-way ANOVA (Zalesky et al., 2010).
Briefly, for every edge in the graph, the F-test was computed edge-wise
with the appropriate design matrix. The resulting pseudo-adjacency
matrix was binarized using an arbitrary threshold (F>5) on the sta-
tistics (Smiths and Nichols, 2009), and the size of the largest connected
component was calculated (here the size of a connected component is
the number of its vertices). Using a permutation approach (10,000
permutations), the matrices were randomly reassigned, and the statis-
tics were iteratively re-computed as well as the size of the largest
component. As a result, a p-value was obtained as the ratio between the
number of random components larger than the real one and the total
number of permutations computed. Using NBS results, we were able to
define a sub-network (i.e. a subset of regions with the relative con-
nections) showing significant differences between the considered
groups and time-points.

2.8. Graph measures

We characterized the obtained brain networks from the global and
local perspectives using measures inherited from graph theory
(Bullmore and Sporns, 2009). All the mentioned measures were com-
puted using MATLAB and Brain Connectivity Toolbox (v.2017-15-01,
https://sites.google.com/site/bctnet/).

As global measures, we calculated the average clustering coefficient,
which quantifies how dense the connections are among neighbor nodes;
the global efficiency, which is inversely related to the characteristic path
length (i.e. the average length of all the shortest paths in a graph); and
the overall functional connectivity (calculated as the average of all the
non-zero elements). To take into account effects driven by differences in
the number of connections, the density was also computed (van den
Heuvel et al., 2017).

As local measures, we calculated for each node the degree, which is
the number of connections; the betweenness centrality, which measures
how much the node is involved in efficient paths; and the local effi-
ciency, which is the inverse of the length of the shortest paths passing
through a given node (Rubinov and Sporns, 2010).

2.9. Statistical analysis

Data analysis was performed with SPSS 22.0 for Windows (SPSS Inc,
USA). First, a series of t/χ2 tests were performed to look at baseline
differences in potential confounding variables (e.g., BMI, years of
education) between patients with GAD and HC who completed the
protocol at both time points (Makovac et al., 2016b).

Second, effects of Group, Time, and Group × Time interaction on
clinical scores (STAI, PSWQ) were examined by analyses of variance
(ANOVA).
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Third, effects of Group, Time, and Group × Time interaction on
region-to-region connectivity were identified using NBS. Given that
NBS does not reveal the direction of effects, significant results were
further explored using graph theory measures. Specifically, we com-
pared properties of the brain networks of patients with GAD and HC by
overall mixed multivariate analyses of variance (MANOVA) separately
for global and local measures to minimize the likelihood of type-I er-
rors. The analyses were performed on a pool of regions of interest (ROI)
selected on the basis of: a) existing theoretical and empirical knowledge
(amygdala, PFC, posterior cingulate (PCC), rostral-anterior cingulate
(ACC), and caudal-ACC of both hemispheres); and b) results of the NBS.
Due to low statistical power, which reduces the chance to detect any
true effect (Button et al., 2013), the univariate tests following the
MANOVA analyses were not corrected for multiple comparisons.

In these analyses, the global (i.e., average clustering coefficient, global
efficiency, and overall functional connectivity) or local (i.e., betweenness
centrality, local efficiency, and degree) measures for each ROI were used
as dependent variables. Group (GAD, HC) was used as between-subjects
factor, and the time of assessment (time 0, time 1) was used as within-
subjects factor. Preliminary checks were conducted to ensure that there
was no violation of the assumptions of normality, linearity, and
homogeneity of variances of the considered variables. Each individual
overall MANOVA was followed by a series of post-hoc ANOVAs to
measure differences between groups (i.e., main effect) and selective
modulation within patterns of connectivity by the time of assessment
among groups (i.e., interaction term). The level of statistical sig-
nificance used for these analyses was defined as p<0.05.

Lastly, we explored the relationship between the global and local

properties of the obtained brain network and the continuous measure of
dispositional worry and anxiety in patients with GAD. Toward this aim,
partial correlations (adjusting for age) were used to examine the asso-
ciation between scores on the PSWQ and STAI and the measures of
global and local connectivity that emerged as different between pa-
tients with GAD and HC at time 0 and time 1, separately. Given the high
number of correlations, only those that survived Bonferroni correction
are reported. Then, in order to verify the magnitude of the correlations
over time, t-tests for dependent correlations were performed
(Steiger, 1980).

3. Results

3.1. Group differences

The groups did not differ in age, years of education, sex distribution,
nicotine consumption, alcohol and caffeine intake, physical activity, or
body-mass index (see Makovac et al., 2016b for demographics and
clinical scores at time 0 and time 1). During the 1-year interscan gap, 1
patient with GAD started yoga-mindfulness and 2 of them started
cognitive-behavioral therapy (CBT). Overall, results changed neither
after exclusion of the two medicated patients, nor when the three pa-
tients who had begun CBT or yoga-mindfulness were excluded from the
analyses, with one graph theory parameter exception for the latter (see
Section 3.6).

Fig. 1. Graphical representation of the affected sub-network identified by means of network-based statistics (NBS), reporting a significant Group × Time modulation.
The sub-network included the following connections: right amygdala and left middle-temporal cortex, left superior-parietal cortex and left superior-temporal cortex,
left superior-temporal and right superior-frontal cortex, right rostral middle-frontal and right superior-frontal cortex, left superior-parietal and right superior-
temporal cortex. SPC: superior parietal cortex; STC: superior temporal cortex; SFC: superior-frontal cortex; MTC: middle temporal cortex; MFC_ros: rostral middle-
frontal cortex; AMYG: amygdala.
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3.2. Effects of Group, Time, and Group × Time on clinical scores

As to the state version of the STAI, main effects of Group, F
(1,30)= 27.30, p<0.001, ηp

2=0.48 and Time, F(1,30)= 4.21,
p=0.49, ηp2=0.13 were observed, where patients with GAD reported
significantly higher scores compared to HC, independently of the time
point (GAD=46.92 (9.67); HC=32.41 (8.06); p<0.001). Moreover,
state anxiety was higher at time 1 (38.78 (1.48) compare to time 0
(38.78 (1.75)), irrespective of Group (p=0.49). We did not observe a
significant Group × Time interaction.

As to the trait version of the STAI, only a main effect of Group, F
(1,30)= 39.64, p<0.001, ηp

2=0.57 emerged, where patients with
GAD had higher scores compared to HC (GAD=52.58 (1.91);
HC=35.59 (1.91); p<0.001).

The model with PSWQ as the outcome yielded only a significant
effect of Group, F(1,28)= 46.74, p<0.001, ηp

2=0.97, with GAD
patients reporting higher scores compared to HC (GAD=66.21 (2.75);
HC=40.50 (2.57); p<0.001).

3.3. Network-based statistics

No main effects of Group or Time emerged for region-to-region
connectivity. NBS showed a significant Group × Time interaction in a
sub-network that included the following connections: right amygdala
and left middle-temporal cortex; left superior-parietal cortex and left
superior-temporal cortex; left superior-temporal and right superior-
frontal cortex; right rostral middle-frontal and right superior-frontal
cortex, left superior-parietal and right superior-temporal cortex (Fig. 1).
Post-hoc univariate analysis on these connections did not highlight
significant effects. However, we proceeded by exploring the global and
local perspectives of the sub-network obtained with the NBS approach
(Section 2.8).

3.4. Effects of Group, Time, and Group × Time on global and local
measures of connectivity

Significant findings deriving from global and local measures of
connectivity are summarized in Table 1.

3.5. Global measures of connectivity

A main effect of Group, approaching statistical significance, was
evident for global efficiency, F(91,30)= 4.09, p=0.052, ηp

2=0.12),
with GAD showing lower global efficiency compared to HC
(0.35 ± 0.18 and 0.37 ± 0.19, respectively). No significant Time ×

Group interactions were evident for any of the considered global
measures. No main effects of Group or Time emerged for average clus-
tering coefficient and overall functional connectivity.

3.6. Local measures of connectivity

Significant Group × Time interactions were identified for local
measures of connectivity (Fig. 2). When testing the same regions ob-
tained from the NBS, our MANOVA revealed significant Group × Time
interactions for betweenness centrality measures (Wilki's λ=0.63,
F=3.00, df=5, p=0.028, ηp2=0.37). A series of follow-up 2-way
ANOVAs (Table 1) revealed a significant Group × Time interaction for
betweenness centrality in:

- Right amygdala (F(1,30)= 5.63, p=0.024, ηp2=0.16), driven by
an increase in betweenness centrality from time 0 (82.50 ± 51.66) to
time 1 (123.62 ± 89.02) in GAD, t(15)= 2.45, p=0.027,
d=0.56.

- Left middle-temporal cortex (F(1,30)= 5.42, p=0.027,
ηp

2=0.15), driven by a decrease in betweenness centrality from time
0 (150.89 ± 56.89) to time 1 (108.43 ± 55.24) in GAD, t
(15)= 2.38, p=0.031, d=0.75, and by a significant difference
between HC (183.63 ± 81.03) and GAD at time 1, t(15)= 3.33,
p=0.005, d=1.08.

When testing a priori (theory-driven) regions of the PFC and cin-
gulate gyrus, this MANOVA revealed an overall Group × Time inter-
action for betweenness centrality, Wilki's λ=0.26, F(1,13)= 3.89,
p=0.004, ηp2=0.74. Follow-up ANOVAs (Table 1) revealed a Group
× Time interaction in the following areas:

- Left lateral orbito-frontal cortex (F(1,30)= 6.67, p=0.015,
ηp

2=0.18) driven by a decrease in betweenness centrality from time
0 (180.79 ± 108.89) to time 1 (98.93 ± 75.24) in HC, t
(15)= 2.60, p=0.02, d=0.87 and a significant difference be-
tween GAD and HC at time 0, where GAD showed lower betweenness
centrality (106.77 ± 64.19) compared to HC, t(15)= 2.46,
p=0.03, d= 0.82.

- Left PCC, (F(1,30)= 8.72, p=0.006, ηp2=0.23), driven by a sig-
nificant difference in betweenness centrality between GAD and HC at
time 0 (GAD: 59.13 ± 42.87 vs HC: 107.86 ± 86.36), t
(15)= 2.11, p=0.052, d=0.71), a significant increase in be-
tweenness centrality in GAD from time 0 to time 1 (GAD time
1=139.17 ± 75.77, t(15)= 3.22, p=0.006, d=1.30), and a
significant difference between patients with GAD and HC at time 1
(HC time 1=95.03 ± 43.82, t(15)= 2.10, p=0.053, d=0.71),
where patients presented lower betweenness centrality at time 0 and
higher betweenness centrality at time 1.

- Left rostral ACC (F(1,30)= 4.61, p=0.040, ηp2=0.13), driven by
a significant difference between GAD (158.83 ± 97.33) and HC
(102.69 ± 46.67) at time 0, t(15)= 2.14, p=0.049, d=0.73),
whereas no difference was observed at time 1 (GAD:
121.38 ± 72.72 vs HC: 155.25 ± 99.78, t(15)= 1.12, p=0.28,
d=0.38). This difference was no longer significant (p=0.07) when
the three patients who had begun CBT or yoga-mindfulness between
time 0 and time 1 were removed from the analyses.

The MANOVA on the NBS regions for the degree measure revealed a
main effect of the factor Group (Wilki's λ= 0.56, F=2.74, df=24,
p=0.031, ηp2=0.44), driven by lower degree in GAD (25.43 ± 7.09)
compared to HC (31.56 ± 9.79) within the right superior-frontal
cortex, F(1,30)= 6.50, p=0.016, ηp

2=0.18), left superior-parietal
cortex (GAD: 27.97 ± 10.67 vs HC: 34.06 ± 9.70, F(1,30)= 4.80,
p=0.036, ηp

2=0.14) and left middle-temporal cortex (GAD:
26.86 ± 10.44 vs HC: 33.19 ± 9.72; F(1,30)= 4.36, p=0.045,
ηp

2=0.13).

Table 1
Significant results for graph theory measures.

T0–T1 T0 T1

Global measures
Global efficiency GAD↓ GAD↓
Local measures
Betweenness centrality
R amygdala GAD↑
L middle-temporal cortex GAD↓ GAD↓
L lateral orbito-frontal cortex HC↓ GAD↓
L posterior cingulate cortex GAD↑ GAD↓ GAD↑
L rostral anterior cingulate cortex GAD↑
Degree
R superior-frontal cortex GAD↓ GAD↓
L superior-parietal cortex GAD↓ GAD↓
L middle-temporal cortex GAD↓ GAD↓

Note. L= left; R= right; GAD=generalized anxiety disorder; HC=healthy
controls; T0–T1=within-group differences between time 0 and time 1;
T0= between-group differences at time 0; T1= between-group differences at
time 1; ↑=increase; ↓=decrease.
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3.6. Pattern of variation between symptoms of worry and trait anxiety and
global and local measures of connectivity over time

At time 0, trait anxiety was negatively correlated with the measure
of degree (r=−0.79, p<0.001) within the left superior parietal lobe.
Higher dispositional worry was associated with higher betweenness
centrality of the right amygdala (r=0.62, p<0.001) and reduced local
efficiency in the rostral ACC bilaterally (rs=−0.55, ps= 0.002). No
other significant associations emerged for global and local measures of
functional connectivity at time 0.

At time 1, increasing scores on both trait anxiety and dispositional
worry were associated with reduced global efficiency (r=−0.59,
p=0.002 and r=−0.54, p=0.002, respectively) and poorer local
efficiency within the right ACC (r=−0.69, p<0.001 and r=−0.66,
p<0.001, respectively).

4. Discussion

The present study investigated global and local properties of func-
tional connectivity in patients with GAD and controls at two time points
separated by approximately 1 year. We found evidence for both dis-
rupted global, and local, network function in people with GAD. These
disruptions remained or even increased in severity over time, and
within key cortical midline structures, local dysfunction predicted an-
xiety symptoms. While in recent years whole brain functional con-
nectivity has been extensively examined in social anxiety disorder (e.g.,
Xing et al., 2016; Yang et al., 2017; Zhu et al., 2017), this is the first

study to our knowledge that applied NBS and graph theory to address
the question of whether network abnormalities are spatially restricted
to the PFC-amygdala circuit, or if the integrity of brain function is
globally disrupted in adults with GAD. An exception is represented by
one recent study that tested whether parameters from dynamic func-
tional connectivity could reliably classify adolescents with GAD from
healthy controls in the absence of other clinical measures (Yao et al.,
2017). The results supported the potential of dynamic functional con-
nectivity measures in DMN and particularly in the medial PFC as a
biomarker for adolescents with GAD.

Using data-driven NBS, we characterized altered collective patterns
of brain function in terms of sub-networks (Zalesky et al., 2010). This
approach highlighted an extended sub-network comprising pairs of
regions whose functional coupling presented a Group-by-Time mod-
ulation, encompassing right amygdala alongside temporal, parietal, and
frontal areas. Next, we applied graph analysis to regions-of-interest to
quantify these interactions and estimate indicators of network effi-
ciency in GAD and controls.

Extending observations reported for other psychopathological con-
ditions, e.g. bipolar disorders (Spielberg et al., 2016), major depressive
disorder (Luo et al., 2015), addiction (Wang et al., 2015), and schizo-
phrenia (Zhu et al., 2016), we observed overall lower global efficiency in
patients with GAD compared to an age- and gender-matched HC group.
Moreover, a reduction in global efficiency at time 1 was associated with
higher levels of trait anxiety and dispositional worry. Global efficiency is
an index of parallel information transfer averaged between all pairs of
nodes in the network. Global efficiency therefore represents a general

Fig. 2. Effects of Group, Time, and Group × Time interaction on graph-theory local measures.
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measure of integration and distributed processing capacity. Lower
global efficiency thus suggests that the patterns of functional con-
nectivity represent suboptimal organization and the most efficient
pathways are disrupted. In our view, this is the most intriguing result of
our study since decreased communication efficiency betrays a loss of
normal inter-regional communications in patients with GAD, possibly
underpinning impairments in cognitive control and inhibition over in-
trusive worrisome thoughts, linked to the attentional deficits that
characterize the disorder.

Importantly, we showed that overall functional connectivity and
small-world properties of the network (Watts and Strogatz, 1998), in-
cluding average clustering coefficient were intact in GAD patients, re-
flecting intact functional segregation. Thus, decreased communication
efficiency is not accounted for by overall dysconnectivity or aberrant
segregation. To pursue these mechanistic insights further, we char-
acterized the importance of determined nodes within the distributed
whole brain network, i.e. drawing upon results of local measures of
efficiency.

When considering local measures of efficiency, betweenness centrality
emerged as a key variable expressing differences between patients with
GAD and controls. Betweenness centrality captures the influence that one
node holds over the flow of information between all other nodes in the
network. Therefore, the higher betweenness centrality in the right
amygdala, rostral-ACC, and PCC observed in GAD compared to controls
likely reflects the dominance of these structures in information transfer
across the network (Sporns et al., 2007). We note that a number of
differences emerged in betweenness centrality in a number of regions at
time 0 and time 1, mostly in patients with GAD. Given the preliminary
nature of the present study, it is difficult to establish whether these
differences truly reflect the fact that GAD patients are more vulnerable
to volatility of core nodes and efficient paths, or whether this is only
due to the lack of stability of the index of betweenness centrality com-
pared to the other graph-theory measures we examined (Segarra and
Ribeiro, 2016).

Taken together, our results reinforce the evidence for the central
role played by interactions of the amygdala with cortical midline
structures (ACC and PCC) in patients with GAD, who seemingly over-
recruit these regions (Sylvester et al., 2012). Amygdala hyperactivity in
response to emotional stimuli occurs in children as well as in adults
with GAD, and positively correlates with symptom severity, and pre-
dicts symptom change (Etkin et al., 2010). Similarly, one non-clinical
study using a graph theoretical approach reported positive correlations
between neuroticism and the betweenness centrality of bilateral amyg-
dala (Gao et al., 2013). Cingulate cortex and adjacent PCC are im-
plicated in the expression of the cognitive disturbances that are often
observed in GAD (e.g. attentional difficulties) (Yang et al., 2015). The
present study found an inverse association between dispositional worry
and local efficiency in the rostral ACC bilaterally at time 0 and between
both trait anxiety and dispositional worry and local efficiency within the
right ACC at time 1. The ACC is implicated in another key symptom of
GAD: Autonomic dysregulation (Critchley et al., 2003; Makovac et al.,
2016a). Interestingly, patients with major depressive disorder also
show increased betweenness centrality in ACC and PCC. This adds to the
evidence implicating these midline structures in self-processing, which
is putatively the pathopsychological basis of rumination in major de-
pression (Luo et al., 2015). Both GAD and major depression share the
psychiatric expression of perseverative cognition as a core symptom.
Our current finding strengthens understanding of the functional neu-
roanatomical substrate for rumination and worry.

We showed that GAD patients exhibited lower betweenness centrality
in left lateral orbito-frontal cortex across both time points, indicating
that the influence that this structure exerts on the communication be-
tween other structures in a network (likely including the amygdala) is
compromised. Importantly, the orbito-frontal cortex is involved in the
progression of anxiety over time (Milad and Rauch, 2007), not least
through its role in extinction learning (Gottfried and Dolan, 2004). Our

present results mirror findings from functional imaging and seed-based
functional connectivity studies, wherein an over-active amygdala (and
cingulate) is frequently coupled with PFC region, consistent with a
failure in inhibitory top-down control of systems giving rise to negative
affect (Etkin et al., 2010; Makovac et al., 2016a). In our study, this
interpretation was further supported by the lower degree observed in
right superior-frontal cortex. Nodes with high degree have denser con-
nections, and therefore represent dominant centers for information in-
tegration (i.e. hubs). In obsessive compulsive-disorder, local degree
connectivity abnormalities are shown to converge with altered local
metabolism and structural differences, indicating that this measure can
reliably index established alterations in network integrity or hub to-
pography in neuropsychiatric populations (Beucke et al., 2013).

In patients with GAD, reduced degree was also locally significant in
parietal and middle-temporal areas. Within left superior parietal lobe,
measures of degree negatively correlated with trait anxiety in GAD,
supporting the correspondence of this measure with clinical symptoms.
The superior parietal lobe is involved in sustaining attention
(Corbetta et al., 1993). Moreover, lesions to this region suggest it has a
key role in sensorimotor integration, by actively maintaining an in-
ternal representation of one's own body (Wolpert et al., 1998). Spec-
ulatively, core symptoms of GAD, including difficulty in maintaining
attention and altered interoceptive states could be associated with
compromised connectivity and efficiency in the left superior parietal
lobe.

Interestingly, the left middle-temporal cortex was also characterized
by lower betweenness centrality, which showed a significant decrease
over time in GAD only. Overall, this means that in GAD this structure
has both weaker intra-communication and communication with other
structures in the brain, replicating recent results in social anxiety dis-
order, where this alteration was proportional to the functional im-
pairment severity (Yun et al., 2017). The medial temporal lobe plays a
crucial role in mediating emotional processes such as sensitivity to
threatening cues (Davidson, 2004). This brain area may be particularly
sensitive to early experiences of deprivation and neglect, as shown for
example by reduced medial temporal lobe volume in anxious youths
with a history of neglect (De Bellis, 2005). Indeed, Maheu and collea-
gues showed that these adverse experiences have an impact on the
functional integrity of the medial temporal lobe (Maheu et al., 2010).
We do not have data on early experiences in the present sample;
therefore we can only speculate on the possible environmental con-
tributions to such impairments in GAD.

Present results from NBS suggest a sub-network comprising cou-
pling of right amygdala and left middle-temporal cortex; graph theory
highlights an increased influence of the amygdala (high betweenness
centrality) and a decreased influence of the left middle-temporal cortex
(low betweenness centrality) in the network in GAD patients only over
the 1 year period. A stronger positive coupling between amygdala and
middle temporal gyrus is observed in bipolar patients during the de-
pressed phase of the illness compared to controls (Cerullo et al., 2012).
Moreover, studies suggest that emotional events are better remembered
compared to neutral events, in part because of the interaction between
amygdala and hippocampus within medial temporal lobe (Dolcos et al.,
2004). Again, it is possible that the enhanced role of the amygdala in
the network that we observed in GAD is responsible for the negative
emotional valence of spontaneous cognition in this population. In line
with this hypothesis, higher dispositional worry was associated with
higher betweenness centrality of the right amygdala in participants with
GAD at time 0.

A limitation of the present study is that the sample size was rela-
tively small, due to difficulties in recruiting unmedicated patients with
GAD. This might be a problem, especially in studies involving complex
network modeling (Kolaczyk and Krivitsky, 2015). Second, our study is
correlational and looks at spontaneous changes in whole-brain func-
tional connectivity over time, thus incorporating significant within-
subject variability over time as a potential confound (Bijsterbosch et al.,
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2017). More generally, test-retest reliability of fMRI results is limited.
However, precautions can be taken to improve the significance of
longitudinal imaging data in psychiatric research (e.g., Fournier et al.,
2014). For example, we carefully avoided using global signal regres-
sion, which is known to decrease the reliability of graph measures de-
rived from resting state data (Andellini et al., 2015). We acknowledge
that the clinical relevance of our results might have been greater if
these metrics were highly stable in HC and more variable in patients
with GAD. However, Fig. 2 shows region characterized by stronger
fluctuations in patients compared to HC and regions characterized by
fluctuations of the same entity but in opposite directions between the
two groups. In interpreting the results, it is also important to bear in
mind that our measures do not allow the quantification of the direc-
tional causality of interactions among brain regions. Third, the uni-
variate tests following the MANOVA analyses were not corrected for
multiple comparisons. Although this decision was made to avoid the
risk of type II errors, the lack of adjustment needs to be acknowledged
as a limitation of the study. Fourth, resting-state functional brain con-
nectivity is not static (Chang and Glover, 2010), therefore it is possible
that resting state periods longer than 5 min would have better captured
dynamic network topology changes. A systematic review of the litera-
ture on the test-retest reliability of resting state fMRI studies report that
5 min is the minimum length to obtain adequate reliability (Zuo and
Xing, 2014). However, reliability and similarity can be greatly im-
proved by increasing the scan lengths from 5 min up to 13 min
(Birn et al., 2013). We opted for relatively short periods due to diffi-
culties in keeping patients with GAD in the scanner, and to decrease the
likelihood of dropouts at follow up. Replication with longer scan
lengths, or using simultaneous multislice acquisitions to acquire more
data in the same period of time, is warranted to fully ascertain the
meaningfulness of the present results. The final limitation regards the
parcellation scheme used in order to define the nodes of the structural
or functional network. Unfortunately, there is no consensus at the
moment on a meaningful definition of regional parcellation
(Grayson et al., 2017). The two main strategies are given by either using
anatomical landmarks or data-driven clustering (de Reus and van den
Heuvel, 2013). In this study, we opted for the Desikan–Killiany atlas
(Desikan et al., 2006), which is based on sulcal and gyral anatomy. Our
choice is motivated mainly by the more intuitive neurobiological in-
terpretation (Arslan et al., 2018) and the large adoption of this atlas in
connectomic studies (van den Heuvel et al., 2017). An important ad-
ditional consideration to bear in mind is the effect of spatial resolution:
although it would be desirable to be able to discriminate between dif-
ferent parts of an anatomical structure, it has been shown that higher
parcellation resolution leads to less reproducible metrics (Fornito et al.,
2010; Bassett et al., 2011a; Cammoun et al., 2012), an obvious pitfall
for a longitudinal study.

Limitations notwithstanding, this is the first study that evaluates
alterations in GAD at global and local levels, and their evolution over
time. By applying a data-driven approach the present study showed
network alterations in local and whole-brain connectivity in patients
with GAD. Global efficiency changes reflect that activity gets ‘stuck in
hubs or sub-networks’ in this population. In terms of local changes,
there are several specific circuits beyond amygdala-PFC that have hi-
therto been neglected. We identify lower degree (i.e. reduction of
within-circuit communication) within specific circuits that include the
middle-temporal cortex, which is involved in sensitivity to threatening
cues, and within superior-parietal cortex, which supports sustained
attention and aspects of internal body representation. Also in GAD,
structures that are implicated in the core symptoms of autonomic
dysregulation and intrusive worrisome thoughts appear to become
more dominant as network nodes, at the expense of pre-frontal areas,
possibly accounting for inhibitory deficits. Most of these alterations
progressed over time in GAD and correlated with subjective reports of
anxiety. Importantly, our results are coherent with neurobiological
models of GAD and add another aspect to our understanding of the

disorder. The fact that we found alterations in same areas/circuits only
in our patient group at both time points highlights the clinical relevance
of such regions for GAD and opens avenues for future investigations
specifically aimed at targeting them. However, as is the case for most
neuroimaging measures, the inference at individual level remains
challenging. Following the increasing interest in multivariate-pattern
analyses (MVPA) in recent years, and its potential in allowing in-
ferences at the level of the individual rather than the group, we spec-
ulatively hypothesize that the MVPA approach could be applied to
graph measures, improving its clinical applicability.

Current results also leave a series of open questions for future use of
graph theory in this population: do people with GAD have altered
neural structure that causes global efficiency differences? Is there a ge-
netic contribution? Is there a contribution of developmental life ex-
perience? The present demonstration of altered global, and local, pro-
cessing in GAD provides a foundation upon which graph theory can be
used to gain deeper insight to these questions, in the ultimate aim to
translate this knowledge into clinical practice, preventing alterations in,
and restoring lost, network function. In fact, despite the recent ad-
vances in neuroimaging research, the classification of psychiatric dis-
orders still relies on clinical interview assessments. We believe that
graph theory measures (especially those extracted from specific nodes
of interest) hold great potential as biomarkers of the disease and pre-
dictors of treatment outcome.
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