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Introduction

This thesis is concerned with probabilistic reasoning, under generalized conditions

of uncertainty and imprecision. It provides a theoretical investigation of proba-

bilistic belief revision, successively intended as evidence propagation in statistical

multivariate models.

Ch. 1 introduces fundamental concepts from the literature of imprecise probabil-

ities, with a major focus on the issue of independence and fulfillment of graphoid

axioms (Sec. 1.2). Probabilistic graphical models are successively introduced in

Sec. 1.3. Particularly those based on an acyclic directed graphical component are

considered, namely Bayesian networks (Sec. 1.3.1) and their credal counterpart

(Sec. 1.3.2).

Ch. 2 gives an overview of the general subject of belief change theory, also known

as AGM theory. This studies the way a doxastic agent adjusts her set of beliefs upon

new information, in a static context. Sec. 2.1 eventually specializes the discussion to

what is referred throughout as probabilistic belief revision, dealing with probability

mass functions. There, general properties of functionals for belief adjustment are

introduced, and probability kinematics [138] are accounted for as desirable mechanics

for adjusting an agent’s belief upon information, in the standard case of soft (or

probabilistic) evidence [244] (Sec. 2.2.1). The rationale behind this choice derives

from a minimal change principle, advocated by several authors in the literature.

Among others, Rott’s definition of belief change, as rational integration of new pieces

of information into a doxastic agent’s knowledge structure [215], is worth mentioning.

There, new information is given the informal definition of a structure realized in

the physical world, that is suitable to be interpreted or exploited by some receiver

in a reasonable way1 [215, Sec.2.1]. Following Rott, the framework considered in

the present work is synthesized by the following dynamics: given some piece of

information I,

Prior Belief −→I Posterior Belief

1What Rott means by reasonable way is behavioral success of the agent.
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Roughly, new information acts as an input to an agent’s belief state. Absorption of

information by an agent’s system of belief ought not be altered in its form, based

on what will be introduced as a conservativeness (or rigidity) principle. This latter

requires invariance of the information’s relevance on the whole set of beliefs.

Based on the well-known Jeffrey’s rule for belief revision with probabilistic evidence,

several extensions to the former are proposed throughout the chapter, increasingly

accounting for i) conditional (contex-specific) knowledge (Sec. 2.2.2), ii) imprecision

(Sec. 2.2.3), and iii) violations of the partiality principle (Sec. 2.3), properly char-

acterized. Axioms for extended probability kinematics are introduced accordingly,

as well as theoretical results on the properties of the functionals that are proposed.

The discussion is further specialized to reasoning with probabilistic graphical

models in Ch. 3. Most results are derived from the relevant work of Chan and Dar-

wiche [35], that bridged the, deeply distinct in their meaning, concepts of virtual

[194] and soft evidence, by showing their inter-reducibility in the standard proba-

bilistic framework. Contributions from Sec. 3.2 extend Pearl’s method for virtual

evidence absorption by a Bayesian network to the case of non-standard evidence

(considered by [35]), including context-specific instances and credal information.

Indeed, propagation of credal (uncertain) evidence renders the whole model impre-

cise, i.e. it produces a Credal network. Sec. 3.3 moves a step forward and accounts

for the case of uncertain belief propagation in a Credal network. Due to the com-

putational complexity of the inferential task, approximate techniques are proposed

to deal with such a situation.

In Ch. 4 probabilistic belief change is extended to belief aggregation, or opinion

pooling. This is intended as a natural extension of classical (probabilistic) belief

revision to the case of multiple overlapping sources of information. Analogously to

previous chapters, the discussion considers generalized settings, and hence properly

defined functionals (Sec. 4.2) and their properties (previously introduced in Sec. 4.1),

with a focus on their implementation with probabilistic graphical models.

Finally, Ch. 5 sheds a light on the iterated case, when probabilistic information

is available on a subset of random variables. Basic concepts and principles are intro-

duced, as well as a systematization of the setup: as either accounting for an priority

(or ordering) applicable on the information or not; this latter case is characterized

as multiple (or simultaneous) belief revision, as opposed to iterated. Among others,

the commutativity principle is considered in Sec. 5.1, where results on the conditions

that guarantees it are provided for revision processes involving sharp probability dis-

tributions only. Both iterated and multiple belief revision are eventually considered

in their graphical implementation (Sec. 5.3).
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Contributions from this work may also be found in conference papers [171], 31th

FLAIRS (Florida Artificial Intelligence Research Society) Conference, and [170], to

be presented at UAI (Uncertainty in Artificial Intelligence) 2018 Conference. Joint

work with A. Antonucci [171], was nominated for best conference paper. Finally,

contributions from the Appendix shall also be found in [173, 172].





Chapter 1

Probabilistic Reasoning Under

Uncertainty and Imprecision

1.1 Modeling Uncertainty

Probability theory addresses various distinct concepts in the statistical, mathemat-

ical and philosophical literature. Coarsely, it may be understood in the objective or

subjective traditions. The first, also referred to as classical probability, dates back to

the seminal work of De Moivre in 1718 [80], and was successively given a systematic

discussion and axiomatization by, among others, [151]. It is based on frequentist

theory and relies on the physical repeatability of an experiment to capture vari-

ability, or randomness, of its outcomes in the limit. i.e. the limiting frequency of

an outcome reproduces its true probability. Let You denote any doxastic subject,

holding coherent probabilistic assessments [79, 257]. In the words of Smets [232],

objective probabilities “exist outside of You”, as a property of the world.1 Subjec-

tivist approaches to probability address such questions by considering the epistemic

beliefs of an agent - or You. They date back to Bayes’ posthumous seminal work of

1763 [20] and, lately, among others, to [208, 79]. Epistemic belief and uncertainty

are represented by formal probability distributions intended as bets on events. In

such a way, when facing a decision Your behavior , as well as Your betting dispo-

sition, are modelled: probabilities serve as prices You are willing to pay to enter

a game that pays back one unit of money if the event occurs, 0 otherwise. Such

probabilities are used for knowledge representation, modeling personal beliefs (and

their strength) and doing rational reasoning.

1Several objections may be raised against objectivist concepts of probability, starting from the

non-repeatability of some events. Furthermore, does chance exist if Your uncertainty about reality

is not introduced? Also, is the world outside itself deterministic? [232]
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Let (Ω,Σ, P ) be any discrete probability space. To our purposes, Ω denotes the

(countable) sample space of all mutually exclusive and exhaustive sample points ω,

while Σ is the σ-field induced by Ω. A collection Σ of subsets of Σ is called an

algebra, or a field, over Ω if the following conditions are met:

1. Ω ∈ Σ,

2. If α ∈ Σ, then ¬α ∈ Σ, where ¬ represents negation,

3. If α, β ∈ Σ, then α ∪ β ∈ Σ.

Σ is called a σ-field when 3. extends to countable union.

Let | · | denote cardinality of its argument, Σ is the collection of all 2|Ω| subsets of Ω,

called events. By the Kolmogorov axioms, P is probability measure on Σ, defining

the mapping Σ→ [0, 1] = ∆ (probability simplex) if it holds:

1. P (Ω) =
∑

ω∈Ω P (ω) = 1, (Normalization)

2. P (α) =
∑

ω∈α P (ω) ≥ 0, α ∈ Σ, (Non-Negativity)

3. P
(
∪∞j=1αj

)
=
∑∞

j=1 P (αj), for any countable collection of mutually disjoint

events in Σ. (σ-Additivity)

As a remark, Kolmogorov axioms apply to both objective and subjective concepts of

probability.2 Let X denote any random variable (r.v.) taking all possible values in

ΩX , set of mutually exclusive and exhaustive potential outcomes x. We interchange-

ably refer to the elements of ΩX as states, realizations or instantiations throughout.

X is called a discrete r.v. if |ΩX | < ∞, and its behavior may be described by a

probability mass function (PMF) PX , mapping each element x ∈ ΩX to a real value

in the probability simplex. PX is continuous whenever ΩX is uncountably infinite.

Any absolutely continuous r.v. is described by a probability density function.

Let PV be a strictly positive PMF over joint r.v. V = {X0, . . . , Xn}, n ≥ 0.

We use bold letters to denote sets. V is a joint random variable whose generic

realization is v ∈ ΩV ⊆ ×X∈VΩX , where × denotes Cartesian product of every Xi’s

sample space, for each X ∈ V. It is easy to see Ω ≡ ΩV and ω ≡ v = (x0, . . . , xn).

We shall use Ω and ΩV interchangeably throughout. Also, we write the joint PMF

as PV(X0 = x0, . . . , Xn = xn) = P (x0, . . . , xn), to avoid cumbersome notation.

Let V = {X, Y }, the probability of event (X = x) conditional on (Y = y) is given

2See [208, 212, 79, 243]. See also [24, 125] on departures from axioms 1-3.
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by3:

P (x|y) =
P (y|x)P (x)

P (y)
. (1.1)

We refer to Eq. (1.1) as conditioning, or updating.4 By conditioning, P is projected

from Ω toward a single element of the (coarse) partition that Y induces on it. This

way, P (x|x) = 1. When Eq. (1.1) is used to update P upon learned information,

successive (e.g. in time) learning of any other state x′ from ΩX is undefined (or

yields inconsistencies).

As a remark, let us stress proposition “(X, Y ) = (x, y) is possible” does not imply,

nor it is implied, by “(X = x) and (Y = y) are separately possible”. X and Y are

called logically independent conditional on a third r.v. Z if event (x, y, z) is possible

whenever both (x, z) and (y, z) are possible. If this is the case, for any fixed z ∈ ΩZ ,

P is defined on the product space ΩX ×ΩY . We shall now provide basic definitions

for independence concepts.

Definition 1 (Stochastic Independence). Let X,Y,Z be any mutually disjoint sets

of random variables. X is stochastically independent (SI) of Y conditional on Z iff

it holds:

P (x,y|z) = P (x|z)P (y|z)

for each x ∈ ΩX,y ∈ ΩY and z ∈ ΩZ, provided P is strictly positive over ΩZ. When

SI holds, we write I(X,Y; Z), otherwise ¬I(X,Y; Z).

Def. 1 trivially applies to unitary sets of random variables. Also, P (x,y) =

P (x)P (y) if z = ∅.

Definition 2 (Context-Specific Independence [26]). Random variables X and Y are

context-specific independent (CSI) conditional on Z = z∗ iff it holds:

I(X, Y ; z∗) whereas ¬I(X, Y ; Z)

for some z∗ ∈ ΩZ.

CSI reduces to SI whenever it applies to all elements of ΩZ. Context-specific

extensions of SI were also considered by [112, 107]. A further concept, of contextual

weak independence, was introduced by [265], allowing irrelevance relationships to

hold within elements of refined partitions of a given joint sample space. Analogously

to CSI, contextual weak independence reduces to weak independence whenever it

applies to all conditioning states; this is in turn more general than SI. We avoid

3Remember we assumed P to be strictly positive. In the general case, it must be checked

P (y) > 0.
4Eq. (1.1) is usually referred to as Bayes rule in the PGM’s and imprecise literature.
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formal introduction of these mentioned concepts, as they are outside the scope of

the present work. We will return to CSI in Sec. 1.35.

As previously argued, it might be the case events (x, z) and (y, z) are possible, while

(x, y, z) is not. If this is the case we usually set P (x, y|z) = 0 [54]. Based on [257,

Sec. 9.1], logical independence of X and Y conditional on Z shall be a prerequisite

for the definition of SI. Such strengthening applies to zero-probability event P (x|z)

or, either, P (y|z), for some (x, z) or (y, z), respectively.6

We shall now introduce graphoid axioms, that elegantly connect probability to graph

theory. A graphoid shall be intended as a collection of statements over sets of random

variables, aimed to graphically, i.e. via paths on graphs, represent the abstract

properties [54] that ought to be satisfied by a given concept for irrelevance. In our

setup, irrelevance is given a probabilistic interpretation.

Definition 3 (Graphoid Axioms [195, 67, 241, 54]). Let ∗ denote any conditional

irrelevance relation among X and Y , conditional on Z; formally, (X ∗ Y |Z) reads

“X is irrelevant to Y when Z is known”. ∗ is called a graphoid if it satisfies the

following:

1. X ∗ Y |Z if and only if (⇐⇒ ) Y ∗X|Z, (Symmetry)

2. X ∗ Y |X, (Redundancy)

3. X ∗ (Y ∪W )|Z implies ( =⇒ ) X ∗ Y |Z, (Decomposition)

4. X ∗ (Y ∪W )|Z =⇒ X ∗ Y |(Z ∪W ), (Weak Union)

5. X ∗ Y |Z ∧X ∗W |(Y ∪ Z) =⇒ X ∗ (Y ∪W )|Z, (Contraction)

6. If Y and W are logically independent conditional on Z, then X ∗Y |(W ∪Z)∧
X ∗W |(Y ∪ Z) =⇒ X ∗ (Y ∪W )|Z. (Intersection)

A relation ∗ that satisfies conditions 1) to 5) is called a semi-graphoid, while an

a-graphoid7 satisfies conditions 2) to 6).

SI is a graphoid, whenever the P is strictly positive; in such a case, X ∗Y |Z shall

be equivalently written as I(X, Y ;Z).

Reasoning in fully deterministic settings is modeled by logic. When uncertainty is

introduced, logic extends to probability theory. In the upcoming section, uncertain

reasoning is further extended to imprecise probabilities [257].

5The interested reader shall refer to [274] on inference with CSI.
6See [91] on full conditional measures, and [42, 43, 246, 248, 56] on independence concepts and

related properties.
7See [247] on a-graphoids and L-separation.
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1.2 Modeling Imprecision

The general notion of imprecise probabilities refers to mathematical models that

relax the rationality requirements of classical probability theory [36] by allowing

probabilities not to take sharp, or precise, numerical values [54]. They combine

probability theory with logic (e.g. propositional [135], first-order [19]) and are used

in a wide variety of fields, ranging from statistics to artificial intelligence, psychology

and economics. Although several distinct theories exist for imprecise probabilities,

we take Walley’s coherent lower previsions [257] as reference.

As a physical - objective - justification, while models built under uncertainty are

induced by complete records of data, those incomplete8 yield imprecision [4], and

a true parameter is assessed to vary within a range, defined by upper and lower

probability values. Imprecision may arise in the subjectivist framework when highly

incomplete or conflicting information [8] is gathered to any rational agent, whose

belief may be affected by lack of introspection [183]. It may also result from in-

determinacy [257], as we shall discuss below. Also, imprecise theory accounts for

a qualitative approach to knowledge representation, incorporating the subjectivist

point of view, and serve as the basis for the theory of desirable gambles (see [257]).

Lower and upper previsions use gambles to represent behavioral beliefs. A gamble

corresponds to a transaction (or a decision) yielding rewards, usually referred to

as utilities, when states of the world occur [15]. Let Ω be the set of all possible

outcomes, a gamble f defines a bounded mapping from Ω to R. f models Your

uncertainty about incoming events ω ∈ Ω. Once a gamble is accepted, rewards

are expressed on a linear (to You) utility scale. Let L be the (linear) space of all

possible gambles on Ω, a prevision on ΩX is defined as the expectation functional

EP (f) =
∑

x∈ΩX
P (x)f(x), for some f ∈ L.

Example 1. Consider r.v. X and gamble f on event α ⊆ Ω. f(α) = Iα, the

indicator function, is such that a unit of money is won if X ∈ α occurs, 0 otherwise.

For a given PMF P , EP (Iα) is nothing but the price You are willing to place on

gamble f . If You accept the transaction, Iα − EP (Iα), Your expected gain is:

(1− EP (Iα))P (α) + (0− EP (Iα)) (1− P (α)) = 0 .

Let f be some gamble on ΩX and let D ⊆ L denote the set of desirable gambles.

If f is bought at a price γ∗, gamble f − γ∗ results. This is desirable as long as the

corresponding expectation is positive. We define EP (f) the supremum acceptable

8As well as insufficient data points and/or inconsistencies between different sources of evidence,

and/or uncertainty about each source’s reliability.
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price, or rate, for buying gamble f [257], such that EP (f) = supγ{γ : f − γ ∈ D}.
Conversely, selling f for price γ∗, yields gamble γ∗ − f , and EP (f) is the infimum

acceptable price for selling gamble f ; formally, EP (f) = infγ{γ : γ − f ∈ D}. For

fixed values EP (f),EP (f), every gamble p is desirable as long as p > γ∗ or p < γ∗.

If You have no preference between events, no bet at all is placed; and indeterminacy

results.

Selling a gamble f for a price γ is equivalent to buying gamble −f at price −γ:

γ − f = (−f)− (−γ) (1.2)

Eq. (1.2) yields the lower-upper conjugacy relation:

EP (f) = inf
γ
{γ : γ − f ∈ D}

= inf
λ
{−λ : −f − λ ∈ D}

= − sup{λ : −f − λ ∈ D}
= −EP (−f) .

Whenever lower and upper previsions coincide, i.e. EP = EP = EP , their corre-

sponding value is called a fair price (under De Finetti’s interpretation [257]), or a

linear prevision. Linear previsions reproduce standard (finitely additive) probabil-

ity models, that commit the gambler to buy f for any real price p < EP (f), or to

sell f at q, for any q > EP (f). With lower previsions, f is bought at p for any

p < EP (f), it is sold at q for any q > EP (f), and no decisions are taken for values in(
EP (f),EP (f)

)
. Therefore, lower previsions allow indecision and may be intended

as commitments to behave rationally. A behavior is called rational whenever it

avoids sure loss, while being coherent. While avoidance of sure loss guarantees logi-

cal consistency - betting rates are accepted as long as they do not yield loss of utility

under any circumstances -, logical closure, or coherence, implies full awareness of

the implications that go along with betting rates.9

Formally, coherence of lower previsions requires:

1. EP (f) ≥ inf{f(x) : x ∈ ΩX}, (Convexity)

2. EP (cf(X)) = cEP (f(X), for every c > 0, (Positive Homogeneity)

3. EP (f(x) + g(x)) ≥ EP (f(X)) + EP (g(X)), (Super-Linearity)

where operations with gambles are intended as point-wise. If D, set of desirable gam-

bles, is coherent, it corresponds to a convex cone in L, such that, if f1, . . . , fn ∈ D
9Coherence may be intended as internal rationality [183].
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and c1, . . . , cn > 0,
∑n

i=1 cifi ∈ D. In general, lower probabilities do not lead to

coherent lower previsions [257, Sec. 2.7.3]. As for (sharp) probabilities, condition-

ing plays a substantial role in the reasoning process under uncertainty. We take

up the so-called updating interpretation of conditioning, providing an understand-

ing of Bayes rule as of a consistency requirement between current (unconditional)

and conditional beliefs. See [272] on the temporal implications of conditioning in

probabilistic reasoning, and their relationships with the theory of belief revision [3]

(see Ch. 5).

Let B denote a partition of Ω, f is B-measurable if it is constant on all the elements

of B. A (separately) coherent conditional lower prevision is defined as the functional

EP (f |B) such that, for every f, f ′ ∈ L, β ∈ B and c > 0, it holds:

1. EP (f |β) ≥ infω∈β f(ω)

2. EP (cf |β) = cEP (f |β)

3. EP (f + f ′|β) ≥ EP (f |β) + EP (f ′|β)

Consider now any target event α ⊆ Ω. If gambles are indicator of events, as in

Ex. 1 (see p. 5), lower previsions are called lower (or upper) probabilities, denoted

with P (α) (or P (α)), measuring the strength of Your belief on event α. Again,

the objectivist approach provides a behavioral interpretation to lower probabilities:

as evidence supports event α, lower probabilities increase; symmetrically, as α is

questioned by evidence, upper probabilities decrease. Avoidance of sure loss with

lower probabilities implies P (Iα) ≤ P (Iα).

We may now introduce credal sets (CSs [157]) as flexible tools to represent un-

certainty. Any CS is a convex set of PMFs, closed in the weak∗ topology10. Let X

be any discrete random variable, K(X) is defined by a set of PMFs PX on ΩX . A

collection of PMFs over joint sets of variables, say X, define a joint CS, K(X). Any

K(X) may be equivalently specified by the collection of its extreme points, that we

denote as extK(X).11

An extreme point of a CS is any element of a closed and convex set that may not be

derived as a convex combination of other PMFs. A CS is called finitely generated if

|extK(X)| < ∞. Any such CS is defined by a set of linear constraints, and it thus

may be equivalently represented as a polytope, i.e. the convex closure of a finite

10The weak∗ topology is the smallest topology such that all evaluation functionals P (f) are

continuous, where f is any gamble in the linear space L.
11Whenever X is a binary random variable, its associated CS is fully specified by a single linear

constraint of the type: P (x) ≤ P (x) ≤ P (x), where ΩX = {x,¬x}. This constraint is geometrically

represented by a segment in the two-dimensional simplex space, with |extK(X)| = 2.
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(1,0,0)

(0,0,1)

(0,1,0)

P (X)

(1,0,0)

(0,0,1)

(0,1,0)

K(X)

(1,0,0)

(0,0,1)

(0,1,0)

K0(X)

Figure 1.1: Geometric representation of a sharp (left panel) and imprecise (middle

and right panels) probabilities in the three-dimensional probability simplex.

number of points, in the space of probability measures [51]. Let CH denote the

convex-hull operator, it holds K(X) = CH{extK(X)}. Any two CSs are equivalent

(≡) whenever their induced convex-hulls coincide, with no requirement on convex-

ity. A CS that coincides with the probability simplex is called vacuous, and denoted

with K0(X). Formally,

K0(X) =

{
P (x) : P (x) ≥ 0, x ∈ Ωx,

∑
x∈ΩX

P (x) = 1

}
.

Example 2. Fig. 1.1 provides a geometric representation of a single PMF (left

panel), a CS (middle panel) and a vacuous CS (right panel) in the three-dimensional

probability simplex. A sharp PMF corresponds to a single point in ∆3, namely

P (X) = (0.33, 0.33, 0.34). The middle panel depicts a CS K(X), defined by six

extreme points; K(X) is fully contained by the set (shaded blue area) induced by the

lower and upper probabilities for each state of r.v. X. Its extreme points are:

extK(X) =

{
P1(X) = (0.6, 0.2, 0.2), P2(X) = (0.2, 0.6, 0.2), P3(X) = (0.3, 0.4, 0.3),

P4(X) = (0.2, 0.2, 0.6), P5(X) = (0.5, 0.25, 0.25), P6(X) = (0.6, 0.2, 0.2)

}
.

The vacuous CS K0(X) trivially coincides with ∆3.

With CSs, indifference is specified by uniform probability models, whereas igno-

rance is implied by absence of linear constraints, i.e. by vacuous sets. Remarkably,

CSs fully generalize belief functions.12

12We refer the interested reader to [7] for a full discussion on the subject.
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Consider the specification of a CS, defined as a set of finitely additive probabilities,

by a lower prevision:

KEP (X) = {P ∈ PX : EP (f) ≥ EP (f),∀f} .

EP avoids sure loss if and only if KEP (X) is not empty. Also, it is coherent if

and only if EP is the lower envelope of KEP (X), that is EP = minP∈KEP (X) P (X).

Conversely, for a given credal set, lower previsions are derived as

EP (f) = min
P (X)∈K(X)

∑
x∈ΩX

P (x)f(x)

Hence coherent lower previsions are in a one-to-one correspondence with CSs [54,

183, 48], and two equivalent CSs generate the same lower previsions. Extension to

the conditional case is straightforward.

Consider the lower-upper conjugacy of indicator functions for event α, as above. By

definition, P (α) = minP (X)∈K(X)

∑
x∈α P (x). Then,

1− P (α) = max
P (X)∈K(X)

[
1−

∑
x∈α

P (x)

]
= max

P (X)∈K(X)

∑
x 6∈α

P (x)

= P (¬α) .

When equality holds in the self-conjugacy relation, the CS is degenerate and it is

defined as a linear functional.

Example 3. Let X be any k-valued random variable, k ≥ 2. It is defined on the k-

dimensional probability simplex, denoted as ∆k. If no linear constraints are provided,

K0(X) = ∆k models ignorance. If a collection of constraints in form of lower-upper

bounds [px,l, px,u] is provided, for all x ∈ ΩX , a consistent credal set is defined as

K(X) =

{
P (X) : px,l ≤ P (x) ≤ px,u, P (x) ≥ 0,

∑
x∈ΩX

P (x) = 1

}
.

Whenever K(X) 6= ∅, avoidance of sure loss is guaranteed by definition, as it holds:∑
x∈ΩX

px,l ≤ 1 ≤
∑
x∈ΩX

px,u .

Also, by coherence, bounds are tight, i.e.∑
x′∈ΩX\{x}

px′,l + px,u ≤ 1

∑
x′∈ΩX\{x}

px′,u + px,l ≥ 1 .
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This is known as reachability [257]. When k = 2, a CS for a binary variable has

always at most two vertices in the probability simplex: extK(X) = {[pl, 1−pl], [pu, 1−
pu]}

1.2.1 Operations with Credal Sets

Marginalization on ΩX of K(X, Y ), denoted as K↓X(X, Y ), for any pair X and Y ,

is obtained as [15, Ch. 9]:

K↓X(X, Y ) = CH

{
P (x) : P (x) =

∑
y∈ΩY

P (x, y),
x ∈ ΩX

P (X, Y ) ∈ extK(X, Y )

}

K(X|Y = y) is the collection of all PMFs obtained by conditioning (cfr Eq. (1.1))

on each element of K(X, Y ), provided that P (y) > 0, for every P (Y ) ∈ K↓Y (X, Y ).

Given a joint CS, conditioning is obtained by such generalized Bayes rule (GBR)

[257, Sec. 6.4], and K(X|Y ) = {K(X|y) : y ∈ ΩY }13. K(X) and K(X|Y ) are called

jointly coherent if the second is the unique solution to GBR and if conglomerability

holds.14

When K(X|Y ) and K(Y ) are given, we derive the joint CS by composition, or

combination, with ⊗ denoting the associate operator:

K(X|Y )⊗K(Y ) = CH

P (x, y) : P (x, y) = P (x|y)P (y),

x ∈ ΩX

P (X|y) ∈ extK(X|y)

y ∈ ΩY

P (Y ) ∈ extK(Y )


Any sharp conditional PMF is represented by a conditional probability table

(CPT), whose columns correspond to the conditioning values. A credal CPT (CCPT)

may be either defined as separately specified (SS) CS, i.e. K(X|Y ) = {K(X|y) : y ∈
13With coherent lower previsions, EP (f(X)|y, z) is defined as the unique solution to the GBR,

defined as:

EP [(f(X)− λ) Iy(Y )|z] = 0

whenever P (y|z) > 0, otherwise no unique solution may be found; see [259, 55] for discussion and

proposals to this latter setting.
14When ΩY is a finite partition of ΩX, conglomerability follows from coherence of K(X|Y )

and GBR. Formally, for a given partition B of Ω, a coherent lower prevision is B-conglomerable

if there exists a EP (.|B) such that EP (.) and EP (.|B) are coherent. When unconditional and

conditional previsions are linear, B-disintegrability applies. A disintegrable linear prevision is

always conglomerable, whereas the converse is not true in general [91]. Joint coherence, from a

behavioral perspective, implies that a finite combination of desirable gambles, according to EP (.)

and EP (.|B), is itself desirable [257, Ch. 6].
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ΩY }, or nonseparately specified (nSS). The extensive specification of a nSS condi-

tional credal set yields an extensive CPT (ECPT), defined as a finite collection of

CPTs. Any CCPT may be transformed into an ECPT, by considering all possible

combinations from the elements of the sets [171]. Conversely, an ECPT may be

transformed into a CCPT; we will return to this in Sec. 1.3.2.

1.2.2 Independence

Given a joint CS K(X, Y ), consider K(X|Y ), obtained by GBR. For a given random

variable Z, K(X|y, z) ≡ K(X|z) if and only if CH{K(X|y, z)} = CH{K(X|z)},
for all x ∈ ΩX , y ∈ ΩY , z ∈ ΩZ . As a first remark, symmetry is no longer an

intrinsic property of independence with imprecise probabilities. Also, the concept

of irrelevance, interchangeably used with independence in the standard setting [66],

assumes its own prominence among sets of PMFs.

We hereby list a (not exhaustive) selection of concepts for conditional indepen-

dence that are relevant to our purposes.15 Analogously to Def. 3, we write X ∗ Y |Z
to denote a ∗-irrelevance relationship.

Definition 4 (Epistemic Irrelevance (ER) [257]). (X ER Y |Z) if and only if it

holds:

K(x|z) ≡ K(x|y, z) ,

for each (x, y, z) ∈ ΩX × ΩY × ΩZ.

ER ought to be intended as Galles and Pearl’s informational irrelevance [108].

Definition 5 (Epistemic Independence (EI) [257]). (X EI Y |Z) holds when X is

irrelevant to Y given Z and vice versa, i.e. it is the symmetric version of ER [54]:

(X EI Y |Z) ⇐⇒ (X ER Y |Z) ∧ (Y ER X|Z) .

Given a joint set of PMFs, EI does not imply the first factorizes [53], although

other desirable features are satisfied, such as marginalization, associativity and ex-

ternal additivity (see [77] for details).

Definition 6 (Strong Independence 16). Strong independence extends SI to impre-

cise probabilities. Straightforward extension of SI to sets of PMFs goes under the

15See [258, 73, 49, 56] for details.
16According to [53], the term was introduced by Walley [256], yet with a slightly different ap-

proach to zero-lower probability events. Its introduction dates back to Levi [157], where it was

referred to as strong confirmational irrelevance.
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name of complete independence which, by definition, fails convexity [53]. Under

strong independence, SI applies to the extreme points of a credal set [186]: X and

Y are strongly independent conditional on Z if and only if the following holds:

extK(X|Y, z) = extK(X|z) (1.3)

for every z ∈ ΩZ. This is equivalent to taking the convex hull of the set of PMFs

obtained by complete independence [53].

Given any two random variables X and Y , their strong extension corresponds to

KSE(X, Y ), the CS obtained by strong independence (see Sec.1.3.2).

Different versions and terms have been used in [186] for strong independence, that

we list below. However, when not explicitly stated, we assume variables X and Y

are (unconditionally) strongly independent whenever Eq. (1.3) is satisfied.

1. Strong Independence on Distribution (St1):

K(X, Y, Z) =

P (x, y, z) =
p′(x, z)p′′(y, z)

p′(x, z)↓Z
,

p′ ∈ K(x, z),

p′′ ∈ K(y, z),

p′↓Z(x, z) = p′↓Z(y, z),

∀(x, z),∀(x, z)

 .

The induced decomposition operator fails the Shenoy-Shafer associativity ax-

iom [226]. This issue is relevant to inference with CNs.

2. Strong Independence on Decomposition (St2): St2 requires K(X, Y, Z) =

K(X,Z) ⊗K(Y, Z), with K(i, Z) 6= K(i, j, Z)↓i,Z in general17. The joint CS

derived under St1 contains that induced by StI2 of X and Y conditional on

Z [186, Th.4].

3. Causal Irrelevance (CE):

K(X, Y, Z) = K(X,Z)⊗K(Y |Z)

K(X, Y, Z) is obtained by taking the product P (x, z)P (y|z), for all x ∈ ΩX , y ∈
ΩY and z ∈ ΩZ , with P (X,Z) ∈ K(X,Z) and P (Y |Z) ∈ K(Y |Z). Element-

wise CE (ECE) requires instead:

K(X, Y, Z) = {K(X, Y, z) = K(X,Z)⊗K ′(Y |z) : z ∈ ΩZ}

With standard probabilities, concepts of independence and irrelevance are equiv-

alent. Independence, intended as factorization, yields modularity of a statistical

17Remember from Sec. 1.2.1 symbol ⊗ denotes composition.
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ER EI StI1 StI2 (E)CE

Symmetry X X X

Decomposition →,←∗ X∗ X X →,←
Weak Union →∗,←∗ X∗ X X ←
Contraction ← X →
Redundancy →,← X X X ←

Table 1.1: Semi-graphoid properties satisfied by different concepts of independence

for imprecise probabilities. The symbol X denotes fulfillment of a graphoid axiom,

→ (←) is used to denote fulfillment of direct (reverse) conditions, superscript ∗
restricts fulfillment of the property to positivity of conditioning events, defined as

strictly positive whenever (y, z) is possible, for every y ∈ ΩY , z ∈ ΩZ [54]. Proofs

may be found in [54, Th. 1, 3] (for ER and EI, respectively), [186, Th. 3, 5, 6, 7]

(for StI1, StI2, CE and ECE, respectively).

model, that in turn allows reduced parametric dimensionality and, as a consequence,

computational tractability [194]. Also, Markov condition and graphoid axioms pro-

vide means for a causal approach to independence [234]. With imprecise probabilities

SI implies EI; and EI, in turn, trivially implies ER. Since irrelevance relationships

are now asymmetric, direct and reverse (→ and ←, respectively) conditions for

graphoids must be considered. Additional forms other than direct and reverse ex-

ist18, yet they are not fulfilled by most concepts of independence, including those

hereby considered. Table 1.1 summarizes the (semi-)graphoid properties satisfied by

the independence concepts introduced above.

Finally, a concept worth mentioning, related to independence with imprecise

probabilities, is that of dilation [260]. This occurs when conditioning on some event

renders knowledge of variable X more imprecise, formally: K(X) ⊂ K(X|y), for

all events y ∈ ΩY , this latter inducing a partition of Ω. See [196] for a thorough

description of dilation and details on its (strong) relationship with independence.

1.3 Probabilistic DAG-Models

Probabilistic Graphical Models (PGMs) compactly represent the multivariate joint

behavior of a collection of random variables, based on their (possibly) complex pat-

tern of independence relationships [68]. Any PGM is specified by i) a graph, and

18Particularly, graphoid axioms are considered by interchanging all elements in their definitions

from Def. 3. This way, redundancy has two versions (right and left [108], or direct and reverse

[54]), decomposition and weak union have four, contraction and intersection have eight.
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ii) a probabilistic component. Additionally, if the latter is not sharp, specification

of iii) a concept of irrelevance is required for a PGM. We hereby outline fundamen-

tal concepts from graph theory, before we formally introduce Bayesian and Credal

Networks as PGMs based on a shared class of graphs.

Basic Concepts of Graph Theory

A graph is a mathematical structure, specified by the ordered pair (V,E). The first

element of the pair, V = {X0, . . . , Xn}, is a collection of objects, called nodes, with

n ≥ 0, while E is and a collection of arcs and/or edges, linking pairs of nodes. Nodes

are graphically represented as circles, arcs as segments (−) and edges as oriented

arrows (→).

A graph is called undirected if E only contains arcs. An arc, linking node Xi to Xj,

is denoted with ((i, j)). Let Adj(Xi) be the set of nodes adjacent to Xi, ((i, j)) ∈ E

implies Xi ∈ Adj(Xj) and Xj ∈ Adj(Xi).

A maximally connected set of k nodes is called a clique of size k, k ≥ 2. Elements

of X form a clique whenever they are pairwise adjacent: ((i, j)) ∈ E, for each pair

(Xi, Xj) ⊆ X. Trivially, a pair of adjacent nodes constitutes a clique of size 2.

In a directed graph, edges are denoted as (i, j), such that (i, j) ∈ E implies Xi is a

parent of Xj, and simmetrically, Xj is a child of Xi. Formally, Xi ∈ Pa(Xj) (parent

set of Xi) and Xj ∈ Ch(Xi) (set of children of Xi), respectively. A node with no

parents is called a root ; it is called a leaf if it has no children.

Any two nodes Xi and Xj in a directed graph are connected by a (directed) path

πij if there exists a sequence of nodes < Xi, . . . , Xj >, whose directed edges may

be walked from the first element to the last. An acyclic directed graph (DAG) is a

directed graph such that, if two nodes are connected by πij, then no πji exists. As

a trivial consequence, (i, j) ∈ E implies (j, i) 6∈ E. We denote any DAG as G.

Let X ⊆ V, its induced subgraph GX has set of nodes X and edges EX = E ∩
(X×X).

Whenever two non-adjacent nodes share a neighbor, i.e. an adjacent node, their

ensemble is called an unshielded triple. In a DAG, an unshielded triple < X, Y, Z >

such that X and Y have child Z in common is called a v-structure, and Z is a

collider ; see Fig. 1.2 (left panel). A DAG is called singly connected, or a polytree,

if there exists at most one path connecting each pair of nodes in V, otherwise it

is multiply connected. d is used to denote the treewidth of a DAG, defined as its

maximum indegree, this latter defined as the number of incoming edges:

d = max
i=0,...,n

|Pa(Xi)|

A singly connected DAG is a tree whenever d = 1.
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X Y

Z

X Y

Z

Figure 1.2: Left panel: v-structure; Right panel: moralized v-structure.

X1 X2

X3

X0

Figure 1.3: A toy multiply connected Bayesian network, with V = {X0, X1, X2, X3}.

Example 4. Consider Fig. 1.3. G = (V,E), whose components correspond to:

V = {X0, X1, X2, X3},
E = {(X0, X1), (X0, X2), (X1, X3), (X2, X3)} .

X0 is a root node, i.e. it has empty parent set, whereas X3 is a leaf. Also, X3 is

a collider, since Pa(X3) = {X1, X2} and there does not exist edge (X1, X2), nor

(X2, X1), in E; < X1, X3, X2 > is a v-structure. G is multiply connected, with

treewidth d = 2.

We shall now introduce DAG-based models. We refer the reader interested in

details on graph theory to [190, Ch.6-8] for a complete introduction.

1.3.1 Bayesian Networks

Bayesian Networks (BNs [194]) are probabilistic graphical models defined over a set

of r.v.s V = {X0, . . . , Xn}. A BN B is specified by the pair (G, P ).

P corresponds to the probabilistic component of the PGM. At this stage, we con-

sider only PMFs that are strictly positive over the sample space induced by the

joint r.v. V, although we will drop such a requirement later in the present work.

Elements of V are in one-to-one correspondence with the nodes of the graphical



1.3 Probabilistic DAG-Models 16

component of B. This is specified as a DAG G over V. As a remark, since every

random variable Xi is in one-to-one correspondence with a node in the DAG, same

notation and terminology will be used throughout interchangeably, when referring

to either G or P . See [150] for an overview of PGMs based on different graphical

components.

A BN is called discrete [127] if each Xi ∈ V, i = 0, . . . , n, and V are Multinomial

r.v.s. Other types of DAG-based PGMs were proposed in the literature; among

others, Gaussian BNs [127], where V is a multivariate Normal r.v., resulting from

the linear combination of (univariate) Normal r.v.s, Conditional Linear Gaussian

[155] and Copula [96] BNs. We consider Discrete BNs only throughout.

By the so-called Markov Condition, each nodeXi is independent of its non-descendants

in G, conditional on its parents. For a chosen concept of irrelevance19 for P , this

implies graphical separation, e.g. d-separation. This was introduced by Pearl in

[194] as a formal procedure for detecting conditional SI relationships, implied by the

Markov condition:

Definition 7 (D-separation [194]). Any two nodes X and Y are d-separated by Z

in G if every undirected path connecting the two, i.e. any sequence of edges whatever

their direction, is blocked by Z. Without loss of generality, let Z = {Z} and consider

unshielded triple < X,Z, Y >. The path connecting X to Y is blocked if either:

1. The triple is either a Markov chain (X → Z → Y ) or a fork path (X ← Z →
Y ), and Z is instantiated to some value, i.e. it is observed.

2. The triple is a v-structure and Z is not observed.

In the general case, consider undirected path πuij (πij with dropped directions) and

|Z| ≥ 1; πuij is blocked if all nodes from Z that are instantiated are not colliders in

πij.

Remarkably, d-separation satisfies the graphoid axioms [153].20

Any PMF P over V is faithful to G = (V,E) if all conditional independence re-

lationships among pairs of variables in the PMF are encoded by the graph; see, e.g.

[234, 150], for further details. When P is faithful to G, it satisfies the Faithfulness

condition.

If both Markov and Faithfulness conditions are satisfied, P may be equivalently spec-

ified as the collection of (n+1) conditional probability tables (CPTs) {P (Xi|Pa(Xi)) :

19Remember concepts of irrelevance may all be reduced to SI, with strictly positive sharp PMFs.
20See [247] on a-graphoid L-separation for a class of graphical models based on cs-independence

[248], accounting for zero-probability conditioning events.
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i = 1, . . . , n}, called local distributions. The CPT of random variable Xi has |ΩXi|
rows and max (1, |Pa(Xi)|) columns, i = 1, . . . , n.

It holds [194]:

P (X0 = x0, . . . , Xn = xn) =
n∏
i=0

P (Xi = xi|Pa(Xi) = pa(Xi)) , (1.4)

where pa(Xi) ∈ ΩPa(Xi) is consistent with configuration (x0, . . . , xn) ∈ ΩV.

Example 5 (Ex. 4 continued). B is a BN whose joint PMF may be represented as:

P (x0, x1, x2, x3) = P (x0)P (x1|x0)P (x2|x0)P (x3|x1, x2)

for every (x0, x1, x2, x3) ∈ ΩV, provided P (x0), P (x1, x2) are strictly positive.

Indeed, parametrization of Gaussian models requires specification of partial corre-

lation coefficients between each node and its set of parents, rather than the elements

of CPTs.

Let us stress the following: for any v-structure < X,Z, Y > it holds21

I(X, Y ) , ¬I(X, Y ;Z) .

Whenever a node E is instantiated, i.e. it is observed, P (V) is changed to P (V\{E}|e).
An equivalent representation of the updated BN requires columns of the CPTs of

E’s children that are consistent with observation e are selected, and outgoing edges

of E may be removed.

A weaker concept of graphical independence was introduced by Boutilier for BNs

[26], based on the following:

Definition 8. Random variables X and Y are CSI-separated by Z = z if they are

d-separated in the equivalent DAG induced by observation (Z = z).

Definition 9 (Context-Specific Independence in Bayesian networks). Random vari-

ables X and Y are CSI (see Def. 2) conditional on Z = z if and only if they are

CSI-separated by Z = z.

As an example, suppose a BN is used to describe the average income of a worker,

given its job and the monthly weather conditions. Trivially, knowledge of the latter

is expected to have a null (or spurious at most) influence on the income of an office

worker, whereas it will be significantly associated with a farmer’s. CSI patterns

21Remember term I(X,Y ;Z) was introduced in Def. 1 to denote SI of X and Y conditional on

Z.
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allow further reduction of the parametric dimensionality of a given BN.

CSI representation in dependency models was also considered by [112, 26, 199].

Particularly, Pensar et al. [199] introduced labeled DAGs (LDAGs), that compactly

represent local CSIs, i.e. CSI among a subset of parents and their child, conditional

on the remaining parents. CSI-separation was proved to be a sound, yet not com-

plete, method for detecting such independence relationships in LDAGs [199]. In

Sec. 2 of the Appendix, parameter dimensionality reduction CSI will be considered

within the framework of structural learning, that we shall now briefly outline.

The following sections provide an overview of the typical tasks with BNs. With

PGMs in general, these are characterized as either learning or inference tasks. The

former include model identification, i.e. choice of the graphical component, and/or

estimation of its parameters. In a Discrete BN, this requires compilation of each

column of each node’s CPT. Learning tasks are called structural and parameter, re-

spectively, when they tackle estimation of G and P ’s parametrization. Probabilistic

reasoning with a given PGM is usually referred to as inference, given a fully specified

model.22

Bayesian Networks: Learning

Given a dataset, structural learning (SL) requires estimation of the graphical com-

ponent of a BN, i.e. of G. SL may occur following either a constraint-based or a

search-and-score approach, that we briefly characterize.

Algorithms for constraint-based structural learning of a BN make use of conditional

independence tests, to assess presence (or absence) of an edge in the graph.23 Among

others, the PC algorithm [234] iteratively removes arcs from a complete undirected

graph, where each node is adjacent to all others, by performing independence tests

over adjacency sets of increasing cardinality. Unshielded triples are eventually ori-

ented as v-structures, and a partially directed acyclic graph results. Any partially

directed graph induces a Markov equivalence class [234], defined as a collection of

conditional independence statements24. Finally, arcs are oriented, based on Zhang’s

rules [273]. The oracle PC algorithm is a sound and complete procedure if and only

if both Markov and Faithfulness conditions hold, whereas its sample version also

requires the chosen independence test to be correct.

22This terminology is classical in the theory of PGMs, yet we reckon it is rather counterintuitive

in the statistical literature.
23See, e.g. [249, 234, 146].
24Markov chains and fork paths induce the same independence statements, and orientation of

the edges may be neglected: X → Y → Z, X ← Y ← Z and X ← Y → Z belong to the same

Markov equivalence class, where it holds: I(X,Z;Y ).
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In [209], Ramsey extended the algorithm above to the case of weaker forms of Faith-

fulness, by allowing the routine to mark ambiguous unshielded triples as unfaithful.

The graph resulting from Ramsey’s conservative PC (CPC) algorithm is called an

e-pattern; this is no longer a single Markov equivalence class as its associated inde-

pendence statements are consistent with several classes. The CPC algorithm will

be considered in Sec. 2 of the Appendix.

Search-and-score algorithms, on the other hand, explore the space of all possible

DAGs over V. They tackle optimization of a scoring function, reporting the (penal-

ized) goodness of fit of a graph, given data. Search is usually based on heuristics, to

make the procedure efficient. See, e.g. [127, 105, 189]. Among others, hill-climbing

([217]) improves greedy search of the space of graphs by local perturbations on can-

didate structures. Also, Friedman’s Structural EM algorithm [105] is worth men-

tioning, tackling the case of incomplete records of data.

All structural learning processes may be partially constrained upon knowledge-based

domain. This possibly involves whitelisting [220] edges, making them always result

in candidate solutions. Blacklisted learning procedures work conversely.

If the pattern of conditional independence relationships is already available, parame-

ter learning of a BN may occur following either a maximum likelihood or a Bayesian

approach [105, 39, 220]. Also, qualitative as well as quantitative constraints, e.g.

across the columns of a CPT, may be posed while estimating the parameters of a

BN from data; see [191]. When data are missing, i.e. records are incomplete, the

EM algorithm may be considered for parameter estimation. The EDML algorithm

was introduced as an alternative (efficient) approach by Choi et al. in [39]. Their

proposal is based on the optimization of a collection of likelihood functions, resulting

from the propagation of probabilistic evidence, properly specified, through auxiliary

graphical structures, called meta-networks [64]. We will return to this approach in

Ch. 3, where propagation of probabilistic evidence in BNs (and their credal coun-

terpart) is considered. Finally, a robust learning approach with missing data was

proposed by Ramoni and Sebastiani [207]; see also [83].

Bayesian Networks: Inference

We hereby introduce next basic inferential tasks, or queries, that may be considered

with BNs.25

Let α be any target event in Σ = 2Ω,

1. Simple queries:

25See [150] for a detailed list.
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a) α = (x0, . . . , xn), for any (x0, . . . , xn) ∈ Ω. P (α) is computed as from

Eq. (1.4).

b) Let XQ ⊆ V, α = xQ, for any xQ ∈ ΩXQ
; computation of P (α) requires

marginalization of P (x0, . . . , xn) over V\XQ, whose generic element is

x−Q:

P (xQ) =
∑

x−Q∈ΩV\XQ

n∏
i=0

P (xi|pa(Xi)) (1.5)

provided (x0, . . . , xn) is consistent (∼) with target event xQ.

c) Let α be any conditional event xQ|e, e ∈ ΩE, E ⊆ V. P (α) is obtained

by conditioning, or updating, on observed evidence e:

P (xQ|e) =

∑
x−(Q,E)∼(xQ,e)

∏n
i=0 P (xi|pa(Xi))∑

x−E∼e
∏n

i=0 P (xi|pa(Xi))
. (1.6)

Eq. (1.6) is just Bayes rule, and the term at the denominator is the

probability of evidence26. Exact BN updating is NP -hard with general

DAGs (although polynomial-time schemes are available for polytrees27).

2. Decision tasks:

d) Let r be any rational number, and XQ be a collection of target variables

and E = e. For any fixed xQ ∈ ΩXQ
, is it true:

P (xQ|e) > r ? (1.7)

e) Maximum A Posteriori (MAP): Find xQ ∈ ΩXQ
such that28:

x∗Q = argmaxxQ∈ΩXQ
P (xQ|e) . (1.8)

MAP is NP -complete on singly connected networks, it is NP PP -complete

with general DAGs. When XQ = V\E, MAP is called Most Probable

Explanation (MPE). MPE requires finding the complete instantiation

(x0, . . . , xn) consistent with e, such that P (x0, . . . , xn) > r, for some

r > 0. Such task is polynomial with singly connected networks, otherwise

it is NP -complete.

26So far, we assumed P is strictly positive and no requirements are thus necessary. In the general

case, standard conditioning requires P (e) > 0
27See, e.g. [150] for a review.
28Additional tasks exist in the literature, such as the maxmin problem, for a fixed configuration

of a subset of elements of XQ; see [144].
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3. Sensitivity analysis: Let α be some event, xQ be the target event, and r and

E = e as before. Find the minimum change δxQ|e such that:

P (α|xQ, e)P (e)
[
P (xQ|e) + δxQ|e

]
> r

We introduce the following:

Definition 10 (m-irrelevance). For any B, X is m-irrelevant to Y whenever Y ’s

PMF is invariant to changes in the behavior of X:∑
x∈ΩX

P (y|x)P (x) =
∑
x∈ΩX

P (x|y) [P (x) + δx]

for any δx ∈ R, as far as
∑

x [P (x) + δx] = 1.

Unobserved leaves are always m-irrelevant to the remaining nodes in G. M-

irrelevance may be readily detected by, e.g. the Bayes Ball algorithm [223].

Exact approaches are based on enumeration sequences, aimed to efficiently solve

a combinatorial optimization problem. Among others, Lauritzen and Spiegelhalter

proposed building a Junction Tree (JT) from the DAG, whose nodes are cliques

[156]. Other approaches include exact message-passing procedures [194], differential

approaches based on reformulation of the joint PMF as a multilinear function [63],

recursive decomposition [46], optimal factoring [161], symbolic probabilistic [62] and

causal independence based [275] inference methods. In the following, we provide a

sketch of the Variable Elimination (VE) method [81], to provide an intuition.

Consider marginalization (inferential task b). Inference methods differ in the ap-

proach they follow when summing out variables in V\XQ. With VE, an ordering

for the variables is chosen, with target variables as last. For every r.v. X in the

ordering, all local PMFs that contain it are pooled into a bucket of X. All CPTs in

X’s bucket are removed from the list of all CPTs for the network, and the product

of all CPTs in the bucket marginalizes X out. The resulting PMFs are inserted in

the list of all CPTs for the network, and the next random variable from the ordering

is selected.

Example 6. Consider Fig. 1.3 and let {X0, X1, X2, X3} be the fixed ordering, with

target node XQ = {X3}. Following VE, the list of all CPTs for the BN contains

P (X0) = {P (x0) : x0 ∈ ΩX0 ,
∑

x0∈ΩX0
P (x0) = 1}, P (X1|X0) = {P (x1|x0) : x1 ∈

ΩX1 ,
∑

x1∈ΩX1
P (x1|x0) = 1, x0 ∈ ΩX0}; P (X2|X0) and P (X3|X1, X2) defined analo-

gously.

Root node X0 is selected first, its bucket containing P (X0), P (X1|X0), P (X2|X0).

r.v. X0 is marginalized out:
∑

x0∈ΩX0
P (x0)P (X1|x0)P (X2|x0) = P (X1, X2); the

updated list reads: P (X1, X2), P (X3|X1, X2).
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Selection of r.v. X1 yields
∑

x1∈ΩX1
P (x1, X2)P (X3|x1, X2) = P (X3, X2).

Successively, r.v. X2 is selected:
∑

x2∈ΩX2
P (X3, x2) = P (X3).

The list now contains P (X3) only, and P (x3) may be computed for any x3 ∈ ΩX3.

Exact inference is always NP-hard on general networks [45] and it becomes in-

feasible, in space and/or time, as the cardinality of both V and E increases. Ap-

proximate techniques are also NP-hard [61]. We distinguish them into three main

classes:

Model Simplification The original problem is reduced toward a simplified graph-

ical and/or probabilistic structure, and exact inference is performed. Among

others, they include (loopy) Cutset conditioning. See, among others [261, 143,

274] and, e.g. [64] for a review.

Search-and-Score Analogously to the learning setting, these methods search for

the most likely partial instantiations. See, e.g. [130, 275, 218].

Simulation Algorithms Stochastic simulation is used to randomly select config-

urations from the sample space of V, based on either Monte Carlo methods

or importance sampling. Frequencies are computed as an approximation; see

[5], and references therein, for a survey. Among others, systematic Latin Hy-

percube sampling was considered by [38]. An application of Latin Hypercube

sampling for the estimation of an over-parametrized complex compartmental

model may be found in Sec. 1 of the Appendix.

1.3.2 Credal Networks

Credal networks (CNs) [51] extend BNs to the imprecise framework, and provide a

compact representation for sets of PMFs. They assign a local CS to each node in a

DAG. Like BNs, they are used to support decision making.

A single credal network represents all sharp PMFs (or equivalently BNs) that are

consistent with the set of linear constraints used to specify the first. A CN may be

intended as a BN whose parameters (one, some or all) are not known precisely, but

rather they are defined by convex constraints. A CN with a single credal node is

called near-Bayesian. CNs are not the only graphical model that has been proposed

in the literature for modeling and reasoning under imprecision; e.g. [233], and [184]

as a generalized representation for CNs (and hence for BNs).

Formally, a CN is defined by the triple (G, {K(X|Pa(X)) : X ∈ V}, I). The

second element is a collection of locally specified CSs, and I is the adopted indepen-

dence concept. Unlike BNs, there is not unique way to combine locally defined CSs
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and, from previous section, independence concepts are no longer equivalent with

imprecise probabilities. Several extensions may thus be considered for a CN, based

i) on the adopted independence concept, and ii) on the chosen combination rule.

Provided a fixed irrelevance concept, say ∗, the Markov Condition for CNs requires

X to be ∗-irrelevant to its non-descendants non-parents, given its parents. The

largest joint CS on V, consistent with the collection of local CSs, corresponds to

the Natural Extension of the network, denoted as KNE(V).

Suppose Fig. 1.3 is a credal network. The linear constraints of a credal network

are locally specified and refer to single nodes. If a CS is separately specified,

those constraints involve single conditional PMFs, otherwise they are not-SS. That

is, if all constraints are of the form P (x2|x0) ≥ k · P (¬x1|x0), they induce a

separately specified credal network, whereas presence of constraints of the type

P (x1|x0) ≥ k · P (x1|¬x0) yield non-separately specified ones. Non-separate CNs

have received little attention in the literature, compared to separate ones, with the

notable exception of the credal versions of the Näıve Bayes Classifier (NBC) and Tree

Augmented NBC (TAN) [47]. However, any non-separate CN may be equivalently

specified as a separate CN on a larger domain, by properly introducing auxiliary

nodes that separate non-separate CPTs [11].

Under strong independence, all extreme distributions of a CN factorize as a BN.

Let KSE(V) denote the strong extension (SE) of a CN, whose extreme points are

extKSE(V) = {Pj(V) : j = 1, . . . , ν}29. It holds:

Pj(x0, . . . , xn) = ⊗
n∏
i=0

p(xi|pa(Xi)) , (1.9)

where ⊗ is the composition operator, already defined, and each p is an extreme

point of its associate CS K, for any (x0, . . . , xn) ∈ Ω.

Strong Extension is derived based on the Markov Property for different concepts

of Strong Independence [186], namely StI1, StI1, CE, ECE. For a given CN with

all variables logically independent, (graphical) d-separation implies strong indepen-

dence and EI in Strong Extensions [52].

Credal Networks: Inference

Inference in credal networks tackles constrained optimization of an objective func-

tion, where the constraints are those specifying the network. Tractable inference

is based on enumeration procedures in the style of BNs. With respect to a given

KSE(V), consider computation (by marginalization) of lower bound P (x0), with X0

29Remember we always assume ν <∞.
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and x0 target node and event, respectively:

P (x0) = min
P (Xi|pa(Xi))∈K(Xi|pa(Xi)),
pa(Xi)∈ΩPa(Xi)

;i=0,...,n

∑
(x1,...,xn)∈ΩV\{X0}

n∏
i=0

P (xi|pa(Xi)) . (1.10)

Eq. (1.10) requires optimization of a multilinear function over the feasible region,

induced by the (linear) constraints on the elements of the network [69, 8]. Credal

marginalization is NP-hard [70].

For a query event (XQ = xQ), exact credal updating on (E = e) requires solving:

P (xQ|e) = min
P (Xi|pa(Xi))∈K(Xi|pa(Xi));i=0,...,n

∑
x−(Q,E)∼(xQ,e)

∏n
i=0 P (xi|pa(Xi))∑

x−E∼e
∏n

i=0 P (xi|pa(Xi))
. (1.11)

Eq. (1.11) generalizes Eq. (1.6). Analogously to Eq. (1.10), it corresponds to a

constrained optimization problem, targeting the minimum (maximum) value for

P (xQ|e). Constraints follow from i) the Markov condition, yielding the right-hand

side of Eq. (1.6), ii) consistency of the CPTs with their associated CSs in the model,

that is P (Xi|pa(X)) ∈ K(Xi|pa(Xi)), for some fixed pa(Xi) ∈ ΩPa(Xi), for any

Xi ∈ V. Standard belief updating for CNs is NP -complete on singly connected net-

works [176], with the notable exceptions of polytrees where all nodes are binary [99],

general DAGs with E ≡ V\XQ and tree-augmented classifiers [101]; it is NP PP -

complete on general DAGs.

Updating under strong independence subsumes MAP inference in BNs via the Cano-

Cano-Moral (CCM) transformation [30]. This is achieved by introduction of aux-

iliary vacuous root nodes. Each is a parent of a credal node, indexing its extreme

points Instantiation of auxiliary nodes to some configuration induces a BN: MAP

is solved following standard routines (cfr Sec. 1.3). MAP in BNs may be symmet-

rically be solved by credal belief updating [69]. Additionally, solution of the MPE

problem has polynomial complexity on singly connected networks, otherwise it is

NP -complete.

Combinatorial optimization techniques as well as mathematical programming proce-

dures may be considered for inference with CNs.30 Additionally, several algorithms

for exact inference with CNs, based on local search, have been proposed in the liter-

ature [30, 60, 70, 72]. Approximate algorithms have also been proposed for locally

specified CNs [9, 30, 60, 177]. Exact routines proved inefficient on general DAGs31,

while, among approximate inference techniques, none managed to find a satisfactory

30See, respectively [99, 9, 31, 177] and [69, 227].
31Following [8], consider any binary node X, with |Pa(X)| = k, and suppose every Y ∈ Pa(X)

is defined on a h-valued sample space. Up to hk optimization tasks need solving, with the space of

all possible solution having 2h
k

candidates with respect to single node X. Such task is inefficient

even for the simple case of k = 4, h = 3!
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trade-off between efficiency [9, 30, 60] and accuracy [177]. See [15, Sec. 9.5.3] for a

survey on the algorithms for belief updating with CNs.

As a general remark, when given a CN, pre-processing of the DAG ought always

be considered, to improve efficiency of inference. This involves: i) removal of all

(unobserved) leaf nodes, ii) dropping arcs from nodes in E, iii) replacement of nodes

in XQ and in E by binary variables, taking values either consistent with the input

to the inferential task, that is with query event and with e, or its negation.

We now introduce ApproxLP, an efficient algorithm proposed by Antonucci for ap-

proximate inference with constraint-based specified CNs [8]. ApproxLP, or Ap-

proxLP, solves a sequence of (compact) linear problems, improving previous existing

techniques [59]. It is well suited to CNs with exponentially large sets of extreme

points. Also, it serves as an exact procedure in some special settings.

The ApproxLP Algorithm

Let us consider Eq. (1.10). The sum-product term on the right hand-side of Eq. (1.10)

may be equivalently specified as:

P (x0) =
∑

xj ,pa(Xj)

P (x0|xj, pa(Xj))P (pa(Xj))P (xj|pa(Xj)) (1.12)

The third term on the right hand-side is readily available from the network speci-

fication, whereas the remainders can be obtained by conditioning. Whenever con-

ditioning event (xj, pa(Xj)) has zero probability, we require the second and third

terms of the right hand-side of the equation to floor the product down to zero [8].

This way, such term has null probability and does not (safely) appear in objective

function. ApproxLP tackles upper (lower) approximation of P (x0) (P (x0)), by it-

eratively fixing all local CSs but one to singletons. Let Xj, j = 1, . . . , n, be any

fixed free node at iteration t = 0, one PMF Pt(Xi|pa(Xi)) ∈ extK(Xi|pa(Xi)) is

chosen, for every pa(Xi) ∈ ΩPa(Xi), for all i 6= j, i = 1, . . . , n. The resulting CN is a

near-Bayesian network (near-BN), with a single credal node, say Xj. By Eq. (1.12),

Eq. (1.10) is reduced to:

P t(x0) =

min
P (Xj |pa(Xj))∈extK(Xj |pa(Xj))

∑
xj∈ΩXj ,

pa(Xj)∈ΩPa(Xj)

Pt(x0|xj, pa(Xj))Pt(pa(Xj))P (xj|pa(Xj))

This way, optimization is restricted to the set of extreme points of K(Xj|pa(Xj)), for

every pa(Xj) ∈ ΩPa(Xj). This follows from the linearity of the program32. We expect

32The solution of a linear program is known to lie on an extreme point of the feasible region, of

K(Xj |pa(Xj)), in our case.
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P t(x0) ≥ P (x0), since restriction of Eq. (1.10) to a near-BN implies introduction of

additional constraints, potentially reducing the feasible region.

Iteration t+ 1 picks another free, say Xj′ and fixes Pt+1(Xj|pa(Xj)) to be the lower

bound for (Xj|pa(Xj)), obtained by solving the linear optimization task, for every

pa(Xj). The procedure is iterated until convergence. Similar reasoning applies

P (x0); let P
∗
(x0) be the value resulting from the program, we expect ApproxLP to

incur in an internal approximation: P
∗
(x0) ≤ P (x0).

Some remarks are due. First, if the CN is a near-BN, ApproxLP provides the

exact solution to the marginalization task, after a single iteration. This observation

extends to the case of k mutually marginal independent nodes, the exact solution

requiring k iterations. Also, inference may be readily extended to, e.g. belief updat-

ing (the program goes from linear to linear-fractional) [8]. As a third point, consider

initial step t = 0; choice of P0(xi|pa(Xi)), for every xi and every pa(Xi), i = 1, . . . , n,

may consist in either: i) sample at random an extreme point from K(Xi|pa(Xi)),

ii) take the pignistic transform [231] of K(Xi|pa(Xi)), i.e. its center of mass. This

latter option aims at preventing possibly misleading choices for P0, and applies to

the case of exponentially large sets of extreme points. Yet, since we expect the

solution not to include any inner points, each random variable in V\{X0} must be

freed at least once; i.e. n iterations are required, at least. As a final remark, for

a fixed CN, let h = maxi=0,...,n |ΩXi | and d be the treewidth of a DAG (as from

Sec. 1.3. Also, let q be the maximum number of linear constraints that define a

CS. Eq. (1.10) has at most hd+1 random variables and qhd constraints. ApproxLP

requires time equivalent to that required to run a linear programming solver on the

input specification, whose size is proportional to qhd, at each iteration [8].

Different irrelevance concepts may be considered, including EI and ER. Since we

will only consider CNs specified under strong independence, a detailed discussion on

other extensions for a CN is out of the scope of this work. We refer the interested

reader to [52, 54, 71, 76] for details.

This chapter introduced basic concepts for standard and imprecise probabilities.

DAG-based models were also introduced, with a focus on the issue of independence

in their specification. Ch. 2 will consider probabilistic generalized belief revision

whereas graphical belief revision will be characterized in details throughout Ch. 3 to

Ch. 5, where most concepts from the current chapter will play a key role.



Chapter 2

Probabilistic Belief Revision

Belief change theory studies the way a doxastic agent adjusts her belief upon new

information in a static context [134]. First contribution to the theory date back

to Harper’s paper in 1975 [126], and were followed by Levi’s philosophical work on

the subject in 1980 [157]. However, it is Alchourrón, Gärdenfors and Makinson’s

seminal paper in 1985 [3] that ended up being broadly recognized as the landmark

for the theory, also referred to as AGM paradigm after its founders.

By AGM theory, the belief set of a doxastic agent (or You) is defined by a logi-

cally closed set of (finitely many) sentences in a propositional language L (Sec. 2.1).

Sentences represent beliefs held by the agent, provided L is subject to an ordering

induced by a Tarskian logic [242].12 An agent’s epistemic state contains both a belief

set, and a dynamic component that governs changes of belief states [133, Ch.17].

Throughout the present work, we will consider what Williamson refers to in his

book as external propositional logic [263, p.121]. Probability functions are ascribed

to propositions in L, and inference consists in reasoning under uncertainty.3 Prop-

erly, in our setup an agent’s epistemic state contains a belief set whose dynamic

component is a probability measure.4 With subjective probabilities, this approach

further specializes to Bayesianism [263, 94], and changes in the agent’s beliefs are

aimed to satisfy new distributional constraints [84, 92]. We shall use term probabilis-

tic belief revision, to avoid misinterpretations, when referring to a doxastic agent’s

epistemic state that reflects a quantitative attitude toward her degree of credence

1See [214, p.129] and [133, Ch.17] for details.
2Belief sets are called theories when they are logically closed with respect to such consequence

operator; that is, when they may be intended as sets of Your doxastic commitments [158].
3See also [103].
4Other dynamic components might be considered, see [235, 118, 133].
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for a given proposition, rather than a qualitative judgment.5

Belief revision operators, or rules, are functionals that combine prior knowledge,

i.e. Your deductively closed set of accepted beliefs, with externally provided pieces

of information. This latter may result from an observational process, possibly af-

fected by degrees of uncertainty, or may come as externally provided beliefs on the

world outside (e.g. up-to-date experts’ statements). We characterize fully reliable

observations on a single case as probabilistic instances, and call them specific knowl-

edge, as opposed to generic knowledge, this latter informing the agent on the whole

system [93].

A general introduction to belief revision is provided in Sec. 2.1, using the lan-

guage of classical propositional logic. Probabilistic belief revision with imprecise

probabilities is discussed in Sec. 2.2. Sec. 2.3 introduces a new class of adjustment

operators, based on Lewis’ Imaging rule, tackling the case of inconsistent general-

ized instances.

One-shot belief revision [92], i.e. in a static setting, only is considered in the present

chapter. This adjusts an agent’s belief on a static system when a single probabilistic

instance is available. Implementation of revision rules from this chapter for belief

propagation with DAG-based models (BNs and CNs) will be considered in Ch. 3.

A thorough discussion on belief aggregation, or opinion pooling, may be found in

Ch. 4, accounting for multiple overlapping instances. Finally, the iterated case is a

major focus in Ch. 5, when evidence is available on a collection of non-overlapping

elements of a domain.

2.1 Introduction to Probabilistic Belief Revision

Let Ω be any space of atoms - atomic (boolean) propositional variables - and let a

world ω be an assignment of truth to each element from Ω, such that there exist

up to 2|Ω| conceivable worlds. L is the set of all propositional formulae over Ω. Any

propositional formula φ ∈ L is satisfied by the worlds in [φ] ⊆ Ω. Formally, ω

satisfies φ writes ω |= φ; such that ω ∈ [φ] if and only if ω |= φ. Logical connectives

{∧,∨,¬,→,↔} may be used to concatenate several formulae. Finally, > and ⊥
denote, respectively, tautology and contradiction.

As already mentioned, a doxastic agent is equipped with a deductively closed set of

propositions, or belief states, represented by K, her belief set over possible worlds

5In the general propositional setting, a further distinction must be operated upon full beliefs

and probability-one events. This is out of the scope of our work; we refer the reader to [133, Ch.17]

for a soft introduction to the subject, and related issues.
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A ⊆ Ω. Elements of K are closed sets of formulas, in the propositional logic lan-

guage L governed by the Tarki’s consequence operator.6

When given a belief set, three main operations are relevant to adjust it and satisfy

any available formula φ: contraction, expansion and revision [3]. Roughly, suppose

You believe ¬φ is true but You are apprised φ is actually to be believed. Adjustment

of Your belief set must occur while preserving overall consistency. First, ¬φ must be

safely removed by contraction: not only ¬φ must be canceled from the set, but all

sentences it entails must be also considered, to avoid inconsistencies. At this point,

introduction of φ in Your belief set, by expansion, is straightforward. Combination

of contraction and expansion is usually referred to as revision; inter-reducibility of

revision and contraction was proved by the well-known Levi’s and Harper’s identi-

ties.

AGM postulates, best known in their KM formulation of Katsuno and Mendelzon

[147], present two major shortcomings when belief revision involves i) conditional

formulae, and ii) in the iterated setting. We refer the reader to Ch. 5 for a discussion

on the latter.

Belief revision operators are related to non-monotonic logic.7 This is in turn related

to probability theory via the so-called ε-probability functions, i.e. PMFs ranging in

the probability simplex, augmented by infinitesimal values ε > 0. ε-probability func-

tions also bridge belief revision operators to pooling functionals for belief merging,

that will be considered by Ch. 4.8

In our probabilistic framework, a belief state over A shall be represented by PMF

PA:

PA(A) = {P (ω) : ω ∈ A,P (ω) ≥ 0,
∑
ω∈A

P (ω) = 1} .

Similarly, PΩ is defined with respect to every ω ∈ Ω. We shall just write P , when

domain is clear from the context.

Let V be a collection of (n + 1) discrete r.v.s, n ≥ 0. There, ω ≡ v and Ω ≡ ΩV,

with |Ω| <∞. The collection of all possible probabilistic statements on Ω reduces to

{φ BC c : φ ∈ L,BC∈ {=,≥,≤, <,>}, c ∈ [0, 1]}. Also, A reduces to any arbitrary

tautology, such that PA is strictly positive on A, equal to zero otherwise. For a given

formula φ,

P ([φ]) =
∑

v∈ΩV:v∼A

P (v)Iv|=φ ,

6An alternative representation to total pre-ordering of possible worlds, or entrenchment order-

ing, by an agent’s belief makes use of Grove’s system of spheres [119].
7Properly, to rational consequence relations for consistency preservation [167].
8See [262] and references therein for details.
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with ∼ denoting consistency among atomic events. e.g. let n = 3, φ = {x1 ∧ x2},
[φ] = {(x0, x1, x2) : x0 ∈ ΩX0}.
In the general case, probabilistic beliefs are specified by a set of linear constraints, to

define a CS K. Let Φ denote a collection of formulae, KΦ ⊆ K is the subset of beliefs

that satisfy Φ. Any belief state P satisfies Φ, i.e. P |= Φ, whenever it satisfies each

φ ∈ Φ. Any set Φ is accepted whenever it is consistent with each P ∈ K, it is rejected

if its negation only, ¬Φ, is, or it is neutral if both are consistent. Let c ∈ [0, 1], for

a given formula φ, P |= (φ BC c) whenever P (φ)
(

=
∑

v:v∼[φ] P (v)
)
BC c.

Let P be any model, assigning values to events α ∈ Σ. We account for new pieces

of information as probabilistic constraints on the behavior of P over some partition

Σ′ ⊆ Σ, e.g. via another PMF P ′ on coarse domain Σ′. See [215, Table 1] for a

general overview in the propositional framework.

We define any adjustment rule (AR) ◦ as a functional that combines P and P ′Σ′ ,

denoted as P ′, forcing the first to accommodate for the second. Formally, let α

be any target event, (P ◦ P ′) (α) = P ◦(α) such that d(P ◦,↓Σ
′
, P ′) ≤ δ; d(·, ·) and δ

being any fixed, respectively, distance measure and arbitrary small value.

AR ◦ is responsive [89] to P ′ whenever it holds

(P ◦ P ′) (σ′) = P ◦(σ′) = P ′(σ′) ,

σ′ being any atom9 in Σ′. Equivalently, d(P ◦,↓Σ
′
, P ′) = 0. Any responsive AR is

also known as obeying the success postulate [165], or performing full meet revision

[163].

As a second principle for belief adjustment, we require our model to be as close as

possible to its prior states of knowledge; this is known as minimal change principle

[25, 132]. In words, we want P ◦ to retain all prior knowledge on events that are

modeled independently of partition Σ′. Three types of interactions may occur among

adjusting and adjusted events [89], that we briefly outline. Let α be any event in Σ,

and P ◦ be the model, as revised by P ′:

Full Irrelevance P (α) = P ◦(α),

Weak Relevance P (α) = kP ◦(α), k > 0,

Relevance 6 ∃k > 0 such that P (α) = kP ◦(α).

Following Dietrich [89], two main approaches to probabilistic belief revision may be

considered: conservative or Distance-based. The first is characterized in its strong

9This may be generalized to the case of coarse partitions of Σ′, i.e. to general events α′ ⊆ Σ′.
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or weak forms, depending on P ′ being, respectively, strongly or weakly silent on

events α ∈ Σ. Any ◦ satisfies Conservativeness whenever it holds:

P ◦(α|σ′) = P (α|σ′) ∀α ∈ Σ,∀σ′ ∈ Σ′ . (2.1)

AR ◦ satisfies the minimal distance principle whenever it holds:

P ◦ = argminP̃∈P ′d(P, P̃ ) , (2.2)

with fixed d(·, ·) and P ′ ⊆ P being the set of all models on Σ consistent with P ′.

Among others, the Kullback Liebler (KL) divergence [154] was used to measure

discrepancy between a PMF PΣ and its revision P ◦. The KL divergence is defined

as follows:

KL(P ◦‖P ) =
∑
ω∈Ω

P ◦(ω) log
P ◦(ω)

P (ω)
. (2.3)

Eq. 2.3 is not a proper distance measure, as it fails symmetry. It is easy to see

KL(P ◦‖P ) is always non-negative, and reaches zero if and only if P ◦ = P . Also,

the argument of the logarithmic term, on the right hand-side of Eq. 2.3, reduces

to ratio P ◦(σ′)/P (σ′), for each σ′ ∈ Σ′, under Conservativeness. A shortcoming

of KL divergence as benchmark for Distance-based probabilistic belief revision was

pointed out by Chan and Darwiche in their influential paper of 2005 [34]. There, a

toy example was used to prove Eq. 2.3 might floor toward zero in some extreme cases,

while (very) small probability values are in fact being revised by a large amount,

such that the relative change is potentially (very) large. The authors proposed using

the CD-distance [34] instead, defined as:

CD(P ◦, P ) = max
ω∈Ω

log
P ◦(ω)

P (ω)
−min

ω∈Ω
log

P ◦(ω)

P (ω)
= log

maxω
P ◦(ω)
P (ω)

minω
P ◦(ω)
P (ω)

.

Also in this case, it may be easily proved ratios in CD(P ◦, P ) reduce to P ◦(σ′)/P (σ′),

for each σ′ ∈ Σ′, under Conservativeness.

Several alternative systematizations of ARs were proposed to Dietrich et al.’s, and

no general consensus was reached so far. e.g. both Conservativeness and Minimal

Distance are expressed by a general Minimal Change axiom in [165]. This may be

due to the fact ARs tackling Eq. (2.1) or (2.2) yield equivalent solutions in standard

settings. Also, Conservativeness preserves prior knowledge, and thus serves as a

viable solution to Distance-based tasks; the converse is not true, in general. Indeed,

we argue distinction into either Conservative (or Kinematical) or Distance-based

approaches ought to be accounted for, as the epistemic standpoints differ from each

other. The upcoming sections specialize discussion to Your knowledge base being

represented by a joint CS (cfr Ch. 1), while some observational (or informational)
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process requires adjustment of the model. Probabilistic evidence on some random

variable X is called inconsistent when it contradicts certainty (or impossibility) in

Your belief base. We refer to revision and adjustment, respectively, to distinguish

the case of consistent evidence from the general setup.

2.2 Probabilistic Belief Revision

In the probabilistic framework, Your epistemic state is represented by joint CS K(V)

over Ω. Let φ be any upcoming formula, postulates KM1-KM6 in [147] translate as

follows:

KM1 (K ◦ φ) |= φ,

KM2 Let K |= φ, (K ◦ φ) ≡ (K ∪ φ),

KM3 If φ 6=⊥, then (K ◦ φ) 6=⊥,

KM4 If K1 ≡ K2 and φ1 ≡ φ2, then (K1 ◦ φ1) ≡ (K2 ◦ φ2),

KM5 If (K ◦ φ) |= ψ, then (K ◦ (φ ∧ ψ)), for any further formula ψ,

KM6 If (K ◦ φ) |= ψ, then (K ◦ (φ ∧ ψ)) implies ((K ◦ φ) |= ψ).

For a given X ∈ V, we define marginal probabilistic evidence by PMF P ′X over

ΩX
10, such that P (x) 6= P ′X(x) for at least one x ∈ ΩX . We call P ′X(X) soft

evidence (SE) following Valtorta et al. [244]. SE bears an impression of the degree

of reliability that is associated to each (forecasted) event from ΩX , i.e. on the

evidence of uncertainty [197]. It may be also intended as a set of probabilistic

constraints on the system modeled by P [58]. Furthermore, it is easy to see SE

on r.v. X shall be equivalently expressed by formula φx = ({x} = cx), such that

P ′X(X) = ΦX = {φx :
∑

x∈ΩX
cx = 1}.

By Partiality [50], revision of P by P ′X requires preservation of zero-probability

events. Rationality of such principle was advocated by several authors, e.g. [85, 262].

Simply put, an agent’s belief ought to be calibrated with available evidence. If this

is so, certainty on the occurrence of an event in ΩX , say x′, floors P (x) to zero,

for every x 6= x′(cfr Kolmogorov axioms, Ch. 1). If the agent accepted to change

her mind on x in light of new evidence, then she would rather be reasonably sure,

rather than certain about X being x′; but then P (x′) < 1, and P (x) > 0 for at

least one x 6= x′. Hence, Partiality requires certainty on the occurrence of x′ must

10Remember we assumed X is a discrete r.v. over countable possibility space ΩX .
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imply certainty in P ′X as well (and symmetrically with zero-probability events). As

already mentioned, we will refer throughout to partial operators as revision rules,

as opposed to general ARs.

Part of the contributions in the remainder of this section may be also found in

[171].

2.2.1 Belief revision with Soft Evidence

We refer to kinematical mechanics for the adjustment of a belief set as to consistency

principles for Conservativeness, that we are willing to favor over a mere Distance-

based approach [25].11 We introduce probability kinematics following Wagner’s char-

acterization [254].

Definition 11 (Probability kinematics [139, 254]). Let P and P ◦ be any two PMFs

over (Ω,Σ), and let ΩX be a countable collection of pairwise disjoint events in Σ, i.e.

a coarse partition of Ω(≡ ΩV). P ◦ comes from P on ΩX based on probability kine-

matics (PK) if there exists a sequence P ′X(X) = {P ′X(x) : x ∈ ΩX ,
∑

x∈ΩX
P ′X(x) =

1} such that it holds:

PK1 P ◦(α|x) = P (α|x), for each x ∈ ΩX , and for any event α ∈ Σ, (Conserva-

tiveness)

PK2 P ◦(X) = P ′X(X). (Responsiveness)

By PK, P is changed to agree with P ′X (PK2), while preserving relevance of each

x ∈ ΩX to any event α ∈ Σ (PK1). It is straightforward to see PK1 is just Eq. (2.1).

Jeffrey’s Rule below comes naturally as an equivalent definition of PK [84]:

Definition 12 (Jeffrey’s Rule [139]). Let P , P ◦ and P ′X as above. Probabilistic

Belief Revision operator Jeffrey’s Rule (◦J) adjusts P to comply with P ′X as follows:

(P ◦J P ′X) (α) =
∑
x∈ΩX

P (α, x)
P ′X(x)

P (x)
.

We denote the Jeffrey Revision of P by some SE as P ◦J , and require 0/0 = 1.

See [254] on a further PK-based revision rule.

It may be readily seen, deterministic knowledge of event (X = x) shall be equiva-

11See [215, Sec.3] on foundational/coherent and vertical/horizontal perspectives in the symbolic

framework.
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lently specified by P ′X(x) = 1, 0 otherwise.12, whence:

(P ◦J P ′X) (α) ≡ P (α|x) , (2.4)

where the righ hand-side is just conditioning. Such hard evidence [244] trivially

corresponds to (φ = {x}) in a propositional language. Eq. (2.4) above shall serve

as a further principle for any kinematical rule, requiring reducibility of any ◦ to

conditioning, when SE strengthens to hard.

2.2.2 Belief revision with Conditional Soft Evidence

Suppose SE is gathered conditional on another r.v. Y taking value y ∈ ΩY ; or,

without loss of generality, on (Y = y), Y ⊆ V\{X}, y ∈ ΩY. We define conditional

SE (CoSE) as the collection of probabilistic statements:

PX|y(X|y) =

{
P ′X|y(x|y) : P ′X|y(x|y) ≥ 0 ∧

∑
x∈ΩX

P ′X|y(x|y) = 1, (x, y) ∈ ΩX × {Y = y}

}
.

CoSE may be equivalently specified by propositional ΦX|y, set of formulae, whose

generic element is φx|y = ({y → x} = cx), provided
∑

x∈ΩX
cx = 1.

Definition 13 (Conditional PK [27]). Let P and P ◦ be any two PMFs on (Ω,Σ).

Let P (y) > 0, P ◦ comes from P on ΩX ×{Y = y} based on conditional PK (CoPK)

if there exists a sequence P ′X|y(X|y) as above such that it holds:

CoPK1 P ◦(α|x, y) = P (α|x, y), for each x ∈ ΩX , for any α ∈ Σ, (Conditional

Conservativeness)

CoPK2 P ◦(α|y′) = P (α|y′), for each y′ ∈ ΩY \{y} and any α ∈ Σ, (Irrelevance of

Neutral Conditioning Events)

CoPK3 P ◦(Y ) = P (Y ), (Irrelevance to Conditioning Events)

CoPK4 P ◦(X|y) = P ′X|y(X|y). (Conditional Responsiveness)

The following revision rule extends Def. 12 to the conditional setting:

12As a remark, while probabilistic findings extend standard evidence, they do not necessarily

result from an observation process. e.g. they may be gathered as forecasts produced by external

sourced whose system of knowledge is not disclosed - betting odds -, or qualitative evaluations from

experts. Thorough characterization of uncertain evidence may be found in the survey of [188], and

related works. There, probabilistic evidence is further distinguished into fixed and not-fixed. Such

distinction will be critical to iterated belief revision, in Ch. 5.
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Definition 14 (Adams Conditioning [27, 90]). Let P , P ◦ and P ′X|y as above, with

P (y) > 0. CoPK-based [27, Th.5] probabilistic belief revision operator ◦A yields the

Adams Revision
(
P ◦AX|y

)
of P , consistent with P ′X|y, if it is obtained as:

(
P ◦A P ′X|y

)
(α) = P (α,¬y) +

∑
x∈ΩX

P (α, x, y)
P ′X|y(x|y)

P (x|y)
,

provided 0/0 = 1.

It is easy to see ◦A reduces to ◦J if P (y) = 113 - and, trivially, P ◦AX|y(α) ≡ P (α|x, y)

whenever (X, Y ) = (x, y) is fully observed. Revising mechanics of a PMF on CoSE

that are not based on CoPK, such as those based on Minimal-Entropy14, yield severe

inconsistencies in the general case. Among others, Pearl [194] advocated its usage

fails to adequately handle causal evidence, while being computationally intractable.

Also, Friedman and Shimony [104] showed the updates they yield are not reducible

to simple conditioning, ceteris paribus, whereas Seidenfeld [221, Ch.3] criticized the

lack of independence on the agent’s language of such probabilities. See additionally

[120, 27, 90].

We introduce an illustrative toy example to motivate generalization of probabilistic

belief revision to the conditional setting15.

Example 7 (The Professor’s Disease). Rumors have persistently reported Professor

A contracted a serious infectious disease (A = a), while on summer vacation. B and

C are both students of Prof. A. They attend different classes and do not know each

other, although they are both close friends of E, who is not a student. The described

setup shall be represented by the BN in Fig. 2.1 (analogous to the one from Fig. 1.3),

and the following CPTs:

A P(A)

a 0.75
,

B A P(B|A)

b a 0.60

b ¬ a 0.05

,

C A P(C|A)

c a 0.60

c ¬ a 0.01

and

E B C P(E|B,C)

d b c 0.90

d b ¬ c 0.75

d ¬ b c 0.55

d ¬ b ¬ c 0.05

13I.e. y = A = >, A ⊆ Ω.
14Enhanced by, e.g.[263, 2].
15The reader familiar with the literature of artificial intelligence might notice our example is

analogous to the so-called Judy Benjamin problem [120], inspired by the 1980 movie Private

Benjamin.
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B C

E

A

Figure 2.1: A toy multiply connected Bayesian network, with V = {A,B,C,E}.

E’s doctor has to decide wether prescribing her patient a test for the disease.

She is interested in knowing how likely it is for E to have contracted the infection

from either B or C, provided that her beliefs about Prof. A being infected in the

first place are unchanged. She does not have any information about anyone’s health

status among A, B and C; she only knows E spends more time with B than with

C, as from the CPTs above.

Based on her current knowledge, the doctor believes there is 50.5% chances that

E is now ill. As the test is invasive, the doctor asks E to give her additional

information, to better discriminate between the choice of prescribing it or not. All

that E reports is that C reached Prof. A after class to ask questions about the

course. According to the doctor’s knowledge of the transmissibility of the disease,

if Prof. A was infectious, chances of C getting the disease are now increased from

60% to 75%. By straightforward application of Adams conditioning (see Def. 14),

the revised probability of E being infected (E = e) grows to 53.8%; she is more prone

to prescribe the test.

2.2.3 Belief revision with Credal Soft Evidence

Just like Your beliefs may be encoded by a CS K on Ω, probabilistic evidence may

come as a (closed and convex) collection of PMFs K ′X on ΩX . We call K ′X credal

SE (CSE), extending sharp probabilistic evidence to the case |extK ′X(X)| ≥ 1:

K ′X(X) =
{
P ′X(x) : P ′X(x) ≤ P ′X(x) ≤ P

′
X(x), x ∈ ΩX

}
.

K ′X might be equivalently specified by the collection of formulae ΦX , with generic

element φx = ({x} BC cx), cx ∈ [0, 1], provided
∑

x∈ΩX
cx BC 1, BC∈ {=,≤,≥}. 16

16Also, to guarantee P ′X(x) ∈ [0, 1], we require P ′X(x) ≤ 0 and P ′X(x) ≥ 1 always reduce to

equalities.
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We distinguish precise from credal probabilistic belief revision as follows: the

first refers to a sharp belief set being revised by single-valued uncertain instances,

while the second tackles the generalized case of credal beliefs revised by either sharp

or imprecise assessments.

Set-valued instances may be readily provided, e.g. following a qualitative assess-

ment, or rather result from the convexification of a collection of sharp assessments

gathered on the same possibility space. In this latter case, we resort to belief merg-

ing, that we characterize throughout Ch. 4. By the frequentist approach, an ob-

servational process may produce set-valued findings when records are incomplete.

We refer in this case to a incompleteness process [271], producing observations on a

coarse grid of (ordered) ΩX . A missingness mechanism, on the other hand, prevents

some elements of a system from observation upstream, yielding a blank observation.

A simplistic, although quite involved [121], assumption is that of coarsening at ran-

dom (CAR) [128, 117], or missing at random (MAR) [164], respectively.

By the CAR assumption, the mechanism preventing precision is non-informative.

Let P (α|E = e,M = ∗) be the probability of event α, with (E = e,M = ∗) being

a given finding; random variables in E are those actually observed, while those in

M are missing. If CAR is assumed, P (α|E = e,M = ∗) = P (α|E = e). A näıve

updating rule would project the dataset to its complete component [78].

Indeed, non-selective missingness mechanisms are unrealistic in many cases, and

there are degrees of ignorance on the dynamics leading to incomplete records; see

[270] on mixed knowledge. The conservative updating rule (CUR) was proposed in

this direction by De Cooman and Zaffalon [78] for a reliable treatment of missing

data, to update beliefs under a near-ignorance belief state on the missingness pro-

cess. This was successively extended by the conservative inference rule (CIR) [270]

for mixed missingness mechanisms, yielding imprecise revisions of any belief set. As

previously argued, this approach also fits into an objectivist perspective: imprecise

modeling of a PMF into a CS is motivated by (partial) ignorance about data, partic-

ularly about the missingness mechanisms. Such a frequentist interpretation may be

justified by the connection, established by [10], between (graphical) credal updating

and CIR (see Sec. 3.2.2). CIR is defined as follows:

P (α‖MrE = e,Mnr = ∗) = min
mnr∈ΩMnr

P (α|e,mnr) (2.5)

where Mr are random variables that are MAR (and are thus canceled out), E are

actually observed, Mnr are missing due to unknown mechanisms; M denotes all

missing random variables.

CUR is just Eq. (2.5) when Mr = ∅, and hence:

P (α|E = e,Mnr = ∗) = min
mnr∈Ω′Mnr

P (α|e,mnr) , (2.6)
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with Ω′Mnr
⊆ ΩMnr induced by partial (coarse) observations. A similar approach

was proposed in [207] for parameter learning with BNs.17

We hereby extend Def. 11:

Definition 15 (Credal PK). Let Ω, V and X as before. Also, let K and K◦ be any

joint CSs over V. K◦ comes from K on ΩX based on credal probability kinematics

(CPK) if there exists a collection K ′X(X) = {P ′X(x) : P ′X(x) ≤ P ′X(x) ≤ P
′
X(x), x ∈

ΩX ,
∑

x∈ΩX
P ′X(x) = 1} such that, for any event α ∈ Σ:

CPK1 K◦(α|x) = K(α|x), for each x ∈ ΩX , (Credal Conservativeness)

CPK2 K◦(X) ⊇ K ′X(X). (Credal Responsiveness)

Based on [276] and previous discussion, a further principle may be included:

K◦(α) = K(α|x) ,

when K ′X(X) degenerates to hard evidence on (X = x), that we refer to as CPK3,

bridging credal updating and revision operators.

Extension of Jeffrey’s rule to the imprecise setting requires simultaneous computa-

tion of all bounds spanned by the updating of all SEs, based on PMFs consistent

with the CS:

Definition 16 (Credal Jeffrey’s Rule). Let K be any CS over (Ω,Σ), and suppose

credal SE K ′X is provided. K◦CJX is called the Credal Jeffrey Revision of K on K ′X
if, for any event α ∈ Σ, it holds:

K◦CJX (α) =

{
PX(α) : PX(α) = (P ◦J P ′X) (α),

P ∈ K,
P ′X ∈ K ′X

}
.

The lower envelope of the Credal Jeffrey Revision of P writes:

P ◦CJX (α) = min
P∈K
P ′∈K′

∑
x∈ΩX

P (α|x)P ′X(x) . (2.7)

Thus, in the general case |extK| > 1 minimization is no longer a linear task. If

|extK| = 1, Credal Jeffrey’s rule requires simultaneous revision of the prior by all

PMFs in K ′X .

17A further revision setup may be considered when dealing with imprecise probabilities. There,

revision corresponds to construction of a present and of a future bet, whose combination pursues

sure loss avoidance in time. See [272] for a thorough discussion and characterization of the subject.



39 Probabilistic Belief Revision

Proposition 1. Let K◦ and K be two joint CSs over the same domain Ω, the first

being the Credal Jeffrey Revision of the second on K ′X(X). Let K∗ be a further CS,

resulting by ◦CJ restricted to extK(V) and extK ′X(X). It holds:

K◦ ≡ K∗ .

Proof. Proof is trivial and follows from the characterization of a CS as the convexi-

fication of its own extreme points.

By Prop. 1, K◦CJX may be efficiently computed by taking the convex hull of all

Jeffrey Revisions resulting from all possible combinations of the extreme points. A

similar result was proved by [211] with respect to another class of ARs, that will be

discussed in Sec. 2.3.

We prove the following consistency results for precise belief revision based on CSE:

Theorem 1. Let P and K◦ be a joint PMF and CS, respectively, on ΩV, and

let K ′X(X) be CSE over X ∈ V. If K◦ results from P by ◦CJ , then the revision

process is based on CPK, and CPK2 is strongly satisfied, i.e. inclusion strengthens

to equality.

Proof. Without loss of generality, let α = {y} and V = {X, Y }. Since K◦(V) is

obtained by Credal Jeffrey’s rule, CPK1 holds by definition. Also, it holds:

P ◦(x) = min
P ◦∈K◦

∑
y∈ΩY

P ◦(y, x)

= min
P ◦∈K◦

∑
y∈ΩY

P (y|x)P ◦(x)

= min
P ′X∈K

′
X

P ′X(x)
∑
y

P (y|x)

= P ′X(x) ,

and analogously for upper bound P
◦
(x), for each x ∈ ΩX . CPK2 is strongly satisfied,

since K◦(X) = K ′(X).

The orthogonal setup - revision of a credal belief set by SE - was prevously

considered by Da Rocha et al. [58]. In their contribution, SE poses probabilistic

constraints, that are used to adjust a given K by multilinear programming. Par-

ticularly, K specifies a Credal network, revised by SE that is properly transformed

into virtual instances. We will return to this in Ch. 3.

Th. 2 extends Th. 1 above:
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Theorem 2. Let K and K◦ be two joint CSs, and let K ′X(X) be some CSE over

X ∈ V. If K◦ results from K by ◦CJ , then the revision process is based on CPK,

and CPK2 is strongly satisfied.

Proof. Without loss of generality, let α = {y}, V = {X, Y }. As for CPK2, it holds

by definition (and by Prop. 1):

P ◦(x) = min
P ◦∈K◦

∑
y∈ΩY

P ◦(y, x)

= min
P∈extK

P ′X∈extK
′
X

P ′X(x)
∑
y∈ΩY

P (y|x)

= min
P ′X∈K

′
X

P ′X(x)

= P ′X(x)

and analogously for upper bound P
◦
(x), for each x ∈ ΩX . This way, K◦(X) =

K ′X(X).

Proof CPK1 is satisfied is trivial from Th. 1 and Prop. 1.

We lay bare kinematical principles for imprecise probabilistic belief revision of K

by (sharp) CoSE P ′X|y on ΩX × {Y = y}:

Definition 17 (Credal Conditional PK). Let K and ΩX as above, and let K◦ be any

other CS over V. K◦ comes from K on ΩX × {Y = y} based on credal conditional

probability kinematics (CCoPK) if there exists some CoSE P ′X|y such that it holds:

CCoPK1 K◦(α|x, y) = K(α|x, y), for each x ∈ ΩX , (Credal Conditional Conser-

vativeness)

CCoPK2 K◦(α|y′) = K(α|y′), for each y′ ∈ ΩY \{y}, (Credal Irrelevance of Neu-

tral Conditioning Events)

CCoPK3 K◦(y) = K(y), for each y ∈ ΩY , (Credal Irrelevance to Conditioning

Events)

CCoPK4 K◦(X|y) 3 P ′X|y(X|y), or equivalently K◦(X|y) |= ΦX|y. (Generalized

Responsiveness)

As a remark, CCoPK trivially reduce to CoPK when |extK(V)| = 1. Once again,

we introduce the further requirement of reducibility of imprecise probabilistic belief

revision upon CoSE to credal updating.

In the general case, i.e. when |extK(V)| ≥ 1, the following operator may be con-

sidered:
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Definition 18 (Credal Adams Conditioning). Let K, K◦ and CoSE P ′X|y as above,

for some y ∈ ΩY , Y ∈ V, provided P (y) > 0. Revision operator ◦cA yields the

Credal Adams Revision
(
K◦cAX|y

)
of K consistent with P ′X|y:(

K ◦cA P ′X|y
)

(α) =
{
P ◦AX (α) : P ◦AX (α) =

(
P ◦A P ′X|y

)
(α), P ∈ K

}
.

It holds:

Theorem 3. Credal Adams conditioning is based on Credal CoPK.

Proof. Without loss of generality let V = {X, Y, Z}, with α = {z} and Y = {Y }.
Let K◦ be the joint CS obtained by Credal Adams conditioning, by Def. 18, the

lower envelope of K(z) writes:

P ◦(z) = min
P∈K◦

[
P (z,¬y) +

∑
x

P (z, x, y)
P ′X|y(x|y)

P (x|y)

]
. (2.8)

Proof of Credal Irrelevance of Neutral Conditioning Events (CCoPK2) follows triv-

ially from Eq. (2.8), that is reduced to the first term only on the right hand-side.

Analogously, Credal Irrelevance to Conditioning Events (CCoPK) is straightforward

for any y′ 6= y, while P (y) follows from the conjugacy relation. P (¬y) and P (y) are

derived symmetrically.

Based on Eq. (2.8), we prove Credal Conservativeness is satisfied as follows:

P ◦(z|x, y) = min
P∈K◦

P (z, x, y)

P (x, y)

= min
P∈K

P (z, y|x)P ′X|y(x|y)

P (y)P ′X|y(x|y)

= min
P∈K

P (z|x, y) ,

and analogously for the upper case.

As for Generalized Responsiveness, inclusion of P ′X(X|y) by K◦(X|y) follows from

Th. 2.

Extension of Credal Adams conditioning to the case of credal CoSE would require

weakening of kinematical principles, due to detrimental dilation - loose inclusion

relationships - that is expected to result from the revision process. Beyond that,

we do not stick to the details of such a task, as revision of a CS by a conditional

credal instance foreshadows a quite involved discussion on its actual usefulness and

reliability.

All revision rules presented so far assume preservation of certain events [109]

(when consistent evidence is used to revise Your belief), and Partiality. With
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credal probabilistic belief revision, as a consequence of the two, a further princi-

ple of Preservation of vacuous knowledge also results (as proved by [200]). In the

upcoming section we resort to Imaging [159] as a rule for belief adjustment upon

(possibly) inconsistent pieces of information.

2.3 Relaxing Partiality: Imaging Operators

Contributions from this section may be also found in [170].

From previous considerations, we refer to inconsistencies as to failures of the

Partiality principle, with a major focus on zero-probability events. Imaging was in-

troduced by Lewis in 1976 [159], as a non-trivial alternative to conditioning on such

inconsistent events. Roughly, it represents the “thought experiment by a minimal

action” [106] that makes a formula consistent.

Going back to the propositional language, if some world ω is inconsistent with for-

mula φ, according to a knowledge base, Imaging shifts beliefs towards those elements

of Ω that are closest to φ, called φ-worlds. γ(ω, φ) is a closest world function, map-

ping ω to its closest φ-world; see [160] for a detailed discussion. In our formalism,

(φ = {x}) yields γ(v, φ) = (v\{X}, x) ∈ Ω, for any v ∈ Ω.

Definition 19 (Imaging [159]). Let P be any PMF over (Ω,Σ). For a given φ and

closest world function γ(·, φ). P ◦Iφ is the Image of P on φ if it is obtained by Imaging

operator ◦I as:

(P ◦I {φ}) (α) =
∑
ω′∈α

∑
ω∈Ω

P (ω)Iγ(ω,φ)=ω′ .

In Lewis’ words, by Imaging on event φ, “Probability is moved around, but not

created or destroyed”, while “Every share stays as close to it as it can to the world it

was originally created” [159, pp. 310-311]. To summarize: i) inconsistent evidence is

accounted for in the Image of P , whereas conditioning is left undefined; ii) Imaging

changes the whole belief set to comply with reliable knowledge φ, while conditioning

re-defines the domain of P , focusing on those worlds in Ω consistent with φ.18

Example 8. Let V = {X, Y }, with P (x, Y ) = 0, P (¬x, y) = 0.6 and P (¬x,¬y) =

0.4. Imaging on (φ = {x}) yields (P ◦I {X = x}) (y) = 0.6, which corresponds to

P (y). If conditioning was applied, P (Y |x) would not be defined.

Consider α = {x}, (P ◦I {X = x}) (x) = 1: ◦I adjusts P to always be consistent

with φ = {x}.
18See [160] for details.
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Generalized forms of Imaging were introduced in the literature, see, e.g. [109,

211]. See also [277] on a unifying approach to belief adjustment.

In a recent paper Günther [123] introduced Jeffrey Imaging, that we denote

as ◦jI , for the generalized case of probabilistic formula (φ = c), with c ∈ [0, 1].19

Adjustment operator ◦jI trivially extends Ramachandran et al.’s Partial Imaging

[206].

Definition 20 (Jeffrey Imaging [123, 206]). Let P be any PMF over (Ω,Σ). For a

given formula {φ = c}, with c ∈ [0, 1], P
◦jI
X comes from P by Jeffrey Imaging ◦jI on

{φ = c} if it holds:

(P ◦jI {φ = c}) (α) = P ◦Iφ (α)c+ P ◦I¬φ(α)(1− c)

We denote the Jeffrey Image of P on {φ = c} as P
◦jI
φ .

Both Imaging and Jeffrey Imaging are homomorphic change functions20, i.e. they

define a structure-preserving map. A generalized characterization of Jeffrey Imaging

will be provided below, within the multivalued imprecise probabilistic framework (cfr

Def. 23).

In this section we tackle probabilistic belief adjustment by (possibly inconsistent)

sharp or imprecise probabilities, following an approach based on the Imaginary coun-

terparts of PK. See in this spirit [165, 276] on belief functions (and previous section

on CSE).

Following [276] (and previous section), we are willing to check a further consistency

requirement, that would reproduce Eq. (2.4). This way, any adjustment kinematical

operator reduces to some form of conditioning when probabilistic evidence strength-

ens to full observation.

With probabilities, evidence on some random variable X is inconsistent when

it contradicts certainty (or impossibility) in Your knowledge base, a collection of

deductively closed propositions, i.e. belief states, represented by CS K over V. We

provide an example to motivate our contribution.

Example 9. Celeste is swimming in a lake and sees some black birds from the

distance. She knows black birds living around that lake are rather tame, while swans

are very aggressive. Also, she is sure only white or grey swans exist, although those

she sees actually look like swans. As she is reasoning, she is apprised by a sailor

that a small group of black swans has been spotted around that area. Should she be

worried about the birds she sees?

19Günther’s definition assumes c ∈ (0, 1).
20See [109] and [206, Obs.1], respectively.
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Classic belief revision operators from Sec. 2.2 fail to revise a belief set based on

information from an observational process when inconsistencies of this kind arise.

This feature was motivated in the literature by the already mentioned principle of

Partiality. Roughly, Your belief ought to be calibrated with the evidence already

available, if any. Although rationality of Partiality has been advocated by several

authors [85, 262], an AR for the adjustment of a model to any piece of evidence

ought to be in a doxastic agent’s toolbox, to avoid building a new model from

scratch when unexpected information shows up.21 Such an operator updates the

knowledge base to be consistent with new evidence, while leaving previous beliefs

on related events as unchanged as possible. We characterize optimality requirements

for such adjustment operators as Imaginary Kinematics, and extend them to deal

with generalized forms of evidence. Analogously to previous section, we consider

probabilistic evidence, generalized to conditional assessments, and to imprecise ones.

Again, those latter may be intended as originating from a qualitative judgment. We

introduce adjustment functionals based on Lewis’ Imaging, and study their features

and properties.

We lay bare the kinematical conditions that ought to be satisfied by any AR,

when (possibly) inconsistent probabilistic evidence is gathered.22

Consider general probabilistic evidence on r.v. X: K ′X on ΩX , such that |ΩX | ≥ 2;

equivalently, ΦX = {φx,
∑

x∈ΩX
cx = 1}. We introduce Imaginary Kinematics as the

counterparts of PK (and CPK) to Imaging:

Definition 21 (Imaginary Kinematics). Any joint CS K◦ on V comes from K by

imaginary kinematics (IK) on (possibly inconsistent) credal evidence K ′X on r.v. X

whenever it holds:

IK1 K◦(α|x) ≡ K◦Ix (α), for any α ∈ Σ and each x ∈ ΩX ,

IK2 K◦(X) |= ΦX , for each x ∈ ΩX ,

IK3 K◦(X) ≡ K◦Ix (X) whenever cx = 1 for some x ∈ ΩX .

Analogously, based on Def. 17, we provide an imaginary characterization of CPK:

Definition 22 (Imaginary Conditional Kinematics). Let K, K◦ as above, such that

P (y) > 0 for each y ∈ ΩY . K◦ comes from K on ΩX ×{Y = y} based on imaginary

conditional kinematics (ICK) if there exists a (possibly inconsistent) sequence P ′X|y
(or collection ΦX|y) such that it holds:

21As a remark, we consider inconsistencies referring to events from a partition of Ω that have

zero (upper) probability.
22With imprecise probabilities, inconsistency occurs when P (x) = 0, and positive evidence is

provided on x, for some x ∈ ΩX .
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ICK1 K◦(α|x, y) |= K◦Ix (α|y), for each x ∈ ΩX ,

ICK2 K◦(α|y′) ≡ K(α|y′), for each y′ ∈ ΩY \{y},

ICK3 K◦(Y ) ≡ K(Y ),

ICK4 K◦(X|y) |= ΦX|y,

ICK5 K◦(X|y) ≡ K◦Ix (X), whenever cx = 1, for some x ∈ ΩX .

For any α ∈ Σ, if a CS K over V is used to represent Your beliefs, Imaging on

(φ = {x}) extends to:

(K ◦I {x}) (α) = {P ◦Ix (α) = (P ◦I {x}) (α), P ∈ K} ,

so that the lower envelope of K’s Image on {x}, denoted as K◦Ix , at α, writes:

P ◦Ix (α) = min
P (v)∈K(V)

∑
v′∼α

∑
v∈ΩV

P (v)Iγ(v,x)=v′ .

By [211, Th.1], K◦Ix may be efficiently obtained by taking the convex hull (CH)

of the Image of each P ∈ extK on {x}. Since the Image of each P ∈ extK at

α = {x′} trivially corresponds to P ◦Ix (x′) = 0,23 whenever x′ 6= x, refinement of

K◦Ix (X) degenerates to a single PMF satisfying P ′X(x) = 1, 0 otherwise. With an

abuse of notation, this yields the following:

K◦Ix (v) ≡

{
1 ·K(v\{X}) v ∼ x ,

0 otherwise
.

Example 10. Let K over V = {X, Y } such that

K



x1, y1

x1, y2

x2, y1

x2, y2

x3, y1

x3, y2


=



0

0

0.15− 0.35

0.25− 0.49

0− 0.45

0.03− 0.5


.

It is easy to see P ◦Ix1
(yj) = P (yj), j = 1, 2, while P

◦I
x1

(xk) = 0, k = 2, 3.

23By definition, P ◦Ix (x) =
∑

V∈Ω P (V) = 1, 0 otherwise.
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2.3.1 Imaging with Soft Evidence

We start from the case of sharp probabilistic evidence on ΩX , i.e. K ′X(X) =

{P ′X(X)}. The following adjustment operator extends Def. 20. As for Imaging

above, notation that is used with sharp beliefs applies to the generalized case of

belief sets, when |extK| ≥ 1.

Definition 23 ((Probabilistic) Jeffrey Imaging). Let K be any joint CS over V as

above. Suppose probabilistic evidence P ′X is provided over a (possibly) inconsistent

collection of events, i.e. P (x) = 0, whereas P ′X(x) > 0, for some x ∈ ΩX , X ∈ V.

For any event α, K
◦jI
X is the Probabilistic Jeffrey Image of K if it holds:

K
◦jI
X (α) = {P ◦jIX (α) =

∑
x∈ΩX

P ◦Ix (α)P ′X(x), P ◦Ix ∈ K◦Ix , x ∈ ΩX} .

That is, K
◦jI
X (α) = (K ◦jI P ′X) (α), for any α ∈ Σ.

It holds:

Theorem 4. Jeffrey Imaging is based on IK, and IK1 is strongly satisfied, i.e. |=
may be replaced by ≡.

Proof. To prove ◦jI is based on IK, we must check it produces a CS that satisfies

IK1-IK3. Motivated by [211, Th.1], we restrict our attention toward the extreme

points of K. Without loss of generality, let X = {X, Y }. Each extreme point of

K(X), say Pj,k ∈ extK, may be equivalently specified as:

Pj,k(x, y) = P (x|x′j)P (y|x, y′k) , (2.9)

with P (y|x, y′k) is set equal to zero whenever it is undefined and P (x|x′k) = 0.24

X ′ and Y ′ are uniformly distributed auxiliary random variables, used to index K’s

extreme points at X and at Y |X, respectively. This way, for a given ordering,

P (x|x′1) =
∑
y′k,y

P (x|x′1)P (y|x, y′k)P (y′k)

= P (x) ,

and P (x, y) = P (x|x′1)P (y|x, y′1).

It holds:

P ◦Ix (x) = P ◦Ix (x|x′1)

=
∑
y′k,y,x

P (x|x′1)P (y|x, y′k)P (y′k)

= 1 .

24As a remark, P (x) = 0 does not necessarily imply P (y|x) = 0, in De Finetti’s view.
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If P ′X |= (φ = {x}), IK3 is satisfied.

When a non-trivial PMF is provided, i.e. P (x) > 0 for at least two elements in ΩX ,

it holds:

P
◦jI
X (x|x′1) =

∑
y′k,y,x

P (x|x′1)P (y|x, y′k)P (y′k)

P ′X(x)

= 1 · P ′X(x) ,

and similarly P
◦jI
X (x|x′|extK|) = P ′X(x). This proves IK2 since K

◦jI
X (X) 3 P ′X(X).

Proof of IK1 is also straightforward:

P
◦jI
X (y|x, y′1) =

[∑
x,x′j

P (x|x′j)P (y|x, y′1)
]
P ′X(x)

P ′X(x)

=
∑
x,x′j

P (x|x′j)P (y|x, y′1)

= P ◦Ix (y|y′1)

Analogous reasoning applies to the upper envelope, and thus K
◦jI
X (Y |x) ≡ K◦Ix (Y ).

This ends the proof.

Corollary 1. Given sharp probabilistic knowledge on ΩX , the Jeffrey Image of any

CS may be equivalently specified by the convexification of all PMFs P ◦, each defined

as follows:

P ◦(α) =
∑
v∼α

P ′X(x)P (v) ∀P ∈ extK .

It is easy to see standard Imaging is also trivially based on IK.

Example 11. Consider Ex. 10 above. Celeste’s beliefs are formalized as follows: let

ΩY = {y ≡ Swan,¬y ≡ ¬Swan}, ΩX = {xW ≡White, xG ≡ Grey, xB ≡ Black} and

ΩZ = {z ≡ Aggressive,¬z ≡ Tame}.
It holds:

P (Y ) = {(y, 0.7), (¬y, 0.3)} ,

P (X|Y ) =


(xW |y, 0.8), (xG|y, 0.2),

(xB|y, 0), (xW |¬y, 0.5),

(xG|¬y, 0.3), (xB|¬y, 0.2)

 ,

P (Z|Y ) =

{
(z|y, 0.95), (¬z|y, 0.05),

(z|¬y, 0.2), (¬z|¬y, 0.8)

}
.
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According to Celeste’s beliefs, P (z|xB) = 0.2.

Based on the sailor’s words, Celeste is willing to adjust her beliefs to be consis-

tent with P ′X|y(X|y) = {(xW , 0.8), (xG, 0.1), (xB, 0.1)}. Straightforward application

of Adams conditioning is undefined, since P (xB|y) = 0 (probability of the event ac-

cording to the original PMF), while CoSE P ′X|y(xB|y) 6= 0. The same would occur

with simple Jeffrey’s rule, if any P ′X(x) 6= 0 was provided, given P (x) = 0, for

some x ∈ ΩX . How could Celeste incorporate such reliable knowledge in her beliefs?

and suppose P ′X(X) = {(x1, 0.3), (x2, 0), (x3, 0.7)}. By Jeffrey Imaging on P ′X , we

obtain K
◦jI
X (Y ) ≡ K(Y ), while P

◦jI
X (yj|xi) ≡ K◦Ixi (yj), i = 1, 2, 3, j = 1, 2. Also,

K
◦jI
X (X) |= P ′X(X), and K

◦jI
X is equivalent to the convex hull of PMFs P ◦, defined

as:

P ◦(x, y) = P ′X(x)P (y) ,

for each x ∈ ΩX , y ∈ ΩY and P ∈ extK.

2.3.2 Imaging with Conditional Soft Evidence

We now introduce Adams Imaging as an adjustment operator ◦aI , that extends ◦jI
to the case of CoSE, just like revision rule ◦A extends ◦J .

Definition 24 (Adams Imaging). Let K be any joint CS on (Ω,Σ) such that P (y) >

0, Y ∈ V, and let CoSE P ′X|y on ΩX × {Y = y}. K◦aIX|y, the Adams Image of K on

P ′X|y, comes from K by Adams Imaging ◦aI , if it holds:

K◦aIX|y(α) =

{
P ◦aIX|y(α) = P (α,¬y) +

∑
x∈ΩX

P ◦Ix (α, y)P ′X|y(x|y),
P ∈ K,P ◦Ix ∈ K◦Ix ,
x ∈ ΩX

}
.

I.e. K◦aIX|y(α) =
(
K ◦aI P ′X|y

)
(α), for any α ∈ Σ.

When |extK| = 1, from previous considerations, Adams Imaging reduces to the

following:

P ◦aIX|y(α) = P (α,¬y) +
∑
x∈ΩX

P ◦Ix (α, y)P ′X|y(x|y) . (2.10)

Example 12 (Ex. 9 continued). The Adams Image on P ′X|y of Celeste’s beliefs on

ΩX × ΩZ is the following:

P ◦aIX|y



xW z

xW¬z
xGz

xG¬z
xBz

xB¬z


=



0.5620

0.1480

0.0845

0.0755

0.0785

0.0515


.
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It holds P ◦aIX|y(X|y) = P ′X|y(X|y) and P ◦aIX|y(Y, Z) = P (Y, Z). Adjustment of her

beliefs by P ′X|y yields P ◦aIX|y(z|xB) ≈ 0.6, whereas P (z|xB) = 0.2. Celeste rapidly

swims back to shore.

As a remark, inconsistency of P ′X|y(x|y), for some x ∈ ΩX , with respect to any

PMF P , may refer to either i) P (x|y) = 0, while P (y) > 0, (this is just the case of

Adams Imaging above), or ii) P (y) = 0 in the first place, and possibly P (x|y) = 0.

We argue case ii) deserves some caution, since full inconsistency of event (Y = y)

is likely not to yield any further conjecturing on related events, from a modeler’s

perspective. e.g. You are certain that no alien lives on Mars. Is it worth include

Your belief on the alien having long hair in Your belief set, provided that You

are not admitting the alien’s existence upstream? On the other hand, we reckon

arguments may be easily raised against our position, starting from our proposed

running example. Still, so long no evidence is provided on ΩY , a cautious approach

would require application of an iterated procedure. We leave this point for future

work.

It is straightforward to see Adams Imaging generalizes Jeffrey’s Imaging to the

conditional setting, and thus, from previous results, Imaging. The following holds:

Theorem 5. Adams Imaging is based on ICK, and ICK1 is strongly satisfied, i.e.

≡ holds. Eq. (2.10) strongly satisfies all conditions.

Proof. To prove ◦aI is based on ICK we need to check ICK1-ICK5 are satisfied by

K◦ =
(
K ◦aI P ′X|y

)
. When |extK| = 1, ICK1-ICK5 reduce to the following:

ICK1’ P ◦(α|x, y) = P ◦Ix (α|y), for each x ∈ ΩX ,

ICK2’ P ◦(α|y′) = P (α|y′),

ICK3’ P ◦(Y ) = P (Y ),

ICK4’ P ◦(X|y) = P ′X|y(X|y),

ICK5’ P ◦(X|y) = P ◦Ix (X|y), whenever P ′X|y(x|y) = 1 for some x ∈ ΩX .

We first prove consistency points ICK4’ and ICK5’. Let P ′X|y be any PMF on

ΩX × {Y = y}, it holds:

P ◦aIX|y(x|y) =
P ◦Ix (y)P ′X|y(x|y)∑
x P
◦I
x (y)P ′X|y(x|y)

= P ′X|y(x|y)
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since P ◦Ix (x, y) = P ◦Ix (y) = P (y), whatever x ∈ ΩX . Also,
∑

x P
′
X|y(x|y) = 1 by

definition. If P ′X|y(x|y) = 1 for some x, P ◦aIX|y(x|y) = 1, 0 otherwise. The following

holds:

P ◦(x|y) = min
P ◦∈extK◦

P ◦(x|y)

= P ′X|y(x|y)
P
◦I
x (y)

P ◦Ix (y)

≤ P ′X|y(x|y) .

Similarly, P
◦
(X|y) ≥ P ′X|y(X|y), for each P ◦ ∈ extK◦.

We now prove condition ICK1 (and thus ICK1’) is satisfied by ◦aI . Without loss of

generality, let X = {X, Y, Z}. It holds:

P ◦(z|x, y) =
P ′X|y(x|y)P ◦Ix (z, y)

P ′X|y(x|y)P
◦I
x (y)

= P ◦Ix (z|y) .

As for point ICK2 (and ICK2’), it trivially holds by Def. 24:

P ◦(z|y′) = P (z|y′) .

for any y′ 6= y. ICK3’ is proved analogously, since P ◦aIX|y(y) = 1 − P (¬y) = 1 −∑
y′ 6=y P

◦aI
X|y(y

′). Similarly, fulfillment of ICK3 may be derived by the conjugacy

relation [257].

Analogously to Cor. 1, it may be easily shown K◦aIX|y at any v ∼ y is equivalent to

the CS obtained taking the product of sharp assessment P ′X|y and the marginalization

over r.v. X of the original belief set K. We provide the additional result, extending

Rens et al.’s [211]:

Theorem 6. Both Jeffrey and Adams Imaging satisfy consistency axioms KM1,

KM3 and KM4. KM2, KM5 and KM6 are satisfied only is K is degenerate at

(X|y), i.e. |K(X|y)| = 1 (and at (Z|w), for KM5 and KM6).

Proof. Consider CS K and conditional probabilistic evidence P ′X|y(X|y). To avoid

cumbersome notation, we write ◦ to denote ◦aI throughout the proof. Also, we refer

to general formula φ = c to denote both φx and φx|y.

KM1 and KM3 follow from IK2 and ICK4 (cfr Th.1 and Th.2, respectively).

We prove KM2 is not satisfied under general conditions. Consider the lower envelope

of K at (x|y). If K |= P ′X|y, it holds:

P (x|y) ≤ P ′X|y(x|y)
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by definition, and
(
K ∪ P ′X|y

)
= K. From previous discussion, we expect (K ◦

P ′X|y) ⊇ K, equality holding if and only if K(X) may be equivalently specified

as the product of sharp conditional assessment on ΩX × {Y = y} and CS over

(X\{Y }, y). Same reasoning applies to KM5 and KM6. These three postulates

are satisfied if and only if K is already degenerate at the domain of probabilistic

evidence, and consistent with it already.

Postulate KM4 holds by [211, Th.1].

2.3.3 Imaging with Credal Soft Evidence

When beliefs are expressed as a joint CS over V, adjustment by a single reliable

PMF requires simultaneous computation of all bounds spanned by the updating of

each P ∈ K. Also in this case, adjustment may be restricted to those PMFs in

extK, and their convex hull (CH) efficiently considered.

Definition 25 (Credal Jeffrey Imaging). Given CS K over V and credal probabilis-

tic evidence K ′X(X), we define Credal Jeffrey Imaging ◦cjI as the functional mapping

K to CS K
◦cjI
X , consistent with K ′X(X) as follows:

K
◦cjI
X (α)

=

{
P ◦(α) = (P ◦jI P ′X) (α),

P (V) ∈ K(V),

P ′X ∈ K ′X(X)

}

The following preliminary result holds:

Lemma 1. Let K be a joint CS over V, and let K ′X denote a credal probabilistic

finding, gathered on ΩX . For any event α, the Jeffrey Image K
◦cjI
X (α) of K(α) on

K ′X(X) satisfies the following:

K
◦cjI
X (α) ⊇ K

◦cjI
X (α|x) ⊇ K◦Ix (α)

for any α ∈ Σ. Equality holds when |K ′(X)| = 1.

Proof. Let V = {X, Y } and K be any CS over Ω. K ′X is gathered on ΩX , to adjust

K accordingly. By definition of Credal Jeffrey Imaging, it holds:

min
P
◦cjI
X ∈K

◦jI
X

P
◦cjI
X (y|x) = min

P (y)∈K(Y )
P (y)

P ′X(x)

P
′
X(x)

≤ min
P (y)∈K(Y )

P (y) ,
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and analogously for the upper envelope, with ≥. This proves the rightest inclusion

relationship: K
◦cjI
X (Y |x) ⊇ K◦Ix (Y )(≡ K(Y )).

We now prove inclusion of K
◦cjI
X (y|x) by K

◦cjI
X (y):

P
◦cjI
X (y)

P
◦cjI
X (y|x)

=
P (y)

∑
x P
′
X(x)

P (y)
P ′X(x)

P
′
X(x)

= P
′
X(x)

∑
x′ 6=x

P ′X(x′)

≤ 1 .

Hence P
◦cjI
X (y) ≤ P

◦cjI
X (y|x), for any x ∈ ΩX , y ∈ ΩY . P

◦cjI
X (y) ≥ P

◦cjI
X (y|x) is

derived analogously.

Equality holds when K ′X(X) = {P ′X(X)} as P ′X(x) = P
′
X(x), for each x ∈ ΩX ,

summing to one.

The following result generalizes Th. 4 above:

Theorem 7. Given (possibly) inconsistent credal probabilistic evidence, Credal Jef-

frey Imaging yields the unique joint CS based on IK.

Proof. Given a joint CS K over V and K ′X , let ◦ denote Credal Jeffrey Imaging.

IK1 is satisfied by Lemma 1. IK2 is also satisfied as it holds:

P
◦cjI
X (x) = 1 · P ′X(x) ,

for each x ∈ ΩX . And analogously for P
◦cjI
X (X). When K ′X(X) = {P ′X(X)} such

that P ′X(x) = 1, IK3 is satisfied since ◦cjI reduces to ◦jI .

In this chapter we introduced kinematical adjustment operators in the generalized

setting of imprecise probabilities, specified by credal sets. These are summarized

in Table 2.1. Further generalization to the case of credal conditional probabilistic

evidence is not straightforward as the adjustment process would likely incur in di-

lating mechanics, and hence yield detrimental loose inclusion relationships. This

reasoning also applies to the iterated framework, where additional considerations

must be formulated on the role evidence plays on the adjustment process. Future

work will tackle this sort of scenarios.

Due to partiality, standard revision rules (conditioning, Jeffrey’s rule and Adams

conditioning) ought not be accounted for as fully general, whereas the remaining

succeed in adjusting a given belief set following inconsistent observations. As for

the special case of conditioning, an alternative approach worth mentioning was pro-

posed in the literature of probabilistic beliefs: namely that of lexicographic beliefs
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Evidence (Φ∗) Partiality Kinematics

Conditioning (|) {x} Yes [139, 84]

Jeffrey’s Rule (◦J) {x} = cx,∀x Yes [84]

Adams Conditioning (◦A) {y → x} = cx,∀x Yes [27, Th.5]

Credal Jeffrey’s Rule (◦CJ) {x} BC cx,∀x Yes Th.1

CIR/CUR {x} BC cx,∀x Yes (see Sec. 3.2.2)

Lewis Imaging (◦I) {x} No Th. 425

Jeffrey Imaging (◦jI) {x} BC cx,∀x No Th. 4

Adams Imaging (◦aI) {y → x} = cx,∀x No Th.5

Credal Jeffrey Imaging (◦cjI) {x} BC cx,∀x No Th.7

Table 2.1: Summary of revision rules for probabilistic precise belief revision, intro-

duced in Sec.2.2.

[24]. These are based on a radically different assumption that enriches the agent’s

beliefs by allowing for an internal hierarchy. Such approach eliminates the zero-

probability events, and related issues, at their roots.





Chapter 3

Graphical Tools for Belief

Propagation

In this chapter we introduce virtual evidence and extend it to the conditional and

credal frameworks. Our approach stems from the seminal results of Chan and Dar-

wiche [35], that proved inter-reducibility of virtual and soft instances. Such an

equivalence result yields a convenient formalism for graphical probabilistic belief re-

vision, although deep epistemic differences characterize virtual and soft evidence.1

This is particularly relevant in the iterated framework, discussed in Ch. 5.

With graphical models, we intend probabilistic belief revision as belief propagation

(or focusing [93], see also [92]), as opposed to model revision, i.e. elicitation of the

model. Roughly, the first refers to specific evidence [93] on a case - e.g. the result

of a diagnostic test on a patient - that is propagated by generalized forms of condi-

tioning, to answer a given probabilistic query. General evidence, on the other hand

is a statement on the world outside, aimed to replace some prior knowledge. We ar-

gue our methodology applies in principle to both tasks, with one-shot belief revision.

3.1 Related Work

Previous approaches to graphical probabilistic belief revision ([244, 197] and related

works) tackle solution of a constrained optimization task, for a given distance mea-

sure. Minimization usually involves cross-entropy or total variation [197], yielding

the I-projection [57] of the prior probability mass function by Iterative Propor-

tional Fitting, i.e. iterated application of Jeffrey’s rule on a subset V′ ⊆ V of

1See [188] and related works for a thorough discussion on this issue.
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r.v.s. Entropy-based belief revision was proved to satisfy a number of principles

[229]. Yet, consistency is likely to be failed within generalized contexts, as widely

discussed, among others, by [120]. As previously discussed, a systematization of the

techniques for probabilistic belief revision into either distance-based or conservative

was proposed in [89]. The implications of a kinematical approach become more ap-

parent with graphical models, where the pattern of independence plays a major role,

and ought to be unchanged by any belief revision process. Simply put: kinematical

approaches choose conservativeness over full consistency, and vice versa for those

distance-based.

Belief revision of credal networks by sharp soft evidence was considered by [58],

where the constrained optimization task was solved by multilinear programming,

implementing variable elimination2. We deal with the opposite setting in Sec. 2.1

(and [171]), where we propose a set-valued quantification for reliable modeling of

uncertain evidence in Bayesian networks.

Finally, Sec. 3.3 considers revision of a CN by credal probabilistic evidence. In

this direction, although with a major focus on the merging process of credal sets,

Adamcik [2] (and related works), provided several theoretical results. His approach

is based on a class of distance-based operators (each minimizing a given Bregman

divergence, see Ch. 4 for details). These, once again, are prone to fail standard pos-

tulates for revision operators, introduced in Sec. 2.1. Remarkably, uncertain belief

propagation in a DAG-based model was also considered in the framework of evidence

theory [230], where models specified by belief functions are revised by evidence af-

fected by epistemic uncertainty. Yet, although a belief function can be regarded

as a credal estimate, specialization of evidential rules to the graphical framework

becomes more problematic and does not give a direct extension of the Bayesian

networks formalism when DAGs are considered.

3.2 Generalized Pearl’s Method with Bayesian Net-

works

Observation of random variable X may be affected by degrees of uncertainty, or

be unreliable upstream.3 Both situations yield evaluations of the elements of ΩX

based on likelihood ratios. Let DX be the Boolean random variable representing the

2See p. 21 (Ch. 1).
3So far, we deliberately avoided any remarks about the link existing between a piece of infor-

mation and its interpretation by the agent and/or its veridicity. See [148] and references therein

for an introduction to the subject in the theory of belief revision.
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observational process, we define virtual evidence (VE [194]) the collection

λX = {λx : x ∈ ΩX} ,

with λx ∝ P (DX = dX |X = x); dX is called DX ’s truth event, as opposed to its

negation ¬dX . VE is gathered to an agent for belief revision based on a “nothing

else considered” approach [35] and, contrary to SE, it solely depends on the obser-

vational process itself. VE was first introduced by Pearl [194] within the framework

of graphical models:

Definition 26 (Pearl’s Method for VE [193]). Let B be any BN. Given VE λX ,

augment G with auxiliary binary leaf node DX , such that Pa(DX) = {X}, with

ΩDX = {dX ,¬dX}. Its CPT is specified as:{
P (dX |x) ∝ λx

P (¬dX |x) = 1− P (dX |x)

for each x ∈ ΩX . Let α be any target event, instantiation of DX to its truth value

yields:

P (α|dX) =

∑
x∈ΩX

P (α, x)P (dX |x)∑
x∈ΩX

P (x)P (dX |x)
(3.1)

and we write, P (α|dX) = (P ◦P λX) (α).

See Fig. 3.1(left panel) as an example.

It was proved VE may be transformed into SE, and vice versa:

Transformation 1 ([35]). Let λX and P ′X be, respectively, VE and SE on random

variable X. Let P λ
X(X) be defined as:

P λ
X(x) ∝ P (x)λx∑

x P (x)λx
.

for every x ∈ ΩX . Conversely, we define λPX as:

λPx =
P ′X(x)

P (x)

for every x ∈ ΩX .

The following holds:

Proposition 2 ([35]). Based on Tr. (1), it holds:

(P ◦P λX)(α) = (P ◦J P λ
X)(α) (3.2)

(P ◦J P ′X)(α) = (P ◦P λPX)(α) (3.3)
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This result was exploited, among others by [197], to generalize Def. 26:

Definition 27 (Generalized Pearl’s Method for SE). Given B over V, and P ′X(X),

with X ∈ V, augment G with DX as in Pearl’s Method, and specify its CPT based

on Tr. 1: {
P (dX |x) = ηλPx
P (¬dX |x) = 1− P (dX |x)

where η is any (strictly positive) real number that projects P (dX |x) in the probability

simplex, shared by all columns of the CPT. Instantiate DX to its truth value and

propagate evidence, as in Eq. (3.1); P ∗(α|dX) results, for any fixed event α.

Def. 27 implements ◦J by ◦P in a BN. This way, the revision process is reduced

to an updating task. As a trivial consequence to Prop. 2, Pearl’s RR ◦P for VE is

based on probability kinematics [35, 255, 251], and soft information is fully retained

by the network, i.e. P (X|dX) = P ′X(X). A further revision operator, that we call

Wagner’s rule, was proposed in [255], based on Bayes factors on ΩX :

κX =
P ′X(X)/P ′X(x0)

P (X)/P (x0)
∝ λX
λx0

,

x0 being any reference value. Wagner’s bridges Jeffrey’s rule to Pearl’s method as

it tweaks the soft instances’ connection to PMF P by focusing on changes in the

odds. Both Wagner’s rule and Pearl’s method are Externally Bayesian, i.e. they

commute with likelihood-based conditioning (see Ch 4). With VE, this results from

commutativity of iterated updating. Let P ′X(X) and P ′Y (Y ) be SE on r.v.s X and

Y , respectively. Schema X;Y corresponds to:

PX;Y (α) =
((
P ◦P λPX

)
◦ λPXY

)
(α) ,

for any α. Revision of the PMF by P ′Y requires computation of denominator terms

that differ from P (Y ), in general, as VE from Tr. 1 is not invariant to changes in

the revision ordering. A simultaneous approach would require prior computation of

all denominators, for all r.v.s considered.4

From a computational viewpoint, introduction of DX does not alter the network’s

topology: complexity of inference is not affected by the procedure [193]. Yet, un-

like straightforward application of Pearl’s method, a preliminary inferential step is

required to compute all denominator terms P (X) = {P (x) : x ∈ ΩX}. This step is

trivially neglected if X is a root node.

4See [168] for a graphical justification of such procedure. We will come back to this in Ch. 5.
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CX X

DX

CX X

DX

Figure 3.1: Graphical representation of generalized Pearl’s methods on a toy

Bayesian network when a marginal (left panel) or conditional (right panel) uncertain

instance. CPTs of auxiliary binary leaf nodes DX may be sharp or credal, based on

the type of evidence.

Example 13 ([171]). Let X denote the actual color of a traffic light with ΩX :=

{g, y, r}. Assume g (green) more probable than r (red), and y (yellow) impossible.

Thus, for instance, P (X) = [4
5
, 0, 1

5
]. We eventually revise P (X) by SE P ′X(X),

which keeps yellow impossible, but assigns the same probability to the two other

states, i.e. P ′X(X) = [1
2
, 0, 1

2
]. Because of Eq. (3.3), this can be equivalently achieved

by a VE λPX ∝ {1, 1, 4}. Vice versa, because of Eq. (3.2), VE λ̃X ∝ {1, 1, 5} induces

an updated P λ̃
X(X) = [4

9
, 0, 5

9
]. Such PMF coincides with P (X|dX) in a two-node BN,

with dX child of X, CPT P (dX |X) such that P (dX |X) = [ 1
10
, 1

10
, 1

2
] and marginal

PMF P (X) as in the original specification.

Uncertain evidence (UE) generalizes both concepts of SE and VE. Let XU =

XS ∪XV denote the collection of all random variables in V that are observed with

uncertainty. We do not require XS ∩XV = ∅.

3.2.1 Generalized Pearl’s Method with Conditional Uncer-

tain Evidence

Let us now generalize CoSE to the case of uncertain conditional evidence, where

λX|c∗ is a collection of virtual instances on random variable X ∈ XV , conditional

on relevant event CX = c∗X . To avoid cumbersome notation, we denote context

variables as CX = C. Conditional VE is defined as the collection:

λX|C=c∗ = {λx|c∗ : x ∈ ΩX} . (3.4)

Following previous reasoning, we define the following transformation:

Transformation 2. Let λX|c∗ and PX|c∗ be, respectively, CoVE and CoSE on ran-

dom variable X, for a (single) given relevant context c∗. CoSE P λ
X|c∗(X|c∗) is defined
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as:

P λ
X|c∗(x|c∗) ∝

P (x|c∗)λx|c∗∑
x P (x|c∗)λx|c∗

∀x ∈ ΩX .

Conversely, CoSE PX|c∗(X) is transformed into CoVE λPX|c∗ as follows:

λPx|c∗ :=
PX|c∗(x|c∗)
P (x|c∗)

∀x ∈ ΩX .

Definition 28 (Pearl-Adams conditioning). Let conditional SE be available on X as

P ′X|c∗(X|c∗). By Pearl-Adams conditioning we augment the network with auxiliary

binary leaf node DX|c∗ such that Pa(DX|c∗) = {X}∪C. Columns of node dX ’s CPT

consistent with relevant contexts are specified as from Tr. (2), with proportionality

factor η:

P (dX|c∗ |x, c∗) = η
P ′(x|c∗)
P (x|c∗)

∀x ∈ ΩX . (3.5)

If conditional VE is provided, they are specified as:

P (dX|c∗|x, c∗) = λx|c∗ ∀x ∈ ΩX . (3.6)

All remaining columns are specified as:

P (dX = dX|c∗|x, c) = η (3.7)

for every c ∈ ΩC\{c∗}.

Node DX|c∗ is instantiated to its truth value and evidence is propagated. Given

any target event α, P ∗(α) = P (α|dX|c∗) results.

See Fig. 3.1 (right panel) as an example. Unlike Pearl’s method from Def. 26 and

27, the proposed augmentation of the network potentially affects the topology of the

DAG as it introduces multiple paths, linking any node in C to auxiliary node DX|c∗ .

If G is singly connected, updating on virtual observation (DX|c∗ = dX|c∗) takes no

longer polynomial time and becomes an NP-hard task [45]. Several approaches to

inference with multiply connected networks have been proposed in the literature,

including inference based on junction trees (see Ch. 1). In Sec. 5.3 we propose

application of the JT algorithm on iterated belief propagation; there, we require

|C| < d, treewidth of G5, in order not to affect the inference complexity.

Theorem 8. Let CoSE be provided on the pair (X,C) as P ′X|c∗(X|c∗). Belief prop-

agation by Pearl-Adams conditioning is based on CoPK.

5Remember the treewidth of a DAG is defined as the maximum cardinality of all parents’ sets,

or equivalently, as the maximum in-degree.
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Proof. We prove the PMF resulting from Pearl-Adams conditioning satisfies postu-

lates i) to iv) of Def.17 when uncertain evidence is CoSE.

Proof of i) Success :

P ∗(x|c∗) = P (x|c∗, dX|c∗)

=
P (c∗)P (x|c∗)P (dX|c∗|x, c∗)

P (c∗)
∑

x∈ΩX
P (x|c∗)P (dX|c∗ |x, c∗)

=
P (x|c∗)P (dX|c∗|x, c∗)∑

x∈ΩX
P (x|c∗)P (dX|c∗ |x, c∗)

= PX|c∗(x|c∗) .

Proof of ii) Generalized rigidity

P ∗(α|x, c) = P (α|x, c, dX|c∗)

=
P (α, x|c, dX|c∗)∑
α P (α, x|c, dX|c∗)

=
P (α|x, c)P (x|c)P (dX|c∗|x, c)∑
α P (α|x, c)P (x|c)P (dX|c∗ |x, c)

=

{ P (α|x,c)PX|c∗ (x|c)∑
α P (α|x,c)PX|c∗ (x|c)

c = c∗

P (α|x,c)P (x|c)∑
α P (α|x,c)P (x|c)

c 6= c∗

= P (α|x, c) .

Proof of iii) Rigidity of contexts :

P ∗(c) = P (c|dX|c∗)

=

∑
x∈ΩX

P (c)P (x|c)P (dX|c∗ |x, c)∑
x∈ΩX ,c∈ΩC

P (c)P (x|c)P (dX|c∗ |x, c)

=


∑
x P (c)PX|c∗ (x|c)∑
x,c P (c)PX|c∗ (x|c)

c = c∗∑
x P (c)P (x|c)∑
x,c P (c)P (x|c)

c 6= c∗

= P (c) .

Proof of iv) Rigidity to neutral contexts :

P ∗(α|c) = P (α|c, dX|c∗)

=

∑
x∈ΩX

P (α|x, c)P (x|c)P (dX|c∗|x, c)∑
α,x∈ΩX

P (α|x, c)P (x|c)P (dX|c∗|x, c)

=

∑
x P (α|x, c)P (x|c)∑
α,x P (α|x, c)P (x|c)

= P (α|c) .
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By Tr. (2), P ∗(x|c∗) = P λ
X|c∗(x|c∗) is obtained by replacing P (dX |x, c∗) with λx|c∗

in the proof of i) Success, for each (x, c∗). Proofs for conditions ii) to iv) may be

obtained analogously, replacing PX|c∗ by P λ
X|c∗ .

Corollary 2. By [27, Th.5], consider any target event α and let P ∗(α) be the PMF

resulting from Pearl-Adams conditioning on uncertain evidence on random variable

X, given C = c∗. It holds P ∗(α) = (P ◦A PX|c∗)(α), for every event α.6

Example 14 (Ex. 7 Continued). Consider again the example of the Professor

Disease (see p.35). The doctor decides to augment the BN representing her sys-

tem of knowledge with auxiliary binary leaf node DC|a. Based on her prior beliefs,

P (C|a) = {0.60, 0.40}. The CPT of DC|a is specified following Def. 28:
P (DC|a = dC|a|a, c) = η · 0.75/0.60

P (DC|a = dC|a|a,¬c) = η · 0.25/0.40

P (DC|a = dC|a|¬a, c) = η

P (DC|a = dC|a|¬a,¬c) = η

It follows,

P ∗(e) = P (e|dC|a)

=
P (e, dC|a)

P (dC|a)

=

∑
A,C P (A)P (C|A)P (e|C)P (dC|a|A,C)∑

A,C P (A)P (C|A)P (dC|a|A,C)

=
0.3420.75

0.6
+ 0.1410.25

0.4
+ 0.001 + 0.021

0.4500.75
0.6

+ 0.300 · 0.25
0.4

+ 0.002 + 0.247

= 0.538

=
(
P ◦A PC|a

)
(e)

This result is the same we obtained previously by Adams conditioning.

Let α = (A = a), by Pearl-Adams conditioning we get P ∗(α) = P (a|dC|a) = 0.75 =

P (α). That is, conditional soft evidence on event (c|a) does not change prior knowl-

edge on conditioning event (A = a); the postulate of Rigidity of contexts is satisfied.

Fulfillment of all kinematical postulates from Def. 17 may be checked analogously by

simple calculations.

As shown by Example 14, and by Th. 8, Pearl-Adams conditioning extends the

equivalence result of [35] to the conditional setting. That is, Pearl’s method is

generalized by Pearl-Adams conditioning, just like Jeffrey’s rule is generalized by

6If uncertain evidence on X is virtual, Adams conditioning is on PλX|c∗ from Tr. (2).
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Adams conditioning. We stress absorption of marginal uncertain evidence, comes

naturally as an instance of the conditional case, when C = ∅. Also, full conditional

uncertain evidence is nothing but conditional instances on every element of ΩC.

3.2.2 Generalized Pearl’s Method with Credal Uncertain

Evidence

Credal virtual evidence (CVE) is obtained by replacing standard VE with intervals.

Notation ΛX is used here for the intervals {λx, λx : x ∈ ΩX}. To give an intuition,

standard VE may be used to model partially reliable sensors or tests, whose quantifi-

cation is based on sensitivity and specificity data. Indeed, these data are not always

promptly available; e.g. a pregnancy test whose failure can be only decided later.

When few data are available, a CVE with interval likelihoods can be quantified by

the imprecise Dirichlet model (see [23] for details). Given N observations of r.v.

X, if n(x) of them reports x, the lower and upper bound of P (x) for the imprecise

Dirichlet model are, respectively:

n(x)

N + s
,

n(x) + s

N + s

with s effective prior sample size. Consider the following example:

Example 15 ([171]). The reference standard for diagnosis of anterior cruciate lega-

ment sprains is arthroscopy is called Declan test [40]. In a trial, 40 patients coming

in with acute knee pain are examined using this test. Every patient also has an

arthroscopy procedure for a definitive diagnosis. Results are hereby reported:

Declan Positive Declan Negative

Arthroscopy Positive 17 6

Arthroscopy Negative 3 14

Indeed, 17 cases are true positive, 6 are false negative, 3 are false positive and

14 are true negative. Based on available data, Declan test has 73.9% sensitivity rate

(true positive cases over all positive cases), and 82.3% specificity (true negative cases

over all negative cases), with overall 77.7% accuracy (percentage of rightly diagnosed

cases). Any given patient visiting a clinic is given sprain probability P (x) = 0.2.

Given a positive Declan test result, the imprecise Dirichlet model with s = 1 corre-

sponds to a CVE with:

λx =
17

24
, λx =

18

24
, λ¬x =

3

18
, λ¬x =

4

18
.
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The bounds of the revised sprain probability with respect to the above constraints are

P ∗(x) = 1
3
, P

∗
(x) ' 0.53. A VE with frequentist estimates would have produced

instead P ∗ ' 0.51.

Transformation 3. Given a BN over V and a CVE ΛX , add binary child DX of

X and quantify its CCPT K(DX |X) with constraints λx ≤ P (dX |x) ≤ λx.

If X is binary, single constraint l ≤ P (x) ≤ u defines a CS K(X) with elements

P1(X) := [l, 1− l] and P2(X) := [u, 1− u].

Tr. (3) reduces CVE updating in a BN to CN updating; see Fig. 3.1(left panel) as

an example. The following holds:

Theorem 9. Given a CVE in a BN, consider the CN returned by Tr. (3). For any

event α it holds:

P (α|dX) = PΛX
(α)

where PΛX
(α) = (P ◦P λx) (α). Analogous reasoning yields the upper bounds.

Proof. The result follows from the analogous result with BNs. Without loss of

generality, let α = {XQ = xQ}, for some XQ ∈ V. For any BN consistent with the

CN returned by Tr. (3), the conditional independence between XQ and DX given X

implies:

P (xQ|dX) =

∑
x P (xQ|x)P (x)P (dX |x)∑

x P (x)P (dX |x)
. (3.8)

The terms with set-valued specification in the right-hand side of Eq. (3.8) above

are {P (dX |x) : x ∈ ΩX}. The lower probability P (xQ|dX) according to the CN is

therefore:

min
λx∈[λx,λx]
x∈ΩX

∑
x P (xQ|x)P (x)λx∑

x P (x)λx
(3.9)

where the bounds of the optimization variables are those specified by Tr. (3).

Eq. (3.9) is nothing but PΛX
(xQ). This ends the proof.

Definition 29 (Pearl’s Credal Method). Let ΛX as above, and let P be a sharp

PMF over V. We define Pearl’s Credal Method ◦CP as follows:

(P ◦CP ΛX) (α) =

{
P ∗(α) : P ∗(α) =

∑
x∈ΩX

P (α, x)λx∑
x∈ΩX

P (x)λx
, λx ∈ ΛX , ∀x ∈ ΩX

}

Following previous reasoning,

Transformation 4. Convert ΛX into CSE KΛ
X(X) by the following:

PΛ(x) =
P (x)λx

P (x)λx +
∑

x′ 6=x P (x′)λx′
(3.10)
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and analogously, with a swap between lower and upper likelihoods, for the upper

bound. Conversely, CSE K ′X(X) is transformed into CVE ΛK
X as follows:

λ′x ∝
P ′(x)

P (x)
(3.11)

where P ′(x) = minP ′X(X)∈K′X(X) P
′
X(x), and analogously for the upper bound.

Fig. 3.1(left panel) represents augmentation of a BN by credal nodes when set-

valued marginal uncertain evidence is propagated by credal generalizations of Pearl’s

Method. We argue extension of the results from this section to the case of conditional

CSE (right panel of Fig. 3.1) is straightforward, also based on Sec. 3.2.1.

We define the shadow of K(X) the CS K̂(X) obtained from all the PMFs P̂ (X)

such that, for each x ∈ ΩX :

min
P (X)∈K(X)

P (x) ≤ P̂ (x) ≤ max
P (X)∈K(X)

P (x) .

A CS coinciding with its shadow is called shady. It is a trivial exercise to check

that CSs over binary variables are shady. The following result provides the credal

generalization of Prop. 2.

Theorem 10. Absorption of a CSE with shady CSE K ′X(X) is equivalent to that of

CVE ΛK
Xn

, and, vice versa, absorption of a CVE ΛX is equivalent to that of a CSE

KΛ
X(X), as from Tr. (4).

Proof. To prove the first part of the theorem consider a VE λX consistent with the

bounds in Eq. (3.11) and its analogous for the upper bounds, i.e. for each x ∈ ΩX :

η · P
′(x)

P (x)
≤ λx ≤ η · P

′
(x)

P (x)
(3.12)

where η is the constant of proportionality making all the likelihoods smaller than

one. By a derivation similar to that in the proof of Th. 9, we can express the CVE

absorption as the optimization in Eq. (3.9) with the constraints in Eq. (3.12). After

substitution P ′(x) := η−1P (x)λx for each x ∈ ΩX , we obtain:

P (xQ|dX) = min
P ′(x)≤P ′(x)≤P ′(x)

x∈ΩX

∑
x∈ΩX

P (xQ|x) · P ′(x) (3.13)

which corresponds to the absorption of the shadow of K ′(X). As the CS is shady,

this proves the first part of the theorem. To prove the second part of the theorem,

as a consequence of Pr. 2, each VE consistent with the CVE can be converted in a

SE by Tr. (1). The CS implementing the CSE equivalent to the CVE is therefore:

KΛ
X(X) :=

{
P ′(X) : P ′(x) =

P (x)λx∑
x P (x)λx

, λx ≤ λx ≤ λx, ∀x ∈ ΩX

}
.
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Computation of P ′(x) is a linearly constrained linear fractional task. If P (x) > 0,

we can rewrite the objective function as:

P ′(x) =

[
1 +

∑
x′ 6=x

λx′P (x′)

λxP (x)

]−1

(3.14)

As f(γ) = (1+γ)−1 is a monotone decreasing function of γ, minimizing the objective

function in Eq. (3.14) is equivalent to maximize:

∑
x′ 6=x

λx′P (x′)

λxP (x)
(3.15)

and vice versa for the maximization. As each λx can vary in its interval indepen-

dently of the others, the maximum of the function in Eq. (3.15) is obtained by

maximizing the numerator and minimizing the denominator, i.e. for λx′ = λx′ and

λx = λx. This proves Eq. (3.10), which remains valid also for P (x) = 0.

By Th. 9 and 10 credal belief revision of a BN is reduced to standard updating

in a CN. For CSEs with non-shady CSs, the procedure is slightly more involved, as

detailed by the following result, whose proof is analogous to that of the first part of

Th. 10:

Proposition 3. Given a CSE K ′X(X) = {P ′i (X) : i = 1, . . . , k} in a BN, add

binary leaf node DX of X, quantified by an ECPT {Pi(DX |X) : i = 1, . . . , k} such

that Pi(dX |x) ∝ P ′i (x)

P (x)
for each i = 1, . . . , k and x ∈ ΩX . Then:

P ∗(α) = P (α|dX) (3.16)

for any event α.

To clarify these results, consider the following example.

Example 16 (Ex. 13 Continued). The original PMF P (X) is revised by a CSE with

K ′X(X) = {P ′1(X), P ′2(X)}, where P ′1(X) = [0.6, 0, 0.4] and P ′2(X) = [0.4, 0, 0.6].

K ′X(X) is clearly a shady CS. Following Th. 10, this yields CVE ΛK
X = {2-3 : 1 :

8-12}. Vice versa, a slightly different CVE Λ̃X := {3 − 5 : 1 : 8 − 10} induces the

revised values P ∗(g) = 3
5
, P
∗
(g) = 2

3
, P ∗(y) = P ∗(y) = 0, and P ∗(r) = 1

3
, P
∗
(r) = 2

5
.

These bounds can be equivalently obtained in a two-node CN with dX child of X

and CCPT K(dX |X) such that P (dX |X = g) ∈ [0.6, 1], P (dX |X = y) = 1, and

P (dX |X = r) ∈ [0.8, 1]. Alternatively, following Pr. 3, the absorption of K ′(X) can

be achieved by specifying an ECCPT made of two CPTs.
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Both conservative updating and CIR were introduced in Sec. 2.3. Particularly,

CIR refers to the case of incomplete data, and account for missing data as either

MAR (or CAR), or due to some mechanism on which near-ignorance is expressed

[78].

Remember XQ denotes a collection of target random variables, with xQ ∈ ΩXQ

target event. Also, E is the subset of fully observed nodes of the network, whereas

nodes in M = Mr∪Mnr, with Mr∩Mnr = ∅, were not observed as they are missing

at random (Mr) or due to some nearly-ignored mechanism (Mnr).

Given a BN, CIR may be implemented in a CN obtained by adding |Mnr| auxiliary

leaf nodes to the DAG, such that each variable in X ∈ Xnr is the unique parent of

binary credal node X ′, with ΩX′ = {x′,¬x′} [10]. Let X′, defined on ΩX′ , denote

the collection of all auxiliary leaf (vacuous) nodes, transforming the BN into a CN;

x′ = {X ′ = x′ : X ′ ∈ X′}. The ECCPT of each node X ′ ∈ X′ is specified as:

{[
1 0 . . . 0 0

0 1 . . . 1 1

]
,

[
0 1 . . . 0 0

1 0 . . . 1 1

]
, . . . ,

[
0 0 . . . 0 1

1 1 . . . 1 0

]}
.

Given XQ = xQ,E = e and M, Eq. 2.5 is reproduced by K(xQ|e,x′nr), the CS

obtained by instantiation of credal nodes X′ and precise nodes E of the network. If

the network is already credal, the CCM transformation may be applied to make it

sharp; then CIR may be implemented with respect to every BN; see [10] for details

on the procedure with locally and globally specified CNs. As a straightforward

application of Th. 10, the CVE implementing CUR corresponds to a CSE associated

to a vacuous CS. In fact, for λx = 0 and λx = 1, for each x ∈ ΩX , then Eq. (3.10)

gives zero for the lower bound of P ′(xn) and we similarly reach one for the upper

bound. Credal Jeffrey’s Rule becomes the CUR rule of [75] that represents the most

conservative approach to belief revision:

P ′(α) = min
x∈ΩX

P (α|x) (3.17)

We can similarly proceed in the case of incomplete observations, i.e. some values

of Xn are recognized as impossible, but no information can be provided about the

other ones. If this is the case, we just replace ΩX with Ω′X ⊂ ΩX , as in Eq. (2.5).

The following proves consistency of Credal Pearl’s Method for shady CSE:

Theorem 11. Given a BN over V and a shady CSE K ′X(X), convert the CSE into

a CVE as in Tr. (4) and transform the BN into a CN by Tr. (4). Let K(V, DX)

be the joint CS associated to the CN. Then, K(V|dX) comes from P (V) by CPK

on the partition induced by X. Moreover K(X|dX) coincides with the marginal CS

computed in the CN.
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Proof. The result easily follows from the analogous result for PK, which holds for

each P ′X(X) ∈ K ′X(X). The consistency between K(X|dX) in the CN and K ′X(X)

in the original CSE specification follows from Th. 9.

Let us first stress how Tr. 4 does not affect the topology (nor the treewidth) of the

original G. As standard BN updating of polytrees can be performed efficiently, the

same happens with uncertain instances. Similarly, with multiply connected models,

standard BN updating is exponential in the treewidth, and nothing changes if the

model is augmented by virtual(ized) evidence. As already discussed in Sec. 1.3.2,

ApproxLP tackles CN updating based on linear programming. The algorithm re-

duces CN updating to a sequence of linear programming tasks, each obtained by

iteratively fixing all the local models to single elements of the corresponding CSs,

while leaving one single variable free. This provides an inner approximation of the

updated intervals with the same complexity of a BN inference on the same graph.

Remarkably, whenever a CN has all local CSs made of a single element apart from

one, ApproxLP produces exact inferences. This is just our case, when coping with

a single CVE or CSE, and ApproxLP might be therefore used to efficiently revise

beliefs. Finally, it is obvious that CSEs on a root node can be trivially elicited by

replacing the original, unconditional, PMF of the BN, with the CS associated of the

CSE.

In the next section, we move a step forward and consider uncertain belief propa-

gation with a CN. Up to this point, we implemented revision rules from Ch. 2 with

BNs. When uncertain evidence is specified by a credal set (as it is the case with

CSE), the network resulting from the propagation process corresponds to a special

kind of CN, with a single credal node, and all others degenerate to single CPTs.

3.3 Uncertain Belief Propagation with Credal Net-

works

Consider the case of a single virtual instance - a CVE - on r.v. X ∈ V. Its embedding

in a CN is trivial and it just requires augmenting the latter with an auxiliary boolean

child. Remarkably, absorption of a CVE by a CN enjoys two main properties for

virtual findings in general:

1. The procedure naturally extends to the case of several CVEs - a dummy child

is introduced for each node involved by the revision process7;

7We will return to this in Ch. 5
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2. Augmentation of the CN by such leaf nodes does not affect the topology of

the network, e.g. if the graph is singly connected, complexity of inference is

unchanged.

Embedding a CSE in a CN requires a more detailed discussion. Let K(V) be the

strong extension of the CN, the generalization to CNs of Eq. (3.13) becomes:

P ′X(xQ) = min
P (V)∈K(V)

min
P ′(X)∈K′(X)

∑
x

P (xQ|x)P ′(x) , (3.18)

that is, to Eq. (2.7). Analogous reasoning applies to the upper envelope P
′
X(xQ),

where maximization is considered instead.

If CSE is gathered on a root node, the multilinear task of Eq. (3.18) above trivially

consists in replacing the existing CCPT - K(X) - by the former - K ′X(X). In the gen-

eral case, straightforward extension of previous proposals would yield augmentation

of the DAG by auxiliary credal node DX , whose CCPT is specified by:

P (dX |x) ∝ λ
X

(x) =
P ′(x)

P (x)
. (3.19)

There, P ′(x) and P (x) are obtained as the lower envelope of K ′X(X), and as the

upper envelope of K(X) at x, respectively, for each x ∈ ΩX .

It is easy to see instantiation of node DX to its truth value dX yields a (likely very

loose!) CS K ′′X(X) ⊇ K ′X(X). We propose the following to convert a CSE into a

CVE for a given CN:

Transformation 5. For a fixed x ∈ ΩX , convert CSE into the CVE ΛX , with

generic element:

λi,j,x =
P ′i,X(x)

Pj(x)

for all i = 1, . . . , |extK ′X |, and j = 1, . . . , |extK|, for each x ∈ ΩX .

Consider Fig. 3.2, and suppose our event of interest α corresponds to target

state xQ of the single query r.v. XQ ∈ V8. Belief propagation by the generalized

Pearl’s method on a CN is likely intractable, as it requires enumeration of all vertices

minimization of the following non-linear problem:

P (xQ|dX) = min
Pj(V)∈K(V)

Pi(X)∈K′
X

(X)

∑
x∈ΩX

Pj(xQ, x)λi,j,x∑
x∈ΩX

Pj(x)λi,j,x
, (3.20)

8Considering a single query r.v. will allow derivation of desirable complexity results, see for

example Prop. 8 of Ch. 5.
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V

XQ X

DX

Figure 3.2: Equivalent representation of the augmented CN by auxiliary binary node

DX , as a collection of underlying BNs (grey), indexed by transparent node V .

where Pj(xQ, x) requires in turn enumeration of all extreme points of those CSs

involved by the minimization task, namely K(XQ) and K(X|XQ) (or K(X|xQ),

if the CCPT is separately specified). Theoretically, this task shall be tackled by

introducing a so-called transparent node V . This is uniformly distributed, and

simultaneously indexes all extreme points of each CCPT of the network; see the

toy CN of Fig. 3.2 as an example. Introduction of such a node allows capturing all

imprecision from the model. As a consequence, the underlying DAG (in grey, in

Fig. 3.2), would reduce to a BN. It is straightforward to see Eq. (3.20) may thus be

equivalently written as:

P (xQ|dX) = min
v∈ΩV

∑
x∈ΩX

P (xQ, x|v)P (dX |x, v)∑
x∈ΩX

P (x|v)P (dX |x, v)
.

Suppose a CN has (n+ 1) nodes, each associated with a k-variate r.v., introduction

of auxiliary node DX and of transparent node V requires |ΩV | = k(n+2); in Fig. 3.2,

|ΩV | = k3.

We argue representation of the propagation setup as that from Fig. 3.2 provides

an intuitive justification of the fulfillment of the conservativeness postulate of CPK

(Def. 15) by the Generalized Pearl’s Method for CNs. Nevertheless, inference is

likely intractable and we shall resort to an approximate approach.

An outer approximation to the solution to such a multilinear problem, can be

achieved by separately solving the two minimization problems, with respect to i)

K(V) and ii) K ′X(X).

Consider minimizing the conditional terms first. It holds:

P ′X(xQ) ≤ min
P ′(X)∈K′(X)

∑
x

P (xQ|x)P ′(x) . (3.21)

In other words we can approximate the CVE computation by updating the original

credal network for each possible value, and then solving the linear programming
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task above. We denote the solution to Eq. (3.21) with P 1(xQ).

A second solution is obtained by minimizing the CSE first, then the conditional

terms. This case shall also be considered by rewriting:

P ′X(xQ) = min
P (V)∈K(V)

min
P ′(X)∈K′(X)

∑
x

P (xQ, x)P ′(x)∑
xQ
P (xQ, x)

= min
P (V)∈K(V)

min
P ′(X)∈K′(X)

∑
x

P ′(x)
1

1 +
∑

x′Q 6=xQ
P (x′Q, x)

≥ min
P (V)∈K(V)

∑
x

P ′(x) min
P ′(X)∈K′(X)

1

1 +
∑

x′Q 6=xQ
P (x′Q, x)

= min
P (V)∈K(V)

∑
x

P ′(x) min
P ′(X)∈K′(X)

1

2− P (xQ, x)

= min
P ′(X)∈K′(X)

∑
x

P ′(x)
1

2− P (xQ, x)
,

where the first line of equations is just Eq. (3.21). We denote last line of equations

with P 2(xQ).

Overall, we run both approximation and take the one giving the tightest approxi-

mation, that is:

P ∗(xQ) = max{P1(xQ), P2(xQ)} .

This represents an approximate approach to the updating of credal soft evidence

in a CN. Nonetheless, as a drawback, the object associated with the approximate

solution may no longer be accounted for as a static CN, unless X is a root node.

Extension of the multilinear technique of [58] to the case of credal uncertain evidence

might prove as an alternative viable approach to propagation of uncertain beliefs in

CNs. Also, a näıve alternative worth mentioning is taking the CVEs obtained by

Tr. 5:

λ∗x =
P ′X(x)

P (x)
, λ

∗
x =

P
′
X(x)

P (x)
.

On the one hand, usage of such loose bounds for the CVE would reduce complexity of

the optimization task, and produce a static CN. On the other hand, the imprecision

they yield would likely have a detrimental impact on the overall procedure.

This chapter provided several tools for belief propagation in DAG-based models,

when uncertain evidence is provided. Our proposals extend Pearl’s method for VE,

and were proved to be sound under a kinematical point of view. Future work will

jointly consider other non-kinematical approaches for comparisons, such as those

based on maximum entropy [197]. Also, our focus will be on the graphical imple-

mentation of Imaging operators proposed in Ch. 2.

As for this last section on CNs, future developments will tackle methods and applica-

tions of belief propagation techniques with CNs when uncertain evidence is provided.



3.3 Uncertain Belief Propagation with Credal Networks 72

Those will include, among others, extension of Da Rocha et al.’s approach to the

case of CSE, as well as approximated heuristics.



Chapter 4

Belief Merging

Opinion pooling - or belief aggregation, or merging - extends AGM theory to the

case of multiple agents, whose judgments are defined on shared domains. Pooling is

performed by functionals, that combine elements from a collection of beliefs toward

a shared consensus, or agreement. This topic is of general interest, e.g. in the

literature of statistical and decision theory [116, 113].1

Formally, when a number of independent sources gather probabilistic evidence on

the same domain, we move from the single to the multi-agent setting. Members of

a pool are called interchangeably (epistemic) peers, agents, or sources.

Let m ≥ 1 agents be part of a pool. If no reasons are known to choose one member’s

opinion over the others, provided that each is belief is consistent with the agent’s own

system, pooling operators (POs) seek to synthesize all contributions into a single

belief. Such a task is not straightforward, as motivated by the following example,

from [87].

Example 17. A pool of m = 3 agents is asked to provide an aggregated opinion on

the set of propositions {φ, φ→ ψ, ψ} from some language L. Each agent is equipped

with a consistent belief over the set, as depicted below:

φ φ→ ψ ψ

Ag.1 1 1 1

Ag.2 1 0 0

Ag.3 0 1 0

1Through the past decades we assisted to a massive production of contributions to the subject

of belief fusion; see, e.g. [22, 162, 178]. This latter term is often used interchangeably with those

above. For clarity, we shall (arbitrarily) refer to belief fusion as the general task of aggregating

two or more knowledge bases, rather than that of merging opinions from a pool on a sub-domain

of Your belief.
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where 1 and 0 denote (boolean) True and False, respectively. If simple majority

voting was adopted as pooling criterion, the following would result:

φ φ→ ψ ψ

1 1 0

This is known as discursive dilemma in [87]. In words, while each opinion is itself

consistent, the aggregated opinion might not be so in the general case.

In our probabilistic framework, each peer provides a judgment over the (finite)

possibility space of some r.v. X. This way, source j produces a PMF Pj over ΩX ,

such that, most likely, Pj(x) 6= Pj′(x) for some x ∈ ΩX and j′ 6= j, provided that∑
x∈ΩX

Pj(x) = 1, for each j, j = 1, . . . ,m. Let |ΩX | = k, the pool is associated a

belief profile, i.e. matrix Pm(X) ∈ ∆m×k:

Pm(X) =


P T

1 (X)

. . .

P T
j (X)

. . .

P T
m(X)

 =


P1(x1) . . . P1(xk)

. . . . . . . . .

Pj(x1) . . . Pj(xk)

. . . . . . . . .

Pm(x1) . . . Pm(xk)

 .

Pm is a coherent belief profile if there exists at least one element of ΩX whose as-

sessed probability differs from zero for all agents; it is incoherent otherwise [86].

Analogously to Pm, Km(X) is the matrix whose columns are CSsK1(X), . . . , Km(X).

We use simplified notation K to denote Km (and P for Pm) when cardinality of pool

is clear from the context. For a lower probability space, it is reasonable - to our

purposes - to assume events are defined on a finite σ-algebra.2 We refer to sharp

and imprecise belief profiles to characterize the two different setups, even though it

must be kept in mind that all techniques referring to the first shall be intended as

degenerate cases of those set-valued.

As a remark, imprecise opinions may be produced by noisy observational processes

upstream, unreliable communication, qualitative or semi-qualitative judgments, and

so forth. Additional types of assessments may be gathered to the pool, including

odds ratios, or likelihood functions; we will return to these in Sec. 4.2.1.

Usage of pooling techniques was motivated in the literature as pursuing either:

a) Symmetric Belief Merging: POs merge a collection of opinions held by dox-

astic (or rational) agents, with the aim to i) describe a collection of event,

ii) perform collective decision making, and/or iii) improve shared knowledge

among members of the pool, as if acting like a single agent;

2See [85] on infinite σ-fields, and [88] on general agendas, i.e. algebras closed under negation

only.
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b) Asymmetric Belief Merging: The PO updates a prior distribution into a pos-

terior. In the decision making setup, a further expert is consulted upon con-

flicting beliefs, considered as evidence [185, 187]. Such a supra-Bayesian agent

updates her belief ΩX . Supra-Bayesian POs may also refer to a single member

of the pool, apprised of the remaining m− 1 opinions.

A selected review of POs is provided in Sec. 4.2. These are characterized as either

fully sharp3, sharp-to-imprecise, imprecise-to-sharp or fully imprecise. We define a

general PO as the mapping:

Π : PmX → PX . (4.1)

ΠK(x) (or just Π(x), when clear from the context) denotes Π(K)(x), pooling of

profile K(X), evaluated at some x ∈ ΩX . The definition provided by Eq. (4.1)

underlies two so-called regularity conditions for a PO, according to [87]:

- Universal Domain: Π is defined on PX , set of all possible coherent PMFs on

r.v. X;

- Collective Rationality: Π generates coherent PMFs on r.v. X.

4.1 Principles for Opinion Pooling

This section provides an overview of desirable properties for POs. Quite ironically,

no consensus was reached so far on a single pooling operator as optimal under all

circumstances, nor on which principles to choose as essential. It was proved, among

others by Dietrich and List [87], that no PO satisfies all possible desiderata under

all circumstances. The authors accounted for four key principles for a PO: Universal

Domain, Collective Rationality, Anonymity (Def. 32) and Unanimity (Def. 35, and

proved the only functional that satisfies them all fails Non-Dictatorship. A PO

fails such principle whenever a single opinion fully determines the aggregated belief,

irrespective to changes in the others’. Trivially, if fulfillment of Non-Dictatorship

was questioned, the whole pooling process would no longer be worth consideration.

The result in [87] generalizes the best known Arrow’s impossibility theorem that

any constitution satisfying transitivity, independence of irrelevant alternatives, and

unanimity is a dictatorship [13, 14]. Several related works proposed dropping one

of the four principles, to guarantee soundness of the pooling procedure; e.g. [202]

proposed Anonymity ought to be dismissed as a requirement.

3See also [238] for an up-to-date overview.
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Before we proceed and list a number of desirable properties of a PO, let us point

out (probabilistic) belief aggregation, or merging, may be intended as a generalized

form of (probabilistic) belief revision. While the latter, based on the AGM postu-

lates, seeks to study how a doxastic agent ought to adjust her deductively closed set

of propositions upon newly acquired information, opinion pooling tackles combina-

tion of several beliefs toward a consensus. Remarkably, Konieczny and Pino Pérez

[152] proposed six postulates, acting as the counterpart to KM1-KM6 from Ch. 2.

In our framework, the pool expresses on a coarse partition of Ω, say ΩX , rather than

on the whole collection of events in Σ, and postulates translate as follows:

KP1 ΠK(x) is a CS,4

KP2 If ∩mj=1Kj(X) 6= ∅, then ΠK(X) = ∩mj=1Kj(X),

KP3 If each K1,j ≡ K2,j, Ki,j ∈ Ki, for each i = 1, 2 and j = 1, . . . ,m, then

ΠK1(X) ≡ ΠK2(X),

KP4 If
(
∩mj=1K1,j(X)

)⋂ (
∩mj=1K2,j(X)

)
is the empty set, then ΠK(X) 6⊆ ΠK1

⊔
K2(X),

where K1

⊔
K2 = {K1,1(X), . . . , K1,m(X), K2,1(X), . . . , K2,m(X)},

KP5 (ΠK1(X) ∩ ΠK2(X)) ⊆ ΠK1
⊔

K2 ,

KP6 If ΠK1(X) ∩ ΠK2(X) 6= ∅, then ΠK1
⊔

K2 ⊇ (ΠK1(X) ∩ ΠK2(X)).

Let (Ω,Σ) be any measurable space, and Π be any PO taking a belief profile on r.v.

X as input. As a first, a fully sharp PO is linear if it produces a convex combination

of the elements of P.

Definition 30 (Convexity). Π satisfies convexity whenever every PMF consistent

with the pool’s opinion may be expressed as a convex combination of extΠ(X). For-

mally,

P (X) ∈ Π(X) ⇐⇒ P (X) ∈ CH{extΠ(X)} .

When the pooling process involves sharp probabilities only, Π(X) trivially satis-

fies convexity.5 Consider the following example:

Example 18. Suppose m = 3 sources provide a PMF on event (X = x) resulting

out of 10 Bernoulli trials, such that ΩX = {x,¬x}: P1(x) = 2/10, P2(x) = 3/10 and

P3(x) = 4/10.

4This corresponds to Dietrich and List’s regularity principle of Collective Rationality.
5Also, any non-vacuous fully imprecise PO (Sec. 4.2.4) that satisfies convexity while generating

a closed set of PMFs satisfies a further Defining Principle [2].
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If the convex hull induced by the m opinions is considered as the aggregated pool’s

opinion, it holds 0.2 ≤ P ′(x) ≤ 0.4, P ′(X) ∈ Π(X). Suppose X represents the

tossing of a coin, and x =Heads: 2.5 heads out of 10 flip coins are evaluated as a

consistent opinion from the pool. This type of information is likely accepted by a

sensitivity analysis approach only, whereas others might refuse it.

Some arguments in the spirit of Ex. 19 above may be posed against convexity as

a feature of Π; indeed, we do not require it.

Definition 31 (Neutrality [253, 179]). A PO is neutral if there exists some function

g s.t.

Π(X) = g(K1(X), ..., Km(X)) .

If events are defined on a σ-algebra, and every neutral fully sharp PO is linear [88],

and vice versa [238].

Definition 32 (Anonymity [179, 88]). If K1,K2 fully agree on X’s behavior, while

they differ on the whole domain induced by V, Anonymity requires:

ΠK1(X) = ΠK2(X) .

Anonymous POs are intended as opposed to a holistic understanding of the pool’s

dynamics [88]. Such principle prevents Dutch Bookies from influencing the collective

opinion, e.g. by leveraging misleading arguments. When a PO is not influenced

by the agents’ belief base beyond X, it defines a mapping that is invariant to any

ordering. Invariance with respect to permutations of the elements in the belief profile

may be specified as a sub-principle, namely of Equivalence or Atomic Permutation

(see [2] for details).

Definition 33 (Marginalization [238, 179, 116]). When a belief merging is on joint

r.v. X, any PO commuting with marginalization satisfies this principle. Without

loss of generality, let X = {X, Y }, it holds:

Π↓Y (X) = Π(K1
↓Y (X), ..., Km

↓Y (X)) , (4.2)

and analogously for Π↓X(X).

An equivalent characterization was provided by [116]; see also [238] for a further

definition. It was proved by [179] marginalization is equivalent to an extended

form of Neutrality, requiring the existence of a function g′, such that Π(X) =

g′(X,K1(X), ..., Km(X)).

Definition 34 (Consistency [264]). Any PO satisfying Consistency lies in the convex

hull induced by the belief profile.
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A range of specializations for consistency, or preservation of initially shared agree-

ments, may be found in the literature, including Indifference Preservation6 [85], Zero

Preservation7 [179, 238], and Strong Consistency, this latter requiring reachability of

the bounds. Linear pooling functions are the only satisfying Zero Preservation [253,

Th.6.7] and Anonymity, provided |Σ| ≥ 3 [179]. Among others, we define Unanimity

based on [87]:8

Definition 35 (Unanimity). Let K(X) be a belief profile such that it holds P (X) ∈
Kj(X), for each j = 1, . . . ,m. By Unanimity, we expect Π(X) 3 P (X).

It is straightforward to see Def. 35 extends KP2 above.

Definition 36 (Collegiality [2]). Let some ordering be available on the elements of

the belief profile, such that the (consistent) conjunction of all opinions of the last

m− k experts are consistent with the aggregated opinion of the first k’s. Formally,

ΠK1,...,k(X) ⊆ ∩mi=k+1Ki(X) 6= ∅ ,

with K1,...,k(X) = {K1(X), . . . , Kk(X)}.

Collegiality shall be intended as a special case of KP5. When it is satisfied,

uninformative additional opinions ought not to yield dilation [196], so long they are

consistent with those already accounted for.

If both Collegiality and Consistency are satisfied, Π(X) maps the whole belief profile

into ∩ki=1Ki(X), if this is not empty [264, Lemma 2.1].

A strong criticism may be raised against Collegiality: in a situation when all peers

but one, say j, provide vacuous opinions, an almost Dictatorship of the j-th agent

would result.

Definition 37 (Agreement [264, 2]). Suppose a belief profile consists of two sub-

groups of agents, whose aggregated opinions are consistent: ΠK1,...,k(X)∩ΠKk+1,...,m(X) 6=
∅, with Kk+1,...,m = {Kk+1(X), . . . , Km(X)}. By the Agreement principle it holds:

Π(X) = ΠK1,...,k(X) ∩ ΠKk+1,...,m(X) .

Agreement strengthens KP6 above. By [2, Th.4.1.1], if also Strong Consistency

is satisfied, Collegiality follows.

6Indifference Preservation is implied by Anonymity as transformation of the uniform credence

function under permutation that yields the same aggregate belief.
7It refers to the case when the whole pool is certain on a negated event. When |Σ| ≥ 3, this

is implied by Neutrality [179]. Also, Zero Preservation and Anonymity together imply Neutrality

[179, Th.3.2].
8See [198, 111] for alternative definitions.
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If the two aggregated opinions are not consistent, and ∩mj=1Kj(X) 6= ∅, by the Strong

Disagreement principle, it holds:

Π(X) ∩ ΠK1,...,k(X) = ∅ ,

thus dropping the condition of consistency among individual opinions. This result

is enhanced by KP2.

Definition 38 (Ignorance [264]). If k < m sources from the pool hold vacuous

opinions on r.v. X, by Ignorance it holds:

Π(X) = ΠKk+1,...,m(X) .

The following is a key principle to our graphical approach to probabilistic belief

revision. It requires experts acting as if they were a single doxastic agent undergoing

a learning process: that is, pooling commutes with updating [198, 88], or, following

[252], with probabilistic revision. Formally:

Definition 39 (External Bayesianity [166, 113]). Let L : Ω → R be any likeli-

hood function, shared by all peers, such that 0 <
∑

ω:ω∼X L(ω)P (ω) < ∞. Also,

let the transformed belief profile KL;m(X) be defined by { L(X)Pj(X)∑
ω∈Ω L(ω)Kj(ω)

: Pj(X) ∈
Kj(X), j = 1, . . . ,m}. Any PO is Externally Bayesian if it holds:

ΠKL;m(X) = CH

{
L(X)P ′(X)∑
ω∈Ω L(ω)P ′(ω)

: P ′(X) ∈ Π(X)

}
.

Def. 39 above is also known as Conditionalization on L-information [85], further

decomposed into Conditionalization on Public Information - all agents experience

learning - as opposed to Private information - only one peer does. In [85, 237], Indi-

vidualwise Bayesianity is also considered, generalizing Conditionalization on Private

Information back to External Bayesianity. The general principle of Conditionaliza-

tion on Information, requires the pooling process to commute with one or more

peers experiencing a learning episode. By [85, Th. 4] no PO exists that satisfies

Individualwise Bayesianity, under Non-Dictatorship; see the footnote for further

remarks.9

9Specialization of single (Private), partial or collective (Public) learning experiences is motivated

by a number of reasons in the literature. As a first, some believe accounting for everyone’s opinion

is not necessarily the best strategy as it may lower the collective knowledge toward fully shared

awareness. Conversely, a single member’s update in knowledge may significantly improve the

group’s performance as a whole. Yet, imposing knowledge (or belief) of a single, or a proportion, of

peers to the whole group is somehow questionable. Although we reckon situations where members

of the group are equipped with more knowledge than others may be of some interest, this is not
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Definition 40 (Probabilistic Independence Preservation [198, 1, 238]). Consider

the case of a sharp belief profile. If it holds Pj(X|y) = Pj(X), for some event

y, with Pj(y) > 0, for each j = 1, . . . ,m, we require ΠP|c(X) = ΠP(X), where

ΠP|y(X) := Π(P)(X|y).

By [253], the only POs satisfying both Neutrality and Probabilistic Indepen-

dence Preservation fail Non-Dictatorship.10 Extensions to the imprecise setting are

straightforward, although it must be remembered independence concepts can be no

longer used interchangeably (cfr Sec. 1.2.2).

We introduce Locality as the counterpart to CoPK axioms for belief merging:

Definition 41 (Locality [264]). If a pool expresses on conditional event (X|Y = y),

knowledge of r.v. X conditional on any y′ ∈ ΩY \{y} ought to be left unchanged by

any (asymmetric) PO satisfying Locality.

A number of arguments supporting Locality are found in the literature of epis-

temic entrenchment, see, e.g. [90]. Failure of Locality is connected to the properties

of Independence Preservation of the PO. Since we are interested in performing opin-

ion pooling with probabilistic graphical models, we argue POs failing Locality would

produce counterintuitive dynamics with respect to the pattern of independences

among a set of variables, and ought to be avoided. Graphical implementation of a

number of POs below provides a straightforward justification of their fulfillment of

Locality, as well as of External Bayesianity.

Among others, further principles worth mentioning are Family Aggregation, that

our case. We believe learning experiences should always be evaluated at the pool level, relying on

the peers being actually ”expert” and receptive. Reliability of the single agent is a critical issue

that should be addressed, rather than an approach based on single agents’ wealth of experience.

To this purpose, peer-specific weights might be used, possibly failing Anonymity. In this direction,

we introduce Informed LogOp, and its graphical counterpart, in Sec. 4.2.1. Additionally, from a

methodological perspective, any pooling operator that satisfies Conditionalization on non-Public

Information is something that should be rejected upstream: if some knowledge is not shared, why

should we expect it to be common ground after pooling?

As a further remark, consider the issue of the perception that each member has of the same learning

experience. A full mathematical solution would require, as a starting point, a much wider range of

possible events, making the problem infeasible, and likely gibberish. When it comes to updating,

conditioning based on likelihood functions serves as a viable expedient: when an observation is

affected, for many possible reasons, with some degrees of uncertainty, a cautious approach would

specify the first by means of likelihood ratios [252] (or Bayes Factors, as with Wagner’s rule).

All things considered, we argue straightforward allowance of single peers to act under non-uniform

awareness of the system opens the way to dutch-bookies.
10It was proved that every non-trivial PO required to satisfy Non-Dictatorship and Anonymity,

fails the Probabilistic Independence Preservation principle when |Ω| ≥ 5 [114]. A hierarchy of four

weaker additional principles was proposed by [198].
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applies to parents’ sets in DAG-based graphical models11, and Proportionality, re-

quiring invariance of the pooled belief to replacement of each element from the

profile by m′ > 1 clones. Finally, fulfillment of the Continuity principle applies to

sequences of m→∞ beliefs, converging to some K∗(X). The interested reader may

refer to [198, 264, 85], respectively, for details.

Next section introduces POs and their properties. Contributions from the section

were previously published in [171].

4.2 Generalized Opinion Pooling Operators

As already outlined, we categorize POs in this section as either fully sharp (Sec. 4.2.1),

sharp-to-imprecise (Sec. 4.2.2), imprecise-to-sharp (Sec. 4.2.3) and fully imprecise

(Sec. 4.2.4), for clarity of exposition.

4.2.1 Fully Sharp Pooling Operators

A fully sharp PO maps any belief profile P(X) ∈ ∆m×k into a single PMF.

Definition 42 (Linear (Pooling) Operator [239]). Given an m-dimensional belief

profile P(X), and a convex collection of non-negative weights wj, the Linear PO

(LinOP) is defined as:

LinOpP(x) =
m∑
j=1

wjPj(x) (4.3)

for each x ∈ ΩX . When wj = m−1, j = 1, . . . ,m, Eq. (4.3) is called Arithmetic

LinOp.

LinOp is the only fully sharp PO that satisfies Anonymity [253, Th. 6.7], provided

|Σ| ≥ 3. Also, it satisfies Marginalization [238, Prop. 2], Consistency and Strong

Monotonicity [111], while it fails Locality. This last feature will be relevant in

Sec. 4.2.4.

Definition 43 (LogOp [17, 115]). Given an m-dimensional belief profile P(X),

LogOpP(x) =

∏m
i=1 Pi(x)αi∑

x∈ΩX

∏m
i=1 Pi(x)αi

(4.4)

for every x ∈ ΩX . Each weight αj must satisfy αj > 0, for all j = 1, . . . ,m, and∑m
j=1 αj = 1.

11By [198, Prop. 1], simultaneous fulfillment of both Family Aggregation and Consistency require

failure of Non-Dictatorship.
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Geometric pooling is widely used in practical settings (e.g. [41, 219]). LogOp

requires all belief profiles to be coherent [88], to comply with KP1. Analogously to

Π for ΠK (or ΠP), we write LogOp for LogOpP, to avoid cumbersome notation; the

same applies to all other POs.

LogOp always satisfies Strong Consistency [115, 85, 238], External Bayesianity

[115, 16] (see also [102]), Indifference Preservation and Continuity [85, Th.1], and a

weaker form of Independence Preservation, called Markov Independence Preserva-

tion [198]. Also, Ordinary LogOp - i.e. the special case of general LogOp, with all

equal weights αj = m−1 - simultaneously satisfies External Bayesianity, Indifference

Preservation and Continuity [88]. Finally, when Dietrich’s Conditionalization is on

Public Information, the only fully sharp POs satisfying it is LogOp with αj > 0 for

at least one j [85, Th.2] (and [216, Central Theorem]); this is always true according

to our characterization of LogOp from Def. 43.

A further fully sharp PO, called MultOp was proposed in [88], as a variation of

Eq. (4.4) with αj = 1, j = 1, . . . , n. It satisfies Conditionalization on Private In-

formation (and Indifference Preservation and Continuity, [85, Th.3]). Degenerate

LinOp - with wj = 1 for some j, and wj′ = 0 for every j′ 6= j - and MultOp fail

Non-Dictatorship [85].

It is easy to see Ordinary LogOp yields the (normalized) geometric mean, while

Arithmetic LinOp the arithmetic mean of a given vector (a1, . . . , am)′, where aj =

Pj(x), for some x ∈ ΩX . Let m = 2, the arithmetic mean geometrically corresponds

to the center of mass of the vector, while the geometric mean is given a more involved

interpretation: it corresponds to the length of the tangent line shared by two circles,

one of diameters a1, a2 the other, that are tangent externally. A thorough discussion

on the geometric interpretation of the two POs is out of the scope of this work; what

is relevant to our purposes is that both operators map the belief profile within the

convex hull induced by P. While LinOp yields the KL-projection of the pool’s belief

profile, i.e. the point of PX that minimizes the KL divergence (Eq. (2.3), and the

L2 norm) among all members of the pool, LogOp solves the analogous minimization

problem for the reversed KL-divergence [111]. Formally, it holds:

LinOp(x) = argminP (x)

∑m
j=1KL(Pj(x)‖P (x)) ,

LogOp(x) = argminP (x)

∑m
j=1KL(P (x)‖Pj(x)) .

(4.5)

As a further property, both POs guarantee that, if an additional expert joined the

pool, ceteris paribus, the aggregated opinion would change in this direction, provided

informativeness of her belief. This Monotonicity property [111] applies in its strong

version to LinOp, while LogOp only satisfies a weaker form.
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Graphical Tools for Fully Sharp Opinion Pooling

Consider m agents, each providing her belief as a SE about X, and a BN B with set

of nodes V such that X ∈ V. Straightforward application of Def. 27 would require

m auxiliary nodes were added to the network. Simultaneous updating of the VEs, as

by Tr. 1, would push the probability mass toward a single state. This confirmational

effect is due to the well-known issue with posterior probability estimates in the näıve

Bayes classifier [213], and might yield failure of the Consistency principle.

A least commitment approach to prevent such inconsistency would take the convex

hull of all opinions from the belief profile (as done by Ex. 19); this is the convex PO

of [238], that will be introduced in Sec. 4.2.2. In our formalism (see Ch. 3), such a

CS is just the CSE K ′(X) = CH{Pj(X) : j = 1, . . . ,m}. Yet, given any small ε > 0,

suppose P1(x) = ε, P2(x) = 1− ε, and Pj(x) = p ∈ (ε, 1− ε) for every j = 3, . . . ,m,

with m� 3. Despite the almost-unanimous consensus on p, taking the convex hull

of the belief profile would produce a CS very close to the vacuous CS K0(X). Now,

to what extent such approach should be preferred to the confirmational one above,

say under a decision making perspective?

In this direction, a compromise solution might be offered by the following procedure:

Transformation 6. Consider a BN over V and a collection of SEs on X ∈ V,

P(X) = {Pj(X) : j = 1, . . . ,m}. For each j, augment the BN with auxiliary binary

child D
(j)
X of X, whose CPT is such that:

P (d
(j)
X |x) = η

[
Pj(x)

P (x)

]αj
with η as in previous transformations, shared by all columns of the CPT, j =

1, . . . ,m.

It holds:

Proposition 4. Consider the BN returned by Tr. 6. Then, for any target event

α ∈ Σ: ∑
x∈ΩX

P (α, x)LogOp(x) = P (α|d(1)
X , . . . , d

(m)
X ) . (4.6)

Our proposal, that we call Näıve Pooling Operator (NPO), consists in augmenting

the BN as by Tr. 6, and instantiating all newly introduced auxiliary nodes to their

truth values, analogously to the generalized Pearl’s methods introduced in Ch. 3.

By Prop. 4, NPO enhances simultaneous merging of a collection of beliefs from a

pool by LogOp, and propagation of the resulting PMF through a given Bayesian

Network, i.e. revision of P over Ω. Proof to the proposition is analogous to that of
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the first part of Prop. 2, and follows from the fact X d-separates all auxiliary nodes

from the rest of the DAG.

We may now introduce the Informed Logarithmic Pooling Operator, extending

Eq. (4.4) to the conditional framework. Such pooling process refers to context-

specific beliefs such that shared awareness of the setting by the agents is incorporated

by definition; see [28] for a discussion on the subject.

Definition 44 (Informed LogOp [102]). Let m agents provide each a SE on X.

Let ΩC be the set of all possible contexts, whose generic element is c, such that

C ⊆ V\{X}. Suppose all agents share awareness of the current context, i.e. they

all know (C = c). Also, let {αc : αc ∈ Rm
+ ,
∑m

j=1 αc,j = 1} be some collection of

context-specific weights. If several conditioning events are accounted for, say c and

c′, for each agent j, it holds αc,j 6= αc′,j, j = 1, . . . ,m. The Informed Logarithmic

Pooling Operator (iLogOp) for context (C = c) is defined as:

iLogOp(P1, . . . , Pm; c)(x) =

∏m
i=1 Pi(x|c)αc,i∑

x∈ΩX

∏m
i=1 Pi(x|c)αc,i

(4.7)

Trivially, if C = ∅, Eq. (4.7) reduces to Eq. (4.4). It may be proved iLogOp

naturally enjoys all desirable properties of the latter.

Agents’ weights may be regarded as bearing information on the reliability of each

source [116]. A review on the approaches proposed in the literature for the choice

of the weights for LogOp may be found in [74], and references therein. When

available, information on each source’s reliability ought to be incorporated in the

pooling process. In this spirit, [203] proposed following a hierarchical approach that

assumes prior distributions on the weights. Our proposal is that of deriving weights

directly from a reliability measure. As simple as it may seem, we argue our approach

fits well into a setup that from the application in the Appendix (Sec. 4.2.1) where

beliefs serve as evidence, although probabilistic. This way, combination of beliefs

tackles credibility outside the pool, rather than internal consensus. Note how, when

context-specific beliefs are considered, reliability of an agent is expected to change

across settings, unless it holds I(X,C); in that case, P (x|c) = P (x) by definition,

and a single αj may be used for every agent, j = 1, . . . ,m. We will come back to

this below.

To derive weights, we introduce the Reliability Score as measure of accuracy. It

is defined as a variation of [98]’s Rank Probability Score, which in turn generalizes

Brier Score [192], introduced as a reliable measure for the validation of BNs by [245].

Definition 45. Let X be a discrete r.v. such that there exists an ordering � over

its (finite) possibility space, and let P be a PMF over ΩX . Let C 63 X be a set of
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random variables, a collection of n observations of X and C is given. The Reliability

Score (RS) of P is:

RSP =
∑
c∈ΩC

RSP (c) =
∑
c∈ΩC

Ic
nc|ΩX |

nc∑
l=1

|ΩX |∑
j=1

(
P (xj,l)−

(
Ixobs=xj,l + γxj,l

))2
(4.8)

with γxj,l = (1−Ixobs=xj,l)
(

1− abs(rk(xobs)−rk(xj,l))

|ΩX |−1

)
. I∗ denotes the indicator variable,

while rk is the rank function, mapping ΩX to N such that rk(xk) > rk(xg) if and

only if xk � xg in ΩX .

Context-specific reliability satisfies 0 ≤ RSP (c) ≤ 1. 0 is reached if and only if

all probability values are degenerate and match the observations, while 1 is reached

in the extreme case of predictions being all certain over the last (first) value of the

ordering while the first (last) is observed. As a remark, γxj ,l equals zero whenever

P is either right or completely wrong in forecasting the behavior of X, i.e. either

xobs = xj,l or xobs = x1 and xj,l = x|ΩX |, or vice versa. If γxj,l is set to zero for every

xj and every l, the reliability score corresponds to the generalized multivalued Brier

score (MBS), that we formally define as:

MBSP =
1

n|ΩX |

n∑
i=1

|ΩX |∑
j=1

(
P (xj,i)− Ixobs=xj,i

)2
(4.9)

Eq. (4.9) slightly differs from [98]’s Rank Probability score, that considers cumulative

squared sums.

Let {RSPj(c) : j = 1, . . . ,m} be the reliability scores of all agents under c, αc,j may

be derived as:

αc,j =
1−RSj(c)∑
j′ (1−RSj′(c))

(4.10)

The case RSPj(c) = RSPj′ (c) for all pairs (j, j′), yields αc,j = 1/m, j′ = 2, . . . ,m.

Example 19. Consider two agents providing their probabilistic assessment on the

outcome of an incoming football match X, such that the ordered possibility space of

X is ΩX = {lose, draw, win}. Each agent provides belief Pj(X|c), j = 1, 2, within

context c: 
P1(win|c) = 0.40

P1(draw|c) = 0.35

P1(lose|c) = 0.25

,


P2(win|c) = 0.50

P2(draw|c) = 0.30

P2(lose|c) = 0.20

By definition, RSPj(c) discounts unreliability of wrong predictions, the closer they

are to actual observations. If (X = draw), RSP1(c) = 0.247 and RSP2(c) = 0.290.

Although both predict the wrong result, Agent 1 is more balanced in forecasting
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variable X’s possible states, and it is more reliable than Agent 2. Note how, if

(X = win) was actually observed, Agent 2 would perform best, being more accurate:

RSP1(c) = 0.272 > RSP2(c) = 0.190.

If weights were derived based on (single) match result (X = draw), αc,1 = 0.5137, αc,2 =

0.4863; if lose was observed αc,1 = 0.5321, αc,2 = 0.4679.

Similarly to Tr. 6, if our model is specified as a BN over V, with X ∈ V, we may

augment G as follows:

Transformation 7. Consider a BN over V and a collection of CoSEs on X ∈ V,

{Pj(X|c) : j = 1, . . . ,m}. For each j, augment the BN with auxiliary binary child

D
(j)
X|C of X whose CPT is such that

P (dj|x, c) = η

(
Pj(x|c)

P (x|c)

)αc,j

(4.11)

for every x ∈ ΩX and some fixed context c ∈ ΩC. P (dj|x, c∗) = η whenever no

opinions are expressed conditional on context c∗, for all (x, c∗) ∈ ΩX × {C = c∗}.

In the general case, no restrictions are posed on the relationship between X and

elements of C; for now, let them be marginally not independent, i.e. P (x|c) 6= P (x),

x ∈ ΩX . We point out independence of agents’ forecasts is implicitly assumed by

our formalism, conditional on X and C.

Definition 46 (Informed Pooling). Let B = (G, P ) be any BN, consider its aug-

mentation as from Tr. 7. Given context C = c, Informed Pooling instantiates each

auxiliary node D
(j)
X|C to its truth value dj, j = 1, . . . ,m, and C to c. Evidence

{d1, . . . , dm} is propagated. (When a single context c is also observed by all agents,

as a special case, {d1, . . . , dm, c} is propagated).

The following holds:

Proposition 5. Informed Pooling, i.e. introduction, specification and instantiation

of auxiliary nodes D
(1)
X|C, . . . , D

(m)
X|C and C as from Def. 46, reproduces simultaneous

application of iLogOp and its propagation in a given BN.

Proof. Without loss of generality, let X = X0 and Dj denote D
(j)
X0|C; j = 1, . . . ,m.
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Let αc = {αc,1, . . . , αc,m} for any c ∈ ΩC. It holds:

P (x0|d0,1, . . . , d0,m, c) =
P (c)P (x0|c)

∏m
j=1 P (d0,j|x0, c)∑

x0
P (c)P (x0|c)

∏m
j=1 P (d0,j|x0, c)

=
P (x0|c)

∏m
j=1

(
Pj(x0|c)

P (x0|c)

)αc,j

∑
x0
P (x0|c)

∏m
j=1

(
Pj(x0|c)

P (x0|c)

)αc,i
=

∏m
j=1 Pj(x0|c)αc,j∑

x0

∏m
j=1 Pj(x0|c)αc,i

= iLogOp(P1, . . . , Pm; c)(x0)

Let (xQ|C = c) be any target event in ΩV. Belief propagation yields:

P̃ (xQ|c) = P (xQ|c, D0,1 = d0,1, . . . , D0,m = d0,m)

=
∑

x0∈ΩX0

P (xQ|x0, c)P (x0|d0,1, . . . , d0,m, c)

=
∑

x0∈ΩX0

P (xQ|x0, c)iLogOp(P1, . . . , Pm; c)(x0)

6= P (xQ|c)

unless Pj(x0|c) = P (x0|c), for all j = 1, . . . ,m.

This is true also if query events are considered not conditional on a fixed c. Let X0

and C be such that there does not exist a configuration (x0, c) ∈ ΩX0 × ΩC such

that it holds P (x0|c) = P (x0). Let the query event be xq, and suppose also that

agents provide their opinions on a collection of contexts such that there exist at least

2 elements of ΩC such that Pj(x0|c) 6= P (x0|c) for some j, j = 1 . . . ,m, and some

x0 ∈ ΩX0 . Let P̃ denote the PMF resulting from application of Informed Pooling

with respect to all such contexts, it holds:

P̃ (xQ) =
∑
x0,c

P (xQ, c|x0, d0,1, . . . , d0,m)iLogOp(P1, . . . , Pm; c)(x0) (4.12)

Corollary 3. Informed Pooling is based on CoPK.

Cor. 3 is a direct consequence of Eq. (4.12) from the proof of Prop. 5 being just

Adams conditioning (cfr Ch. 2). The following results from Prop.5 as a consequence

of the pooling process being reduced to an updating task on the augmented network.
12:

12Analogous considerations apply to other principles satisfied by LogOp.
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Corollary 4. iLogOp is Externally Bayesian.

Besides previous considerations on the weights, the special case of I(X,C) re-

quires some additional remarks. Without loss of generality, let C = {C}. Introduc-

tion of m auxiliary nodes induces as many v-structures in G.13 We argue any rational

agent would not account for any contexts (C), whenever the latter are irrelevant to

target event (X) upstream. This way conditioning is avoided, and the procedure

reduces to that outlined above by Tr. 6 and Prop. 4; that is application of standard

LogOp, followed by propagation in B.

As a final remark, note how, whenever Pa(X) 6⊇ C, CPT of node D
(j)
X|C requires a

preliminary inference step to compute P (X|c), which is not readily available unless

Pa(X) = C. Also, introduction of auxiliary nodes for Informed Pooling would make

any singly connected network multiply connected and thus increase the complexity

of any inferential task on the model.

Theorem 12. Let G = (V,E) be any DAG. Let Gm denote G as augmented by

introduction of m auxiliary leaf nodes by Informed Pooling. Consider the following

inference tasks: i) US: compute P (xi|c) on G; ii) UA: compute P (xi|c) on Gm; iii)

UA-m: compute P (xi|c, d1, . . . , dm) on Gm; for some fixed (xi, c) ∈ ΩXi × ΩC. UA

is solved by US. Also, complexity of UA-p equals that of US if Ch(C) = {X} and

Pa(C) = ∅ in G.

Proof. Consider UA. Again, let D0,j = D
(j)
X0|C, for simplicity of notation. Nodes

{D0,j : j = 1, . . . ,m} are all unobserved random variables in Vm. Computation

of P (xi|c) by UA is equivalent to its computation on the subgraph induced by

Vm\C = V, that is on G; i.e. to US. UA may be thus be solved by US in polyno-

mial time on singly connected networks. On general networks, US may be in turn

reduced to 3SAT, which is NP-hard [45].

Let Ch(C) = {X0, D0,1, . . . , D0,m} in Gm, with Pa(C) = ∪X∈CPa(X)\C and con-

sider UA-m. It holds:

P (xi|c, d0,1, . . . , d0,m) =
∑

x0∈ΩX0

P (xi, x0|c, d0,1, . . . , d0,m)

=
∑

x0∈ΩX0

P (xi|x0)P (x0|c, d0,1, . . . , d0,m)

=
∑

x0∈ΩX0

P (xi|x0)iLogOp(P1, . . . , Pm; c)(x0)

13Remember triple < X,D,C > is a v-structure when it holds I(X,C) and ¬I(X,C|D). V-

structures are graphical objects whose role is critical in BNs: instantiation of node D makes X

and C dependent. See Ch. 1 for details.
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The last equality holds by Prop. 5. Instantiation of C to c and of auxiliary nodes

to d0,j, j = 1, . . . ,m, is equivalent to straightforward elicitation of P (X0|c) by

iLogOp(P1, . . . , Pm; c). P (Xi|c, d0,1, . . . , d0,m) is thus computed by simple marginal-

ization of X0 on the subgraph induced by Vm\C.

As it was beyond the scope of this work, further results on the complexity of

inference were not reported. Still, let us point out the following: whenever |C| =

k < d = maxi∈{0,...,n} |Pa(Xi)| and ¬I(Xi, C), augmentation of a multiply connected

network does not alter its topology, provided m is reasonably smaller compared to

n, as |Pa(D0,j)| = k + 1 ≤ d, j = 1, . . . ,m. Therefore, for any G that is not singly

connected, we do not expect introduction of auxiliary nodes to play a detrimental

role on inference.

An application of Informed Pooling may be found in the following section:

An Application of Informed Pooling: SSNet and Betting Quotes

Our application is based on the BN from Fig. 4.1, called SSNet, modeling the be-

havior on the field of Italian football team S.S. Lazio of Rome.14

The model’s structure was estimated based on a partially supervised search-and-

score procedure. Data were collected on 45 encounters through Seasons 2016-17 and

2017-18, from the open archive of Lega Serie A Tim15. r.v.s were represented as ei-

ther Setting, Game or Player nodes (respectively, grey, white and light blue colored

in Fig. 4.1; see Table 4.1 for details. Setting nodes report information shared by

all agents prior to any incoming match, while Game nodes correspond to features

of the match - e.g., number of goals scored by S.S. Lazio before break, percentage

of central attacking and defending actions, etc. Continuous r.v.s were discretized

to avoid imposing restrictions to the graphical structure of a hybrid probabilistic

graphical model, i.e. a PGM with both discrete and continuous r.v.s. The choice of

quantile discretization was to some extent arbitrary, as, remarkably, the estimates

we obtained were robust to other approaches. Finally, Player nodes correspond to

binary r.v.s, marking presence/absence of key players on the field, and the system

of play chosen by the team coach.

Informed Pooling is applied with respect to probabilistic knowledge on X0 =

{Match}, r.v. reporting the outcome of a given encounter: ΩX0 = {Win, Draw, Lose}.

14We do not provide details on the data examined, nor on the general learning process of SSNet,

e.g. robustness of its estimates, as they were way out of the scope of this work. These may be

provided to the interested reader upon request to the Author.
15http://www.legaseriea.it/it/serie-a-tim/archivio

http://www.legaseriea.it/it/serie-a-tim/archivio
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Figure 4.1: Subgraph of SS Net extended with auxiliary nodes Beti, i = 1, . . . , 4 for

informed pooling
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Class Variables Levels

Match (X0) Lose, Draw, Win

Setting

Ranking (X1) Highest/High and medium/Low and lowest

Time (X2) Regular/Prime Time/Extra

Location Guest/Host

Game

Run Kilometers, Average Time per Player, Quantile discretized

Played Game (%), Corner Kicks,

Fouls, Fouls Suffered, Restarts,

Build Up Plays, Overall Shots on Target,

Shots on Target From Inside the Box,

Shots on Target suffered, Long-range Kicks,

Wrong Passes, Assists, Offsides, Lost Balls,

Central Attacking (%), Central Defending (%),

Goals Conceded BB, Overall Goals,

Goals Scored BB, Intercepted Balls,

First to Score Yes/No

Player

De Vrij, Immobile, Leiva (Biglia) Presence/Absence

Luis Alberto (Felipe Anderson), Milinkovic-Savic

System of Play (SoP) 3-5-2/4-3-3

Table 4.1: Summary of the variables used in SSNet

The intuition is the following: m = 4 sources for betting odds are considered, namely

Bet1, Bet2, Bet3 and Bet4 16. From previous literature, betting companies’ forecasts

are recognized as most accurate, compared to any other model’s [240]. We convert

odds into PMFs over ΩX0 , and then pool them, based on context-specific degrees

of reliability of each source. Context is specified by the states of Setting nodes X1

(Ranking) and X2 (Time). The resulting probabilistic evidence on the upcoming

match, i.e. on X0, is used to inform SSNet about an event that is likely to happen,

based on previous remarks on accuracy of forecasts.

The result of a match, given a context, is associated with some profile of the Game

variables, which are in turn influenced by the asset of Player variables. Indeed,

instantiation of every Player node has impact on a subset of Game variables, which

in turn has an effect on X0; we exploit such knowledge to respond to (probabilistic)

evidence on X0, and thus minimize chances of losing the game. Fig. 4.2 reports a

graphical schema of the procedure outlined. We stress instantiation of Player vari-

ables ought to be considered under a sensitivity analysis approach: absence of a

player is to be intended as informing the player about his average behavior on the

field, that has to change in some direction (specified by SSNet), to maximize chances

of winning. Note how, as a motivation to our approach, we require predictions of

SSNet on X0 to be as consistent as possible with those of betting odds: absorption of

reliable knowledge is supposed to improve the performance of SSNet, not to merely

replace it. This way, changes in the behavior of Game variables, related to the PMF

16Betting companies considered correspond to, respectively, Better, bet365, William Hill and

Snai.
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Figure 4.2: Representation of the strategic instantiation of Player nodes in SSNet.

Betting companies provides PMF Pj|x1, x2, with X1 = Ranking of the opposing

team, X2 = Time of the match. P (V|x1, x2) is revised into P ′(V|x1, x2). Player

nodes are instantiated to maximize P ′(X0 = Win|x1, x2) in PX0|Player, for each con-

figuration of Player nodes.

over ΩX0 , may be regarded as credible.

Fig. 4.3 displays the subgraph of B obtained by Tr. 7. Let q1, . . . , qQ be betting

odds on, respectively, x1, . . . , xQ
17. Their implied probability is p(xq) = q−1

q , with∑Q
q′=1 q

−1
q′ = 1 + B, where B is known as the bookmaker take. We do not require

B = 0 nor normalization of the implied probabilities since Informed Pooling, as

well as iLogOp, implies normalization upstream. For a review on converting betting

odds into probabilities see [240].

By Eq. (4.7), we pool forecasts, provided shared knowledge of the pool on random

variables X1 and X2.

Each betting company provides forecasts on the result of a match, based on its accu-

rate (yet undisclosed) system of knowledge, while pursuing its own monetary gain.

We account for X1 and X2 to (at least partially) explain the bias of each forecast

toward this latter. Briefly, we expect the ranking of the opposing team to induce

a possible prejudice a betting company expresses, resulting from its own evaluation

that gamblers will (not) be prone to bet against (high-) low-ranked teams. If a game

takes place at regular, prime or extra time, on the other hand, possibly inflated (or

deflated) odds, as well as betting flows, are expected since encounters are likely to

be watched by a wider (or restricted) audience. We weight their opinions, based

on our evaluation of their susceptibility to those types of effects: context-specific

reliability weights of betting companies are given by Eq. (4.10).

Details on the general performance and features of SSNet, as well as those of betting

companies (in terms of RS and MBS), may be found in [169]. Fig. 4.4 is reported

as an example of application of Informed Pooling. It depicts the probability of the

17Q = |ΩX0
| = 3, in our application.
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Figure 4.3: Subgraph of SS Net extended with auxiliary nodes Beti, i = 1, . . . , 4 for

informed pooling

team winning the game according to the 50 best strategic choices of Player node,

provided Setting nodes are fixed to i) ranking of the opposing team is High and

Medium, ii) the match is disputed at Extra time, and iii) S.S. Lazio is not hosting

the game.

Specialization of graphical pooling, let it be standard or Informed, to the case

of pairwise mutually not independent epistemic is not straightforward. A viable

approach would be that of resorting to copula graphical models [96], and take Pear-

son’s correlation as a measure of dependence among pairs of agents, to reproduce the

Copula Pooling Operator [204]. We stress Pearson’s measure is tailored on linear

dependence by definition, and fails in detecting asymmetric forms of dependence

as well as nonlinear ones. Also, it is only appropriate in describing the strength

of the dependence among a given pair when the joint opinion of the two forms an

ellipse, e.g., it is normally distributed [185, 97]. Most importantly, propagation

mechanics such as those proposed throughout this section do not readily apply to

copula PGMs, particularly with Multinomial r.v.s. A viable approach would suggest

moving from the naive Bayes classifier-like structure of Tr. 6 to a tree-augmented

Bayesian network. Future work will focus on such issues.

4.2.2 Sharp-to-Imprecise Pooling

Pooling Operators of this type map a sharp belief profile to a set of PMFs in PX .

Convexity of the set may or may not be requested, although on an epistemic stand-
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Figure 4.4: Probability of event (X0 = win), givenX1 =High or Medium, X2=Extra

time and Location=Guest, associated with the best b = 50 strategies, obtained by

considering configurations of Player nodes. Darker vertical lines highlight Strategies

with System of Play 3− 5− 2 . Dashed line corresponds to SSNet prior forecast.

point we argue its failure raises serious questions on the acceptability of the set

itself, particularly under a Sensitivity Analysis approach. On the other hand, con-

vex compromises are questioned within decision making setups as they are likely to

imply violations of Pareto constraints on preference whenever two (or more) agents

behave differently, in terms of both probability and utility [221]. A number of deci-

sion operators ignore convexity (as well as non-convexity) in the first place [257].

We introduce the convex PO, extensively discussed in [1, 238, 237]. Remarkably, in

[238, 237] proofs of fulfillment of most of the principles from Sec. 4.1 did not make

use of the convexity assumption, therefore enhancing the use of non-convex POs.

Definition 47 (Convex Pooling). Convex pooling maps an element from PmX , to

a (proper) subset in PX . It is generated as the convex hull induced by sharp belief

profile P. Formally,

Π(X) = CH{(P1(x), ..., Pm(x)) : x ∈ ΩX} .

Convex Pooling always satisfies Neutrality [238]. Marginalization is satisfied by

any sharp-to-imprecise (not necessarily convex) PO if and only if Anonymity is

also satisfied [179, Th.3.1][238, Prop.1]. Convex pooling always fulfills both [238,

Prop.2]. A general characterization of the Consistency principle, that may be found

in the literature as Boundedness [111] or Reasonable Range Principle [1], follows

by definition from any PO taking the convex hull of a given belief profile. Addi-

tionally, External Bayesianity is satisfied by every sharp-to-imprecise PO whenever

the adjustment process is based on PK or on general Imaging [237, Prop.4, Prop.7].

If the PO is that from Def. 47, convexity is also preserved. Finally, the Convex
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Pooling Operatir satisfies Strong Independence Preservation by definition, whereas

- unsurprisingly - Stochastic Independence Preservation is not [238].

As already mentioned, CSE (as well as CVE) may result from a collection of

assessments over r.v. X, by taking their convex hull. The generalized revision

rules proposed throughout Ch. 2 and 3 naturally encode Convex Pooling, and its

simultaneous propagation in a BN. This finds motivation also in the fact that two

equivalent sets induce the same convex hull, and thus might weaken the resistance

toward the convexity requirement.

4.2.3 Imprecise-to-Sharp Pooling

Consider m imprecise beliefs on ΩX . To avoid cumbersome notation, we use the

symbol K(X) to denote the belief profile, although we do not make any assumptions

on its elements’ convexity. That is, we define each set of PMFs based on a set of

(linear) constraints that define each source’s belief; if convexity was assumed, we

would require Kj(X) = {P : P j(x) ≤ Pj(x) ≤ P j(x),∀x ∈ ΩX , j = 1, . . . ,m}.
Imprecise-to-sharp pooling is also referred to as Social Inference Process in the

literature, see e.g. [264, 2]. Roughly, an Inference Process Θ searches the set of

elements provided, and returns the one that maximizes a given function. As an

example, the Entropy Inference Process, applied on a CS K(X), identifies the PMF

that maximizes Shannon’s Entropy [225] as follows:

Θ(K(X)) = PΘ(X) = argmaxP (X)∈K(X)

∑
x∈ΩX

P (x) logP (x) .

When K(X) is not readily available, and m imprecise beliefs are provided, a prelim-

inary pooling process is required, whose output serves as input to Θ. The whole pro-

cedure is referred to as Social Inference Process [2]. This type of procedure presents

some issues as there is no unique solution to the general task: let ∩mj=1Kj = K∗,

either K∗ = ∅ (inconsistent opinions) or K∗ 6= ∅. While the first case yields no

straightforward solution, the second allows every PMF in K∗ to be a candidate

shared agreement within the pool.

In order to properly define the general Social Inference Process sPO, let us introduce

the following:

Definition 48 (Convex Bregman Divergence [29]). Let f be any strictly convex

function continuously differentiable, defined on a closed and convex space. B(x, y) is

a Convex Bregman Divergence if it is defined by the first-order Taylor approximation

of f(x) at y:

B(x, y) = f(x)− (f(y)+ < ∇f(y), x− y >) .
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By convexity of f , B(x, y) is always non-negative, and zero is reached if and only

if x = y. Let x and y be |ΩX |-dimensional vectors, it is easy to see B(x, y) =

L2(x, y) = ‖x − y‖2 when f(x) = ‖x‖2, B(x, y) = KL(x‖y) =
∑|ΩX |

i=1 xi log xi
yi

when

f(x) =
∑|ΩX |

i=1 xi log(xi), and so forth (see [37]).

Definition 49 (sPO [264]). sPO maps any set of elements of PmX into a single

element of PX . The latter is the solution to the inference process Θ. Formally,

sPO(X) = Θ(KB(X)) . (4.13)

KB(X) ⊆ PX is defined as follows:

KB(X) =

{
P (X) : P (X) = argminP (X)∈PX

m∑
j=1

B(Pj, P ), Pj ∈ Kj, j = 1, . . . ,m

}
,

(4.14)

where B(Q,P ) is any convex Bregman Divergence.

This class of POs fall in the class of Supra-Bayesian operators. It was proved

[2] (and related works) that if the reverse KL-divergence is chosen as Bregman

divergence and Θ is the Entropy Inference Process, KB(X) corresponds to the Credal

LogOp (that we are going to introduce in Sec. 4.2.4), and the PMF resulting is

unique. Analogously, if the KL-divergence (or the Euclidean distance) is chosen,

and Θ is the Limit Centre of Mass Inference Process, defined as:

Θ(K(X)) = argmaxP (X)∈K(X)

∑
x∈ΩX

log(P (xi)) ,

(see [103] for details), KB(X) results from the Credal LinOp (Sec. 4.2.4), and the

PMF resulting is unique.

sPO applies to imprecise beliefs identified by linear constraints [2, Th.1.3.1]; this

is indeed the case of credal sets. Further details and results may be found in [264,

2, 103]. The general sPO18 satisfies Anonymity, Permutation, Consistency (and

Collegiality), Locality [264]. Further details may be found in the upcoming section,

where the pooling task of the Social Inference Processes mentioned is considered.

4.2.4 Fully Imprecise Pooling

As discussed in Ch. 1, belief functions from Evidence theory may be regarded as

CSs (remember the converse is not true in general). There, Dempster’s Rule of

18An alternative (more general) PO was proposed in [2] as the obdurate PO.
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Combination (DRC [224], denoted with ⊕) is applied to aggregate distinct (and

mutually independent) beliefs on a shared domain, say ΩX . Let m = 2, the pooled

mass function writes:

(m1 ⊕m2) (x) =

∑
x1,x2:

x1∩x2=x
m1(x1)m2(x2)

1−
∑

x1,x2:
x1∩x2=∅

m1(x1)m2(x2)
, (4.15)

for any x ∈ ΩX , with mj(xj) being the mass function of source j, defined on do-

main ΩXj
, j = 1, 2. Further combination rules were proposed for aggregating belief

functions (see, e.g. [222] for a review), including the unnormalized DRC [82, 201].

See also [136, 165] for a discussion on the links between fully imprecise POs from

Evidence theory and Jeffrey’s rule.

An alternative approach was proposed by Capotorti et al. [33]. The authors focus

on the coherence of an aggregated belief function, and propose merging a collection

of imprecise assessments, over (possibly) overlapping domains, toward a shared con-

sensus. This latter results as the solution to a constrained minimization problem,

whose objective function is a properly defined discrepancy measure.19 Remarkably,

it satisfies the consistency principle of Unanimity Preservation, Collegiality, Equiv-

alence and External Bayesianity. As a key feature, the proposal in [33] (and related

works) is well suited to tackle inconsistencies. Also, the approach applies to gener-

alized conditional and joint assessments. Nonetheless, it is aimed to solve a purely

distance-based task, with a major focus on coherence, and no room for a discussion

on conservativeness. For this reason, we would rather not stick to such proposal.

An additional approach worth mentioning is the (asymmetric) Supra-Bayesian ap-

proach, proposed by Benavoli and Antonucci [21]. Their pooling process is based

on a high-level form of aggregation of belief sources, each equipped with a descrip-

tor of state (including its reliability). Their data-fusion architecture is based on

hierarchical application of the GBR (see Ch. 1), aimed at computing the posterior

CS, expressed as a conditional lower prevision. The resulting probabilistic model

satisfies consistency requirements when the intersection of all judgments identifies

a non-empty set of PMFs. Remarkably, the reliability-based proposal in [21] was

used, in combination with a properly defined supra-Bayesian (prior) belief, to deal

with the well-known Zadeh’s paradox [269] for DRC.

Let us go back to the Social Inference Processes, previously introduced in Sec. 4.2.3.

It is easy to see that, if the first step only from the proposal in [2] is considered, the

fully imprecise PO results. That is, for any Bregman divergence B, let KB(X) be

19Such measure was proved by the authors to be the sum of two (different) Bregman divergences,

and enjoys a number of properties that makes it analogous to the latter (see [33] for an introduction)

- and thus similar in spirit to the approach from [103] and related works.
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the pooled imprecise opinion obtained from Eq. (4.14). It was proved KB(X) is a

CS, corresponding to the set of all fixed points pB, obtained by applying a properly

defined fully sharp PO to each configuration (P1, . . . , Pm), for every Pj ∈ Kj, so long

no vacuous judgments are provided (see [2, Ch.3] for a detailed discussion and proof

of results). Their contributions provide the imprecise counterpart to Eq. (4.5):

KKL/L2(X) = {Π(X) : Π(X) = LinOpP1,...,Pm(X),∀Pj ∈ Kj, j = 1, . . . ,m} ,

KKL←(X) = {Π(X) : Π(X) = LogOpP1,...,Pm(X),∀Pj ∈ Kj, j = 1, . . . ,m} ,

where KL← denotes the reversed KL divergence.

As a remark, let us point out this first step of the Social Inference Process may

be regarded as falling in the class of linear aggregation of beliefs - i.e. as trans-

ferable belief model -, whereas the choice of a single PMF requires a chairman, or

supra-Bayesian agent, to establish an adequate criterion, e.g. maximum entropy.

Furthermore, it was proved the B-based POs proposed in [2] yield the correspond-

ing average projection of the pool’s belief profile into its induced convex hull.

The upcoming section will introduce a graphical implementation of the revision in-

duced by a fully imprecise (kinematical) PO on a graphical model. The operator

will be referred to as Credal LogOp, although it corresponds to KKL←(X), which is

thus motivated both under a distance-based and conservative approach.

Graphical Tools for Fully Imprecise Opinion Pooling

Now let us consider the case ofm agents providing CSEs aboutXn, say {K ′j(Xn)}mj=1.

Let K̃ ′(Xn) denote the CS including the output of the operator as in Eq. (4.4) for

each P ′j(Xj) ∈ K ′j(Xn) and j = 1, . . . ,m [2]. Then, let us first generalize Tr. 6 as

follows.

Transformation 8. Consider a BN over X and the collection of CSEs {K ′j(Xn)}mj=1.

For each j = 1, . . . ,m, augment the BN with a binary child D
(j)
Xn

of Xn whose CCPT

is such that P (d
(j)
Xn
|xn) ∝

[
P ′(xn)
P (xn)

]αj
and P (d

(j)
Xn
|xn) ∝

[
P
′
(xn)

P (xn)

]αj
.

This transformation returns a CN. A result analogous to Pr. 4 can be derived.

Theorem 13. Consider the same inputs as in Tr. 8. Then:

P̃
′
Xn(x0) = P (x0|d(1)

Xn
, . . . , d

(m)
Xn

) , (4.16)

where the lower probability on the left-hand side has been computed by absorption of

the single CSE K̃ ′(Xn) and the probability on the right-hand side has been computed

in the CN returned by Tr. 8. The same relation also holds for the corresponding

upper probabilities.
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Proof. Consider the CN returned by Tr. 8. Pr. 4 holds for any BN consistent with the

CN. Thus, the thesis just follows by taking the minimum on both sides of Eq. (4.6)

with respect to the corresponding CSs.

Corollary 5. The simultaneous pooling and propagation of the pool’s aggregated

(imprecise) belief is based on CPK.

This chapter considered pooling techniques for belief merging under generalized

settings, and their implementation with BNs. Future work will extend these contri-

butions to CNs. Next chapter will generalize the discussion to the case of uncertain

instances on several variables. Such extension will require dropping the so-called

one-shot assumption of AGM theory.





Chapter 5

Iterated Belief Revision

Throughout this thesis concepts from the symbolic theory of belief revision were

deliberately confined within the probabilistic language. This way, we got around

several fundamental requirements and epistemic issues that arise with general propo-

sitional logic. These were actively posed in several fields, including the philosophy

of science, logic and artificial intelligence, since introduction of AGM theory in the

1980s.1 As briefly discussed in Ch. 2, belief change theory was formulated with

respect to a static setting, that we referred to as one-shot.

It is known by this point a doxastic agent’s belief is equipped with an entrenchment

ordering2 over her beliefs, prior to revision. If such representation applies afterwards

- her beliefs are equipped with an entrenchment ordering both before and after ad-

justment upon new information - the so-called principle of categorical matching is

satisfied. A landmark contribution worth mentioning in this account is that of Dar-

wiche and Pearl [65], who introduced four additional postulates for consistency of

iterated belief revision.3

Iterated belief revision on a collection Φ of k formulae, usually accounts for an or-

dering, e.g. each piece of information is received by the agent in time, or it is ranked

based on reliability. If this is so, previously introduced consistency requirements,

i.e. retainment of new information by the agent, are now subject to the priority of

each observation is equipped with. If, say, revision occurs on a time line, we are

willing to retain most recent pieces of evidence, while dismissing previous revising

knowledge, whenever this is contradicted by any successive observation.4

1The interested reader may refer, among others, to [214] for a thorough introduction to iterated

belief revision (as non-monotonic reasoning).
2Formalized as systems of spheres, or plausibility orderings.
3Among others, we refer the interested reader to the work of Zaffalon and Miranda [272] on

further approach to iterated belief revision with coherent lower previsions.
4See, e.g. [92] for a proposed systematization, and [163] for complexity results.
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We argue, based on previous chapters, probabilistic iterated belief revision ought to

be based on - our general account of - Iterative Probability Kinematics (Def. 51), if

any ordering is known by the agent over the output of the observational process. We

refer the interested reader to the axiomatic extension of PK to the iterated setting

by [12], in the general framework of propositional logic. That said, our interest in

this chapter revolves around adjustment of a (probabilistic) belief when pieces of

information are provided on a subset of at least 2 r.v.s in XU ⊆ V, and no ordering

is available. There, revision occurs in a static setup and the only hierarchy that may

be established on evidence is induced by the strength of each observation; coarsely,

we expect certain findings to dominate vacuous knowledge. We shall refer to this

sort of revision process as (one-step, or simultaneous) multiple belief change, rather

than iterated, to avoid possible misunderstandings (and disappointment of rigorous

readers!); see Fig. 5.1 for an intuition. In this framework, we account for Conserva-

tiveness postulates - as straightforward extensions of those stated for the standard

case - and simultaneous full retainment of evidence. When this may not be achieved,

we provide a heuristic to evaluate failure of such a generalized success postulate.

Finally, our approach to multiple belief revision specializes to the case of DAG-based

PGMs. Once again, propagation of uncertain evidence is naturally intended as an-

swering a (probabilistic) query, rather than aimed to model revision. Analogously to

Ch. 2, we believe usage of kinematical approaches, as opposed to Maximum-Entropy

ones, may serve as a least commitment option for such a task.

5.1 Concepts for Iterated and Multiple Belief Re-

vision with Sharp Probabilities

Consider the case of several uncertain instances, each provided on one element from

XU of V, independently of the others. Without loss of generality, we consider XU

partitioned into:

XU = XV ∪XS, XV ∩XS = ∅ .

XV and XS denote sets of virtual and soft instances, respectively. As hard observa-

tions are nothing but degenerate uncertain instances, we shall include them in XV .

This choice will be motivated shortly below.

Let us begin with XV , and suppose |XV | = v ≥ 2. The collection of virtual obser-

vations on XV is defined as:

ΛXV
= {λXi , i = 1, . . . , v} .
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Figure 5.1: Revision schemas for XS = {X, Y } based on orderings {X;Y } and

{Y ;X} (black), and one-step MBR (grey). Revision of PMF P yields, respectively,

PX;Y , P Y ;X and PXY .

By definition, multiple belief revision (MBR) on XV , with |XV | = v, leads simulta-

neous application of Pearl’s Method:

P ◦P (α) =

∑
xV ∈ΩXV

P (α,xV )
∏v

i=1 (λxiIxi∼xV )∑
xV ∈ΩXV

P (xv)
∏v

i=1 (λxiIxi∼xV )
.

In this case, it is easy to see (v-steps) iterated belief revision boils down to

(one-step) MBR, since any ordering over XV yields the same posterior. This is

apparent if we look at the graphical representation of the method, where each DXi

is separated by Xi from all other nodes in the DAG, i = 1, . . . , v, and P ◦P (α) =

P (α|dX1 , . . . , dXv). Things are not straightforward if belief revision is induced by

two or more soft instances, i.e. whenever |XS| = s ≥ 2. We define a collection of s

soft instances as follows:

P ′XS
=
{
PXj(Xj), j = 1, . . . , s

}
.

Iterated belief revision ought to adjust a given PMF P accordingly, provided some

ordering, or schema, over XS. Let {X[1]; . . . ;X[s]} be any given schema, such that

r.v. X[j] is the j-th revising PMF, j = 1, . . . , s. If SE is provided based on such an

ordered sequence, e.g. based on time, revision rule ◦ shall be applied iteratively:(
P ◦ {PX[1]

, . . . , PX[s]
}
)

(α) =
(((

P ◦ PX[1]

)
◦ . . .

)
◦ P[s]

)
(α) ,

for any target event α ∈ Σ. See Fig. 5.1 as an example, with s = 2, based on [255,

Fig. (3.10)]. Clearly, when PX;Y , P Y ;X and PXY coincide, iterated belief revision

boils down to MBR, as it is for XV .

If SE is available on not mutually independent random variables, different PMFs

shall result from different revision orderings based on some revision rule [255]. This
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is due to the so-called path-dependence of ◦ considered, e.g. ◦J [133, Ch.17]. In

the general case, we expect PMF P ◦(V) to retain P ′X[s]
(X[s]) only: the last piece of

information provided.

Commutativity of iterated belief revision is satisfied whenever P ◦ is invariant to

permutations in the schema. An equivalent characterization of commutativity is the

following:

Definition 50 (Commutativity). Let P ′XS
be the space of PMFs consistent with

collection P ′XS
, defined above. Commutativity is satisfied if it holds:

| ∩X∈XS
P ′X | = 1 .

A weaker form of Def. 50 would require ∩X∈XS
P ′X 6= ∅, called cumulativity.5 It

is easy to prove iterated updating is commutative, and so it is any iterated revision

process based on virtual instances [194]: when coping with multiple virtual findings

in a BN, it is sufficient to add the necessary auxiliary children, quantify their CPTs,

irrespective of P , and instantiate them to their truth value. With SE, we no longer

account for retainment of information as a feature of the chosen revision rule ◦, but

as related to i) the pattern of independence described by P on its domain, and ii)

the inherent nature of information.

Thorough characterization of uncertain evidence was provided in the literature.

According to some authors, probabilistic assessments must be further distinguished

into either fixed or not-fixed [188]. The former are produced by a source, irrespec-

tively of its knowledge of the system6, whereas the latter strictly depend on the

source’s awareness of the environment. This difference is critical to iterated belief

revision, since commutativity does not apply by definition with not-fixed SE [188].

Let X and Y be any two random variables in XS ⊆ V, such that P ′X(X) and P ′Y (X)

are (fixed) soft assessments, respectively. We write PX , P Y , PX;Y , P Y ;X to denote

the revised PMFs obtained by iterated schemas “X only”,“Y only”,“X, then Y ”

and “Y , then X”, respectively, as in Fig. 5.1.

The iterated revision process commutes whenever X and Y are Wagner independent

(WI [255]). Formally, if it holds:

PX(y)

P (y)
=
P Y (x)

P (x)
, ∀(x, y) ∈ ΩX × ΩY . (5.1)

Then, PX;Y (α) = P Y ;X(α) for any event α. We hereby extend the equivalence result

in [84] to the case of WI. This result is further generalized to the conditional (context-

5Cumulativity extends simple cumulativity for probability update [12], that trivially requires

P (e|e) = 1.
6That is of all other elements in XS .
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specific) setting, i.e. for CoSE, below. Beforehand, let us introduce Shogenji’s

Confirmational measure [228] as the ratio:

S(x, y) =
P (x, y)

P (x)P (y)
, (5.2)

for every pair (x, y) ∈ ΩX × ΩY
7, with 0/0 := 0.

Proposition 6. Let P be any PMF on (Ω,Σ), and let X and Y be logically inde-

pendent r.v.s in XS ⊆ V. Let also P ′X(X), P ′Y (Y ) be any (fixed) soft findings, X

and Y are WI with respect to P ′X and P ′Y if and only if it holds:∑
x∈ΩX

S(x, y)P ′X(x) =
∑
y∈ΩY

S(x, y)P ′Y (y) , (5.3)

for each x ∈ ΩX and y ∈ ΩY .

Proof. The proof requires simple algebraic passages. Let∑
x

S(x, y)P ′X(x) =
∑
y

S(x, y)P ′Y (y) = k > 0 .

Suppose we first revise P based on P ′X . It holds:

PX(y) =
∑
x∈ΩX

P (x, y)
P ′X(x)

P (x)

=
∑
x

S(x, y)P (y)P ′X(x)

= kP (y)

And thus PX(y)/P (y) = k. Analogous reasoning yields P Y (x) = kP (x).

By Prop. 6, it holds:

(P ◦J PX) (y) =
∑
x∈ΩX

P (x, y)
P ′X(x)

P (x)
= kP (y), ∀y ∈ ΩY ,

and (P ◦J PY ) (x) = kP (x), for each x ∈ ΩX .

WI extends stochastic and Jeffrey independence [84]. It also implies convergence in

one step of any iterated approach to belief revision.8

A least commitment kinematical approach to iterated belief revision would require

the following to hold:

7Remember from Ch. 1 a pair is defined on the Cartesian product space of the associated

possibility spaces if and only if P the two are logically independent.
8See e.g. [197, 244].
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Definition 51 (Iterative PK). Let P be a PMF over (Ω,Σ), and XS be an ordered

collection of s random variables, such that SE is provided on every X ∈ XS ⊆ V.

Any iterated revision process that produces PMF P ◦ is based on Iterated PK (IPK)

if and only if, for any α ∈ Σ, it holds:

IPK1 P ◦(α|xS) = P (α|xS), for each xS ∈ ΩXS
, (Iterated Conservativeness)

IPK2 P ◦(X[s]) = PX[s]
(X[s]). (Prioritized Responsiveness)

The Success postulate is concerned with the last piece of information, with no

requirements on retainment of all evidence of PXS
. As already discussed, commuta-

tivity (and thus full success of revision) comes as a feature of P on XS and of SE,

rather than ◦’s.
It is easy to prove iterated belief revision by a kinematical rule based on WI r.v.s is

always based on IPK, while satisfying the stronger postulate:

IPK2’ P ◦(X) = P ′X(X), for each X ∈ XS. (Iterated Responsiveness)

In the general case, we might be interested in measuring the extent to which postu-

late IPK2’ is failed by an IPK-based rule, by computing (for any distance measure

d):

d(P ◦(XS\{X[s]}), PXS\{X[s]}) , (5.4)

where PXS\{X[s]}(x
−[s]
S ) =

∏
X∈XS\{X[s]} P

′
X(x)I

x∼x−[s]
S

, for each x
−[s]
S ∈ ×X∈XS\{X[s]}ΩX .

We shall return to Eq. (5.4) below.

5.1.1 The Context-Specific Case

Let CXS
be a given union set of context variables for XS, such that CoSE is provided

over ΩX × {CX = c∗X}, for some c∗X ∈ ΩCX , for each X ∈ XS. Analogously,

c∗XS
= {c∗X : X ∈ XS} is the collection of all relevant contexts ; as a remark, c∗XS

is

not necessarily a (consistent) configuration in ΩCXS
.9

Let us denote the collection of all conditional instances with PXS |c∗XS
:

PXS |c∗XS
=
{
PX|c∗X (X|c∗X), X ∈ XS, c

∗
X ∈ c∗XS

}
.

The example below shows full retainment of all pieces of information is verified, by

a CoPK-based ◦A, if all elements of XS are mutually CSI (cfr Def. 2, Ch. 1).

9e.g. CX = CY , yet c∗X 6= c∗Y , for some X,Y ∈ XS .
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Example 20. Let X, Y, Z ∈ V, and XS = {X, Y }, such that {c∗X = c∗Y } = {z∗}.
If X and Y are CSI conditional on z∗, it holds P (x, y|z∗) = P (x|z∗)P (y|z∗), for

each (x, y) ∈ ΩX × ΩY × {Z = z∗}, whereas P (x, y|z) 6= P (x|z)P (y|z) in general,

i.e. for each (x, y, z) ∈ ΩX × ΩY × ΩZ.10

Let P ′X(X|z∗), P ′Y (Y |z∗) be CoSE on X and Y , respectively. P (y) is revised by

Adams conditioning as follows:

PX(y) = P (y,¬z∗) +
∑
x

P (y, x, z∗)
P ′X(x|z∗)
P (x|z∗)

= P (y,¬z∗) + P (z∗)P (y|z∗)
∑
x

P ′X(x|z∗)

=
∑
z

P (y, z)

= P (y)

whereas

PX(y) = P (y,¬z) +
∑
x

P (y, x, z)
P ′X(x|z)

P (x|z)
6= P (y)

in the general case. It is easy to check:

(P ◦A {P ′X , P ′Y }) (α) = (P ◦A {P ′Y , P ′X}) (α)

= P (α,¬z∗) +
∑
x,y

P (α, x, y, z∗)
P ′X(x|z∗)
P (x|z∗)

P ′Y (y|z∗)
P (y|z∗)

.

We shall now define partial contexts as c∗I = {c∗i ∼ c∗XS
: i ∈ I} and, conversely,

c∗¬I = {c∗i ∼ c∗XS
: i 6∈ I}, for some I ⊂ {∅, 1, ..., s′} indexing the elements of XS,

provided |XS| = s′ ≥ 2. Every configuration in

c∗¬XS
= ΩXS

\
[
∪I⊆{∅,1,...,|XS |}c

∗
I

]
is neutral with respect to PXS |c∗XS

as a whole.

For a fixed I, cI,¬I = (c∗I ,¬c∗¬I) is the set of configurations in ΩCS such that a)

the subset of elements indexed by I is relevant with respect to the CoSE on the

variables in XI ⊆ XS, while b) the remaining are neutral to XI . It follows c∗XS
=

(c∗{1,...,|ΩXS
|}, ∅), and vice versa for the negated element, if they exist. Finally, let

cα = {cI,¬IIcI,¬I∼α, I ⊆ {∅, 1, . . . , |ΩXS
}}, for any target event α ∈ Σ.

If CoSE is provided on mutually CSI random variables, generalization of CoPK to

the iterated setting is straightforward (as shown by Ex. 21). Conditioning must be

10We are always assuming P (z) > 0. Again, this is implied by the logical independence of the

triple (X,Y, Z).
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considered on all relevant and neutral configurations (respectively, for CoPK1 and

CoPK2 of Def. 17) and on the union of all (partially) relevant configurations and

corresponding elements of XS (CoPK4).

We generalize the previous result on Shogenji’s measure to the current setting. Our

results apply without loss of generality to the full conditional setting, where all

contexts are relevant.11

Definition 52 (Context-Specific Shogenji’s Measure). Let c∗X , c
∗
Y be relevant con-

texts for variables X and Y , respectively. Context-specific Shogenji’s measure ex-

tends Eq. (5.2) as:

S(x, y; c∗X , c
∗
Y ) =

P (x, y, c∗X , c
∗
Y )

P (x, c∗X)P (y, c∗Y )
, (5.5)

for all pairs (x, y) ∈ ΩX × ΩY × {C∗X = c∗X} × {C∗Y = c∗Y }.

If X and Y are CSI with respect to context (c∗X , c
∗
Y ), then S(x, y; c∗X , c

∗
Y ) = 1,

for all (x, y) ∈ ΩX × ΩY × {C∗X = c∗X} × {C∗Y = c∗Y }.

Proposition 7. Let X and Y be two random variables such that CoSE P ′X(X|c∗X)

and P ′Y (Y |c∗Y ) is provided. X and Y are context-specific WI (CS-WI) conditional

on relevant contexts c∗X , c
∗
Y , and with respect to the provided CoSE, if and only if it

holds:∑
x,cX

S(x, y; c∗X , c
∗
Y )PX(x|c∗X)P (c∗X) =

∑
y,cY

S(x, y; c∗X , c
∗
Y )P Y (y|c∗Y )P (c∗Y ) (5.6)

for all (x, y) ∈ ΩX × ΩY × {CX = c∗X} × {CY = c∗Y }, with P (c∗X , c
∗
Y ) > 0.

Proof. Consider revision of the PMF by PX(X|c∗X) and let Eq. (5.6) equal k > 0.

It holds:

P ∗X(y, c∗Y ) = P (y, c∗Y ,¬c∗X) +
∑
x

P (x, y, c∗X , c
∗
Y )
PX(x|c∗X)

P (x|c∗X)

=
∑
x

[
P (y, x, c∗Y ,¬c∗X) + S(x, y; c∗X , c

∗
Y )P (y, c∗Y )P (c∗X)PX(x|c∗X)

]
= P (y, c∗Y )

∑
x,cX

S(x, y; cX , c
∗
Y )PX(x|cX)P (cX)

= P (y, c∗Y )k ,

provided PX(x|cX) = P (x|cX) when cX 6= cX .

Conversely, ∑
x,cX

P (x, y, cX , c
∗
Y )

P (x|cX)
PX(x|cX)P (c∗X) = kP (y, c∗Y )

11I.e. c∗XS
= ΩXS

.
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if and only if it holds∑
x,cX

P (x, y, cX , c
∗
Y )

P (x, cX)P (y, c∗Y )
PX(x|cX) =

∑
x,cX

S(x, y; cX , c
∗
Y )PX(x|cX)P (cX) = k

Results for (X, cX) may be derived by analogous reasoning.

We shall formally define Adams conditioning’s extension to simultaneous MBR:

Definition 53 (Multiple Adams Conditioning). Let XS be a collection of mutually

CS-WI random variables on which CoSE is provided and let α be any target event.

P ∗(α) is obtained by Multiple Adams Conditioning (MA) if it holds:

P ∗(α) = P (α,¬cαXS
) +

∑
I⊆{1,...,k}

∑
xI∈ΩXI

P (α,xI , c
α
I,¬I)

∏
X∈XI

P ′(x|c∗X)

P (x|c∗X)
, (5.7)

where ¬cαXS
is the set of all contexts neutral to PXS |c∗xS

consistent with α.

We write P ∗(α) =
(
P ◦MA PXS |cα

)
(α), and denote the MA revision of P with P ◦MA.

Let CX ,CY be two sets of context r.v.s for X, Y ∈ XS, respectively. Suppose

CX∩CY = A 6= ∅ (as in Ex. 21). Without loss of generality, suppose c∗X = c∗Y = a∗.

When k = 2, Eq. (5.7) reduces to

P ′(α) = P (α,¬a∗) + PJ(α, a∗) (5.8)

The second term of the right-hand side of Eq. (5.8) corresponds to Jeffrey’s rule

applied on the a∗-slice of ΩX × ΩY × ΩA
12.

A routine for the detection of CSI relationships in a partially oriented DAG

is presented in the Appendix (Sec. 2). Results from some applications are also

reported. The procedure presented shall be further applied to either i) deal with

faithfulness violations (or quasi-violations), or ii) reduce parametric dimensionality

(we provide results on benchmark networks from the literature).

Next section extends results from Ch. 3 to the iterated and multiple setups.

Credal instances are also considered therein.
12That is

PJ(α,a∗) =
∑
y∈ΩY

∑
x∈ΩX

P (α, x, y,a∗)
P ′(x|a∗)
P (x|a∗)

P ′(y|a∗)
P (y|a∗)

=
∑
x,y

P (α, x, y,a′)
P ′(x, y|a∗)
P (x, y|a∗)

=
∑
x,y

P (α|x, y,a∗)P ′(x, y,a∗)

= ((P ◦J PX) ◦J PY ) (α,a∗)

The second equality follows from CSI of X and Y with respect to a∗. Also, by CSI it holds

((P ◦J PX) ◦J PY ) (α,a∗) = ((P ◦J PY ) ◦J PX) (α,a∗).
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5.2 Related Work on Iterated Belief Revision

Previous works on iterated belief revision in the general setting of jointly inconsis-

tent soft instances on XS stem from the properties of standard constrained IPFP.

As already discussed, IPFP for belief revision leads (in the limit) the unique KL-

projection 13 of the prior PMF on the space of probability distributions that are con-

sistent with SE on XS, while minimizing the KL divergence (and total variation)

[197, Sec.2]. We briefly outline the procedure with Jeffrey’s rule. Let |XS| = s,

s ≥ 1, IPFP iteratively applies the following, until convergence is reached:{
P(0)(v) = P (v)

P(i)(v) =
(
P(i−1) ◦J PXj

)
(v) j = ((i− 1)mod(s)) + 1

(5.9)

with P(i)(v) = 0 by definition, if P(i−1)(xj) = 0 at some point.

When s = 1, Eq. (5.9) trivially reduces to Jeffrey’s rule, and IPFP halts after the

first step, with (j = 1, i = 1). Analogously, if all variables are mutually WI, the

procedure converges at (j = s, i = 1). This is equivalent to application of Jeffrey’s

rule on joint r.v. XS in a single step; i.e. conditioning on joint event (XS = xS),

with P (xS) =
∏k

j=1 P (xj), for each xS ∈ ΩXS
.14

When cumulativity does not hold, a näıve approach to iterated belief revision would

suggest to separately revise P by PX , for each X ∈ XS. For a fixed α, s Jeffrey

revisions P ◦J ,1(α), . . . , P ◦J ,s(α) result. Then, take s−1
∑s

j=1 P
◦J ,j(α) as the solution.

Vomlel proposed in [250] an EM-based routine for (approximate) iterated belief

revision, called GEMA (Generalized EM Algorithm), that is based on the näıve

intuition above. GEMA imposes a priority ordering upon the elements of XS, via

the convex combination15 of weights wj, j = 1, . . . , s. At each iteration, the näıve

method is applied, and the weighted mean is accounted for as the solution, while

checking on convergence, i.e. minimization of:

s∑
j=1

wjKL(P ′Xj‖P
↓Xj
(i) ) =

s∑
j=1

wj
∑

xj∈ΩXj

P ′Xj(xj) log
P ′Xj(xj)

P(i)(xj)
.

Among others, Peng [197] reported complexity of GEMA strongly depends on the

inherent nature of P and V.

The same author of GEMA had previously proposed, in [140], approximate serial

relaxation of IPFP, where the second line of Eq. (5.9) was replaced by:

P(i)(v) = (1− ρi)P(i−1)(v) + ρi
(
P(i−1) ◦J PXj

)
(v) ,

13See [57], and Sec. 4.2.4.
14See [44] for a complete introduction to optimization when jointly inconsistent constraints are

given.
15wj > 0,

∑s
j=1 wj = 1.
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with ρi ∈ (0, 1). When cumulativity does not hold (nor commutativity), Vomlel’s

proposal converges as ρ1 ≈ 1 decreases to 0 with iterations - as i grows. The de-

creasing rate serves as tradeoff between computational feasibility and responsiveness

of the (approximate) revision process.16

An alternative application was proposed in [197] at the constraints level, rather

then on the joint PMF. We hereby sketch the procedure: at first, standard IPFP is

run and either i) some revision is obtained as output, or ii) the process gets stuck

looping. In the first case, cumulativity holds, and the optimal solution results from

convergence of IPFP. If ii) is the case, P
(0)
Xj

(Xj) is initialized as P ′Xj(Xj), j = 1, . . . , s,

and the following applies at each iteration k, until convergence:{
P

(l)
Xj

(xj) = τP
(l−1)
Xj

(xj) + (1− τ)P(k−1)(xj), ∀xj ∈ ΩXj

P(k)(v) =
(
P(k−1) ◦J P (l)

Xj

)
(v)

with j = (1 + (k − 1) mod (s)) and l = (1 + b(k − 1)/sc). In words, at l = 1, a

mixture of the original constraint and of the evaluation of Xj by the current PMF

replaces the former, and smoothed SE is used for revision. As the procedure iterates,

such mixture-constraints move toward a feasible region for convergence. If s = 2,

this is always reached [197, Th.7].17

Simply put, when both responsiveness and conservativeness can not be satisfied,

distance based approaches, such as Maximum-Entropy IPFP, favor the first as op-

posed to kinematical methods, whose focus is on the second principle. We argue

PK (and related extensions) represent a safe approach to belief adjustment, whose

importance is apparent when revision is applied to probabilistic graphical models.

Iterated propagation of probabilistic beliefs with DAG-based models was considered

in [244, 197] and related works. Valtorta et al. [244] proposed application of stan-

dard IPFP among r.v.s in the root clique of a properly built junction tree. Their

procedure, called Big-clique algorithm, accounts for the constrained construction of

such tree, whose treewidth is expected to be at least s, since all r.v.s in XS are in

the root.18 Efficiency of the Big-Clique algorithm may be easily improved, based on

[141, 142].

Based on [35], Peng proposed replacement of SEs by VEs, as we did in Ch. 2. Re-

markably, his proposals for (approximate) belief propagation in BNs all tried to

patch up inconsistencies produced by failure of conservativeness in the model, via a

16When cumulativity does hold, the proposed serial relaxation of IPFP converges if ρi = ρ, for

each i.
17See [197] for further details, e.g. on the optimal choice for smoothing constant τ ∈ (0, 1).
18Remember from Ch. 1 the treewidth of a BN may be equivalently defined as the minimal size

of the largest clique in any triangulation, and that complexity of inference in a junction tree is

exponential in its width. See [197] for experimental evaluations and comparisons on complexity.
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further step, invoked to formally preserve the structure of G (at the parents’ level).

We argue this does not prevent failure of conservativeness, and thus exposes the

model to faithfulness violations.

5.3 Graphical Tools for Iterated and Multiple Be-

lief Revision

We call uncertain credal updating (UCU) of a BN the task of computing updated/revised

beliefs in a BN with an arbitrary number of CSEs, CVEs, and hard evidences as

well.

UCU of a BN when VE (or conditional VE) instances only are provided is straight-

forward, and invariant to any revision schema.

Let us first consider the case of sharp probabilistic instances, that is SE and CoSE

over k < (n + 1) r.v.s: XU = XS. If an ordering is given over the k r.v.s, iterated

belief revision might be applied as a straightforward extension of our proposals from

Ch. 3, based on iterative PK (Def. 51). Clearly, we expect the process to satisfy

IPK2’ - that is, to fully retain all instances - if and only if all pairs in XS are mu-

tually WI (or CS-WI).

Based on results of Sec. 5.1, we outline a simple proposal for kinematical MBR based

on marginal and conditional soft evidence on k r.v.s in a BN, when no ordering is

available for revision. This setup is generalized by the one where further virtual

instances are available: these latter are internally invariant to any revision schema,

and shall be treated as a single (additional) element in the iterated UCU task.

1. Augment G with k auxiliary nodes, as from Ch. 3. This step requires compu-

tation of Denote the resulting DAG with G∗;

2. Build a junction tree from G∗;

3. Instantiate all auxiliary nodes to their truth value and propagate.

Some remarks are due. As a first, if all the k r.v.s are Wagner (context-specific)

independent, we expect MBR and iterated technique to yield the same revision of P .

Also, without loss of generality let α = (Xq = xq); if the set of all uncertain instances

contains k′ ≤ k elements that are m-irrelevant19 to Xq (or, possibly, to xq), MBR

outlined above shall be restricted to propagation of knowledge of the remaining

k − k′ r.v.s. This is motivated by the fact that propagation of uncertain beliefs

19See Def. 10.
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requires marginalization of each Xi on which SE (or CoSE) is provided. If Xi is m-

irrelevant to Xq, changes in its marginal (or conditional) PMF do not influence Xq’s

behavior, by definition. Finally, a sensitivity analysis approach, when no ordering

is available, would suggest computing all revisions of P (xq), and taking its mean

values and range of variation. Such sensitivity analysis approach may be applied

to the case of J subsets of mutually WI (or CS-WI) r.v.s, yielding a partition of

XS. In this case, iterated belief revision may be applied with respect to each subset

XS,j, while MBR is performed at each step j, based on its kj members, j = 1, . . . , J ;

with
∑J

j=1 kj = k. Such sensitivity analysis approach would be based on a smaller

number of revision schemas.

As for credal instances and BNs, when v ≥ 2 CVEs only are available - i.e.

XU = XV - we augment the DAG with v auxiliary children as in Ch. 3 and apply,

e.g. ApproxLP.

The procedure becomes less straightforward when coping with multiple soft obser-

vations. As previously discussed, specification of each auxiliary child’s CPT requires

a preliminary inference step, and, as a consequence, iterated updating of multiple

SEs might be not invariant with respect to the revision process scheduling [254],

unless WI holds. Additionally, with CSEs, absorption of the first CSE transforms

the BN into a CN, and the absorption of other CSEs requires a further extension of

the procedure, that we consider in details below. By MBR, multiple CSEs shall be

converted in CVEs and the inferences required for the quantification of the auxiliary

children performed in the original BN. This trivially corresponds to a single iteration

of Peng’s proposal in [197], extended to the credal framework.

As for complexity of inference, with CNs, binary polytrees may be updated ef-

ficiently, while updating ternary polytrees is already NP-hard.20 An important

question is therefore whether or not a similar situation holds for UCU in BNs. The

(positive) answer is provided by the two following results.

Proposition 8. When a single query variable is considered, UCU of polytree-shaped

binary BNs can be solved in polynomial time.

Proof. The proof of this proposition is trivial and simply follows from the fact that

the auxiliary nodes required to model CVE and/or CSE are binary (remember that

CSs over binary variables are always shady). The CN solving the UCU is therefore a

binary polytree which can be updated by the exact algorithm proposed in [100].

Theorem 14. UCU of non-binary polytree-shaped BNs is NP-hard.

20This is known from Ch. 1.
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Proof. The proof of this theorem is based on a reduction to the analogous result

for CNs [175]. Notably, this already concerns models whose variables have no more

than three states and treewidth equal to two.

To prove the theorem we show that the non-binary polytree-shaped CN used by

[175, Th. 1] to prove the NP-hardness of non-binary credal polytrees can be used

to model UCU in a non-binary polytree-shaped BN. To do that for an arbitrary k,

consider the BN over X := (X0, X1, . . . , X2k) with the topology in Fig. 5.2, Nodes

(X0, . . . , Xk=1) are associated to binary variables, the others to ternary variables.

A uniform marginal PMF is specified for Xk, while the CPTs for the other ternary

variables are as indicated in Table 2 of the proof we refer to (the numerical values

being irrelevant for the present proof). For the binary variables we also specify a

uniform prior.

We specify indeed a vacuous CSE for each binary variable. These CSEs can be

asborbed by replacing the uniform PMFs with vacuous CSs. The resulting model is

exactly the CN used to reduce CN updating to the PARTITION problem [110] and

hence proves the theorem.

Xk

X0 X1 X2 Xk−1

Xk+1 Xk+2 Xk+3 · · · X2k

Figure 5.2: A polytree-shaped directed acyclic graph.

We provided some theoretical results on the independence conditions that allow

for commutativity of the iterated belief change process, with sharp probabilities.

Also, we extended previous contributions, on the graphical implementation of our

proposed operators for kinematical belief propagation under uncertainty and impre-

cisions, to the case of several instances. Future developments will be focused on the

fully general case, of credal instances to be propagated in CNs.
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The present work stands on the border between information theory, artificial intel-

ligence, and probabilistic and statistical theory. We aimed to introduce a unified

treatment of uncertain and unreliable evidence in complex probabilistic systems of

knowledge, laying the foundations of a sound approach to radically different litera-

tures, each equipped with its own language and properties. These are:

1. (Generalized) Belief Change: asymmetric adjustment of a belief base upon

newly available information. We first considered the static approach to belief

change (Belief Revision), and successively extended our interest to the cases of

i) what we defined as Partiality-inconsistent evidence (Generalized Imaging),

ii) overlapping findings on the same element of an agent’s system of knowl-

edge (Opinion Pooling), and, finally, iii) non-overlapping multiple observations

(Iterated and Multiple Belief revision);

2. Graphical models: multivariate statistical models for probabilistic (counter-

factual) reasoning. The key feature of such models identifies with the compu-

tational process being made efficient by the modular treatment of the complex,

high-dimensional set of random variables, based on the pattern of conditional

independence relationships among pairs of elements;

3. Imprecise Probabilities: based on the seminal work of Walley [257], they con-

stitute a generalized approach to probabilistic reasoning, defined by sets of

linear constraints. These in turn yield coherent collections of consistent prob-

ability mass functions over a (possibly joint) sample space.

A vast literature is available on imprecise treatment of probabilistic graphical mod-

els, originating from the seminal paper on Credal Networks of Cozman [51]. Also,

Evidential networks were proposed, based on belief functions; see, among others

[266, 268, 267]. Furthermore, several works were aimed to bridge belief change the-

ory to graphical models, for a generalized treatment of evidence in the latter; among

others, results from [140, 250, 244, 197] were repeatedly cited throughout Ch. 3 and
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5. Finally, probabilistic belief change with imprecise probabilities was the subject

of a wide range of contributions, including [224, 165, 276, 272, 78, 271] on belief

revision, [210, 123] on partiality-inconsistent evidence, [2], and related works, on

belief merging (or pooling). This is summarized by the figure below:

Although this is not the first work addressing a unified treatment of the three

subjects listed above, (to our knowledge) previous works were all based on belief

functions [32, 230]. These latter were proved to be outperformed by credal sets,

that serve as a a more powerful and general tool for modeling imprecision [7].

To summarize, in our work, we first introduced basic concepts from the theory of

sharp and imprecise probabilities. A major light was shed on the different concepts of

irrelevance that go alongside with each of these, and their fulfillment of graphoid ax-

ioms, as a pre-requisite for graphical (DAG-based) modeling. This was successively

introduced, and complexity of inference tasks with Bayesian and Credal networks

was considered. An axiomatic introduction to belief change was the subject of the

first part of Ch. 2, where adjustment operators, or rules, were characterized based

on their kinematical properties, as opposed to a merely distance-based approach.

Formal definition of soft evidence and of its extension to the conditional and impre-

cise case were provided, each accompanied by desirable kinematical properties for

belief change. As a first contribution, we proposed the so-called Imaging operators

for belief change, providing the counterpart of both sharp and imprecise Jeffrey’s

rule and Adams conditioning, with, once again, a focus on their kinematical prop-

erties. Implementation of standard and credal Jeffrey’s rule, Adams conditioning

was proposed throughout Ch. 3, based on the key result of Chan and Darwiche [35]

on the inter-reducibility between soft and virtual evidence. This latter accounts for
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unreliability in the observational process. Treatment of virtual evidence and sound-

ness of its propagation via message-passing procedure through a Bayesian network

were introduces and established, respectively, by Pearl [194]. We proposed a num-

ber of transformations to perform propagation of uncertain evidence (both virtual

and soft) in the generalized settings of conditional and credal findings, based on a

sharp or imprecise graphical model. The discussion was successively specialized to

the case of opinion pooling, where our methodology was proved to simultaneously

i) combining overlapping instances, and ii) propagating them through a Bayesian

network, while satisfying desirable kinematical properties. Finally, we moved from

the static setting to the case of several findings being provided. We distinguished

iterated from multiple belief revision, when evidence was provided together with an

ordering, assigning a priority to each uncertain observation. We outlined kinemat-

ical principles that ought to be considered in such a generalized framework, and

provided results on generalized forms of evidence that make the process commu-

tative, i.e. that makes iterated procedures boil down to multiple belief revision.

Finally, results on the complexity of inference were provided for the special case of

multiple findings on mutually independent elements of the network.

We hope our work might contribute in opening the way to a number of research

topics, that will be of great interest for future developments, both under a method-

ological and applied perspective. Some remarks and considerations are outlined in

this merit at the end of every chapter. Among others, implementation of Imaginary

operators for belief revision to graphical models, let them be Bayesian or Credal

networks would yield to closing the loop upon the three vertices from the Figure

above. The effort would likely provide useful tools for robust support to statistical

decision making, record linkage, imputation, and so forth. Also, propagation of un-

certain beliefs in a Credal network will likely be addressed in our future research,

both under a theoretical point of view (with exact and approximate approaches),

and to real-world problems, involving those settings affected by uncertainty and im-

precision, cumulated from different sources. Furthermore, performance comparisons

of our proposals with non-kinematical approaches might result of great interest,

particularly when it comes to opinion merging and non-static frameworks, i.e. the

iterated and multiple cases. This would not only include accounting for distance-

based approaches, based on projections, but also tapping into the literature of belief

fusion (that shall be intended as the symmetric extension of our approach). Finally,

results on generalized forms of independence from Ch. 5 shall be extended to the

imprecise setting. On a higher level, non-static iterated and multiple belief revi-

sion are expected to constitute a key topic for future research, with imprecise as

well as sharp probabilities, involving a deep understanding of the mechanics that
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ought to be considered as benchmark. In this account, we proposed relaxing the

responsiveness principle, i.e. retainment of acquired evidence, in favor of rigidity.



Appendix: Applications

1 An Application of Latin Hypercube Sampling

for Learning Parameters of a Complex Model

under Uncertainty: Modeling HPV

Latin Hypercube Sampling (LHS) is a methodology that belongs to the Monte Carlo

class of procedures for the propagation of uncertainty. It was first introduced by

Mckay in [180], extending quota sampling [236] as well as Latin square sampling

[205]. As LHS displays desirable features and properties from both simple random

and stratified sampling, it serves as a reasonable compromise between the two [129].

Briefly, let K be any (large) number of unknown parameters to estimate. LHS

randomly generates N input vectors from the K-dimensional space of parameters,

to generate a so-called LHS matrix. For each probability distribution Di, and fixed

N , LHS first generates a partition of the range of variation of Di into N (mutually

disjoint) equal probability intervals: ΩXi = ∪Nj=1δi,j, δi,j ∩ δi,j′ = ∅, for every j 6= j′,

j = 1, . . . , N , i = 0, . . . , n. Then, a single value is sampled from each δi,j without

replacement, so that the whole range of variation of Di is represented N values

across the ordered partition; see [137] on a different approach.

Example 21. Let Di ≡ PXi be a uniform distribution for random variable Xi

over a continuous possibility space, ΩXi = [lXi , uXi ], −∞ < lXi < uXi < ∞. Let

lXi = 0.0, uXi = 3.5, and N = 7, ΩXi = [0.0, 3.5] is partitioned into:

[0.0, 0.5) ∪ [0.5, 1.0) ∪ [1.0, 1.5) ∪ [1.5, 2.0) ∪ [2.0, 2.5) ∪ [2.5, 3.0) ∪ [3.0, 3.5]

By LHS, a single value is sampled uniformly from each interval, and the i-th column

of the LHS matrix results as a permutation of

[0.013, 0.897, 1.152, 1.610, 2.406, 2.512, 3.078]′

The N values sampled for each Xi ∈ V are combined at random, and constitute

the rows of the LHS matrix in RN×K . The model is run N times, one for each
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configuration (row of the matrix). Let φ̂ be the estimate obtained by LHS, its vari-

ance was proved to be always smaller compared to any other obtained by stratified

sampling [181], which in turn outperforms applications of simple random sampling;

this motivates LHS as a more accurate, while efficient, technique, compared to the

other two considered. When uncertainty on the K parameters induce bounds that

are considered too loose, or imprecise, LHS may be iterated to reduce their size:

the N outputs evaluated based on a properly chosen functional, and the parameter

sets associated with the best performances are used to refine the ranges of variation

of each quantity. This procedure is iteratively applied until some convergence is

reached.

We resort to LHS to identify a subset of K = 14 parameters of a compartmental

model.

Deterministic compartmental models were introduced in epidemiology by Kermack

and McKendrick [149], to describe the spread of an infectious disease in a wholly

susceptible (fixed) population. In the simplest case, such model are described by

systems of ODEs. Consider the SIR flow-diagram, in Fig. 5.3. In this model indi-

viduals can move through a discrete sequence of states - or compartments - namely

the susceptible compartment, the infective compartment etc. To each compartment

we associate a states variables S(t),I(t) etc representing the numbers of individuals

who at time t are susceptible to the infection, infective, and recovered, respectively.

With time, people move from a compartment to another according to some appro-

priate rate; e.g., the dynamics of the SIR model from Fig. 5.3 are described by the

following:

∂S(t)

∂t
= −λS(t)

∂I(t)

∂t
= λS(t)− γI(t)

∂R(t)

∂t
= γI(t)

It is straightforward to see the total population is constant over time: ∂S(t)
∂t

+ ∂I(t)
∂t

+
∂R(t)
∂t

= 0, for all t ≥ 0.

λ is called force of infection; it corresponds to the rate at which any susceptible

individual acquires a given disease following a contact with an infectious individual21.

It is a function of the number of individuals in compartment I at each time step, of

the number of contacts and of the infectiousness of the disease itself per contact22.

Let Nj(t) be the overall number of individuals in compartment j, at some point t

21The definition of contact changes with the disease, and the way it propagates through a

community.
22See [6, 18] for details.
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Figure 5.3: The SIR model without demographic dynamics.

in time,

Nj(t) ∼ Poisson(δ(t))

where

δ(t) = Nj(0)eθt (5.10)

with Nj(0) and θ being, respectively, the size of compartment j at time t = 0, and

the associated growth rate.23 Eq. (5.10) may be replaced with other functionals

than the exponential linear growth, such as a quadratic growth, a Weibull model, a

logistic growth or a Gompertz growth, to properly fit available data.

Roughly, each individual in a compartmental model takes a random walk over a

Markov chain, as a consequence of the memoryless property of all Poisson processes.

At each time step, the overall model represents the population, partitioned into mu-

tually exclusive homogenous groups; e.g., in the SIR model, S(t) + I(t) +R(t) = P ,

for each t ≥ 0. See [131, Ch.3] for a soft introduction to mathematical modeling of

infectious diseases.

Epidemic compartmental models may be specialized to describe infectious disease

whose etiology and epidemiology are more complex than the SIR of Fig. 5.3, i.e., sus-

ceptible to infectious to (permanently) removed. To start with, the population may

be stratified according to age classes, gender, behavior, and demographic dynamics

such as births and deaths (natural and, eventually, caused by the disease), migra-

tion flows ought to be included. Also, further compartments may be introduced, to

properly describe the natural history of an infectious disease; e.g. newborns may be

immune to a disease, thanks to maternal antibodies and/or the disease itself may

be characterized by different stages, whose infectiousness, dynamics, morbidity or

mortality ought to be separately considered.

Compartmental models are used for a wide range of purposes. Among others, they

are used by policy makers to evaluate the impact, through time and at the popula-

tion level, of the introduction of (one or more) control measures, e.g., vaccination,

screening. A model is initiated by introducing an infectious individual24 in a fully

23Nj(t) may be equivalently specified as a generalized linear model with logarithmic link function

and Poisson distribution for the response.
24In the general case, more than an infectious individual may be introduced, based on features
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Figure 5.4: Flow-diagram of the model used in [173]. a) Extension of the standard

SIR model with demographic dynamics; b) Dynamics induced by the introduction

of the anti-varicella vaccine; c) Dynamics induced by the anti-Herpes Zoster vacci-

nation; and d) Dynamics related to the varicella cases from vaccine strain.

susceptible population. The individual induces secondary cases, according to a key

quantity denoted as R0, that in turn increasingly propagate the disease through the

population until a so-called endemic equilibrium is reached [6]. There, if available,

control measures may be incorporated in the model, by means properly specified ad-

ditional compartments. See Fig. 5.4 from [173] as an example, where it is modeled

the spread and behavior of the Varicella Zoster Virus (VZV) in a given popula-

tion. Panel a), particularly, represents an extension of the standard SIR model with

demographic dynamics, where individuals enter a sequence of further stages of sus-

ceptibility to Herpes Zoster (ZSi) before they eventually acquire full immunity to

the natural VZV-associated diseases. Panel b) illustrates the dynamics induced by

the introduction of the anti-varicella vaccine, whereas panel c) illustrates the anti-

Herpes Zoster vaccination. Finally, panel d) illustrates the dynamics related to the

occurrence of diseases from vaccine strain.

A major issue with compartmental ODE-based models is their identification, i.e.,

full specification of the parameters regulating the random walks represented by the

such as the infectiousness of the disease and the contact pattern that characterize the population,

among others.
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sequences of compartments. Usually, the structure of a model results from ex-

perts’ review on the etiology and epidemiology of the disease. Then, if available,

disease-related quantities are derived from the literature, e.g., pattern of (poten-

tially infectious) contacts of the population, infectiousness of the disease and time

spent as infectious, as well as efficacy and waning rate of a vaccine. Still, it is not

unlikely that a (possibly very large) number of parameters is unknown and needs to

be estimated.

Our application considers an ODE-based compartmental model, built to reproduce

the heterosexual transmission dynamics of human papilloma virus (HPV) infections

caused by 9 genotypes, and progression to cervical cancer from infection through

various stages of disease in a stationary population. HPV is a DNA virus whose

infections may result in precancerous and cancerous lesions. HPV is the most com-

mon sexually transmitted infectious disease [182], although most infections follow a

course that naturally resolves. Those that proceed to lesions expose infected women

to an increased risk of cervical cancer. Among the so-called high-risk genotypes,

HPV-16 and 18 were found to be responsible alone for almost 80% of all cervical

cancers worldwide [122]. We consider the population stratified by gender, 3 sexual

activity levels and 100 unitary age classes. As a consequence, any compartment

needs to be specified for each of the hundreds possible combinations, yielding over-

parametrization of the model. e.g., let a, g, l denote, respectively, age, gender and

sexual activity level, S(a, g, l, t) needs to be specified for each combination (a, g, l),

at every t ≥ 0.25

We considered the ODE-based compartmental model of [124], to evaluate the im-

pact of a nonavalent vaccine targeting most of high-risk genotypes on the population

from Italian region Puglia (Apulia). We compared different prevention strategies,

such as a bivalent vaccine [124] and/or a combined ongoing screening campaign.

The model, whose simplified flow-diagram is reported in Fig. 5.5 for fixed age a and

sexual activity level l, describes a complex pattern of dynamics, and required detailed

parametrization. Although most values were specified based on the literature26, a

large number (K = 14) of parameters was left free for estimation. Particularly,

K1 = 6 referred to the transmission process of HPV, whereas K2 = 8 served to

calibrate the progression/regression dynamics across different stages for the lesions

(CIN1 to CIN2 to CIN3, acronyms for Cervical Intraepithelial Neoplasia, to cancer

in situ, CIS, or cervical, CC). We considered data on i) prevalence of HPV, ii) re-

ported incidence of cancer of the cervix, in the female component of the Apulian

25Some simplifications may be applied. For example, sexual activity level needs no specification

for people aged 11 or less.
26Based on regional and national sources.
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Figure 5.5: Simplified flow-diagram from [124] to model the spread and behavior of

genotypes 16-18 of Human Papilloma Virus. The same dynamics were considered

to model the genotypes involved by the nonavalent anti-HPV vaccine.

population.27

The estimation process was carried out based on iterated LHS. Following previous

works of [174, 124], we considered two successive procedures. As a first step, K1

parameters on the transmission dynamics, or natural history parameters, were esti-

mated, and the (logarithmic) Poisson likelihood of the age-specific HPV prevalence

predicted by the model for each row of the N ×K1 LHS matrix was computed, with

N = 10, 000. Let x̂,x ∈ RA+1 be the number of age-specific HPV cases predicted

by the model and available as data28, respectively:

log(x̂; x) ∝
A∑
a=0

[x̂a · log(xa)− xa]

Ranges of uncertainty associated with each parameter were initiated as vacuous, or

very loose at least; e.g., values such as probabilities or proportions were considered

as varying between 0 and 1. At each iteration, the best configurations (based on

the empirical cumulative distribution function obtained) were used to refine the

ranges of variation, until convergence (see Table 5.1). Second step of the estimation

process was applied holding the K1 estimated parameters on natural history fixed.

This way, search in the K dimensional space of parameters was restricted in a K2

dimensional region whose predictions were always consistent with the age-specific

27Data were obtained from a pooling and re-weighting process of datasets available from the

literature that did not explicitly refer to the genotypes targeted by the nonavalent vaccine; see

[172] for a thorough discussion on this application.
28x̂ was generated for all unitary age classes, although x was available for larger classes. The

corresponding average value of x̂ was used.
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Parameter Estimated Value

Probability of Male-to-Female Transmission 94.1%

Probability of Female-to-Male Transmission 96.2%

Coefficient of Age Assortativity 0.682

Coefficient of Sexual Activity Level Assortativity 0.683

Probability to Acquire Natural Immunity 90.1%

Average Duration of Lesion-free Infections 2.66 yr

Progression Rate HPV-to-CIN1 0.007 yr−1

Progression Rate CIN1-to-CIN2 0.016 yr−1

Progression Rate CIN2-to-CIN3 0.004 yr−1

Progression Rate CIN3-to-CIS 0.237 yr−1

Progression Rate CIS-to-CC 0.007 yr−1

Regression Rate from CIN1 0.212 yr−1

Regression Rate from CIN2 0.600 yr−1

Regression Rate from CIN3 0.88 yr−1

Table 5.1: Parameter estimates obtained by the LHS procedure.

HPV prevalence curve observed. The second LHS matrix generated had K2 columns.

Estimates on the incidence of cancer (both CIS and CC) were compared with data

based on the root mean squared relative error functional:

E1,2 =

√√√√∑A
a=0

(
xa−x̂a
xa

)2

+
∑B

b=0

(
x′b−x̂

′
b

x′b

)2

A+B

with x̂′,x′ in RB vectors of estimated and observed cases of cervical cancer over

B + 1 age classes, as with prevalence.

The fully parametrized model was used to evaluate the impact of several combined

control measures (including immunization by different vaccines and screening) on

the incidence of cervical cancer in the female component of the population; see

Fig. 5.6. Also, the model provided insights on changes in the age-specific incidence

with time, as Fig. 5.7 shows. Both figures were taken from [172], where details may

be found.
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Figure 5.6: Average yearly incidence (per 100,000 women) of cervical cancer under

different scenarios of control, from 2018 to 2117. Panel a): 1) baseline (purple),

2) shut-down of all control measures from 2017 (gold), 3) baseline screening only

(green), 4) baseline screening combined with 4-valent vaccination, introduced in

2008(pink), 5) baseline vaccination restricted to the sole female component of the

population (light blue). Panel b) baseline vaccination combined with baseline (grey),

decreasing in 15 years (purple) and shut-down (blue) screening.

Figure 5.7: Yearly incidence of cervical cancer (per 100,000 women) for age classes

0-34, 35-44, 45-54 e 55-99, according to the baseline scenario (panel a), baseline

vaccination scenario restricted to the sole feminine component of the population

(panel b), 4-valent vaccination (ongoing since 2008, panel c), screening only from

2018 onwards (panel d).
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2 An Application of Context-Specific Independence

Relationships Detection: CSeek

D-separation is a sound and complete method for detecting conditional SI in a

BN. We hereby briefly introduce CSeek, a routine for the detection of local CSI

relationships within a BN, extending previous work from [95] to acyclic directed

graphical structures.

The procedure is intended to be applied within the structural learning process of the

DAG by the Conservative PC algorithm (CPC) [209], although it may be readily

applied on any available structure, either fully or partially directed. Roughly, the

CPC algorithm is a constraint-based structural learning process that tackles failure

of faithfulness condition. It extends the well-known PC algorithm [234] by marking

ambiguous unshielded triples as unfaithful, whenever faithfulness is likely to be failed

by PMF P . As a consequence, CPC produces a graph whose independence pattern

is consistent with several Markov equivalence classes [234], rather than PC’s unique

partially oriented DAG29; see [234, 209] for details. To keep the discussion as general

as possible, suppose every variable X is associated Markov blanket mb(X), whose

elements are parents, children (and potential parents of X, if the graph is partially

oriented). CSeek is a routine that compiles a list of CSI relationships; and thus

naturally fits within the framework of structural learning of LDAGs (see Sec: 1.3).

We hereby provide a synthetic representation of oracle CSeek: statistical tests ought

to be included within the if -step of the routine below, given a sample.

Definition 54 (CSeek). Let G = (V,E) be any DAG. Without loss of general-

ity, suppose the graph is partially directed30. Each node X is associated a set of

adjacent nodes Ch(X) ∪ (Pa(X) ∪ Adj(X)) = Ch(X) ∪ Pa+(X) = mb+(X). Let

LE be the (empty) list of labels that are to be attached to edge/arc (Y,X) ∈ E

whenever it holds I(X, Y ; W = x∗), for some w∗ ∈ ΩW, with {Y,W} ⊆ Pa+(X).

LE := ∅; D := ∅
for all i = 0, ..., n do

mb+(Xi) := mb+(Xi)\Ch(Xi)

DX := Ωmb+(X)

s := 0

while |mb+(X)| ≥ s+ 2 do

29A partially oriented DAG is a graphical structure used to identify a Markov equivalence class

[234].
30If CSeek fits as an additional step to CPC, unfaithful triples need un-marking prior to appli-

cation of the routine.
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DXY := Ωmb+(X)\{Y }

s := s+ 1

for all dXY ∈ DXY do

for all W ∈ mb+(X)\{Y } : |W| = s do

if I(X, Y |W = w),w ∼ dXY then

LY,X := mb+(X)\{Y,W} ∪ {W = w}
LE := LE ∪ LY,X
DXY := DXY [W 6∼ w]

Ch(Y ) := Ch(Y ) ∪ {X}
Ch(W) := Ch(W) ∪ {X}

end if

end for

end for

end while

end for

Step 3 of the CPC algorithm follows.

Under proper consistency conditions, the integrated procedure results in a Com-

pleted Partially Labeled DAG (CPLDAG), inducing a CSI Equivalence Class [11].

Example 22. Consider the example from [209]. We are given records on the oc-

currences of thrombosis (T) among women, accounting for their behavior relevant

to the disease: whether they take birth control pills (B) and they are pregnant (P);

see Fig. 5.8 (left panel). It is known that both taking birth control pills and being

pregnant increase the chances to develop the disease. This results in the paths going

from node B to P canceling out.

As a consequence, the structure is not faithful to the true probability distribution, as

the latter encodes CI I(T,B). In the general case, the CPC algorithm, as well as

the PC algorithm, learns the clique of Fig. 5.8 (middle panel) from data, and thus

fails to identify the marginal independence between node B and T .31

We apply the CPC algorithm integrated with CSeek, provided ordering {T,B, P}.
After the first iteration, the algorithm stops: label LBT = {P = true} results and

arcs (B, T ) and (P, T ) are oriented accordingly as parents of node T , as in Fig.

5.8. The (partially oriented) LDAG resulting provides a pattern of independence

which is closer to the true probability distribution than a clique, as it encodes CSI

31It is worth noting how learning any structure other than the clique would have yielded no

better results, as it would have borne additional unwanted CI relationships. Also, directions are

dropped as any orientation of the arcs, although inducing a v-structure while avoiding cycles, would

fall within the same Markov equivalence class.
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Figure 5.8: Toy example from [209]. Binary variables B,P and T represent, re-

spectively, Birth Control Pill, Pregnancy and Thrombosis, with Ωj = {true, false},
j = B,P, T . The structure is unfaithful to the true probability distribution as P

encodes I(B, T ). Left panel: The true DAG; Middle panel: The clique resulting

from application of standard CPC algorithm; Right panel: The LDAG resulting

from CPC integrated with CSeek.

I(T,B|P = true). The PMF fitted on the structure learned by standard CPC has

23 − 1 free parameters, whereas the one accounting for CSIs has 22 + 1.

Elicitation of local CSIs allows for a parsimonious representation of the depen-

dency model. As our routine was developed within the framework of the con-

straint based structure learning, it comes naturally in the style of the PC algorithm.

Nonetheless, even under faithfulness condition, sparsity of the graph to be learned

is critical for consistency and computational feasibility of the PC algorithm [145]

and thus it is likely to be outperformed by heuristic strategies under fairly general

conditions. In order not to suffer from this sort of limitations, we explored the

performance of our procedure when applied to a fully defined known DAG.

Example 23. We report in Table 5.2 results on benchmark BNs from the literature.

In our experiments, data records were generated from each compiled network, and

sample local CSIs were elicited.

Application of CSeek allows for a more parsimonious representation of the network

and thus requires a significantly reduced number of computations to be performed

when answering a probabilistic query on the elements of the model. As threshold

parameter ε is increased, robustness of the labeling procedure grows as well, since we

label as context-specific independent only those pairs of variables whose associated

edge is (significantly) weak under specific instantiations. Conversely, labeling those

edges that are only slightly weak might result in a too strong approximation and thus

worsen the performance of the inferential tasks, e.g., classification.

Detection of local CSIs when learning a network might result in a constrained
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Network |V | k No. Distinct Parameters ε = 0.01 ε = 0.1

Sachs 11 3 178 66 (-62.9%) 86 (-51.7%)

Alarm 37 4 509 370 (-27.3%) 396 (-22.2%)

Hepar 70 6 1453 695 (-52.2%) 779 (-46.4%)

Table 5.2: Reduced parametric dimensionality in benchmark networks, with thresh-

olds ε = 0.01 and ε = 0.1 for G2 deviance statistic for conditional SI. Complete

records were simulated from the networks, with fixed sample size M = 1000.

parametrization of the model [191], significantly reducing the complexity of the

inferential tasks. Also, it allows for approximate inferences, particularly when CSIs

are elicited from data and the network is already known, as in, e.g., [199]. CSeek

constitutes a simple tool for eliciting knowledge on context-specific behavior from

data, that may be readily exploited within our framework of probabilistic belief

revision of a PGM.
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il vaccino hpv 9-valente : predizioni basate su un modello matematico. Technical report,

FIRB, 2018.

[173] Sabina Marchetti, Giorgio Guzzetta, Elmira Flem, Grazina Mirinaviciute, Gianpaolo Scalia

Tomba, and Piero Manfredi. Modeling the impact of combined vaccination programs against

varicella and herpes zoster in norway. Vaccine, 36(8):1112–1125, 2018.

[174] Simeone Marino, Ian B Hogue, Christian J Ray, and Denise E Kirschner. A methodology

for performing global uncertainty and sensitivity analysis in systems biology. Journal of

theoretical biology, 254(1):178–196, 2008.



Bibliography 142

[175] D.D. Mauá, C.P. de Campos, A. Benavoli, and A. Antonucci. Probabilistic inference in credal

networks: new complexity results. Journal of Artificial Intelligence Research, 50:603–637,

2014.
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[188] Ali Ben Mrad, Véronique Delcroix, Sylvain Piechowiak, Philip Leicester, and Mohamed

Abid. An explication of uncertain evidence in Bayesian networks: likelihood evidence and

probabilistic evidence. Applied Intelligence, 43(4):802–824, 2015.

[189] Richard E Neapolitan et al. Learning bayesian networks, volume 38. Pearson Prentice Hall

Upper Saddle River, NJ, 2004.

[190] Mark Newman. Networks: an introduction. Oxford university press, 2010.



143 Bibliography

[191] Radu Stefan Niculescu, Tom M Mitchell, and R Bharat Rao. Bayesian network learning with

parameter constraints. Journal of Machine Learning Research, 7(Jul):1357–1383, 2006.

[192] Hans A Panofsky, Glenn W Brier, and William H Best. Some application of statistics to

meteorology. 1958.

[193] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann, San Mateo, California, 1988.

[194] Judea Pearl. Morgan kaufmann series in representation and reasoning. probabilistic reasoning

in intelligent systems: Networks of plausible inference, 1988.

[195] Judea Pearl and Azaria Paz. Graphoids: A graph-based logic for reasoning about relevance

relations. University of California (Los Angeles). Computer Science Department, 1985.

[196] Arthur Paul Pedersen and Gregory Wheeler. Demystifying dilation. Erkenntnis, 79(6):1305–

1342, 2014.

[197] Yun Peng, Shenyong Zhang, and Rong Pan. Bayesian network reasoning with uncertain

evidences. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,

18(05):539–564, 2010.

[198] David M Pennock and Michael P Wellman. Graphical representations of consensus belief.

In Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, pages

531–540. Morgan Kaufmann Publishers Inc., 1999.

[199] Johan Pensar, Henrik Nyman, Timo Koski, and Jukka Corander. Labeled directed acyclic

graphs: a generalization of context-specific independence in directed graphical models. Data

mining and knowledge discovery, 29(2):503–533, 2015.

[200] Alberto Piatti, Marco Zaffalon, Fabio Trojani, and Marcus Hutter. Limits of learning about a

categorical latent variable under prior near-ignorance. International Journal of Approximate

Reasoning, 50(4):597–611, 2009.

[201] Frédéric Pichon and Thierry Denœux. The unnormalized dempster’s rule of combination:

a new justification from the least commitment principle and some extensions. Journal of

Automated Reasoning, 45(1):61–87, 2010.

[202] Gabriella Pigozzi. Belief merging and the discursive dilemma: an argument-based account

to paradoxes of judgment aggregation. Synthese, 152(2):285–298, 2006.

[203] David Poole and Adrian E Raftery. Inference for deterministic simulation models: the

bayesian melding approach. Journal of the American Statistical Association, 95(452):1244–

1255, 2000.

[204] ST Rachev, W Sun, and M Stein. Copula concepts in financial markets. Portfolio Institu-

tionell (Ed.), 4:12–15, 2009.

[205] Des Raj. Sampling theory. New York, 1968.



Bibliography 144

[206] Raghav Ramachandran, Abhaya C Nayak, and Mehmet A Orgun. Belief erasure using partial

imaging. In Australasian Joint Conference on Artificial Intelligence, pages 52–61. Springer,

2010.

[207] Marco Ramoni and Paola Sebastiani. Robust learning with missing data. Machine Learning,

45(2):147–170, 2001.

[208] Frank P Ramsey. Truth and probability (1926). The foundations of mathematics and other

logical essays, pages 156–198, 1931.

[209] Joseph Ramsey, Jiji Zhang, and Peter L Spirtes. Adjacency-faithfulness and conservative

causal inference. arXiv preprint arXiv:1206.6843, 2012.

[210] Gavin Rens and Thomas Meyer. Imagining probabilistic belief change as imaging (technical

report). arXiv preprint arXiv:1705.01172, 2017.

[211] Gavin Rens, Thomas Meyer, and Giovanni Casini. On revision of partially specified convex

probabilistic belief bases. In Proceedings of the 22nd European Conference on Artificial

Intelligence (ECAI-16), 2016.
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[241] Milan Studenỳ. Semigraphoids and structures of probabilistic conditional independence.

Annals of Mathematics and Artificial Intelligence, 21(1):71–98, 1997.

[242] Alfred Tarski. Fundamental concepts of the methodology of the deductive sciences. Logic,

semantics, metamathematics, pages 60–109, 1956.

[243] L Terrence. Fine. theories of probability. AcademicPress, London&New York, pages 123–125,

1973.
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