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Chapter 1

Introduction

Teleoperators of today
are the autonomous
robots of tomorrow

Murray, Li and Sastry

With the advent of autonomous robotics, collaborative robotics, minimally in-
vasive robotics surgery, rehabilitation and health care robotics, etc., the classical
paradigm of robotics safety by segregation has become obsolete. Even in appli-
cations involving unpredictable or hazardous environments for humans operators,
like space operations, underwater inspections, nuclear or toxic waste management,
explosives disarming, military surveillance and search & rescue on disaster scenar-
ios, robots must safeguard their own integrity. Nowadays many research efforts,
including design strategies, control methods, planning techniques and perceptual
awareness, are focused in the concept of intrinsic safety, that is, an inner prop-
erty of the robotic system and not a set of rules imposed to its behaviour. In
such context, two main issues need to be addressed [48]: the protection of the
dynamic environment –specially in the presence of humans– and the protection
of the robotic structure. The first and most critical issue, in terms of situational
awareness, is prediction and prevention of risky circumstances. The second, in
terms of self-sensing capabilities, is proprioceptive awareness and prompt compli-
ant reactions after unexpected risky interactions.

The use of mobile manipulators is widespread on applications involving un-
predictable or hazardous environments for human operators [59, 69], applications
where the manipulator’s motion is controlled autonomously or remotely by spe-
cialized operators. For example, articulated tracked vehicles are widely used in
contexts where terrain conditions are difficult and unpredictable. For better trac-
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tion on harsh terrains these robotic platforms can either increase or decrease the
tracks contact area with the ground by actuating their active sub-tracks, namely
flippers, placed at the end of each track. Flippers allow climbing stairs and similar
obstacles by ensuring a better contact with the ground. Also, redundant mobile
manipulators are common in context where a high dexterity is required for safe
handling and manipulation.

Depending on the application, the remote control of a robot can be identified
as teleoperation or telemanipulation. The former identifier refers to the case when
the remote operator’s intentions are defined at a task-level. The latter, to the
case where operator’s intentions are defined at an object-level. Regardless the
type, there a three distinct levels of control schemes. In the most basic level,
the operator directly controls the robot motion. At the highest level, the operator
supervises actions computed by the robot in total autonomy. In the middle, there’s
a wide variety of shared architectures, where semi-autonomous actions are guided
by mixing the “human intelligence” and the “machine intelligence”. Here we will
focus on shared control architectures for task-oriented applications.

Teleoperation of manipulators is not a straightforward task, and in many prac-
tical cases represent a common source of failure [12]. Common issues during the
remote control of manipulators are: increasing control complexity with respect
the mechanical degrees of freedom; inadequate or incomplete feedback to the user;
and motion directives for task execution may be incompatible with constraints or
obstacles imposed by the environment. In the latter case, part of the manipula-
tor may get trapped or blocked by some obstacle in the environment, failure that
cannot be easily detected, isolated nor counteracted remotely. Today, an increas-
ing number of approaches is focusing on semi-autonomous remote control (see for
example [52, 80, 102, 78, 38, 42]), this is still an open problem and the above
mentioned approaches provide case studies and not yet feasible solutions.

It is worth noticing that, among the wide variety of risky or hazardous cir-
cumstances, the most dangerous risk specific to robots are the unexpected col-
lisions or unwanted force exertions between the machine and the environment
[89]. Avoiding unexpected force exertions implies foreseeing dangerous situations,
and thus relies on sensing, situational awareness, planning and decision making
capabilities. When an unexpected exertion occurs, impact forces may be eased
through lightweight design and compliant mechanisms and control. Prompt reac-
tions after incipient exertions requires real-time fault diagnosis, fast reflexes and
intelligent compensatory behaviours to recover safe operative conditions. In the
context of teleoperation where full knowledge of the environment is not always
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available, autonomous mechanism for collision detection, reaction and isolation
are fundamental to reduce the operator’s efforts required to restore safe operative
conditions after unexpected –unhandled– events occurs. Here, reaction implies a
prompt definition and execution of a strategy minimizing the effects of unexpected
perturbations, while avoiding compromising the task execution. The ability of the
robotic system to satisfy multiple goals or constraints simultaneously is defined in
terms of the kinematic redundancy of the robot. Redundancy allows self-motions
in the mechanical structure of the robot without disturbing the constraints of the
primary task. The scope of this thesis is to explore a combination of a reactive
control scheme and a proprioceptive mechanism for robust semi-autonomous tele-
operation of mobile manipulators when unexpected collisions occurs. The goal
is to autonomously handle the stabilization of the robot toward safe operative
conditions after an unexpected collision with the environment has been detected.

Our aim is to develop a novel approach for teleoperation, taking advantage of
the robot’s awareness of the surrounding environment to translate the operator
intentions (or commands) into a safe and reliable motion during the task execu-
tion. In particular, we are interested in the automatic detection and autonomous
reaction to collisions or contact events between the manipulator and the envi-
ronment, while minimizing the operator efforts to conclude the task after some
unexpected interaction of this kind occurs. Since the collisions between the envi-
ronment and the manipulator can involve any arbitrary region of the robotic arm’s
shape, we impose as a research objective, that our detection framework should not
rely on any tactile sensory technology, since a sensor based approach implies that
the whole manipulator’s surface should be uniformly covered by arrays of sensors,
which may imply expensive efforts either in terms of cost, design, interfacing or
signal processing.

As stated, our problem falls in the context of fault detection and isolation
(FDI) [7]. There exist two main approaches for fault detection: signal based and
model based. Signal based approaches searches for faulty patterns over sensor
readings. Instead, model based approaches compute a residual signal, measur-
ing the discrepancy between sensor readings and predicted (nominal) values. In
the case of dynamical systems, pure signal based approaches lead to inaccurate
results since the dynamics of the system induce deviations from the nominal fault-
free operation that cannot be predicted without proper dynamics modeling [28].
Moreover, in the case of incipient collision detection, the use of specific external
sensors (vision, strain gauges, load cells, etc.) increases the cost and complexity of
the robotics system [22]. Besides, model based approaches are subject to an accu-
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Figure 1.1: CAROTE framework.

rate identification of the dynamics coefficients of the model [39] and may require
full-state feedback, including accelerations which, in practice, are inherently noisy
due numerical estimation [28].

With this idea in mind, our methodology consists of the identification of con-
tact events with the environment during teleoperation by exploitation of a model
based proprioceptive measurement of the robot dynamics [22, 48], allowing the
computation of suitable control laws exploiting the available mechanical redun-
dancy [25, 72, 36, 37] to locally correct the robot’s pose without human intervention
nor disturbing the task execution. More precisely, the proposed Contact Aware
Robust semi-autonomous Teleoperation (CAROTE) framework consist in two dif-
ferent building blocks as shown on Figure 1.1. One, for detecting unexpected
interactions with the environment (perceptive block). The other, for intelligent
and autonomous reaction after the stimulus (control block).

The first or perceptive block, responsible of the contact event identification [43].
In short, this approach has proved the claim that a collision detection method for
robot manipulators, can be extended to the field of articulated tracked vehicles,
by embedding it within a statistical learning framework that takes into account
the dynamic model uncertainties and locomotion disturbances. Formally, since the
manipulator (a tree-shaped open kinematic chain) is rigidly attached to a mobile
base, the core idea is to employ the sensorless FDI approach of [21, 22], where
collisions are associated to unexpected transient perturbations of a residual signal,
obtained through a non-linear observer of the manipulator generalized momentum.
The extension of such FDI approach requires an accurate knowledge of the mobile
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platform dynamics, and thus, an accurate model of the terrain. In FDI terms, our
system presents an intermittent fault induced by the locomotion dynamics of the
mobile base. To avoid the complex modeling of the robot locomotion, we propose
the hypothesis that non modeled locomotion dynamics induce residual patterns
that can be discriminated by those generated by the unexpected collisions, and
so we can apply a classification method to recover any contact event. In other
words, we model the residual dynamics as a linear combination of two disturbance
sources, whose evolution patterns can be independently identified within a statis-
tical learning framework. That is a mixed signal and model based approach for
fault detection and isolation.

The second or control block, deals with the intelligent or autonomous reaction
after a contact or impact event with the environment occurs. Therefore, we need
a variable controller that produces different control laws based on the contact
state. The controller implements a classical Jacobian null-space kinematic control
scheme [36]. The primary task is defined by a direct Cartesian control law for
intuitive teleoperation [56] based on the orbit object control mode [9], implemented
thought the remote center of motion (RCM) constraint [1, 18], widely used in
the field of minimally invasive surgery (MIS). The secondary task exploits the
kinematic redundancy between the manipulator and the mobile base, by inducing
self-motions (i.e. projected in the null-space of the primary task), driven by an
artificial potential field maximizing a variable cost function. When no unexpected
interactions occur, this cost function is fixed, given by the arm manipulability
[110, 101]. Instead, after the identification of one or more unexpected collisions,
the potential field is defined by a linear combination between the manipulability
maximizing potential field and a set of potential fields maximizing the clearness of
the robot during motion.

The rest of the thesis is organized as follows. Chapter 2 provides a general
overview of the modeling and control techniques of mobile manipulators under-
lying the CAROTE framework. In particular, we focus on the local redundancy
resolution methods, dynamic model identification, sensorless incipient collision de-
tection and kinematic control schemes. Chapter 3 described the proposed control
mechanism for semi-autonomous teleoperation of redundant mobile manipulators
and its empirical demonstration with a redundant holonomic mobile manipulator.
The perceptive block of CAROTE is described in Chapter 4 together with the
outcomes obtained in a simulated environment.

Chapter 5 of the manuscript contains two geometric optimization algorithms,
developed by the authors, for on-manifold estimation of the pair-wise stereo ge-
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ometry between two calibrated views, applied to the problem of monocular visual
odometry, using as consistency measure the coplanarity constraint between three
views. Although this work doesn’t belong to the CAROTE framework, it repre-
sents an original research effort done by the authors during the last years of his
PhD, efforts that are proudly presented together with the main research achieve-
ments concerning the CAROTE framework.
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Chapter 2

Mobile manipulators

From a mechanical perspective, a robot manipulator is a kinematic chain of rigid
bodies (links), connected by means of kinematic pairs (joints) of one, two or three
degrees of freedom. One end of the chain is firmly attached to an (inertial) reference
frame or base, while an end-effector is mounted on the other end.

Relative position and orientation (pose) between two consecutive links are con-
veniently described in terms of an elementary homogeneous transformation matrix,
which encode the links geometry and the kinematic relation defined by the com-
mon joint variable. The end-effector pose is then defined by the composition of all
elementary homogeneous transformation matrices from the base link to the end-
effector. In the same way, relative motions are formally described in terms of the
Jacobian matrices and the velocities of the joint variables and, as a consequence,
the motion of the end-effector is obtained by composition of all elementary mo-
tions acting on it. End-effector motions and joint efforts1 can be related through
the dynamic model of the manipulator. Although the analysis of manipulator dy-
namics provides great analytical and practical benefits (e.g., motion simulation,
control algorithms synthesis, structural properties analysis during design, etc.), the
computation of the model requires a precise knowledge of the dynamic parameters
which in practice implies an identification step.

A mobile manipulator is a robot manipulator whose base correspond to a mobile
platform. Therefore, the kinematics of a mobile manipulator depend on poses
and motions of both the chain and the base. Often, depending on the task, the
degrees of freedom introduced by the mobile base make the mobile manipulator
redundant. Redundancy can be exploited to achieve subsidiary goals during the
task execution without compromising nor disturbing it. In general, modeling the
dynamics of mobile manipulators is a complex task, since it depends on the base

1Or generalized forces, than can be either forces or torques.
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link locomotion, which in turns is defined by the contact interaction between the
robot and the ground.

In general, the motion control of a mobile manipulator implies the determina-
tion of the time history of the joint efforts required to guarantee the execution of
a given task, satisfying all temporal and spatial requirements (or constraints) pro-
vided. In the rest of the manuscript, by task we indicate a trajectory in position
and orientation of the end-effector. The computation of such predefined motions
correspond to the problem of motion planning. In the following we will refer to
the controller as the unit implementing the control mechanism and the planner as
the unit generating the input references for the controller.

The present chapter is devoted to introducing the aforementioned mechanical
aspects of mobile manipulators and to provide a review of some motion control
and on-line planning techniques. That is, all analytical and modeling tools un-
derlying the CAROTE system. In particular, Section 2.1 introduces some tools
for the analysis of the mobile manipulators kinematics. The dynamic model and
experimental identification of the dynamic coefficients of robot manipulators are
described in Section 2.2. Section 2.3 introduces the generalized momenta dynamic
observer for sensorless collision detection and reaction. Finally, a brief review of
motion control techniques for mobile manipulator is presented in Section 2.4.

In the next paragraphs all poses and motions of the end-effector (or any other
generic reference frame in the workspace) will be defined in terms of the world
frame and unless otherwise stated all computation will be derived with respect
to it. In the particular case of robot manipulators such world frame will always
coincides with the robot’s base frame. Most of the contents of this chapter follow
the textbooks [14, 93, 90].

2.1 Kinematics modeling

The present paragraph aims to briefly describe some specific topics of the differen-
tial kinematics of mobile manipulators. In particular, we will focus on the concept
of redundancy exploitation and manipulability maximization, to provide a consis-
tent theoretical framework for the design of robust velocity based control schemes
for redundant mobile manipulators (see Chapter 3). It is assumed that the reader
is familiar with the concepts of rigid body motion, forward/inverse kinematics of
manipulators and kinematic models of classical wheeled mobile robots.

The rest of the section is organized as follows. Section 2.1.1 briefly intro-
duces the mobile manipulator Jacobian. Local resolution methods for redundancy
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exploitation are derived in Section 2.1.2. In Section 2.1.3 the concept of manipu-
lability and a general manipulability maximization scheme is defined. Finally, in
Section 2.1.4 the remote center constraint RCM is discussed.

2.1.1 Mobile manipulator Jacobian

Suppose that a mobile manipulator is modeled by a n-dimensional vector q of
generalized coordinates defined inside a configuration space Q⊂Rn, whose end-
effector can reach any pose in the workspace W⊂Rm. The end-effector pose can
be computed through the direct kinematics map q(t) 7→ f(q(t)), f :Q → W . Any
configuration q represents the concatenation of the joint variables qa of the arm
together with the generalized coordinates qb of the mobile base

q =
qa

qb

 (2.1)

Suppose that a feasible time-varying task r(t)∈Wr, with Wr⊂Rr the task space2

and r≤m, is assigned to the end-effector. Our goal is to determine the differential
relation between the end-effector motion (i.e., workspace velocities) ṙ(t) and the
velocities q̇(t) of the generalized coordinates. Removing the explicit time depen-
dency for better readability, such relation corresponds to

ṙ = d
dt f(q) = ∂f(q)

∂q
q̇ =

(
∂f(q)
∂qa

∂f(q)
∂qb

)q̇a
q̇b

 =
(
Ja(q) Jb(q)

)q̇a
q̇b


Let’s assume now that the real velocity commands ˙̃qb(t) of the mobile platform

are related to the generalized velocities q̇b(t) through a differential map of the form

q̇b(t) = G(qb(t)) ˙̃qb(t) (2.2)

with G(qb(t)) representing any locomotion constraint of the mobile base (either
holonomic or nonholonomic). Then, dropping the explicit time dependency for
better readability, we have that

ṙ =
(
Ja(q) Jb(q)

) q̇a
G(qb) ˙̃qb

 =
(
Ja(q) Jb(q)G(qb)

)q̇a
˙̃qb

 = J(q) ˙̃q (2.3)

2A fully reachable task space Wr is entirely contained in the workspace of the robot, that is,
Wr⊂W. When the task space is partially reachable, i.e, Wr 6⊂W, a feasible task r(t) is entirely
contained in the non-empty intersection Wr∩W for all t>R+.
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where the matrix J(q) represents the Jacobian of the mobile manipulator. It
is worth noticing that in the case of holonomic constraints, based on the implicit
function theorem, it is possible to solve the constraints and define an unconstrained
configuration space of lower dimension. Instead, in the case of nonholonomic
constraints, we have that the columns of G(qb(t)) in (2.2) span the null space of
the matrix A>(q) defining the set of nonholonomic Pfaffian constraint of the mobile
platform

A>(q) q̇b = 0 (2.4)

2.1.2 Redundancy resolution

From a kinematic viewpoint, a robot is said to be redundant if, for a given feasible
task r(t)∈Wr, the dimension n of the configuration space Q is greater than the
dimension p of the task space Wr. It is worthy of remark that redundancy is a
relative concept, depending entirely on the task definition. For example, a 6-DoF
anthropomorphic manipulator is redundant for a task constraining the position
of the end-effector, but not for a task constraining its entire pose. Redundancy
implies that for any reachable task configuration r∈Wr, there exists at least one
continuous set of configurations Qr⊂Q3 such that

r = f(q), ∀q ∈ Qr

which means that any motion q(t)∈Qr, will reproduce the same task configuration
r for all t∈R+. In other words, there exists a set of internal displacements or self-
motions modifying the robot posture without disturbing the constraints imposed
by the task. Such unobservable displacements at the task level can be algebraically
described in terms of the range and null spaces of the Jacobian matrix.

To this end, let’s us denote with J(q(t)) the Jacobian matrix of our mobile
manipulator with q(t)∈Q and t∈R+. Workspace velocities are linearly related to
the velocities of the configuration space through the relation

ṙ(t) = J(q(t))q̇(t) (2.5)

Since p≤n, then J(q) has a non-empty4 null space N (J(q)). Dropping the explicit
3Without redundancy –at most– a countable set of isolated configurations may satisfy the

constraints imposed by the task. For example, when for a given task configuration the inverse
kinematics has multiple isolated solutions.

4J(q) is a (p×n) matrix with n>p, then the dimension of its range space R(J(q)) is at most
p. By the rank-nullity theorem the dimension of the null space N (J(q)) is at least n−p.
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time dependency for better readability and denoting with N(q) a (n×n) matrix
whose columns spans the null space N (J(q)), it follows that for any velocity q̇0

ṙ = J(q)(q̇ + N(q)q̇0) = J(q)q̇ + J(q)N(q)q̇0 = J(q)q̇

since J(q)N(q)q̇0 is always zero regardless the value of q̇0. Clearly, for a given task
r(t)∈Wr we can identify infinitely many solutions q(t)∈Q satisfying the constraint
(2.5). Then, a particular solution can be chosen so as to improve some subsidiary
goal(s) like, for example, obstacle clearance maximization, manipulability maxi-
mization in predefined directions, energy minimization, etc. That is, we can define
a constrained optimization problem for the local or global redundancy resolution.

On the one hand, the global redundancy resolution problem can be stated
as: for a given task r(t), a cost functional H(q(t), q̇(t)), a task execution time tf
and the initial robot configuration q(t0) such that r(t0)=f(q(t0)), determine the
optimal velocity q̇(t) for t∈[t0, tf ]. The optimization problem correspond a non-
linear two-point boundary value (TPBV) problem, whose computational complex-
ity may require off-line computation of the optimal solution. Therefore, depending
on the application, the optimal solution can represent either a standalone open-
loop control, or a feed-forward law if disturbances were taken into account during
optimization, or the input reference for a feedback control loop.

On the other hand, the local redundancy resolution problem can be stated as:
for a given task r(t), a cost function H(q(t), q̇(t)), the initial robot configuration
q(t0) such that r(t0)=f(q(t0)) and the sampling time of the discretization T>0,
determine the optimal velocity q̇(t) at t=kT for each k∈N+. Each computed op-
timal value q̇?(kT ) represents the current control command of the robot and, as
soon as the new state q((k+1)T ) is determined either by means of sensors feed-
back or numerical integration, the whole process is repeated at each time instant
until task completion. This optimization problem correspond to a particular case
of quadratic-programing (QP) that is solved on-line as part of the control loop
during the task execution. The rest of the paragraph focuses on classical local re-
dundancy resolution methods. Since the redundancy resolution methods described
in the following sections are applied at each discrete time instant t=kT , we will re-
move further explicit time dependencies for better readability. Also, for simplicity
of notation, in the following we will drop the explicit dependency of the Jacobian
matrix J(q) on the robot configuration q.
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Least norm solution Let’s assume that we’re seeking for the optimal velocity
q̇?, satisfying the task constraint (2.5) and minimizing the following cost function

H(q, q̇) = H(q̇) = 1
2 ‖q̇‖

2 = 1
2 q̇> q̇ (2.6)

that is, q̇? represents the only velocity vector satisfying the task constraint having
a minimal norm (i.e., the control effort). The present QP problem can be solved
using the Lagrange multipliers method. To this end, let’s define the Lagrangian

L(q̇, λ) = H(q̇) + λ>(ṙ− Jq̇) (2.7)

For L(q̇, λ) to have a local minimum at (q̇?, λ?) the following necessary conditions
must be verified

∂L(q̇, λ)
∂q̇

∣∣∣∣∣∣
(q̇?,λ?)

= q̇? − J>λ? = 0 =⇒ q̇? = J>λ? (2.8)

∂L(q̇, λ)
∂λ

∣∣∣∣∣∣
(q̇?,λ?)

= ṙ− Jq̇? = 0 =⇒ ṙ = Jq̇? (2.9)

∂2L(q̇, λ)
∂q̇2

∣∣∣∣∣∣
(q̇?,λ?)

= I > 0 (2.10)

substituting the equation (2.8) on the equation (2.9), it follows that

ṙ = JJ>λ? =⇒ λ? =
(
JJ>

)−1
ṙ (2.11)

the matrix inversions is possible only under the assumption that J has full row
rank. Now substituting (2.11) inside (2.8) we obtain the optimal solution

q̇? = J>
(
JJ>

)−1
ṙ = J†ṙ (2.12)

The (n×p) matrix J† in (2.12) is known as the Moore-Penrose inverse of J. This
matrix always exists and satisfy the pseudo-inverse properties

JJ†J = J J†JJ† = J†
(
JJ†

)>
= JJ†

(
J†J

)>
= J†J (2.13)

also J† represents a right inverse of J since JJ†=I. Moreover, following simple
algebraic computations it is possible to show that if the Jacobian matrix admits a
singular value decomposition of the form J=USV>, then the Moore-Penrose inverse
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if given by

J = USV> = U

diag {σi} 0
0 0

V> =⇒ J† = VS†U> = V

diag
{

1
σi

}
0

0 0

U> (2.14)

note that expression (2.14) holds even when J is not full row rank5.

Weighted least norm solution In complete analogy to the previous optimiza-
tion problem, let’s assume that the cost function to minimize is given by

H(q, q̇) = H(q̇) = 1
2 ‖q̇‖

2
Q = 1

2 q̇>Qq̇

in this case q̇? represents the only velocity vector satisfying the task constraint
having a minimal norm, in terms of the metric induced by the weighting matrix Q.
Q is assumed to be symmetric and positive definite, and can thus be decomposed
as Q=W>W with W an upper triangular matrix with positive diagonal entries. To
compute the optimal solution it suffices to set ˙̃q=Wq̇ and J̃=JW−1, then the least
norm solutions is given by

˙̃q? = J̃†ṙ =⇒ q̇? = W−1J̃†ṙ = W−1
(
JW−1

)†
ṙ = J†Qṙ (2.15)

If J is full row rank then (2.15) assumes the particular form

J†Q = Q−1J>
(
JQ−1J>

)−1
(2.16)

An example application of the weighted least norm solution is given by the classical
approach of Chan and Dubey [13] for avoiding joint limits through redundancy
resolution.

Generalized least norm solution As before, let’s assume that we’re seeking
for the optimal velocity q̇?, satisfying the task constraint (2.5) and minimizing the
following cost function

H(q, q̇) = H(q̇) = 1
2 ‖q̇− q̇0‖

2 = 1
2 (q̇− q̇0)> (q̇− q̇0)

5Actually, for an inverse problem of the form y=Ax, the Moore-Penrose inverse A† provides
the least norm least-squares solution for underdetermined systems (A has more columns than
rows) and the least squares solution for overdetermined ones (A has more rows than columns),
regardless the rank of A. When A is onto, i.e., has full row rank, the Moore-Penrose inverse
matrix assumes the particular form A† = A>

(
AA>

)−1. Instead, when A is one-to-one, i.e., has full
column rank, such matrix has the special form A† =

(
A>A

)−1
A>.
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In words, the objective of the QP problem is to satisfy the task constraint and
to keep minimally bounded the norm of the optimal velocity q̇? while staying as
close as possible to the reference velocity q̇0. Since the associated Lagrangian has
the same form of (2.7), equations (2.8) and (2.9) holds in this case, while the first
necessary condition for a minimum at (q̇?, λ?) becomes

∂L(q̇, λ)
∂q̇

∣∣∣∣∣∣
(q̇?,λ?)

= q̇? − q̇0 − J>λ? = 0 =⇒ q̇? = J>λ? + q̇0 (2.17)

substituting the equation (2.17) on the equation (2.9), it follows that

ṙ = JJ>λ? + Jq̇0 =⇒ λ? =
(
JJ>

)−1
(ṙ− Jq̇0) (2.18)

the matrix inversions is possible only under the assumption that J has full row
rank. Now substituting (2.18) inside (2.17) we obtain the optimal solution

q̇? = J†(ṙ− Jq̇0) + q̇0 = J†ṙ +
(
I− J†J

)
q̇0 (2.19)

As can be seen, the optimal solution (2.19) is composed by two additive terms.
The first, is the least norm solution previously computed. The second, trying to
satisfy the additional constraint imposed by the reference q̇0. By recalling the
pseudo-inverse properties (2.13) it is possible to note that the matrix J†J repre-
sents an orthogonal projector in the range space R(J>) of the Jacobian transpose
J>. Therefore, the matrix I − J†J corresponds to an orthogonal projector on the
null space N (J) of the Jacobian. This implies that any reference velocity q̇0 in
(2.19) can be used to induce self-motions of the robot without disturbing the task
constraint, indeed, any velocity vector q̇=

(
I− J†J

)
q̇0 satisfy the homogeneous

matrix equation Jq̇=0.

Generalized weighted least norm solution In complete analogy to the pre-
vious optimization problem, let’s assume that the cost function to minimize is
given by

H(q, q̇) = H(q̇) = 1
2 ‖q̇− q̇0‖

2
Q = 1

2 (q̇− q̇0)>Q(q̇− q̇0)

in this case q̇? represents the only velocity vector satisfying the task constraint and,
in terms of the metric induced by the weighting matrix Q, having a minimal norm
and staying as close as possible to the reference velocity q̇0. The weighting matrix
Q is assumed to be symmetric and positive definite, thus it can be decomposed
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as Q=W>W with W an upper triangular matrix with positive diagonal entries. To
compute the optimal solution it suffices to set ˙̃q=Wq̇, J̃=JW−1 and ˙̃q0=Wq̇0, then
the least norm solutions is given by

˙̃q? = J̃†ṙ +
(
I− J̃†J̃

)
˙̃q0

which implies

q̇? = W−1
(
JW−1

)†
ṙ +

(
W−1 − W−1

(
JW−1

)†
JW−1

)
Wq̇0 = J†Qṙ +

(
I− J†QJ

)
q̇0 (2.20)

Again, if J is full row rank, then J†Q assumes the form (2.16).

Self-motion generation Since we’re dealing with local or on-line redundancy
resolution methods, it seems natural to choose the reference velocity q̇0 propor-
tional to the gradient of a scalar differentiable objective function H0(q) of the
robot configuration q, to realize one step of a constrained optimization algorithm
at each iteration of the control loop

q̇0 = ±η
(
∂H0(q)
∂q

)>

where η>0 and the sign depends on the optimization task (either maximization or
minimization). Typical objective functions are the manipulability measure (dis-
cussed in Section 2.1.3), joint distance to mechanical limits, obstacle clearance,
etc. A more efficient approach for the gradient and compound computation veloc-
ity is presented in [23]; its natural extension to the case of nonholonomic mobile
manipulators is described in [25]. Flacco et al. [36] developed an efficient iterative
algorithm for a generalized weighted least norm redundancy resolution method in
the presence of hard bounds on the joint space motion.

Tikhonov regularization or damped least squares (DLS) When the robot
configuration is close to a kinematics singularity, at least one (non-zero) singular
value σi of the Jacobian matrix J is close to become zero. As can be observed in
equation (2.14), this may lead to algorithmic singularities in the computation of J†,
leading to unbounded velocities in the configuration space. It is possible to avoid
such numerical instability by redefining the least norm constrained optimization
problem as a regularized unconstrained one.

Let’s define the following cost function, that takes into account both the task
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constraint (2.5) and the velocity norm minimization cost (2.6)

H(q̇) = µ2

2 ‖q̇‖
2 + 1

2‖ṙ− Jq̇‖2 = µ2

2 q̇>q̇ + 1
2(ṙ− Jq̇)>(ṙ− Jq̇)

where µ is a small positive regularizing term. The optimal velocity q̇? minimizing
the above cost has minimal norm and provides the least task error. The regular-
ization parameter µ allows tuning the compromise between the constraints. For
H(q̇) to have a local minimum at q̇? it must be verified that

d
dq̇
H(q̇)

∣∣∣∣∣
q̇?

=
(
J>J + µ2I

)
q̇? − J>ṙ = 0 =⇒ q̇? =

(
J>J + µ2I

)−1
J>ṙ

the optimal velocity q̇? represents a global minimum since the second derivative of
H(q̇) with respect q̇ is always positive: J>J+µ2I > 0. It is fundamental to note
that ∀µ 6=0 the following algebraic identity holds

J>
(
JJ> + µ2I1

)−1
=
(
J>J + µ2I2

)−1
J>

with I1 and I2 identity matrices of proper dimensions; therefore depending on if
the inverse problem is underdetermined or overdetermined, then one can choose
one expression or the other, respectively, for faster computation. In fact, in our
case the most convenient choice for the regularized solution is

q̇? = J>
(
JJ> + µ2I

)−1
ṙ = J†DLS ṙ (2.21)

Moreover, when J is onto (i.e., full row rank), the regularized solution J†DLS con-
verges to the least norm solution J† as µ→0.

In this basic version, the DLS solution always produces a task error because
J†DLS is not a real pseudo-inverse of J. This issue can be mitigated by introducing
damping exclusively along non-feasible task directions (near singularities), using a
distance measure based on the value of the smallest non-zero singular value of J,
technique known as numerical filtering [63].

Weighted regularized solution In complete analogy to the previous optimiza-
tion problem, let’s assume now that the cost function is given by

H(q̇) = µ2

2 ‖q̇‖
2
Q + 1

2‖ṙ− Jq̇‖2
P = µ2

2 q̇>Qq̇ + 1
2(ṙ− Jq̇)>P(ṙ− Jq̇)
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where µ is a small positive regularizing term, Q and P are two symmetric positive
definite matrices that can be decomposed as Q=W>W and P=R>R, with W and R
upper triangular matrices with positive diagonal entries. The optimal velocity
q̇? minimizing the above cost has minimal norm with respect the metric induced
by Q and provides the least task error in term of the metric induced by P. The
regularization parameter µ allows tuning the compromise between the constraints.
To compute the optimal solution one only has to set ˙̃q=Wq̇, J̃=RJW−1 and ˙̃r=Rṙ,
then the DLS solutions is given by ˙̃q?=J̃†DLS ˙̃r. In the original coordinates, we have

q̇? = W−1
(
RJW−1

)>((
RJW−1

)(
RJW−1

)>
+ µ2I

)−1
Rṙ

= W−1W−>J>R>
(
RJW−1W−>J>R> + µ2I

)−1
Rṙ

= Q−1J>R>
(
RJQ−1J>R> + µ2I

)−1
Rṙ

= Q−1J>R>
(
R
[
JQ−1J> + µ2R−1R−>

]
R>
)−1

Rṙ

= Q−1J>
(
JQ−1J> + µ2P−1

)−1
ṙ

= J†WDLS ṙ (2.22)

All remarks previously stated for the DLS solution hold also in this case.

Generalized least squares solutions Generalized least norm solutions (2.19)
and (2.20) are also vulnerable to algorithmic singularities when the robot con-
figuration approaches a kinematic singularity. In such a case, bounded optimal
velocities can be obtained by means of a regularized inversion J†µ of the Jacobian,
computed either by means of DLS or WDLS

q̇? = J†µṙ +
(
I− J†µJ

)
q̇0 (2.23)

However, such bounded optimal solution introduces a task error near singularities
due to both, the damping effect of the inversion at the task level, and the wrong
projection of the subsidiary velocity q̇0 to the null space of the Jacobian matrix.
In fact, the matrix

(
I− J†µJ

)
is not a real orthogonal projector. This can be easily

shown in the case of DLS inversion. Let (2.14) be the singular value decomposition
of the Jacobian matrix J, then

I− J†µJ = I− J>
(
JJ> + µ2I

)−1
J

= I− VS>U>
(
USV>VS>U> + µ2I

)−1
USV>
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= V
(

I− S>
(
SS> + µ2I

)−1
S
)

V>

= V

diag
{

µ2

σ2
i +µ2

}
0

0 (1− µ2)I

V> (2.24)

which turns out to be full rank for any positive value of µ, regardless the dimension
of the null space of J. This effect can be lessen by introducing damping only the
critical –close to zero– singular values σi of J, through dynamic weighting [84] or
by considering a robust singularity handling [72].

Task augmentation and prioritizing Many robotics application requires not
only the regulation of the end-effector pose but also another constrains along the
kinematics chain [88, 1]. In such scenario, a set of r time-varying tasks {ri}ri=1,
providing si constraints each, may be combined to define a single augmeneted task
constraint rA. It is worth noting that the total number of constraints s, imposed
by the set of task {ri}i, must be

s =
r∑
i=1

si ≤ n

to avoid overdetermination of the problem. By denoting with Ji the corresponding
Jacobian of each task ri, we have

rA =


r1
...

rr

 =⇒ JA =


J1
...

Jr


where each block Ji is an (si×n) matrix and JA represents the augmented or ex-
tended Jacobian of task rA. In principle any of the method already discussed for
the redundancy resolution may be used to compute the optimal velocities q? mini-
mizing some objective functionH(q̇), subject to the constraint ṙA=JAq̇?. However,
in general, the rank of JA is not always s due to the presence of algorithmic sin-
gularities. Such singularities arise when one or more constraints in the set {ri}ri=1

are linearly dependent. This imply that, for at least one pair of tasks rj and rk,
j 6=k, we have

R(J>j ) ∩R(J>k ) 6= ∅ ⇐⇒ rank
Jj

Jk

 < rank(Jj) + rank(Jk) = sj + sk
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To avoid algorithmic singularities it is therefore necessary to enforce empty inter-
sections of the range spaces for each pair of tasks in {ri}ri=1

R(J>j ) ∩R(J>k ) = ∅ ∀j ∈ {i}r
i=1
i 6=k
, ∀k ∈ {i}r

i=1
i 6=j

(2.25)

condition difficult to meet along the complete motion of the robot while executing
the augmented task.

Alternatively, one can leave unconstrained the intersection of the range spaces
R(J>i ) and introduce a prioritized scheme [88, 37] to map lower priority tasks
constraints in the null space of higher priority tasks. Let’s assume that a set of
tasks {ri}ri=1 is given, with decreasing priority with respect i. Then, we can start
by computing the a generalized optimal (possibly weighted) least norm solution,
for the first task r1

q̇?1 = J†1ṙ1 +
(
I− J†1J1

)
q̇2

now we can choose q̇?2 so as to satisfy, if possible, the second task. That is,
determine the generalized (possibly weighted) least norm solution of q̇?2 subject to
the task constraint ṙ2−J2q̇1. Such constraint can be rewritten as

ṙ2−J2q̇1 = ṙ2−J2J
†
1ṙ1 − J2

(
I− J†1J1

)
q̇2 = ˙̃r2 − J̃2q̇2

where ˙̃r2 accounts for the contribution induced by the solution of the priority task
r1 over r2 and J̃2 correspond to the projection of J2 into the null space N (J1).
Therefore, only the rows of J2 belonging to N (J1) will be employed in the next
optimization step. The generalized (possibly weighted) least norm solution of q̇?2
is thus given by

q̇?2 = J̃†2 ˙̃r2 +
(
I− J̃†2J̃2

)
q̇3

This process is then iteratively repeated up to the last task of the set. It is worth
noticing that when computing the optimal velocity for the last task of the set,
namely q̇?r, it is enough to compute a (possibly weighted) least norm solution,
instead of a generalized one. The whole algorithm can be summarized as follows

q̇?i =



J†i ṙi +
(
I− J†iJi

)
q̇i+1 if i=1,

J̃†i ˙̃ri +
(
I− J̃†i J̃i

)
q̇i+1 if 2<i<r−1,

J̃†i ˙̃ri if i=r.
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Let us conclude the section with some remarks. First, in the case of algorithmic
singularities at task ri, a regularized method should be used to compute an opti-
mal bounded velocity q?i . In such a case, only the current task is affected by the
damping effect, but will accumulate errors induced by all velocities q?j associated
to lower priority tasks rj, with j>i, because of the improper definition of the or-
thogonal projector (2.24) into the null space N (J̃i). Second, the prioritized control
scheme ensures that for any successive pair of tasks ri and ri+1, i=1,. . .,r−1, the
following equality holds

R
(
J̃>i+1

)
⊂ R

(
J̃>i
)⊥
≡ N

(
J̃i
)

which represents a stronger condition than (2.25). Finally, both augmentation an
priority schemes can be combined to produce mixed control strategies, specially
when multiple tasks shares the same priority, like the remote center of motion
(RCM) constraint discussed in Section 2.1.4.

2.1.3 Manipulability measure

Given a feasible task r(t)∈Wr, Wr⊂Rp, and a suitably redundant robot for its
execution, then it is possible to identify a robot motion q(t)∈Q, Q⊂Rn, satisfying
the task constraints r(t)=f(q(t)), at each time instant t∈R+, and assessing the best
performance respect to some quality index or measure during the task execution.
One such a measure is given by the manipulability [110], which quantifies the robot
ability to freely maneuver or apply static generalized forces in workspace. The
present paragraph is devoted to the formal introduction of the measure, including
its notable properties in robotics control and a brief overview of key underlying
mechanical concepts.

Statics and kineto-statics duality Let’s assume that our robot is at rest at
the given configuration q. In such static equilibrium, it is possible to determine
the relation between the vector τ of joint generalized forces and the vector ξ of
external generalized forces applied to the end-effector, through the application of
the principle of virtual work6. To this end, let’s assume that ξ has the form

ξ =
ξl
ξr


6The principle states that the virtual work of the applied generalized forces is zero for all

virtual displacements of the robot from static equilibrium.
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where ξl represents the force contributions (linear forces) and ξr the moment of
force contributions (rotational forces). Moreover, let’s denote with δp and δθ, re-
spectively, the linear and angular virtual displacements of the end-effector. Since
the mechanical structure of the robot is defined by a set of scleronomic holonomic
constraints, the virtual configuration displacements δq coincide with the elemen-
tary displacement dq. As consequence, the differential kinematics relation allows
to map virtual displacements δq of the configuration space to virtual displacements
in the workspace δp

δθ

 = J(q)δq

Then, by the principle of virtual work we have that

δW = τ>δq− ξ>l δp− ξ>r δθ =
(
τ> − ξ>J(q)

)
δq = 0 =⇒ τ = J(q)>ξ (2.26)

stating that the relationship between the external generalized forces ξ applied to
the end-effector and the joint generalized forces τ is established by the transpose
of the Jacobian matrix J(q). Therefore, at a given configuration q, the range space
R(J>(q)) represents the subspace of Rn where the joint generalized forces τ can
balance the external generalized forces ξ exerted over the end-effector. Moreover,
the null space N (J>(q)) correspond to the subspace of Rn where the generalized
forces ξ applied to end-effector are entirely absorbed by the mechanical structure
of the robot.

Robot manipulability Given a non-singular robot configuration q∈Q, and its
corresponding end-effector pose r=f(q)∈W , it is possible to quantify the robot
ability to arbitrarily change the end-effector pose by identifying the set V⊂TrW7

of instantaneous end-effector motions generated by the set of unit joint velocities

{
q̇ ∈ TqQ

∣∣∣ q̇>q̇ = 1
}

(2.27)

We can consider the general least norm inversion (2.19), which substituted in (2.27)
and after some straightforward algebraic computations8 gives

q̇>q̇ = ṙ>
(
JJ>

)−1
ṙ + q̇>0

(
I− J†J

)
q̇0

7TpM denotes the tangent space of the manifold M at p.
8It is enough to remember that the projector operator N=

(
I− J†J

)
is idempotent and equals

its transpose, therefore N>N = N. Moreover, by definition, it is always verified that J†>N = 0.
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where the explicit dependence of the Jacobian matrix J(q) on the configuration q
has been omitted for better readability, omission that will be held until the end of
the section. Therefore, V can be formally defined as

V =
{

ṙ ∈ TrW
∣∣∣∣ ṙ>

(
JJ>

)−1
ṙ = 1− q̇>0

(
I− J†J

)
q̇0

}
(2.28)

representing an ellipsoid in TrW , called the velocity manipulability ellipsoid. Note
that any feasible self-motion q̇0, when projected in the null space of J, must have
a norm strictly less than the unit to properly define a non-degenerate set V . How-
ever, any non zero self-motion induces a global scale of the manipulability ellipsoid,
without affecting any of its intrinsic properties. Hence, without any loss of gener-
ality, in the context of manipulability analysis we can always assume q̇0=0.

The geometric properties of the ellipsoid (2.28) are defined by the core of its
quadratic form JJ>. Since the eigen-decomposition of the matrix JJ> can be
written in terms of the singular value decomposition of J

J = USV> =⇒ JJ> = US2U>

it follows that the directions of the principal axis of the manipulability ellipsoid co-
incides with the columns ui of U (i.e., with the left singular vectors of J), i=1,. . .,m,
while the dimensions of the axes with the singular values σi of J. The end-effector
can reach the largest velocity along the direction of the major axis of the ellipsoid,
and the smallest along the direction of the minor axis. Thus, the eccentricity of
the ellipsoid provide a measure of the end-effector ability to isotropically move
along all directions of TrW . Consequently, we can define a global manipulability
measure [110] as9

w(q) =
√

det
(
JJ>

)
=
√√√√ m∏
i=1

λi
(
JJ>

)
=

m∏
i=1

√
λi
(
JJ>

)
=

m∏
i=1

σi(J) (2.29)

that is, as the volume of the manipulability ellipsoid. As such, this quantity is
always positive except in singular configurations when it becomes zero, thus it can
be adopted as a distance measure of of a given configuration q from a kinematic
singularities. However, this measure completely lacks a physical consistency [29],
since it is not invariant to scale nor to rigid body transformations. An alternative
measure w̃(q) correspond to the ratio between the minimum and maximum singular
values of J, i.e. the condition number of the Jacobian. Assuming that the singular

9In the case of a non-redundant robot, such manipulability measure reduces to w(q) = |det J|.
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values σi in the sequence {σi}mi=1 are given in decreasing order, such scale invariant
alternative measure results

w̃(q) = σ2
m

σ2
1

(2.30)

and can be related to the ellipsoid eccentricity by e(q)=
√

1−w̃2(q).
It is worthy of remark, both manipulability measures (2.29) and (2.30) have a

high computational complexity. On real robotics applications, this may represent
a bottleneck when the manipulability measure is used to support a decision process
on real-time. To alleviate this issue, different precomputed representation of the
manipulability measure has been proposed [101, 79] in order to serve manipulability
queries efficiently.

On the basis of the duality relation between kinematics and statics (2.26), it is
possible to define the (generalized) force manipulability ellipsoid as

τ>τ = 1 =⇒ ξ>JJ>ξ = 1 (2.31)

Since the core of the quadratic form of (2.31) equals the inverse of the core of (2.28),
the force ellipsoid has the same principal axis directions of the velocity ellipsoid,
with axis dimensions in inverse proportion. This notable property implies that a
good velocity manipulability along some direction implies a poor generalized force
control along the same direction and vice versa.

Manipulability maximization Among others uses, manipulability can be suc-
cessfully exploited as a design quality measure, a proprioceptive stimuli for au-
tonomous actions, a motion planning constraint, a feedback measure for assisted
teleoperation and a control optimization goal. To cite a few, Jung et al. [53] demon-
strate how an accurate analysis of manipulability and other quality indexes can
be used to improve the design of a versatile humanoid robot for for teleoperated
disaster response. In [41] is addressed the problem of assisting a human operator in
a reach-to-grasp task, such as to reduce the control effort of the manipulator dur-
ing the post-grasp task, by means of force cues computed through a task-oriented
velocity manipulability cost function. Torabi et al. [98] defined a manipulability
measure of a combined master-slave system for robotic teleoperated minimally in-
vasive surgeries, such measure is used to assist the design choices of the robotic
platform, aimed to improve surgeons control, minimize the footprint of the mas-
ter robot and avoid singularities and joint limits of the master and slave robots.
Bayle et al. [4] generalize the standard definition of manipulability to the case
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of mobile manipulators with nonholonomic constraints, coupling base locomotion
and arm movements for manipulability maximization during the task execution.
Vahrenkamp et al. [101] extended the concept of manipulability ellipsoid including
constraints coming from joint limits, workspace obstacles or self-distance into its
definition, and used such geometrical object to build a manipulability distribution
over the workspace, allowing to capture the robot capabilities in terms of opera-
tional freedom during task planning and execution. It is worth noticing that, from
design to control and planning, manipulability represents an ubiquitous quality
measure.

Based on the generalized least norm inversion (2.19), it is possible to maximize
the robot manipulability during the task execution by computing q̇0 as the gradient
of a manipulability measure. It is worth noticing that it is always possible to
find a closed form solution of (2.29), while it is not the case for the alternative
measure (2.30). However, computations of the closed form solution of (2.29) are
generally tricky and cumbersome. Moreover, instead of considering (2.29) as the
optimization goal, it is computationally more efficient to consider the cost function
H0(q)=w2(q). With this in mind, a manipulability maximizing self-motion q̇0 can
be defined as [112]

q̇0,i = η

(
∂

∂qi
H0(q)

)>
= η det

(
JJ>

)
tr
((

JJ>
)−1

(
∂J
∂qi

J> + J
∂J>

∂qi

))

2.1.4 Remote center of motion (RCM) constraint

The remote center of motion is defined by a fixed point prcm∈R3, contained in the
workspace W of the robot, around which part of the robot chain is constrained
to rotate. This kinematics constraint is widely known in the field of minimally
invasive surgery (MIS) [18, 1, 81, 82], where all surgical tools are constrained to
pass through and to rotate around small incisions in the patient’s body.

Let’s consider a robot manipulator with configuration space Q⊂Rn and denote
with pi(q)∈R3 the origin of the link’s i reference frame, computed at the configu-
ration q∈Q, with i=1,. . .,n. Also, let’s assume that the remote center of motion
constraint prcm(q) has been imposed to link i of the chain, that is, to lie on the
line segment between pi(q) and pi+1(q)

prcm(q) = pi(q) + λ
(
pi+1(q)− pi(q)

)
(2.32)

with 0<λ<1 indicating the relative distance of prcm(q) from pi(q). For any given
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configuration motion q(t)∈Q of the robot, the RCM constraint imposes that

ṗrcm(q(t)) ≡ 0 ∀t∈R+ (2.33)

now by differentiating (2.32) with respect to time and imposing the differential
constraint (2.33), after some straightforward manipulations we obtain

ṗrcm =
(
Ji + λ(Ji+1−Ji) pi+1−pi

)q̇
λ̇

 = Jrcm

q̇
λ̇

 = 0 (2.34)

where we have dropped all dependencies for better readability and Ji=Ji(q(t))
represents the Jacobian matrix of pi(q). It is worth noting that the introduction
of the variable λ increases the degrees of freedom of the system by one, while
the constraint (2.34) reduces the available number of degrees of freedom by 3.
Therefore, the RCM constraint reduces the robot’s degrees of freedom by 2. This
is an expected result since (2.34) imposes that no motion can be performed along
the orthogonal plane of the line joining pi(q) to pi+1(q).

For a given manipulation task r(t)∈Wr, subject to the RCM constraint (2.34),
we can define a control strategy either in terms of the task augmentation scheme
or the task priority scheme (giving the highest priority to the most critical task
between the two), as described in Section 2.1.2. In the case of task augmentation,
dropping all temporal dependencies, we have

ṙA =
ṙ

0

 =
J 0

Jrcm

q̇
λ̇

 = JA

q̇
λ̇


In the general case of a redundant manipulator, the generalized least norm solution
of the augmented task results

q̇? = J†AṙA +
(
I− J†AJA

)q̇0

λ̇0


where the self-motions q̇0 and λ̇ can be chosen independently of each other. In
particular, assuming that the compatibility with ṙA is verified, it is possible to
modulate the position of the RCM along the line joining pi(q) to pi+1(q) by means
of the following quadratic cost function

H(λ) = 1
2
(
λ− λ̄

)2
=⇒ λ̇0 = −η

(
∂H(λ)
∂λ

)>
= η

(
λ̄− λ

)
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where λ̄ represents the desired relative distance and η>0.

2.2 Dynamics modeling and estimation

End-effector motions and joint efforts can be related through the dynamic model
of the manipulator. Such a dynamic model plays a prominent role in the field of
robotic design and control. In the former case, synthesized joint generalized forces
from predefined task motions provide useful hints for joints, transmissions and
actuators design. In the latter case, different control and planning strategies can
be tested and validated in a safe virtual environment. Dynamic modeling allows
the computation of fast reactive control laws, required in critical safety application
like collaborative robotic and autonomous driving.

The rest of the section is organized as follows. Section 2.2.1, briefly describes
the Euler-Lagrange equations motions of manipulators. Section 2.2.2 introduce the
the dynamic model of mobile manipulators. Finally, an empirical method for the
identification of dynamic parameters is described in Section 2.2.3. In the following
paragraphs, any explicit time dependency will be omitted for better readability of
the formulae.

2.2.1 Euler-Lagrange formulation

Let’s consider a manipulator with n rigid links and suppose that, to each link i10

of the robot chain, we rigidly attach a reference frame to its center of mass, aligned
with the principal axes of inertia of the link, whose pose, at configuration q∈Q,
Q⊂Rn, will be denoted by ri(q)∈W . The velocity ṙi(q, q̇) of the frame, given an
instantaneous velocity q̇∈TqQ, results

ṙi(q, q̇) = Ji(q)q̇ =
Jp,i(q)

Jo,i(q)

q̇

where Jp,i(q)q̇ and Jp,i(q)q̇ provides, respectively, the linear and angular velocities
of the link i. Given the mass mi and moment of inertia Υi(q)11 of the link i, its

10By link we refer to real link and the actuator’s motor altogether.
11Υi(q) is computed with respect the world frame, hence it is a function of the robot configu-

ration q. In barycentric coordinates such matrix is constant and is defined by the inertia tensor
Υ̃i. Denoting with Ri(q) the orientation matrix of the link i, whose origin coincides with the
link’s center of mass, both matrices are related by Υi(q) = Ri(q)Υ̃iR>i (q).
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kinetic Ti(q, q̇) and potential Ui(q) energies are defined as

Ti(q, q̇) = 1
2 ṙ>i (q, q̇)

miI 0
0 Υi(q)

ṙi(q, q̇) = 1
2 q̇>J>i (q)

miI 0
0 Υi(q)

Ji(q)q̇ = 1
2 q̇>Bi(q)q̇

Ui(q) = −mig>0 ri(q)

where Bi(q) is a symmetric positive definite (n×n) matrix, representing the gener-
alized inertia matrix of the link i and g0 corresponds to the (constant) gravity vec-
tor with respect the world frame. For example, in the three dimensional Cartesian
space12, the gravity vector results g0=(0, 0,−g, 0, 0, 0)>. Then, the total kinetic
T (q, q̇) and potential U(q) energies of the robot correspond to

T (q, q̇) = 1
2

n∑
i=1

q̇>Bi(q)q̇ = 1
2 q̇>

(
n∑
i=1

Bi(q)
)

q̇ = 1
2 q̇>B(q)q̇

U(q) = −
n∑
i=1

mig>0 ri(q) = −g>0
n∑
i=1

miri(q)

with B(q) representing the generalized inertia matrix of the robot. Now, defining
the Lagrangian of the robot as

L(q, q̇) = T (q, q̇)− U(q) = 1
2 q̇>B(q)q̇− U(q)

the robot’s equations of motions are thus given by the Euler-Lagrange equations

d
dt

(
∂L(q, q̇)
∂q̇

)>
−
(
∂L(q, q̇)
∂q

)
= τ̃ (2.35)

where τ̃ assimilates all contributions of non-conservative forces, including the ac-
tuators generalized forces τ minus the friction effects and reactions due contact
with the environment. Evaluating each partial derivative of (2.35), we have

d
dt

(
∂L(q, q̇)
∂q̇

)>
= B(q)q̈ +

n∑
i=1

(
∂bi(q)
∂q

)
q̇q̇i

(
∂L(q, q̇)
∂q

)>
= 1

2

n∑
i=1

(
∂bi(q)
∂q

)>
q̇q̇i −

(
n∑
i=1

miJ>i (q)
)

g0

12In such a case W correspond to a six-dimensional manifold.
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where bi(q) represents the i-th column of the generalized inertia matrix B(q).
Putting all together we obtain the equations of motion

B(q)q̈ +
 n∑
i=1

(∂bi(q)
∂q

)
− 1

2

(
∂bi(q)
∂q

)>q̇i

q̇ +
(

n∑
i=1

miJ>i (q)
)

g0 = τ̃

or, equivalently, in compact form

B(q) q̈ + C(q, q̇) q̇ + g(q) = τ̃ (2.36)

where the matrix C(q, q̇)q̇ represents the induced centrifugal and Coriolis effects
and the vector g(q) accounts for the joint generalized forces generated by the gravi-
tational force. To make explicit the joint generalized forces τ in the dynamic model
(2.36), we can assume that: viscous friction is given as Fvq̇, where Fv is an (n×n)
diagonal matrix of viscous coefficients; static friction (Coulomb friction) is given
by Fs sgn(q̇), with Fs is an (n×n) diagonal matrix and sgn(q̇) is the component-
wise sign function; contact reactions of the end-effector are given by J>ξ. Under
this set of assumption, the dynamic model of the robot becomes

B(q) q̈ + C(q, q̇) q̇ + Fv q̇ + Fs sgn(q̇) + g(q) = τ − J>ξ (2.37)

To conclude, we highlight some fundamental properties of the model. First, as
already mentioned, the generalized inertia matrix B(q) is positive definite and
symmetric matrix, depending only on the robot’s configuration q. This function
is upper and lower bounded, that is, such that the following inequalities hold

B < ‖B(q)‖ < B̄

for some positive constants B and B̄, B<B̄. As consequence of the above proper-
ties, the inverse of the inertia matrix B−1(q) is also upper and lower bounded.

Second, the matrix C(q, q̇)q̇, representing the centrifugal and Coriolis effects, is
quadratic in the joint velocities, thus it is bounded by

‖C(q, q̇)‖ < C(q)‖q̇‖2

for some positive scalar function C(q). In the case of a manipulator having only
revolute joints, then C(q)=C̄, with C̄ some positive constant value.

Third, from the principle of conservation of energy, we know that the total
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energy of the system

E(q, q̇) = T (q, q̇) + U(q)

remains constant when all generalized forces acting on the robot are balanced, i.e.,
when τ̃=0. In other words, when all generalized forces are balanced, then Ė(q, q̇)
equals zero. By taken such derivative and after few computations we obtain

Ė(q, q̇) = q̇>B(q) q̈ + 1
2 q̇> Ḃ(q) q̇ + q̇>g(q) = 1

2 q̇>
(
Ḃ(q)− 2C(q, q̇)

)
q̇

which implies that N(q, q̇)=Ḃ(q)−2C(q, q̇) is a skew-symmetric matrix, for all values
of q and q̇. By considering the symmetry of B(q), thus the symmetry of Ḃ(q), we
have that

N>(q, q̇) = −N(q, q̇) =⇒ Ḃ(q) = C(q, q̇) + C>(q, q̇) (2.38)

Fourth, both gravity g(q) and viscous friction Fvq̇ vectors are also bounded

‖g(q)‖ < g(q) ‖Fvq̇‖ < F̄v‖q̇‖

with g(q) some positive scalar function and F̄v some positive constant. In the case
of a manipulator having only rotative joints, then g(q)=ḡ, with ḡ some positive
constant value.

Fifth, the dynamic model is linear with respect to the dynamic parameters,
that is, it is always possible to rewrite the dynamic model in the form

Y(q, q̇, q̈) a = τ

where a∈Rp is known as the vector of dynamic coefficients. Further insight on this
property are provided in Section 2.2.3.

As a last remark, the Euler-Lagrange formulation is systematic and concep-
tually simple, providing a differential model perfectly suited for the analysis and
synthesis of control laws. However, it is not computationally efficient. As an
alternative, the Newton-Euler formulation exploits the chain structure of the ma-
nipulator and provides a computationally efficient recursive model. For a complete
description of the Newton-Euler formulation we refer the reader to [93, 90].
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2.2.2 Dynamic model of mobile manipulators

The derivation of the dynamic model of a mobile manipulator follows an analogous
procedure as described in Section 2.2.1. The main difference relies in the Euler-
Lagrange equation (2.35), due to the inclusion of the motion constraints of mobile
platform. Assuming that q∈Q is defined as in (2.1), given a transmission mapping
S(q) from the external control inputs u to the generalized forces τb acting on
the mobile platform and denoting with A(q) the transpose of the non-holonomic
Pfaffian constraints (2.4), from the constrained Euler-Lagrange equation of the
mobile manipulator we obtain

d
dt

(
∂L(q, q̇)
∂q̇

)>
−
(
∂L(q, q̇)
∂q

)
=
 τa

S(q)u− A(q)λ

 (2.39)

B(q) q̈ + C(q, q̇) q̇ + g(q) =
 τa

S(q)u− A(q)λ

 (2.40)

where τa represents the joint generalized forces acting on the manipulator. Based
on the decomposition (2.1) of q, the dynamic model (2.40) can be rewritten as
Baa(q) Bab(q)

B>ab(q) Bbb(q)

q̈a
q̈b

+
Caa(q,q̇) Cab(q,q̇)

Cba(q,q̇) Cbb(q,q̇)

q̇a
q̇b

+
ga(q)

gb(q)

=
 τ

S(q)u−A(q)λ


(2.41)

Now, differentiating (2.2) with respect to time, we obtain,

q̈b = G(qb) ¨̃qb + Ġ(qb) ˙̃qb (2.42)

where the columns of the matrix G(qb) span the null space of the nonholonomic con-
straints (2.4) of the mobile base and ˙̃qb represents the vector of pseudo-velocities.
It is possible to eliminate the Lagrange multipliers λ in (2.41) by premultiplying
the lower set of equations by G>(qb). With this idea in mind and substituting (2.2)
and (2.42) in (2.41), it is possible to obtain the following reduced dynamic model

B̃(q) ¨̃q + C̃(q, ˙̃q) ˙̃q + g̃(q) =
 τ

G>(q)S(q)u

 (2.43)
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where

˙̃q =
q̇a

˙̃qb

, G̃(q) =
I 0

0 G(q)

, B̃(q) = G̃>(q) B(q) G̃(q), g̃(q) = G̃>(q) g(q)

C̃(q, ˙̃q) = G̃>(q)
[
C(q, G̃(q) ˙̃q) G̃(q) + B(q) ˙̃G(q)

]
,

2.2.3 Identification of dynamic parameters

We have already mention in Section 2.2.1, that the dynamic model can be written
as a linear function of the dynamic parameters. The present paragraph aims to
provide a formal definition of such parameters and to describe an empirical method
for their estimation.

Linear parametrization of the dynamic model As before, let’s consider a
manipulator with n rigid links and suppose that, to each link i of the robot chain,
there is a rigidly attached reference frame aligned with its principal axes of inertia,
but centered at any arbitrary point of the link. Also, let’s denote withmi the link’s
mass and with Ῡi its inertia tensor. Let’s also assume that the link’s center of
mass is located at ric,i∈R3, with ri>c,i=(xc,i, yc,i, zc,i). The superscript i denotes that
quantities are defined with respect the local frame of the link i. Moreover, by the
Huygens-Steiner’s theorem, the inertia matrix in frame coordinates results

Υi
i = Ῡi +mi

[
ri>c,ir

i
c,iI− ric,ir

i>
c,i

]
= Ῡi +miS>(ric,i)S(ric,i)

with S(·) denoting the skew-symmetric operator.
Now, assuming that the reference frame of the link i is moving with a linear

velocity vii and rotating with angular velocity ωii, the linear velocity of the center
of mass results

vic,i = vii + ωii×ric,i = vii + S(ωii)ric,i = vii − S(ric,i)ωii

Then, the total kinetic and potential energy of link i result

Ti(q, q̇) = 1
2 mi

(
vii − S(ric,i)ωii

)>(
vii − S(ric,i)ωii

)
+ 1

2 ω
i>
i Ῡi

iω
i
i

= 1
2 mi vi>i vii −mi vi>i S(ric,i)ωii + 1

2 ω
i>
i

(
Ῡi
i +mi S>(ric,i)S(ric,i)

)
ωii

= 1
2 mi vi>i vii −mi vi>i S(ric,i)ωii + 1

2 ω
i>
i Υi

iω
i
i

25



As can be observed, the first term on the right side of the last equation is a linear
with respect the mass mi. Also, the second term is linear with respect to the
first mass moment miric,i, i.e., with respect parameters mixc,i, miyc,i and mizc,i.
Finally, third term is linear with respect to the 6 independent parameters of the
inertia matrix. The same applies for the potential energy, which depends linearly
on the mass mi and the first mass moment.

Therefore, for each link i it is possible to define a vector of dynamic parameters
ãi∈R10 such that the kinetic and potential energies are linear with respect to them.
Since the Euler-Lagrange equations involve only linear operations over the energy
functionals, then the dynamic model (2.37) of the robot is necessarily linear with
respect such parameters. Moreover, such model is also linear with respect the
coefficients of the matrices Fv and Fs modeling, respectively, the viscous and static
friction generalized forces.

Denoting by ã∈R10n the vector of all dynamic parameters of the robot, de-
fined by the concatenation of all ãi, i=1,. . .,n, then the dynamic model can be
parametrized as the following linear system

Ỹ(q, q̇, q̈) ã = τ

where the matrix Ỹ(q, q̇, q̈) has an upper triangular block structure, as a result
from the open kinematic chain structure of the manipulator, and only depends on
kinematics quantities.

However, in practice for a given robot not all dynamic parameters appear in
the dynamic model or may only appear in fixed combinations with others. As
consequence, many rows of Ỹ(q, q̇, q̈)ã may be zero or linearly dependent. Then,
it is necessary to identify a subset of independent parameters a∈Ra, a�10n, such
that the regression matrix is well defined

ã = Ta =⇒ Ỹ(q, q̇, q̈) ã = Ỹ(q, q̇, q̈) Ta = Y(q, q̇, q̈) a = τ

where T is a suitable constant (10n×a) linear map from the set of redundant pa-
rameters ã to a set of dynamic coefficients a of the robot and Y(q, q̇, q̈) is the
parametrization of the robot model. One important remark is that only the dy-
namic coefficients can be identified from experimental data, that is, any standard
link parameter (i.e., mass, inertia or coordinates of the center of mass), in general,
may not be recovered alone.
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Dynamic coefficients identification In principle, given a parametric model
of the robot, it is possible to recover the set of dynamic coefficients based on
empirical demonstrations. Assuming that a set of samples (qk, q̇k, q̈k, τk) has been
already collected, k=1,. . .,K, K�a, we can try using linear least squares to fit
the measured data. The first step is to build the regression matrix Ŷ based on the
parametric model and the collected data

Ŷk = Y(qk, q̇k, q̈k) =⇒ Ŷ =


Ŷ1
...

ŶK


Now, denoting by τ̂=(τ1, . . . , τK)>, we can state the identification problem as

a? = argmin
a∈Ra

(
τ̂ − Ŷa

)>(
τ̂ − Ŷa

)

and, as described in Section 2.1.2, the optimal estimate of the dynamic coefficients
of the robot model are thus given by

a? = Ŷ
†
τ̂ =

(
Ŷ
>

Ŷ
)−1

Ŷ
>
τ̂

However, in practice, some fundamental issues need to be taken into account
before proceeding with the computation of the optimal estimate. First, it is neces-
sary to ensure that the motion trajectory followed by the robot during the experi-
ments excites all the components of the dynamic model. The standard approach,
introduced by [95], defines the robot trajectory in terms of a finite Fourier series,
allowing time-domain data averaging, noise estimation, calculation of the joint ve-
locities and accelerations in an analytic way and specification of the bandwidth
of the excitation trajectories. Second, an iterative estimation of the model [10]
allow to compute accurate bounds of the input noise and to eliminate spurious
measurement outliers that notably degrade the quality of the estimate. More-
over, the covariance matrix of the noise can be used to weight the least squares,
increasing accuracy and robustness of the solution. Third, the computed para-
metric model, based on rigid body dynamics, always represents an approximation
of the real dynamics of the robot. In high-performance robot control the missing
dynamics knowledge is essential for improved performance and robustness [58],
therefore in such cases accounting for friction and elasticity (due flexible joints
or distributed link flexibilities) in the dynamic model is a must. Fourth, often
direct measurements of physical quantities is not available in industrial robotics
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platforms [40]. This implies that the identification of the robot parameters is sub-
ject to indirect measures provided by the manufacturer, since there’s no direct
access to the sensor measurements nor to real robot commands. Last but not
least, alternatives optimization approaches for system identification allow to for-
mulate physical-consistency constraints on the dynamic coefficients, accelerating
convergence to a global optimum and increasing robustness to noisy data [107].

2.3 Incipient collision detection

With the advent of autonomous robotics, collaborative robotics, rehabilitation and
health care robotics, etc., the classical paradigm of robotics safety by segregation
has become obsolete. Indeed, nowadays many research efforts, including design
strategies, control methods, planning techniques and perceptual awareness, are
focused in the concept of intrinsic safety. In such context, two main issues need
to be addressed [24, 48]: the protection of the dynamic environment –specially
in the presence of humans– and the protection of the robotic structure. The
first and most critical issue, in terms of situational awareness, is prediction and
prevention of risky circumstances. The second, in terms of self-sensing capabilities,
is proprioceptive awareness and prompt compliant reactions after unexpected risky
interactions.

It is worth noticing that, among the wide variety of risky or hazardous cir-
cumstances, the most dangerous risk specific to robots are unexpected collisions
or unwanted force exertions between the machine and the environment [89]. Colli-
sion avoidance implies foreseeing dangerous situations, and thus relies on sensing,
situational awareness, planing and decision making capabilities. When an unex-
pected collision occurs, impact forces may be eased through lightweight design
and compliant mechanisms and control. Prompt reactions after incipient colli-
sions requires real-time fault diagnosis, fast reflexes and intelligent compensatory
behaviours to recover safe operative conditions. The scope of next paragraph is to
explore one particular method in the area of real-time fault diagnosis.

Real-time fault detection Fault diagnosis may refer either to detection of un-
expected events (fault detection), or to identifying the type and causes of such
incidents (fault isolation), or both processes as a whole [7]. However, the scope
of this section is limited to the detection of faults due unexpected collisions with
the environment, thus we refer to fault diagnosis as the only fault detection pro-
cess. It is worth mentioning that in real robotics applications there are plenty
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of fault sources (sensor failures, actuator failures, network delays, unstructured
disturbances, etc.) that may affect the robotic system. In Chapter 4 we consider
a less conservative setup, where unexpected collisions and different unstructured
disturbances are taken into account.

There exist two main approaches for fault detection: signal based and model
based. Signal based approaches search for faulty patterns over sensor readings.
Instead, model based approaches compute a residual signal, measuring the dis-
crepancy between sensor readings and predicted (nominal) values. In the case of
dynamical systems, pure signal based approaches lead to inaccurate results since
the dynamics of the system induce deviations from the nominal fault-free operation
that cannot be predicted without proper dynamics modeling [28]. Moreover, in
the case of incipient collision detection, the use of specific external sensors (vision,
strain gauges, load cells, etc.) increases the cost and complexity of the robotics
system [22]. Besides, model based approaches are subject to accurate identification
of the dynamics coefficients of the model [39] and may require full-state feedback,
including accelerations which, in practice, are inherently noisy due to numerical
estimation [28]. To deal with those issues, De Luca and Mattone [21, 22] proposed
a sensorless method for detection and isolation of faults based on a dynamic ob-
server of the generalized momenta of the robot, that does not require acceleration
estimates nor simulation of the entire nominal dynamics. The rest of the section
is devoted to the description of this fault detection scheme.

Sensorless collision detection In the following, any explicit time dependency
will be omitted for better readability. With reference to the dynamic model of the
manipulator (2.37), let’s consider the following disturbed dynamic model

B(q) q̈ + C(q, q̇) q̇ + Fv q̇ + Fs sgn(q̇) + g(q) = τ − τf (2.44)

where τf represents the unknown (faulty) joint generalized force. The generalized
momenta of the robot is defined as

p(q, q̇) = B(q) q̇ (2.45)

By taking the time derivative of (2.45) and considering the expressions (2.44) and
(2.38), we obtain the following first order ordinary differential equation

ṗ(q, q̇) = Ḃ(q) q̇ + B(q) q̈ = τ − τf − n(q, q̇)
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where n(q, q̇) is given by

n(q, q̇) = −C>(q, q̇) q̇ + Fv q̇ + Fs sgn(q̇) + g(q)

Now, let’s define the residual vector r as

r = K
[∫

(τ − n(q, q̇)− r)dt− p(q, q̇)
]

(2.46)

where K is a positive definite diagonal matrix. As can be observed, (2.46) does not
depend on the joint accelerations q̈ nor in the inversion of the generalized inertia
matrix B(q). It is possible to show that the residual dynamics represents linear
exponentially stable system, driven by the faulty joint generalized force τf

ṙ = −Kr + Kτf

Finally, an efficient computation of the residual vector can be obtained through a
nonlinear dynamic observer [26] of the form

p̂ = τ − n(q, q̇) + K (p(q, q̇)− p̂)

r = K (p(q, q̇)− p̂)
(2.47)

2.4 Reactive control of mobile manipulators

Controlling involve an action or a sequence of actions regulating the behaviour of
a measured physical quantity. The control goal is to make such behaviour mimic
a desired one, regardless the presence of disturbances. Accordingly, controlling
a mobile manipulator consist in determining a time series of commands (either
generalized forces or velocities) so as to guarantee the proper execution of a given
task, even in the presence of disturbances. Reactive control imply the real-time
selection of such control commands in response to short-term sensory information.

The present paragraph only provides a brief review of classical reactive control-
schemes used during the implementation of the CAROTE framework. For a deeper
review on reactive control schemes, specially in the case of uncertain systems and
optimal control approaches, we refer the reader to [19, 111, 106] and the bibliogra-
phy therein. The rest of the paragraph is organized as follows. In Section 2.4.1 the
fundamental kinematics-based and dynamics-based control schemes of manipula-
tors are introduced. Then, Section 2.4.2 describes specific reactive control strate-
gies for mobile robots. In the following paragraphs, any explicit time dependency
or configuration dependency will be omitted for better readability.
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2.4.1 Control of manipulators

Let’s us assume that a given manipulator is modeled with a set q of generalized
coordinates, defined inside a configuration space Q⊂Rn, whose end-effector can
reach any pose r in the workspace W⊂Rm. Given a time-varying feasible task
rd∈W , our goal is to determine a control law such that for some finite time T∈R+

and a small positive constant ε, the norm of the pose error e=rd−r satisfies that

‖e‖ = ‖rd − r‖ ≤ ε ∀t≥T (2.48)

To this end, let’s compute the time derivative of the error

ė = d
dt(rd − r) = ṙd − ṙ = ṙd − Jq̇ (2.49)

and observe that to satisfy the stability condition (2.48) we need to compute a
suitable value of the joint velocities q̇=q̇(e) such that equation (2.49) becomes
an asymptotically stable system of differential equations, i.e., such that the error
converges to zero.

Jacobian inversion An intuitive choice for the control action could be to apply
both a proportional and a derivative correction terms. It is possible to map such
control action into joint velocities through the Jacobian inversion. As described
in Section 2.1.2, in the general case of a redundant manipulator, we have

q̇ = J†(ṙd + Ke) +
(
I− J†J

)
q̇0 (2.50)

with K some constant (m×m) symmetric positive definite matrix. By substituting
(2.50) in (2.49) we obtain

ė = ṙd − J
[
J†(ṙd + Ke) +

(
I− J†J

)
q̇0

]
= −Ke =⇒ ė + Ke = 0

which states that the error dynamics are asymptotically stable, with a convergence
rate proportional to the eigenvalues of K.

Jacobian transpose Let’s consider the following Lyapunov function

V (e) = 1
2e>Ke

with K some constant (m×m) symmetric positive definite matrix. Such function
is always positive ∀e6=0 and zero when the error equals zero, i.e., V(0)=0. Its first
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order time derivate is given by

V̇ (e) = e>Kė = e>K(ṙd − ṙ) = e>K(ṙd − Jq̇) = e>Kṙd − e>KJq̇ (2.51)

Now, let’s define the control action as q̇=J>Ke and substitute it in (2.51).

V̇ (e) = e>Kṙd − e>KJJ>Ke (2.52)

In the case of a constant task, i.e., ṙd=0, equation (2.52) could be either neg-
ative definite or negative semi-definite, depending on the rank of the Jacobian
matrix. When J is full rank, V̇ (e) is negative definite and, as consequence, the
error asymptotically converges to zero. Instead, when J has a nonempty null space
N (J), for any error vector e such that Ke ∈ N (J), we have that V(e)=0. Which
implies that the robot can get stuck without zeroing the error. However, such a
condition implies that the required task lies outside the bounds of the workspace
of the manipulator.

In the case of a time-varying task, i.e., ṙd 6=0, it is not possible to achieve
asymptotically stability with the chosen control action. However, it can be shown
that the norm of the error is bounded in terms of the norm of the matrix K.

Jacobian inversion at the acceleration level Differentiating (2.49) with re-
spect to time, leads to the following relation

ë = d
dt
(
ṙd − Jq̇

)
= r̈d − J̇q̇− Jq̈ (2.53)

Now, let’s consider the following control law, consisting in proportional and deriva-
tive actions plus a correction term

q̈ = J†
(
r̈d + KDė + KPe− J̇q̇

)
+
(
I− J†J

)
q̈0 (2.54)

with KD and KP some constant (m×m) symmetric positive definite matrices. By
substituting (2.54) in (2.53) we obtain

ë = r̈d − J̇q̇− J
[
J†
(
r̈d + KDė + KPe− J̇q̇

)
+
(
I− J†J

)
q̈0

]
= −KDė− KPe

which implies that the error dynamics are given by the following asymptotically
stable second order linear system of ordinary differential equations

ë + KDė + KPe = 0
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PD control with gravity compensation With reference to the dynamic model
of the manipulator (2.37), let’s consider the following simplified dynamic model

B(q) q̈ + C(q, q̇) q̇ + Fv q̇ + g(q) = τ (2.55)

where static friction forces has been neglected and no interaction with the environ-
ment has been assumed. Moreover, let’s assume that the given task is constant,
i.e., ṙd=0, and consider the following Lyapunov function

V (q̇, e) = 1
2 q̇>B(q)q̇ + 1

2e>KPe

where B(q) represents the inertia matrix of the dynamic model of the manipulator
and KP a constant (m×m) symmetric positive definite matrix. Such function is
always positive ∀(q̇, e)6=0 and zero when (q̇,e) equals zero, i.e., V(0, 0)=0. Its first
order time derivate is given by

V̇ (q̇, e) = q̇>B(q)q̈ + 1
2 q̇>Ḃ(q)q̇− q̇>J>KPe (2.56)

Based on (2.55), we can substitute the vector B(q)q̈ in (2.56), to obtain

V̇ (q̇, e) = q̇>
(
τ − C(q, q̇)q̇− Fvq̇− g(q)

)
+ 1

2 q̇>Ḃ(q)q̇− q̇>J>KPe

= 1
2 q̇>

(
Ḃ− 2C(q, q̇)

)
q̇− q̇>Fvq̇ + q̇>

(
τ − g(q)− J>KPe

)
= −q̇>Fvq̇ + q̇>

(
τ − g(q)− J>KPe

) (2.57)

Now, let’s define the control action τ as

τ = g(q) + J>KPe− J>KDJq̇ (2.58)

where KD is a constant (m×m) symmetric positive definite matrix. Now substi-
tuting (2.58) in (2.57) gives

V̇ (q̇, e) = −q̇>Fvq̇− q̇>J>KDJq̇

which implies that the Laypunov function is always decreasing and, as consequence,
the closed loop system is asymptotically stable. It is worth noticing that the control
law (2.58) performs a nonlinear compensation of joint generalized gravitational
forces and a linear PD control action on the task error.
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Inverse dynamics control With reference to the dynamic model of the ma-
nipulator (2.37), let’s consider the following compact representation

B(q) q̈ + n(q, q̇) = τ (2.59)

where no interaction with the environment has been assumed and n(q, q̇) accounts
for the Coriolis, centrifugal, gravitational and frictional terms. Since the inertia
matrix is positive definite it can be inverted for any robot configuration q, therefore,
by defining the nonlinear control action

τ = B(q)u + n(q, q̇) (2.60)

we obtain the the following linear system

q̈ = u (2.61)

where the new control input u need to be defined in terms of the task constraints.
It is worth noticing that the nonlinear control action (2.60) allow to compensate
the whole dynamics of manipulator (2.59) leading to an equivalent decoupled linear
system (2.61) with respect the new control input u. Based on (2.54), we can define
the following stabilizing control law

u = J†
(
r̈d + KDė + KPe− J̇q̇

)
+
(
I− J†J

)
q̈0

with KD and KP some constant (m×m) symmetric positive definite matrices, which
ensures that the task error e converges to zero asymptotically, with a convergence
rate modulated by KD and KP .

2.4.2 Control of mobile robots

Let’s us consider the unicycle model

q̇ =


ẋ

ẏ

θ̇

 =


cos θ
sin θ

0

υ +


0
0
1

ω =


cos θ 0
sin θ 0

0 1


υ
ω

 = G(q)
υ
ω

 (2.62)

with q∈Q, Q=R2×SO(2). Given a time-varying feasible task qd∈Q, i.e., such that
q̇d=G(qd)(υd ωd)> for all t∈R+, with υd and ωd bounded functions with bounded
derivatives, our goal is to determine a control law such that the norm of the pose
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error

e =


e1

e2

e3

 =


cos θ sin θ 0
− sin θ cos θ 0

0 0 1



xd − x
yd − y
θd − θ

 (2.63)

satisfies the stability condition (2.48). As before, the stability analysis requires
the computation of the first order time derivative of the error

ė =


− sin θ cos θ 0
− cos θ − sin θ 0

0 0 0



xd − x
yd − y
θd − θ

θ̇ +


cos θ sin θ 0
− sin θ cos θ 0

0 0 1



ẋd − ẋ
ẏd − ẏ
θ̇d − θ̇



=


eeω − (ẋ cos θ + ẏ sin θ) + (ẋd cos θ + ẏd sin θ)
−e1ω + (ẋ sin θ − ẏ cos θ)− (ẋd sin θ − ẏd cos θ)

ωd − ω



=


eeω − υ + υd(cos θd cos θ + sin θd sin θ)
−e1ω − υd(cos θd sin θ − sin θd cos θ)

ωd − ω

 =


e2ω + υd cos e3 − υ
υd sin e3 − e1ω

ωd − ω


which, after the introduction of the following input transformation, results

u =
u1

u2

 =
υd cos e3 − υ

ωd − ω

 =⇒


ė1

ė2

ė3

 =


e2ω + u1

υd sin e3 − e1ω

u2

 (2.64)

Nonlinear trajectory tracking Let’s consider the following control law

u1 = −k1(υd, ωd)e1

u2 = −k2υd
sin e3

e3
e2 − k3(υd, ωd)e3

with k1(·,·) and k3(·,·) bounded functions with bounded derivatives and k2 a pos-
itive constant. The closed loop error dynamics results

ė1 = e2ω − k1(υd, ωd)e1

ė2 = −e1ω + υd sin e3

ė3 = −k2υd
sin e3

e3
e2 − k3(υd, ωd)e3

(2.65)
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Now, let’s define the following positive definite Lyapunov function

V (e) = k2

2
(
e2

1 + e2
2

)
+ e2

3
2

Its first order derivative along the trajectories of the system results

V̇ (e) = k2(e1ė1 + e2ė2) + e3ė3 = −k2k1(υd, ωd)e2
1 − k3(υd, ωd)e2

3

Such derivative is negative-semidefinite and, as consequence, the Lyapunov func-
tion candidate V(e) is bounded from bellow and tends to a limit value as t→∞.

Omitting the explicit functional dependencies of k1(·,·) and k3(·,·) for better
readability, the second order derivative of V (e) along the trajectories of the system
results

V̈ (e) = −k2e
2
1

(
k̇1 − k2

1

)
− e2

3

(
k̇3 − k2

3

)
+ k2e2

(
k3υd sin e3 − k1e1ω

)
As can be observed, this function is bounded from above, since we have already
demonstrated that the error is bounded and, by assumption, k1(·,·), k3(·,·), υd
and ωd are bounded with bounded derivatives This implies that the first order
derivative V̇ (e) of the Lyapunov function candidate is uniformly continuous and,
by Barbălat’s lemma [32], converges to zero as t→∞. As a result, e1→0 and e3→0
as t→∞. From this results and considering the closed loop error dynamics (2.65)
it is possible to show that

lim
t→∞

(
ω2
d + υ2

d

)
e2 = 0

which states that the asymptotically stability of the system is guaranteed as long
as one of the input references is persistent on time.

Input/output linearization Let’s assume that we would like to follow a Carte-
sian trajectory (xd, yd), that has been assigned to has been assigned to some output
point qb∈Q of the form

qb =


x+ b cos θ
y + b sin θ

θ


with b some constant value. Note that the Cartesian coordinates (xb, yb) of qb lie
along the sagittal axis of the unicycle, in front or behind the contact point of the
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wheel depending on the sign of b. Based on the kinematic model (2.62), the output
velocity results

q̇b =


υ cos θ − bω sin θ
υ sin θ + bω cos θ

ω

 =


cos θ −b sin θ
sin θ b cos θ

0 1


υ
ω

 =
T(θ)

0 1

υ
ω



Assuming that b 6=0, then T(θ) is always nonsingular. Therefore, by defining the
following input transformationυ

ω

 =
 cos θ sin θ
− sin θ/b cos θ/b

u1

u2

 = T−1(θ)
u1

u2

 = T−1(θ) u

we obtain the following input-output static feedback linearization of the system

q̇b =
T(θ)

0 1

T−1(θ) u =


1 0
0 1

− sin θ/b cos θ/b

 u

Now, by defining the control action as

u =
ẋd + k1(xd − xb)
ẏd + k2(yd − yb)


with k1 and k2 two positive constants, then the closed loop systems results globally
exponentially stable.

Posture regulation Suppose that the given task qb is constant, i.e., q̇b=0, and
without loss of generality, let’s assume that the desired configuration correspond
to the origin of the configuration space qd=0. Now, let’s introduce the coordinates
change q̃=(ρ, γ, δ)> having the following form

ρ =
√
x2 + y2

γ = Atan2(y, x) + π − θ

δ = γ + θ

=⇒

ρ̇ = −υ cos γ

γ̇ = υ
sin γ
ρ
− ω

δ̇ = υ
sin γ
ρ

where ρ represents the length of the vector between the Cartesian coordinates of
the unicycle and the origin, γ the angle between the sagittal axis of the robot and
such vector, and δ the pointing error. Consider the following control action and
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the resulting closed loop dynamics

υ = k1ρ cos γ

ω = k2γ + k1(γ + k3δ)
cos γ sin γ

γ

=⇒

ρ̇ = −k1ρ cos2 γ

γ̇ = −k2γ − k1k3
δ

γ
cos γ sin γ

δ̇ = k1 cos γ sin γ

(2.66)

with k2, k2 and k3 some positive constants. Now, let’s introduce the following
positive definite Lyapunov function

V (q̃) = 1
2
(
ρ2 + γ2 + k3δ

2
)

Its first order derivative along the trajectories of the system results

V̇ (q̃) = ρρ̇+ γγ̇ + k3δδ̇ = −k1ρ
2 cos2 γ − k2γ

2 ≤ 0 (2.67)

Such derivative is negative-semidefinite, as consequence, the Lyapunov function
candidate V(q̃) is bounded from bellow and tends to a limit value as t→∞. The
second order derivative of V (q̃) along the trajectories of the system results

V̈ (q̃) = −2k1ρ cos γ(ρ̇ cos γ − γ̇ρ sin γ)− 2k2γγ̇

which implies that
∣∣∣V̈ (q̃)

∣∣∣ ≤ 2k1

∣∣∣ρ cos γ(ρ̇ cos γ − γ̇ρ sin γ)
∣∣∣+ 2k2

∣∣∣γγ̇∣∣∣
≤ 2k1

∣∣∣ρ∣∣∣∣∣∣ρ̇∣∣∣+ 2k1ρ
2
∣∣∣γ̇∣∣∣+ 2k2

∣∣∣γ∣∣∣∣∣∣γ̇∣∣∣
≤ 2k1

∣∣∣ρ∣∣∣∣∣∣ρ̇∣∣∣+ 2
(
k1ρ

2 + k2

∣∣∣γ∣∣∣)∣∣∣γ̇∣∣∣
Because of (2.67), ρ, γ and δ are all bounded. Hence, by virtue of (2.66) also ρ̇, γ̇
and δ̇ are all bounded. Moreover, V̈ (q̃) is bounded from above, which implies that
V̇ (q̃) is uniformly continuous and, by Barbălat’s lemma [32], converges to zero as
t→∞. As a result, ρ→0 and γ→0 as t→∞. Finally, by taking the limit t→∞
on each equation of the closed loop system (2.66), we obtain that necessarily δ→0
as t→∞. Ergo, the closed loop system asymptotically converges to the desired
posture.
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2.4.3 On-line planning with artificial potential fields

A robot can be thought as a particle q moving in the configuration space Q.
To avoid obstacles, singular configurations, self-collisions, or any other types of
configuration constraint, the motion of such a particle needs to be constrained to
lie withing the bounds of the free configuration space Qfree, i.e., the subset of robot
configurations that don’t cause a constraint violation.

Often such constraints are given in workspace rather than in configuration
space and, in general, mapping such constraints cannot be performed in a closed
form. However, it is possible to exploit partial knowledge of the environment to
locally influence the motion of the robot so as to avoid a constraint violation. For
example, in the surroundings of an obstacle the robot can be repelled to move far
from it, or might be globally attracted towards the goal. It is worth noticing that
there is a one-to-one correspondence between the examples and the action of a
conservative vector field (electromagnetic, gravitational, etc.). Indeed, the idea
behind the artificial potential fields is exactly to define a scalar potential function
U(q), U :Q→R, whose field action induces a robot motion entirely contained in
Qfree. Defining the field action as

−∇U(q) = −
(
∂U(q)
∂q

)>

then, at each configuration q∈Q, the artificial potential field directs the robot
toward the minimum of the potential, by inducing a gradient descent optimization
step at each iteration of the control loop.

Clearly, in the presence of multiple constraints, defining a single scalar potential
function is not an easy task. A natural alternative could be to define one scalar
potential function for each constraint. In general, however, constrains are mostly
unilateral, then in practice only two kind of parametric scalar potential functions
need to be defined: attractive potentials and repulsive potentials. Consequently,
we just need to identify for each constraint the corresponding field type and provide
a suitable set of parameters for its definition.

There is a strong connection between the self-motion generation techniques
for redundancy exploitation (Section 2.1.2) and the on-line planning scheme with
artificial potential fields. Actually, there’s no conceptual difference between these
approaches, the difference lies in the priority given to the task. In the case of
redundancy resolution, the optimization of the scalar objective function is con-
strained into the null space of the Jacobian of the primary task. Here, the task
itself is defined by the action of the potential field. Therefore, any method consid-
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ered so far for self-motion generation (e.g., manipulability maximization, described
in Section 2.1.3) is defined in terms of ad hoc artificial potential fields.

Attractive potential This potential is designed to attract the robot toward
a predefined goal qg configuration. To this end, the potential must be defined
as a strictly increasing monotonic function of the distance to the goal, i.e., the
attractive potential must have an unique global minimum at the goal. Also, the
potential should be smooth at the goal configuration, to avoid discontinuities in
the attractive field. A common choice is to define the attractive potential as a
paraboloid with vertex at the goal

Ua(q) = k1

2 (qd − q)>(qd − q) = k1

2 ‖qd − q‖2

−∇Ua(q) = k1(qd − q)

with k1 some positive constant. As can be observed, the field action is linear
with respect the configuration error and, as consequence, unbounded. To obtain
a bounded field action, it is possible to combine a paraboloid section in the sur-
roundings of the goal with a conic one outside the goal’s surroundings

Ua(q) =


k1

2 ‖qd − q‖2 if ‖qd − q‖≤α

k2‖qd − q‖ otherwise

−∇Ua(q) =


k1(qd − q) if ‖qd − q‖≤α

k2
qd − q
‖qd − q‖

otherwise

(2.68)

where k1, k2 and α are positive constants, such that k2=k1α to ensure a continuous
field action.

Repulsive potential The objective is to keep the robot away from a subset
Qtaboo⊂Q\Qfree of robot configurations. Close to the boundary ∂Qtaboo, the po-
tential must increase indefinitely to avoid the robot getting close, or worst, col-
lide/entering the forbidden region. Contrary, far from ∂Qtaboo, the potential should
exert little or no influence over the robot motion. In other words, the potential
function must be defined as a strictly decreasing monotonic unbounded function
of the distance to the forbidden region, with a singularity at zero. Consequently,
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a convenient choice for the repulsive potential is given by

Ur(q) =


k3

r

(
1

d(q) −
1
d0

)r
if d(q)≤d0

0 otherwise

−∇Ur(q) =


k3

d2(q)

(
1

d(q) −
1
d0

)r−1

∇d(q) if d(q)≤d0

0 otherwise

(2.69)

where k3 is a positive constant, d0 the range of influence of the field, r=1,2,. . . and

d(q) = min
q̂∈∂Qtaboo

‖q− q̂‖

i.e., the distance from the robot configuration to the set Qtaboo. This potential
tends to infinity when the robot approaches ∂Qtaboo, with a growth rate modulated
by the exponent r.

Total potential and the field action In the presence of many constraints
over the configuration space, let’s say m constraints, we can define a repulsive
potential Ur,i(q) for each constraint, i=1,. . .,m. Then, the total artificial potential
corresponds to the sum of all repulsive potentials plus the attractive one

U(q) = Ua(q) +
m∑
i=1
Ur,i(q)

−∇U(q) = −∇Ua(q)−
m∑
i=1
∇Ur,i(q)

Depending on the application, the artificial potential field can be used to control
the robot either in terms of joint generalized forces τ , joint accelerations q̈ or joint
velocities q̇. However, only the last choice guarantee the asymptotic stability of
the system, since in the other two cases the robot may reach the desired goal with
a nonzero velocity. To achieve asymptotic stability in such cases, a damping term
proportional to the robot velocity is needed. Regardless the choice, it is worth
noticing that the artificial potential field produces a reactive feedback control over
the robot motion, guiding the robot towards the goal while keeping it away from
undesired configurations. In fact, since a control action (vector) is assigned at to
each configuration in q∈Q, then the motion of the robot defines an integral curve
along the artificial potential field.
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The “curse” of local minima One relevant issue with artificial potential fields,
an inherent problem of gradient descent algorithms, is that the robot may reach
an equilibrium far from the desired goal, due to local balancing between repulsive
and attractive fields. Such a local critical point13 can be either a saddle point or
a minimum (or a maximum in the case of a gradient ascent search). In the former
case, considering the structural instability of such critical point, the robot will
never reach a stable equilibrium on it. While in the latter case, the robot will get
stuck on a stable local equilibrium.

Different techniques for avoiding local minima has been defined for off-line
planning: navigation potential functions, heuristic search, wave-front planning,
etc. [14, 93, 89]. However, in the case of reactive planning, there’s no way to ensure
that the robot will arrive to a desired goal. Actually, this is not a proper limitation,
since the idea behind reactive planning is not to replace an off-line planner, but to
extend it through fast and efficient control actions when unexpected events occur
during the robot motion. Therefore, when a reactive method get stuck on a “local
minimum” it implies that the best possible action, given the partial knowledge
of the environment and the occurrence of an unexpected event, has been taken.
In other words, reactive planning is locally optimal but by no means globally
optimal.

13A point where the gradient of the artificial potential U(q) vanishes.
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Chapter 3

Semiautonmous teleoperation of
redundant mobile manipulators

In the context of robotic teleoperation, it is fundamental to provide an abstract
interaction layer between the operator and the robot and its surrounding environ-
ment, allowing the operator to focus exclusively on the task execution. Not by
chance, teleoperation represents a common source of failures [12] in many com-
plex robotics applications. Common issues are the increasing control complexity,
specially in the case of mobile manipulators; inadequate or incomplete feedback
to the user; low-level motion directives incompatible with constraints or obstacles
imposed by the environment. Therefore, such an abstraction layer must be able
to hide the robot mechanical structure and low-level control mechanisms. How-
ever, simple abstract motion rules may degrade the task execution when facing
unexpected interactions with the environment. For example, a limited set of mo-
tion primitives may lead to unrepeatable Cartesian motions [109, 36], and in the
case of collision avoidance may limit the dexterity of the robot. As consequence,
the abstract layer between the operator and the robot should include methods for
adapting and reacting to unexpected environmental conditions without requiring
explicit human intervention. Such an autonomous behavior not only improve task
execution in terms of accuracy, but also in term of reliability and safety [12]. This
abstract interaction layer is commonly known as operator control Unit (OCU).

Regardless the underlying application [109, 56, 67, 74, 47, 91, 61], dexterous
grasping represents the “life’s” milestone of a mobile manipulator. Beyond the
inherent problems associated to the grasping action –that fall beyond the scope of
this thesis–, before its execution, a mobile manipulator first needs to move close to
the target, then approach the end-effector to the target ensuring the feasibility of
the imminent grasp action. On semi-autonomous contexts, the optimal placement
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of the end-effector requires human intervention [56, 74]. One way to facilitate this
inspection instance is to improve the operator control unit, by considering intuitive
or natural control interfaces to simplify the task and to improve the situational
awareness [60]. In the particular case of vision based feedback, different operator
control units has been proposed, many of them inspired from the augmented reality,
virtual reality and computer games contexts.

Ögren et al. [73] proposed and implemented an intuitive free look control mode
for teleoperated unmanned ground vehicles, improving the situational awareness
on the surroundings of the robot. The authors exploit the feedback linearization
technique to abstract the orientation of the robot chassis, enabling a direct control
over orientation and translation of the camera on-board. More recently, Båberg
et al. [9] introduced a new concept of orbit control mode, which in contrast to the
previous approach, implements an object-centered visualization scheme. The au-
thors consider a redundant mobile platform and explored how different constraints
can be added to the visualization control mode and introduce a constrained based
programming framework for the computation of optimal solutions. Claret et al.
[15] implements a similar control mode by coupling the motion of a manipulator to-
gether with the motion of quad-rotor carrying an on board camera, i.e., a free-flying
camera. Such configuration provides a visualization from a third-person viewpoint
instead of the first-person viewpoint considered in the previous approaches. The
motion of the two robots is tightly coupled at a kinematics level.

In this work we consider a problem similar the one presented in [9], where a
redundant mobile manipulator providing a first-person visual feedback to the oper-
ator, is required to operate in orbit control mode while avoiding possible obstacles
and improving the end-effector dexterity during the task execution. The main
difference relies in the explicit consideration of the dexterity of the end-effector
as an objective function while orbiting, so as to ensure that post-orbit robot con-
figurations allow isotropic motions of the end-effector in workspace. We define
the end-effector dexterity in terms of the robot’s manipulability [110, 4, 101], a
common measure in the field of robotics teleoperation and control of mobile ma-
nipulators. To cite a few, Jung et al. [53] demonstrate how an accurate analysis
of manipulability and other quality indexes can be used to improve the design
of a versatile humanoid robot for for teleoperated disaster response. In [41] the
problem of assisting a human operator in a reach-to-grasp task is addressed, such
as to reduce the control effort of the manipulator during the post-grasp task,
by means of force cues computed through a task-oriented velocity manipulability
cost function. Torabi et al. [98] defined a manipulability measure of a combined
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master-slave system for robotic teleoperated minimally invasive surgeries, such a
measure is used to assist the design choices of the robotic platform, aimed to
improve surgeons control, minimize the footprint of the master robot and avoid
singularities and joint limits of the master and slave robots. Bayle et al. [4] gener-
alize the standard definition of manipulability to the case of mobile manipulators
with nonholonomic constraints, coupling base locomotion and arm movements for
manipulability maximization during the task execution. Vahrenkamp et al. [101]
extended the concept of manipulability ellipsoid including constraints coming from
joint limits, workspace obstacles or self-distance into its definition, and used such
geometrical object to build a manipulability distribution over the workspace, al-
lowing to capture the robot capabilities in terms of operational freedom during
task planning and execution. As in [4], we use the manipulability maximization
as coupling mechanism between the end-effector motion and the base locomotion.

This work introduces three fundamental contributions respect the state-of-the-
art. First, as previously described, includes the dexterity of the manipulator to
couple the manipulator motion and the base locomotion during the execution of
the orbit control tasks. Second, we introduce a purely reactive control scheme
based on the remote center of motion constraint (RCM) for satisfying the orbit
constraints. This kinematics constraint is widely known in the field of minimally
invasive surgery (MIS) [18, 1, 81, 82], where all surgical tools are constrained
to pass through and to rotate around small incisions in the patient’s body (see
Section 3.2.1). Third, we introduce a prioritized control scheme [88, 37] that
exploits the robot’s redundancy to satisfy all the imposed constraints. We follow
a reactive control strategy for local redundancy resolution [23, 84, 25, 72, 36],
without requiring optimization strategies nor motion planning. Nonetheless, our
approach can also be effectively used to track a reference trajectory provided that
the platform is holonomic.

The rest of the chapter is organized as follows. Section 3.1 formally introduces
the problem under study. Section 3.2 describes the proposed approach for the so-
lution, including the RCM constraint and its application to the orbit control mode.
Section 3.3 discusses the experimental evaluation. Finally, the concluding remarks
together with a discussion regarding some limitations and possible extensions of
the approach for future work are found in Section 3.4.
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3.1 Problem statement

Suppose that a mobile manipulator is modeled by a n-dimensional vector q of gen-
eralized coordinates defined inside a configuration space Q⊂Rn. Any configuration
q is given as the concatenation of the joint variables qa of the arm together with
the generalized coordinates qb of the mobile base

q ,

qa
qb

, na, dim (qa), nb, dim (qb), n=na+nb.

The end-effector of the robot can reach any pose re in the workspace W⊂Rm and
can be computed through the direct kinematics map q 7→ f(q), f :Q → W . Any
pose inW is defined by a Cartesian position p and an orientation vector o, defined
in terms of any orientation representation (Euler angles, quaternions, etc.),

r ,

p
o

, mp, dim (p), mo, dim (o), m=mp+mo.

It is assumed that the robot is localized with respect to some world reference frame
and that all geometrical quantities considered here and in following sections are
defined with respect to this global reference frame. Explicit time dependence will
be omitted for better readability of the chapter.

Denoting with ez the z-axis of the end-effector’s reference frame and assuming
that the roll axis of the end-effector coincides with ez, given a target pose rt∈W
and an orbit distance ρ, we define the orbit manifold centered at the target pose
pt as

O =

r =
p

o

∈ W
∣∣∣∣∣∣
∥∥∥pt − p

∥∥∥2
= ρ2, ez×(pt − p) = 0, e>z (pt − p) > 0

. (3.1)

Now, given a set of velocity commands ṙo∈TrW1 imposed by the operator through
the OCU interface, we introduce the following problem

Problem 1. Determine a control law such that the pose of the end-effector r of the
mobile manipulator reaches the orbit manifold O and keeps sliding (or orbiting)
on it, mapping the operation intentions into geodesic motions along the manifold,
i.e., such that ṙo 7→ṙ, ṙ∈TrO, ∀t>t0, with t0∈R representing the time instant when
the end-effector reaches the orbit manifold O, if not already sliding on it.

Moreover, assuming that the mobile manipulator is kinematically redundant
1TpM denotes the tangent space of the manifold M at p.
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for the orbiting task, i.e., n>mp
2, we have the following extended problem

Problem 2. Determine a control law able to solve Problem 1, while maximizing
the dexterity of the end-effector and avoiding any Cartesian obstacles during the
motion.

It is worth noticing that, in general, Problem 2 may not have a solution, since
the existence of a solution highly depends on the obstacles location and the me-
chanical structure of the robot. Moreover, without a proper planning action there’s
no way to ensure the completeness of an incremental reactive solution. However,
considering that in many practical applications the robot safety has a greater
priority than the task execution, we considered the following modified version of
Problem 2, where the orbit constraints is subject to the feasibility in terms of
collision avoidance

Problem 3. Determine a safe control law that provides, in the presence of workspace
obstacles, a feasible solution –if exist– to Problem 1 that also maximizes the dex-
terity of the end-effector during the motion.

3.2 Proposed approach

As previously stated, we propose a reactive control approach to follow geodesic
motions in the orbiting manifold O. We follow a similar approach to Pepe et al.
[74], where the motions of a robot manipulator and a free-flying camera are coupled
together. However, we take the inspiration from [4], where the manipulability
maximization is used as a coupling mechanism between the end-effector motion and
the base locomotion. In contrast to [9] we introduce an analytical representation
of the orbit constraint through the concept of remote center of motion (RCM) [1].
[56] propose a series of control modalities to accomplish complex task in disaster
scenarios. Here we only consider two specific tasks, namely the approaching task
toward the orbiting manifold and the geodesic motion along the manifold, and
provide a single control mechanism able to handle both tasks.

3.2.1 RCM contraint in orbit mode control

The remote center of motion is defined by a fixed point prcm∈Rnp , contained inW ,
around which part of the kinematic chain of the robot is constrained to rotate. This

2The orbiting constraint imposes mp−1 linearly independent constraints on the end-effector
motion. For example if p∈R3, then the dimension of the orbiting constrain equals 2.
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target

end-effector

base

world

orbit
manifold

Figure 3.1: Qualitative top view representation of the problem under study. There
are four fundamental reference frames involved in the problem definition (world, base,
end-effector and target). In the problem statement and following discussions it is as-
sumed that all frame orientations and workspace poses are referred to with respect to
the world frame. The orbit manifold correspond to a spherical surface centered at the
target location. As discussed in Section 3.2, the proposed controller not only maps the
operator intentions in geodesic motions along the orbit manifold, but also guarantee the
asymptotic stability while approaching it.

kinematics constraint is widely known in the field of minimally invasive surgery
(MIS) [18, 1, 81, 82], where all surgical tools are constrained to pass through and
to rotate around small incisions in the patient’s body.

Let’s denote with pi∈Rnp the current position of the each link i of the arm
of the robot, with i=1,. . .,na, and let’s assume that the remote center of motion
constraint prcm has been imposed to link i of the chain, that is, to lie on the line
segment between pi and pi+1

prcm = pi + α̃
(
pi+1 − pi

)
with 0<α̃<1 indicating the relative distance of prcm from pi. The RCM constraint
imposes that

ṗrcm ≡ 0 =⇒ ṗrcm =
(
Ji + α̃(Ji+1−Ji) pi+1−pi

)q̇
˙̃α

 = Jrcm

q̇
˙̃α

 = 0
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end-effector
p_{i}

tip

RCM

p_{i+1}

Figure 3.2: RCM definition for orbit control mode.

where Ji represents the Jacobian matrix of pi. Let’s suppose now, that the RCM
is not between links i and i+1 but along the line joining them, at some distance ρ
from the link i+1. In such a case

α̃ = 1+ ρ∥∥∥pi+1−pi
∥∥∥ =⇒ prcm = pi+1+ ρ∥∥∥pi+1−pi

∥∥∥
α

(
pi+1−pi

)
= pi+1+α

(
pi+1−pi

)

which implies that

ṗrcm =
(
Ji+1 + α(Ji+1−Ji) pi+1−pi

)q̇
α̇

 = Jrcm

q̇
α̇

 = 0. (3.2)

Letting pi+1 coincide with the position of the end-effector and ρ the desired or-
bit distance from the target pt (see Figure 3.2), then by imposing that prcm,pt
the RCM constraint (3.2) equals the orbiting constraint (3.1). In particular, the
parameters α̇ allows to update the orbiting distance, as described in Section 3.2.3.

3.2.2 Mapping operator intentions

This is a simple task and consist of the orthogonal projection of the commanded
velocity ṙo∈TrQ into the tangent space of the orbit manifold O. Suppose that
the end-effector of the robot has already reached the orbit manifold, i.e., r∈O.
Then, by the RCM constraint (3.2), or equivalently, the orbiting constraint (3.1),
only the Cartesian motions orthogonal to the sagittal axis of the end effector are
allowed. Moreover, only rotations about the same axis (roll) are allowed. The
resulting constrained velocities will be denoted as ˙̂ro∈O.
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3.2.3 Reactive redundancy resolution

For the given operator commands ˙̂ro, subject to the orbit constraint (3.1) we can
define the orbit error as

ėO =
 ˙̂ro

ṗt

−
J 0

Jrcm

q̇
α̇

 = ṙO − JO

q̇
α̇

 (3.3)

which correspond to a task augmentation control scheme. Since we’re dealing with
a redundant manipulator, we consider the generalized least norm inversion of the
task Jacobian [23, 84, 25, 72, 36] using a proportional derivative (PD) control
action. we consider the following control lawq̇?O

α̇?

 = J†O
(
ṙO + KeO

)
+
(
I− J†OJO

)q̇0

α̇0

 (3.4)

with K some constant symmetric positive definite matrix. This control law ensures
that the error asymptotically converges to zero. In particular, we implemented the
iterative algorithm of Flacco et al. [36] for optimal task scaling based on velocity
bounds. Near singularities we consider the damped least squares inversion [63, 84].
Self-motions q̇0 and α̇ can be chosen independently of each other. In particular,
it is possible to modulate the radius of the orbit manifold O by means of the
following quadratic cost function

H(α) = 1
2(α− ᾱ(ρ))2 =⇒ α̇0 = −ηρ

(
∂H(α)
∂α

)>
= ηρ(ᾱ(ρ)− α)

where ᾱ(ρ) represents the desired relative distance and ηρ>0.

3.2.4 Manipulability maximization

It has been proved that the eccentricity of the velocity manipulability ellipsoid pro-
vide a measure of the end-effector ability to isotropically move along all directions
of TrW [29, 4, 101]. A global manipulability measure [110] is defined as

w(q) =
√

det
(
JJ>

)
that is, as the volume of the manipulability ellipsoid. As such, this quantity is
always positive except in singular configurations when it becomes zero, thus it
can be adopted as a distance measure of a given configuration q from a kinematic
singularity. It is possible to maximize the robot manipulability during the task
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execution by computing q̇0 in (3.4) as the gradient of the manipulability measure.
In particular, it is computationally more efficient to consider the following cost
function

H0(q)=w2(q).

Then, the manipulability maximizing self-motion results

q̇0,i = ηm

(
∂

∂qi
H0(q)

)>
= ηm det

(
JJ>

)
tr
((

JJ>
)−1

(
∂J
∂qi

J> + J
∂J>

∂qi

))

for i=1,. . .,n, where ηm>0.

3.2.5 Proposed control scheme

As stated in Section 3.1, we give the maximum priority to collision avoidance. To
keep the robot away from a given obstacle in the surroundings of the robot we
define a repulsive potential field of the form

U(q) =


k3

r

(
1

d(q) −
1
d0

)r
if d(q)≤d0

0 otherwise

−∇U(q) =


k3

d2(q)

(
1

d(q) −
1
d0

)r−1

∇d(q) if d(q)≤d0

0 otherwise

where k3 is a positive constant, d0 the range of influence of the field, r=1,2,. . . and
d(q) the clearness between the robot and the obstacle. This potential tends to
infinity when the robot approaches to the obstacle, with a growth rate modulated
by the exponent r. Beyond the range of influence, the potential field is zero. In
the case of l obstacles, we have a total repulsive potential field of the form

U(q) =
l∑

i=1
Ui(q).

We introduce a prioritized scheme [88, 37] to map lower priority tasks con-
straints in the null space of collision avoidance task. Assuming that JC represents
the Jacobian matrix associated to the collision avoidance constraints, we can define
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the optimal solution as

q̇?C = −J†C∇U(q) +
(
I− J†CJC

)
q̇O

now we can choose q̇?O so as to satisfy the orbit task (3.4). That is, determine the
optimal solution of q̇?O subject to the task constraint

ṙO − JO

q̇?C
0

 = ṙO − JO

−J†C∇U(q) +
(
I−J†CJC

)
q̇O

α̇?



= ṙO + JO

J†C∇U(q)
0

− JO

(I−J†CJC
)
q̇O

α̇?



= ṙO + JO

J†C∇U(q)
0


˙̃rO

− JO

I−J†CJC 0
0 0


J̃O

q̇O
α̇?



= ˙̃rO − J̃O

q̇O
α̇?


where ˙̃rO accounts for the contribution induced by the solution of the priority task
rC over rO and J̃O correspond to the projection of JO into the null space N (JC).
Therefore, only the rows of JO belonging to N (JC) will be employed in the next
optimization step. The generalized (possibly weighted) least norm solution of q̇?O
is thus given by q̇?O

α̇?

 = J̃†O
(
ṙO + KeO

)
+
(
I− J̃†OJ̃O

)q̇0

α̇0

 (3.5)

3.3 Experimental evaluation

To asses the validity of the approach, we used the KUKA youBot [6], a mobile
manipulator composed by a holonomic platform with 3-DoF and a planar ma-
nipulator with 5-DoF and a soft two-finger gripper. The localization was based
on AprilTags2 [105], used to localize the robot with respect to the fixed target.
The visual sensor of the robot consisted of the (calibrated) RGB camera of the
depth-sensing Asus Xtion. The OCU consisted on a minimal graphical interface
for the visualization of the feedback images and three control bars to define the
desired robot pose directly in spherical coordinates with respect to the target.
As a consequence, the operator commands are automatically compatible with the
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orbit constraints. Such control commands are defined by the position vector (in
workspace) relative to the target frame

po =


λ

φ

ρ

 (3.6)

with λ defining the longitude in degrees, φ the latitude in degrees and ρ the orbit
radius in meters. The orientation of the end effector is defined by the sagittal axis
pointing toward the RCM, and the up vector was constrained to lie on the plane
defined by the sagittal axis of the end effector and the world up vector. This choice
allows a more natural visualization of the object during the orbit. For this reason,
the fourth joint of the manipulator (rolling angle of the wrist) was not actuated
during the experiments to ensure the desired fixed orientation of the up-vector.

Since the arm of the youBot corresponds to a planar manipulator, we can split
the orbit task in two independent tasks along the sagittal and transverse plane of
the end-effector frame. The advantage of this splitting is that the maximization
of the manipulability is performed exclusively on the sagittal plane coupling the
motion between the shoulder, elbow and wrist joints of the arm together with
the linear contribution of the base along the sagittal axis of the end-effector (see
Figure 3.1), while along the transverse plane is possible to maximize secondary
goals in terms of the relative orientation between the base and the end-effector.
In the experiments, as a secondary task on the traverse plane, we considered
the alignment between the sagittal axis of the base with the sagittal axis of the
end-effector. Together with the manipulability maximization, a self-collision cost
was added between the end-effector and the shoulder, to avoid that the robot
completely retracts itself for maximum dexterity along the sagittal direction.

One practical issue that we faced in the experimental evaluation was network
delays, causing unwanted oscillations of the robot around the desired pose. To
alleviate this issue we substitute the matrix K in (3.4) for a monotonic increasing
function of the norm of the error K(e), with a rapid decay to zero when the norm
of the error falls bellow a threshold, allowing to reducing the norm the control
action close to the steady state configurations. The asymptotically stability of
the system can be readily demonstrated through the Lyapunov stability analysis.
Moreover, a weighted Jacobian inversion was required to make the robot move
with equally distributed velocity contributions. In particular, Cartesian velocities
of the platform, the angular velocity of the platform and the angular velocities of
the joints required one different weight for each group.
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The experiments were designed so as to measure the performance of the con-
troller with respect to each input parameter in (3.6), by considering independently
and joint variations. In particular, Figures 3.3 and 3.4 present the outcomes for a
planar orbit along the transversal plane of the end-effector frame, with the orbit
radius fixed. As expected, the norm of errors exponentially decay to zero, likewise
to the joint velocities and the base twist. Also, the manipulability measure has
remained constant during the task executions since there are no control actions
performed along sagittal plane of the end-effector frame. This can be observed in
Figure 3.13, together with the mobile platform reconfiguration due to the imposed
alignment constraint. Figure 3.6 present the outcomes for a planar approach task
along the transversal plane of the end-effector frame. Also in this case the norm of
the errors exponentially decay to zero, likewise to the joint velocities and the base
twist. As can be observed the manipulability rapidly decreases when the robot is
near a singular configuration completely stretched to satisfy the task constraints.

Figure 3.5 presents the outcomes for a planar orbit along the sagittal plane
of the end-effector frame. Again, the norm of the errors exponentially decay to
zero, likewise to the joint velocities and the base twist. In this case it is possible
to observe how the maximization of the manipulability measure becomes incon-
sistent with the orbit task when the robot configuration has a negative latitude
angle. When the inconsistency ceases, the maximization of the manipulability
allow to produce a more dexterous pose on the end-effector (see Figure 3.12). Fig-
ure 3.7 present the outcomes for a planar approach task along the sagittal plane
of the end-effector frame. Also in this case the norm of the errors exponentially
decay to zero, likewise to the joint velocities and the base twist. Like before, the
manipulability rapidly decreases when the robot is near a singular configuration
completely stretched to satisfy the task constraints. A similar situation is depicted
in Figure 3.11, where the robot executes an approach task along the sagittal plane.

Similar conclusions can be obtained by analyzing the outcomes of the geodesic
orbit represented in Figure 3.8 and the cyclic motion defined in Figure 3.9. Fi-
nally, Figure 3.10 shows the manipulability maximization and RCM error trends
when varying the self-collision threshold. We observe that the RCM error is kept
bounded during the whole self-motion, exception made for the range subject to
very high levels of noise. The manipulability measure monotonically decreases
while the self-collision avoidance threshold (tip-shoulder distance) is increased; in
particular, it is observed that although a local manipulability maximum is attained
during reconfiguration, it is quickly lost by the effect of the self-collision avoidance
constraint.
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3.4 Conclusions and future work

In this work we described a reactive control scheme for the semi-autonomous tele-
operation of mobile manipulator operating in orbit controlmode. Semi-autonomous
teleoperation is required to reduce the cognitive load of the operator and to im-
prove task execution time, accuracy, reliability and safety [12]. Different control
strategies has been proposed for intuitive teleoperation inspired from computer
games interfaces Ögren et al. [73], Båberg et al. [9], Claret et al. [15]. Following a
similar inspiration, the proposed approach introduces the concept of remote center
of motion in the orbit control mode and demonstrates that both constraints are
equivalent. Such equivalence can be exploited to introduce a prioritized control
strategy that, in the case of kinematics redundancy, can introduce different sub-
sidiary goals during the task execution. The validity of the approach has been
tested on a real robotics platform, and the results are promising.

A practical limitation of the proposed approach lies in its reactive nature. In
the case of unstructured environments a planning strategy is required. However,
the control scheme can be applied out-of-the-box for trajectory tracking or posture
regulation in the case of holonomic mobile platforms.

Moreover, in the experimental evaluation we had faced problems with network
delays and noise disturbances. Network delays were mitigated by relaxing the
convergence rate near the equilibrium. Noise was rejected by the controller but
spurious transients degraded the quality of the control. Such noisy transients are
associated with the eye-in-hand configuration used for the robot localization and
the network delays during the image frames transmission. It is possible to obtain
finite time convergence when approaching the orbit surface, even in the presence
of network delays or spurious disturbances, using nonlinear robust approaches like
the sliding mode control [34, 76]. This nonlinear control approach seems promising
since the orbit manifold represents a sliding surface.
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Figure 3.3: Execution of a planar orbit (parallel to the transverse plane), with
−30.0◦≤λ≤30.0◦, φ=−12.0◦ and ρ=0.5m. The column (a) presents the outcomes when
varying λ from −30.0◦ to 30.0◦, while the column (b) the outcomes of the backward
motion (varying λ from 30.0◦ to −30.0◦). The first and second row presents the control
commands (joint velocities and base twist, respectively); third and fourth rows, respec-
tively, the RCM and tip errors; the fifth and last row the value of the manipulability
measure.
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Figure 3.4: Execution of a planar orbit (parallel to the transverse plane), with
−30.0◦≤λ≤30.0◦, φ=12.0◦ and ρ=0.5m. The column (a) presents the outcomes when
varying λ from −30.0◦ to 30.0◦, while the column (b) the outcomes of the backward
motion (varying λ from 30.0◦ to −30.0◦). The first and second row presents the control
commands (joint velocities and base twist, respectively); third and fourth rows, respec-
tively, the RCM and tip errors; the fifth and last row the value of the manipulability
measure.
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Figure 3.5: Execution of a planar orbit (parallel to the saggital plane), with λ=0.0◦,
−15.0◦≤φ≤15.0◦ and ρ=0.5m. The column (a) presents the outcomes when varying φ
from−15.0◦ to 15.0◦, while the column (b) the outcomes of the backward motion (varying
φ from 15.0◦ to −15.0◦). The first and second row presents the control commands (joint
velocities and base twist, respectively); third and fourth rows, respectively, the RCM
and tip errors; the fifth and last row the value of the manipulability measure.
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Figure 3.6: Execution of a planar approach task (parallel to the transverse plane), with
−30.0◦≤λ≤30.0◦, |φ|=12.0◦ and 0.5m≤ρ≤0.8m. Column (a) presents the outcomes
when varying (λ, ρ) from (−30.0◦, 0.5m) to (30.0◦, 0.8m) with φ=12.0◦. Column (b)
presents the outcomes when varying (λ, ρ) from (30.0◦, 0.8m) to (−30.0◦, 0.5m) with
φ=−12.0◦. The first and second row presents the control commands (joint velocities
and base twist, respectively); third and fourth rows, respectively, the RCM and tip
errors; the fifth and last row the value of the manipulability measure.
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Figure 3.7: Execution of a planar approach task (parallel to the sagittal plane), with
λ=0.0◦, −12.0◦≤φ≤15.0◦ and 0.5m≤ρ≤0.8m. Column (a) presents the outcomes when
varying (φ, ρ) from (−12.0◦, 0.8m) to (15.0◦, 0.5m). Column (b) presents the outcomes
when varying (φ, ρ) from (15.0◦, 0.5m) to (−12.0◦, 0.8m). The first and second row
presents the control commands (joint velocities and base twist, respectively); third and
fourth rows, respectively, the RCM and tip errors; the fifth and last row the value of the
manipulability measure.
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Figure 3.8: Execution of a geodesic orbit with constant ρ=0.5m, with −30.0◦≤λ≤30.0◦
and −15.0◦≤φ≤15.0◦. Column (a) presents the outcomes when varying (λ, φ) from
(−30.0◦, 15.0◦) to (30.0◦,−15.0◦). Column (b) presents the outcomes when varying
(λ, φ) from (30.0◦,−15.0◦) to (−30.0◦, 15.0◦). The first and second row presents the
control commands (joint velocities and base twist, respectively); third and fourth rows,
respectively, the RCM and tip errors; the fifth and last row the value of the manipulability
measure.
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Figure 3.9: (a) Execution of a cyclic 3D task starting and ending at
(λ, φ, ρ)=(−30.0◦, 15.0◦, 0.5m) while passing through (λ, φ, ρ)=(30.0◦,−12.0◦, 0.8m).
(b) Execution of a point to point 3D task from (λ, φ, ρ)=(30.0◦, 12.0◦, 0.8m) to
(λ, φ, ρ)=(0.0◦, 15.0◦, 0.6m). In both cases, the first and second row presents the control
commands (joint velocities and base twist, respectively); third and fourth rows, respec-
tively, the RCM and tip errors; the fifth and last row the value of the manipulability
measure.
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(a) Manipulability measure with respect the self-collision avoidance threshold.
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(b) Evolution of the tip and RCM positional errors during reconfiguration by self-motion.

Figure 3.10: Evaluation of self-motion reconfiguration during the execution of a static
task. (a) The manipulability measure monotonically decreases while the self-collision
avoidance threshold (tip-shoulder distance) is increased; in particular, it is observed
that although a local manipulability maximum is attained during reconfiguration, it
is quickly lost by the effect of the self-collision avoidance constraint. (b) Task errors
present bounded variations under 1.5cm during self-reconfigurations of the manipulator
arm and base, except in cases where noise peaks locally disturb the robot state; during
the experimental evaluation two different noise sources has been identified: localized
random fluctuations of the target pose estimation and non-smooth joint velocities jumps
during reconfiguration due under damped control of joint torques near singularities.

63



(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Example of self-reconfiguration of the robot along the sagittal plane
during the execution of constant latitude φ=15.0◦ and longitude λ=0.0◦ task, with orbit
distance ρ varying from 0.9m to 0.5m. Image frames are organized by column, from
top to bottom and left to right. As observed on frames (a), (c) and (e), the initial
robot motion is mainly driven by the primary task goal, moving forward the end-effector
toward the desired position. As soon as the arm configuration lost a dexterous pose, as
observed in frames (e), (b) and (d), the manipulability maximizing potential field forces
a self-reconfiguration to produce a dexterous pose by coupling arm velocities and base
twist commands. Asymptotically, the robot reach the final pose shown in frame (f). The
symmetric task, with orbit distance ρ varying from 0.5m to 0.9m presents the symmetric
behaviour, implying that the proposed approach leads to repeatable solutions.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Example of self-reconfiguration of the robot along the sagittal plane
during the execution of constant longitude λ=0.0◦ and orbit distance ρ=0.5m task, with
latitude φ varying from −15.0◦ to 15.0◦. Image frames are organized by column, from
top to bottom and left to right. As observed on frames (a), (c) and (e), the initial robot
motion is driven by the primary task goal, moving upwards the end-effector toward the
desired position. As soon as the arm configuration lost a dexterous pose, as observed
in frames (e), (b) and (d), the manipulability maximizing potential field forces a self-
reconfiguration to produce a dexterous pose by coupling arm velocities and base twist
commands. Asymptotically, the robot reach the final pose shown in frame (f). The
symmetric task, with latitude φ varying from 15.0◦ to −15.0◦ presents the symmetric
behaviour, implying that the proposed approach leads to repeatable solutions.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.13: Example of self-reconfiguration of the robot along the transverse plane
during the execution of constant latitude φ=−15.0◦ and orbit distance ρ=0.5m task,
with longitude λ varying from 30.0◦ to −30.0◦. Image frames are organized by column,
from top to bottom and left to right. As observed on frames (a), (c) and (e), the initial
robot motion is driven by the primary task goal, moving sideways in a circle trajectory
without preserving the base alignment with respect the x-axis of the end-effector. When
the misalignment grows and the primary task error decreases, as observed in frames (b)
and (d), the alignment constraint induces a self-reconfiguration by coupling the velocity
q̇1 of the first joint of the arm together with the base angular velocity ω. Asymptotically,
the robot reach the final pose shown in frame (f). The symmetric task, with longitude
λ varying from −30.0◦ to 30.0◦ presents the symmetric behaviour, implying that the
proposed approach leads to repeatable solutions.
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Chapter 4

Robust collision detection in
articulated tracked vehicles1

Articulated tracked vehicles are widely used in contexts where terrain conditions
are difficult and unpredictable, or the environment is hazardous for humans, ex-
amples are referred in [12, 69, 59]. For better traction on harsh terrains these
robotic platforms can either increase or decrease the tracks contact area with the
ground by actuating their active sub-tracks, namely flippers, placed at the end of
each track. Flippers ensure a good contact with the ground and several operat-
ing configurations, according to their positions: stretched, walking, parking, and
so on. For example, in a stair-climbing task, flippers have to assume a stretched
configuration to both ensures the contact with the ridges of the stairs and pre-
vent the robot from tip-over. Conversely, within narrow passages, flippers have
to be lifted to enhance the robot mobility, minimizing the contact surface with
the ground. To overcome gaps and holes or to cross over different shaped objects,
flipper configuration should be used to avoid bumps at the negative side of the
obstacle.

Today, an increasing number of approaches is focusing on autonomous con-
trol of these configurations or for assisting remote control (see for example [52, 80,
102, 78, 38, 42]), this is still an open problem and the above mentioned approaches
provide case studies and not yet feasible solutions. Indeed, terrain adaptability
depends not only on the mechanical design but mainly on the controller ability to
accurately adapt the active parts of the tracks. Even if the terrain surface is well
approximated on the basis of vision and point cloud modeling, a compliance inter-

1This is an adaptation of the original conference article “Terrain contact modeling and classifi-
cation for ATVs”, included in the Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA) [43]
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action between active parts of the tracks and the terrain needs to be established.
The main difficulty with tracked robots is both a lack of proximity sensors, on the
flippers, for the underfoot terrain profile and the impact of the tracks with the
terrain inducing a continuous vibration of the robot body, therefore the contact
cannot be considered in terms of a phenomenon characterized by short duration
and rapid energy dissipation [44] as for example in the case of legged robots and
manipulators [3]. In synthesis, unlike wheeled mobile robots, deriving an explicit
dynamic model, articulated tracked vehicles have both to deal with the continuous
contact with a changing surface and to account for any dynamic effect generated
by the track-terrain interaction. This problem, for tracked robots is defined as
the traversability problem, which requires both a knowledge of the terrain and
knowledge of all the internal and external forces acting on the robot.

In this work we consider some specific tracked robot model in which the active
parts of the tracks are flippers, and present a method that estimates the flippers
terrain contact event. Since any contact event can be associated to an (unexpected)
collision between the flippers and the environment, by considering any flipper unit
as part of a tree-shaped open kinematic chain rigidly attached to a mobile base,
we can unveil the contact event by resorting to state-of-the-art collision detection
strategies for robot manipulators, based on unexpected transient perturbations
of the dynamics of the failure signal or residual. The idea is to considerer the
robot locomotion and the unexpected collisions generating the contact as the only
disturbances affecting the flippers dynamics. Here, by collision we refer to two
different types of events. The first, in which some object of the environment
exerts force over the flippers for a relatively short time. The second, in which the
object may prevent further movement of the flippers. In both cases, we assume
that the interaction forces are bounded and don’t damage the robot.

Real-time detection of collisions for manipulators has been widely studied in
the literature [96, 44, 55, 22, 48, 20] and several approaches have been proposed,
based either on comparison with nominal torques on desired motion of the robotic
arm or on the parallel simulation of robot dynamics. Approaches of the second
type are typically based on an accurate dynamic model of the manipulator, and in
most systems this is complemented with a sensory apparatus measuring the pres-
ence of collision forces that produce work at the contact. In particular, we consider
the generalized momenta fault detection and isolation (FDI) scheme [21, 22, 48].
This method estimates the residual signal from a non-linear observer of the manip-
ulator generalized momenta and relies only on both the kinematics measurements
provided by the encoders and the torque values applied to the actuators.
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From a geometric viewpoint, FDI cannot be achieved on one particular input
channel in the presence of non structured disturbances acting on the same channel
[21, 26]. That is, any unexpected collision of the flipper with the environment in-
troduce disturbances, which resemble precisely those generated by the locomotion
of the mobile platform. However, under the hypothesis that the residual signal
presents different patterns in correspondence to each disturbance source, we can
apply a classification method to discriminate the contact event between the flipper
and the environment. To this end the wavelet packet transform is used to both
decompose the signal and generate from different sub-bands a feature space. Fi-
nally, a sparse support vector machine (SVM), based on feature selection [97], is
used to discriminate the contact signal.

In this work we focus on the collision detection of a single flipper with the
terrain. The approach introduces explicitly the uncertainty deriving from the
approximations of the dynamic effects of track-soil interaction, and discriminates
the contact within the residual signal. The need to resort to learning methods,
in the presence of uncertain signal with no clear noise contribution, was already
highlighted in [65]. Our approach is based on the idea that the main theoretical
principles at the basis of collision detection for robot manipulation [22] can be
embedded within a statistical learning framework.

The rest of the chapter is organized as follows. Section 4.1 introduces the
proposed model for the residual signal of the flippers. Section 4.2 describes the
classification method based on wavelet expansion and the feature selection scheme.
Section 4.3 discusses the experimental evaluation, and finally, the conclusion of the
paper are found in section 4.4.

4.1 Problem statement

Based on the fault detection and isolation (FDI) scheme proposed in [21], we
develop the hypothesis that unknown generalized forces or torques disturbing the
manipulator dynamics can be represented by a linear mixing of basis functions that
can be identified and classified to discriminate between the disturbance sources.
Given the standard manipulator dynamic model

M(q)q̈ + C(q, q̇) + g(q) + Fvq̇ + Fssgn{q̇} = τ − τD (4.1)

where q and q̇ are the measured joint positions and velocities of the manipulator,
M(q) is the positive definite symmetric inertia matrix, C(q, q̇)q̇ is the Coriolis and
centrifugal vector, g(q) is the gravity vector, Fv and Fs are, respectively, the pos-
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itive diagonal viscous and friction matrices, τ the commanded nominal torques
and τD the unknown disturbance torques. Under the assumptions that nominal
input torques τ , a measurement of full manipulator’s state (q, q̇) and an identified
dynamic model of the manipulator are available, the generalized momentum FDI
framework states that the residual signal r is governed by

r = K
[∫

(τ−α(q, q̇)−r)dt− p
]

(4.2)

where α(q, q̇) depends on the system dynamics, K is a positive definite diago-
nal matrix and p is the generalized momentum2. Furthermore, r corresponds to
an exponentially stable linear filter driven by the unknown disturbance τD, that
satisfies

ṙ = −Kr + KτD (4.3)

Assuming that the moving base link undergoes small accelerations, the disturbance
torques τD can be rewritten as

τD = τM + τU (4.4)

τM specify the disturbance due to the non modeled dynamics of the robot’s lo-
comotion and τU the unexpected disturbances induced by collisions between the
robot and the environment. Since the locomotion dynamics depends on the un-
known shape of the terrain, we cannot provide an explicit model of the disturbance
τM . However, we can assume that the disturbance patterns of the manipulator
dynamics (and thus, those of the residual r), generated by the robot’s motion, are
directly related to both the pattern fluctuations of the terrain and the bounded
control inputs generating the motion. Therefore, assuming that the terrain is de-
fined by a compact sufficiently smooth surface, and that control velocity inputs
are bounded in amplitude and frequency, we can approximate the disturbance τM
as a linear combination of a number of basis functions φi, i=1,. . .,nM . Analo-
gously, we can assume that the collision of the manipulator with the environment
can be approximated by a linear combination of another set of basis functions ϕj,
j=1,. . .,nU . Therefore we can write the disturbances in the form

τM =
nM∑
i=1

aiφi, τU =
nU∑
j=1

bjϕj (4.5)

2The generalized momentum of a dynamical system is defined as p=M(q)q̇.
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Figure 4.1: General learning framework.

Let ∆φ,span
{
φ1,. . .,φnM

}
, ∆ϕ,span

{
ϕ1,. . .,ϕnU

}
be the vector spaces spanned,

respectively, by the set of basis functions φi and by the set of basis functions ϕj.
We make the reasonable hypothesis that a pattern τM , spanning ∆φ, cannot be
expressed as a linear combination of a basis in ∆ϕ. Likewise, a pattern τU cannot
lie entirely in ∆φ∩∆ϕ. According to these hypotheses, from (4.3), the residual
evolution can be expressed as

ṙ=−Kr+K

nM∑
i=1

aiφi+
nU∑
j=1

bjϕj

=−Kr+K
nD∑
k=1

ckγk (4.6)

where the basis functions γk, by hypothesis, span the space ∆γ,∆φ∪∆ϕ and
nD≤nU+nM . Now, given a residual dynamic, the computation of the coefficients
ck can lead to the identification (classification) of the disturbance source, under the
proviso that the basis functions γk can discriminate the subspace ∆φ∩∆ϕ. Indeed,
we show that the contact sensing problem can be addressed via the identification
of the unknown subset of basis functions γk not spanning the subspace ∆φ∩∆ϕ.

4.2 Statistical learning framework

In general terms, classical learning framework can be decomposed into three main
blocks, as shown on Figure 4.1. The starting point is a solid dataset describing the
phenomena under study, followed by a features extraction block able to compute
relevant information from samples and, based on this information, feed and train
a learning model either for classification or regression.

Within our FDI context, the dataset block is generated through controlled
experiments where desired motions, together with controlled disturbances (either
due to locomotion or collisions), are assigned to the manipulator. The dataset
is populated with different dynamic patterns of the residual together with its
associated labels. On the other hand, the learning/modeling block correspond
to a supervised learning classifier model. The resulting block diagram for our
classification problem is shown on Figure 4.2. We observe that, in our pattern
classification problem, the features extraction block can be thought as a de-mixing
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Figure 4.2: Embedding of the fault detection scheme inside the learning framework.

device, since residual patterns are associated to the superposition of the unknown
disturbances due to locomotion and unexpected collisions.

At this point, the fundamental design choices of the learning framework are
associated to the identification of optimal features extraction algorithm and the
classifier model for the task. The choice of features extraction is highly related
to the previous knowledge of and understanding of the signal under study. Hand-
crafted or engineered features can be an optimal choice if there is an underlying
well-known model relating the signal and the information carried by it. Instead,
if no modeling basis are available, manual selection of features may be avoided
in favor of automatically learned features, computed through unsupervised learn-
ing procedures. Regarding the identification of the most appropriate learning
algorithm, it is worth noticing that provided a well-designed set of features, the
choice of the final machine learning method may only play a minor role on the
classification outcomes. In other words, if the feature space properly represents
the meaningful and relevant information for classification, then the choice of the
learning method is less significant since the information is readily available from
features. If this is not the case, the choice of the method plays a prominent role in
the classification outcomes, since intermediate or internal features representations
maybe necessary to extract the desired information.

It turns out, that the fundamental issue in any learning framework is to prop-
erly extract and represent the necessary and sufficient information to perform
classification. Therefore, one important step in the framework’s design is given by
the evaluation of the quality of features representation. Such evaluation can be
performed by measuring the relevance of individual components or subsets of the
feature vector in the discrimination and prediction of labels, either by feature selec-
tion [46, 103] or relevance learning [86]. We note that such “relevance measuring”
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techniques are often embedded directly in the learning algorithms [85, 97, 70, 27].
With all this considerations in mind, we introduce our design choice for the learn-
ing framework.

As stated in Section 4.1, the problem falls in the context of spectral methods
[50, 99, 8, 100], that is, the numerical resolution of differential equations through
functional approximation. Such functional approximations are defined as linear
combinations of orthogonal basis functions. Two real functions f and g are said
to be orthogonal if the scalar product

〈g, f〉 =
∫ t

0
f(s)g(s)ds

is zero. Standard families of basis functions include piecewise linear functions,
polynomials, periodic functions (Fourier series) and wavelets [57]. The selection
between one family or the other depends of on the a priori knowledge of the signal
or function under study. When no knowledge is available, it it possible to compute
a set of orthogonal bases based on data measurements [16, 66, 71, 104].

In our case, we have only partial knowledge of residual signal, since it de-
pends on the dynamics of the flippers, model uncertainties, robot’s locomotion
and unexpected interactions with the environment. As a consequence, defining
one particular family of basis functions could be harmful, since there’s no way
to guarantee that the functional approximation allow to extract the desired in-
formation. On the other hand, resorting to a pure empirical analysis implies a
waste of information. One important remark is that our goal is to recognize faulty
transients on the signal evolution.

With these ideas in mind, a convenient approach for the basis functions defi-
nition is the multi-resolution signal decomposition [2]. This approach introduces
a space-frequency decomposition of the signal parametrized in terms of a family
of wavelet functions [64]. In particular, we define our feature space from different
sub-bands of the wavelet packed decomposition (WPD) [17] of the signal. Then,
a sparse support vector machine (SVM), with enforced sparsity constraints for
automatic feature selection [45, 70, 97], is used to discriminate the contact signal.

4.2.1 Wavelet packed decomposition (WPD)

Given the residual evolution in (4.6), we look for a decomposition of the signal able
to determine those bases γk and the associated coefficients ck that are meaningful
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Figure 4.3: Tipical residual patterns of a single joint obtained by simulations.

for the identification of contact, that is

γk∈H = ∆γ\(∆φ∩∆ϕ)

Let’s us define n∈{1,. . .,2N}, with N∈N, and consider a single channel r of the
residual signal r. Moreover, let r[n] be a collected set of tagged samples of length
L, with L=2N , obtained by sampling at frequency 2−N the residual channel r.
To obtain a decomposition of the signal we resort to a multi-resolution technique
based on WPD.

This technique can be applied to represent discrete signals as linear combina-
tions of discrete wavelet packet bases of l2(Z), namely the Hilbert space of finite
energy sequences. We assume that

r[n]∈WN⊂l2(Z)

Under this assumption, we can apply the WPD transform, which recursively de-
composes r[n] in smoothed approximations and details at coarser resolutions by
a cascade of discrete convolution and sub-sampling operations, using a pair of
conjugate mirror filters. This recursive decomposition generates a binary tree [17]
where each node nk, at height h, with k=2h+j−1, j∈{1,. . .,2h}, is associated with
a set of orthonormal basis functions{

ψk[n−m2N−h]
∣∣∣∣ m∈{1,. . .,2N−h}}

obtained by scaling and translating by 2N−h a wavelet function ψ. Each set of
bases defines a sub-space Wk⊂WN such that

Wk,span
{
ψk[n−2N−h], ψk[n−2N−h+1], . . ., ψk[n−22N−2h]

}
Let Kh={k | k=2h+j−1, j=1,. . .,2h} be the set of the indexes of the leaf nodes of
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a wavelet packet binary tree of depth h. The spaces Wk, with k∈Kh are mutually
orthogonal, hence

WN=
⊕

k∈Kh
Wk

where ⊕ denotes the direct sum of spaces. It follows that the union of the cor-
responding wavelet packet bases defines an orthogonal basis of WN . Since by
hypothesis r[n]∈WN , let

dk[n]=〈r[n],ψk[n−m2N−h]〉 (4.7)

with 〈·, ·〉 denoting the inner product on l2(Z). Given a WPD of height h, we can
approximate the discrete signal r[n] as the linear combination of discrete wavelet
packet bases as follows

r[n] =
2N−h∑
m=1
k∈Kh

dk[n]ψk[n−m2N−h] (4.8)

The problem now is to identify the reconstructing discrete wavelets bases in (4.8)
that discriminate the collision. As consequence, we define the coefficients (4.7)
as features and feed a sparse SVM classifiers. Still, this definition of features
leaves several issues opened, due to the parameters N and h used by the WPD to
approximate the residual component r[n]. In particular, the choice of N affects
both the length L of the observations and the tagging of the samples. That is, to
apply the WPD decomposition, each observation groups together L samples of r[n]
under a single label. Moreover, the choice of the best level decomposition h affects
the quality of the approximation. We have tested the effects of such parameters
during the experimental evaluation and reported on Section 4.3.

4.2.2 Classification

The mapping of the signal r[n] into features is obtained by selecting the 2h leaves
nodes of the perfect binary tree of height h computed through the WPD. By con-
struction, any sample of length L has a features vector of length L′>L, therefore, it
may be convenient to introduce a variable selection procedure by enforcing a spar-
sity constraint [45, 46, 70]. We shortly recall that, given a training set (xi,yi)i=1,...,k

with xi the observations (features) vector, yi∈{−1, 1} the labels, SVM training
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amounts to learning a decision function

gw(x) = w>x− b

by solving the `2-norm problem

min
w

{
‖w‖2

2 + C
k∑
i=1
L(−yi gw(xi))

}

with C a regularization parameter and L a convex loss function. Most of the
approaches to variable selection, by enforcing sparsity, have considered either the
zero-norm ‖w‖0 [108], whose minimization is NP-hard, or the `1 norm ‖w‖1 [113],
through the average hinge loss on the training data. Here we apply the approach
of [97], which facilitates the two steps process of doing variable selection by linear
SVMs and the final nonlinear SVM inference, since they both employ the same loss
function. This approach is based on the idea of rescaling the input x, element-wise
multiplying it by a selection vector s=(s1,. . .,sk)>, such that

∑
i

si≤B, si∈{0, 1}

and B controlling the sparsity of the decision hyperplane

w>x = (w� s)>x

where � is the element-wise matrix product. The associated optimization problem
can then be formulated as follows, given S, the space of all selection vectors s
satisfying the constraints:

min
s∈S

min
w,ξ,ρ

{
1
2

(
‖w‖2

2 + C
∑k
i=1 ξ

2
i − ρ

) }

s.t. yiw>(xi�s) ≥ ρ−ξi, i=1,. . .,k.

(4.9)

The outcome of the method is the vector s choosing the best features. More details
can be found in [97]. The whole computation for the tree expansion, variable
selection and classification is illustrated in Algorithm 1.
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Algorithm 1: Algorithm of the proposed approach
Data: ;
r[n]: Samples from single channel of residual vector r;
`[n]: Tags for each sample of r[n];
N∈N: Parameter for each data-set observation length;
h: Height of the wavelet packed tree;
ψ: Wavelet function;
L: Loss function;
C1: Regularization parameter set;
C2: Penalty parameters set;
G: Kernel function K parameters set;
k: Number of folds;
p: Percentage for test-set.

Result: ;
acc: classification accuracy;
M?: best model;
I?: indices of best features

1 acc←0;
2 I?←∅;
3 M?←0;
4 D←createDataSet(r[n], `[n] , N);

/* D={〈xi, yi〉}M
i=1 xi∈R2N

yi∈{−1, 1} */

5 [J ,Kh, z]←extractFeatures(D, h, ψ);
/* J={(dk[n], yk)}M

k=1, dk[n]∈Rn|Kh| */

/* z number of coefficients for each node nk with k∈Kh */

6 [D1,D2]←splitData(J , p);
/* D1 training set */

/* D2 test set */

7 B←{n, 2n, . . . , κn};
/* the elements of the set B controls the choice of the features associated with nodes;

κ > 1 */

8 for i=1 to length(B) do
9 for j=1 to length(C1) do

10 I←extractIndices(D1, B(i), C1(j),L);
/* indices I of selected features */

11 M←crossValid(D1, I, k,K, C2, G);
12 a←test(D2, I,M);
13 if a≥acc then
14 acc←a;
15 I?←I;
16 M?←M;
17 end
18 end
19 end
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4.3 Experimental evaluation

We now describe the experiments carried out to estimate the parameters of the
model (4.2) and to validate the hypotheses (4.6). All experiments were done
on a simulated environment developed with the rigid body dynamic simulation
engine ODE. We simulated the motion of the robot, with different terrain shapes,
suitably setting masses, inertia and friction forces. The simulator not only allows
us to generate samples of r, but also to tag each sample with a label, denoting
the contact of the flippers with the obstacles within the simulated environment,
through the collision checking engine.

The experiment setup was designed to evaluate the sensitivity with respect of
the parameters N , height h of the WPD and B controlling the features selection.
In particular, N is chosen to vary between 5 and 9 (first column of Table 4.1),
to capture collisions of different physical nature. The choice of the range of h is
based on the level of granularity of the bandwidth sub-division of the signals under
consideration and the degree of approximation of the decomposition. We choose
to vary h between 3 and 9 (second column of Table 4.1). The values of B have
been chosen to be multiple of the number of coefficients of a leaf node at depth h,
since the number of leaves nodes depend on h, while the number of coefficients by
node varies with respect N . In these experiments we use the wavelet Daubechies
5 (db5), which is asymmetric, orthogonal and bi-orthogonal. We set k=5, p=70%
and

C1 =
{
c1i

∣∣∣ c1i = log2(α1), α1∈{−5,. . .,5}
}

C2 =
{
c2i

∣∣∣ c2i = log2(α2), α2∈{−10,. . .,10}
}

G =
{
gi
∣∣∣ gi = log2(α3), α3∈{−10,. . .,10}

}
Note that, these parameters have been chosen to follow the dyadic property of the
decomposition.

For a sequence of tagged samples of a single channel of the residual vector
r and a fixed N , we build sub-sequences r[n] of length 2N . We denote with
xi∈R2N the vector associated to this sub-sequence. Each vector xi is labeled with
a label yi∈{−1, 1}, computed by averaging the tags `[n] and by comparing the
average with a fixed threshold. With Algorithm 1 we generate different data-sets
D={(xi,yi)}Mi=1 for each value in the range N (line 4). For each D, a new data-set
J={(dk[n], yk)}Mk=1 is build (line 5), where the WPD is applied to each xi, for any
value in the range of h. Fifth column of Table 4.1 reports the different sizes of
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the data-set J , as the parameter N changes. Sixth column of Table 4.1 reports
the different dimensions of the feature spaces of J , as both the parameters N and
h change. Upon a data-set J is splitted, to create training D1 and test set D2,
respectively, the algorithm, at line 10, extracts the best feature indices I, given
both the set B which controls the choice of the features associated with nodes
and the set C1 of the regularization parameters. Table 4.3 shows the number of
features selected by the sparse SVM classifier as both N and h change. This set of
indices, together with J is given as input to the cross validation procedure, which
computes both the best parameters of the model classifierM. This model is then
used for testing on the remaining data-set D2. At each iteration, the best model
M∗, together with the best indices are stored on the basis of the accuracy on the
test set.

Figure 4.4(a) shows the trends of the cross validation accuracies, for each value
of h, with respect to the parameter N . Conversely, Figure 4.4(b) shows the cross
validation accuracies for each value of N , with respect to the h. On the other
hand, Figure 4.5(a) depicts the accuracies on the test-set, for each value of h, with
respect to the parameter N . Analogously, Figure 4.5(b) shows the trends of the
accuracies on the test-set, for each value of N , with respect to the parameter h.
Table 4.2 reports the overall results obtained during all the process of learning
the classifier for the flipper contact, as well as the best parameters of the model.
These results highlight that we obtain the best accuracy of 84.31% on the test-set,
for N=8 and h=5. Moreover, for these values 96 features out of 512 have been
selected. This implies that, the analysis of the residual is not enough to identify
the contact of the flipper. In other words, the residual does not accurately model
the track-soil interaction, since it is not possible to estimate with a high degree of
confidence whether the contact of the flipper occurred or not. Additional features,
representing the properties of the terrain should be also taken into account to
improve the performance of the classification. However, the proposed model can
be applied to real tracked robots, to obtain a preliminary estimate of the contact,
since it turned out from the experiments that the WPD takes, in average, 0.1145
sec. to extract the features from the residual, and can then be applied in real-
time applications. To conclude, in Figure 4.6 we show the wavelet packet binary
tree associated with the best value of the accuracy on the test set, for N=8 and
h=5. Thin circles around the leafs, denote the nodes at depth 5 which have been
selected by the extract indices procedure. These nodes represents the signal bands
in which frequencies of the contact event lie.
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Table 4.1: Data-set organization

N h #f #n Data-set
dim.

Feat.
dim. B

5 3 11 8 3878 88 11:11:22
5 4 10 16 3878 160 10:10:40
5 5 9 32 3878 288 9:9:72
5 6 9 64 3878 576 9:9:162
5 7 9 128 3878 1152 9:9:234
5 8 9 256 3878 2304 9:9:576
5 9 9 512 3878 4608 9:9:1530
6 3 15 8 2279 120 15:15:30
6 4 12 16 2279 192 12:12:48
6 5 10 32 2279 320 10:10:100
6 6 9 64 2279 576 9:9:189
6 7 9 128 2279 1152 9:9:288
6 8 9 256 2279 2304 9:9:576
6 9 9 512 2279 4608 9:9:1530
7 3 23 8 1466 184 23:23:46
7 4 16 16 1466 256 16:16:64
7 5 12 32 1466 384 12:12:60
7 6 10 64 1466 640 10:10:120
7 7 9 128 1466 1152 9:9:297
7 8 9 256 1466 2304 9:9:576
7 9 9 512 1466 4608 9:9:1530
8 3 39 8 1028 312 39:39:78
8 4 24 16 1028 384 24:24:48
8 5 16 32 1028 512 16:16:128
8 6 12 64 1028 768 12:12:144
8 7 10 128 1028 1280 10:10:390
8 8 9 256 1028 2304 9:9:288
8 9 9 512 1028 4608 9:9:576
9 3 71 8 617 568 71:71:142
9 4 40 16 617 640 40:40:80
9 5 24 32 617 768 24:24:120
9 6 16 64 617 1024 16:16:96
9 7 12 128 617 1536 12:12:144
9 8 10 256 617 2560 10:10:270
9 9 9 512 617 4608 9:9:477
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Table 4.2: Best parameters

N h acc cv α2 α3 B C1
5 3 81.05 79.98 0 -2 22 32
5 4 80.38 80.96 1 -3 30 32
5 5 80.05 79.96 2 -4 54 4
5 6 80.27 80.91 -1 -2 45 0.125
5 7 81.01 79.88 3 3 63 8
5 8 80.84 80.47 10 9 27 32
5 9 80.71 80.47 4 -1 72 16
6 3 83.11 81.13 0 -3 15 32
6 4 82.49 81.30 2 -4 12 0.0313
6 5 82.39 81.08 2 -5 10 0.0313
6 6 82.81 81.21 -1 10 81 32
6 7 82.91 81.17 2 3 117 8
6 8 82.96 81.08 2 -4 279 0.125
6 9 83.06 81.07 4 -3 63 0.0313
7 3 82.64 82.12 2 -4 23 0.0313
7 4 82.48 82.74 1 -4 32 32
7 5 81.52 81.65 9 -9 12 32
7 6 83.43 81.10 10 10 30 32
7 7 83.43 81.10 10 -10 27 32
7 8 82.63 81.90 -1 8 99 0.0625
7 9 82.58 81.60 8 4 459 8
8 3 83.63 84.43 1 -5 39 0.0625
8 4 83.18 83.75 1 -5 24 0.0313
8 5 84.31 82.87 2 -6 32 0.5
8 6 82.5 81.71 1 -5 12 0.125
8 7 82.72 82.19 7 -10 30 0.5
8 8 82.95 82.78 3 -9 252 32
8 9 83.62 84.40 4 -3 207 0.5
9 3 81.88 82 -1 -6 71 0.0313
9 4 83.01 83.79 2 -6 40 0.125
9 5 77.35 83.95 1 -6 24 8
9 6 81.50 81.36 1 -6 16 0.625
9 7 83.01 81.36 1 -7 108 0.5
9 8 79.24 81.84 10 7 160 32
9 9 78.11 81.52 3 -7 63 0.0312
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Figure 4.4: 5-fold cross validation accuracy
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Figure 4.5: Testing accuracy
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Table 4.3: Number of features selected out of total number of features

N
h 5 6 7 8 9
3 33/88 30/120 46/184 112/312 142/568
4 40/160 24/192 80/256 72/384 120/640
5 45/288 30/320 36/384 96/512 120/768
6 36/576 108/576 70/640 36/768 80/1024
7 27/1152 81/1152 63/1152 60/1280 264/1536
8 27/2304 27/2304 63/2304 432/2304 420/2560
9 63/4608 45/4608 387/4608 81/4608 162/4608

Figure 4.6: WPD tree with best testing accuracy. Circles highlight selected leaf nodes
by the sparse SVM classifier.
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4.4 Conclusions and future work

In this work we described a model for real-time detection of the contact between
the flippers of an articulated tracked vehicle and the terrain. Contact identifica-
tion is a crucial aspect for autonomous safe navigation. In fact, different control
strategies can be designed on the basis of the model providing as feedback the
occurrence of the flipper contacts [114], enhancing not only the motion capabili-
ties of the robot but also the understanding or perception of the environment in
the near surroundings. The proposed model extends the well-known FDI scheme
of robot manipulators to kinematic chains with multiple non structured induced
disturbances through the non inertial reference frame. In particular, we consider
the case of flippers rigidly attached to a mobile platform. This extension is char-
acterized by the analysis of the transient perturbations patterns of the residual
signal evolution, disregarding its amplitude bounds. The method proves that it
is possible to obtain terrain contact information even from sensorless flippers. To
perform such analysis we propose a classification framework based on features ex-
tracted from the WPD of the residual signals and a SVM classifier. In particular,
we define a feature space based on the WPD of the residual and use a sparse
SVM to discriminate the contact event. The correctness of the model, on the ap-
plication under consideration, has been demonstrated through simulations. It is
worth noticing that the validity of the spectral model is clearly independent of the
particular choice of the features extraction and classification techniques.

One practical limitation of our approach is the features selection procedure.
WPD recursively decomposes a signal in smoothed approximations and details at
coarser resolutions by a cascade of discrete convolutions and sub-sampling oper-
ations, using a pair of conjugate mirror filters. The result of this recursive de-
composition is a binary tree, whose nodes have associated an orthonormal basis
function, defined by the translation and scaling of a wavelet function in terms of
the node’s height [17]. WPD features can be obtained from the projection of the
input signal (at the corresponding resolution) into the linear spaces spanned by
the orthonormal functions of a set of nodes. In terms of empirical evaluation, one
has to face the selection of the parameter N (defining the length L=2N of batch
segments of the signal decomposition), the maximum height h of the decomposi-
tion tree and the set of nodes that will be employed for the definition of features.
In the developed work, we had chosen optimal values of N and h based on clas-
sification outcomes and selected the set of all leaf nodes of a fully expanded tree
decomposition for features definition. Our choice in defining the set of features
is purely heuristic and the possibility of combining nodes from different heights
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inside the tree has not been tested.
Moreover, by considering that WPD recursively decomposes a signal by a cas-

cade of discrete convolutions and sub-sampling operations, it is possible to observe
that such procedure greatly resembles the basic layering structure of a deep con-
volutional neural network (DCNN), with two fundamental differences. In the case
of DCNN we can define arbitrary batch lengths L and the optimal sub-sampling
strategy can be learned from data (WPD instead uses a fixed sub-sampling factor).
With this in mind, the deep network alternative seems to provide also method-
ological advantages over the WPD, since it learns from data not only the optimal
sub-sampling rule but also the shape of the convolution kernels, the equivalent of
the wavelet function underlying the signal decomposition. Moreover, by choosing
a priori the desired number of features, we know that the unsupervised features
learning algorithm extract the most relevant information that can be encoded in
such a feature vector. It is a clear advantage with respect to the WPD of the
residual signal, since we are forced to take the whole set of node’s features because
we have no idea how relevant information is distributed among them.

By taking the projection coefficients of all leaf nodes of the WPD tree, the
dimension of the feature space becomes very large and the need for a feature
selection or relevance learning step becomes critical, not only for feature validation
but also for reduction of the computational effort of the learning algorithm. We
tried the feature selective SVM algorithm of [97]. The great limitation we found
on feature selection is that we have no idea of the relevance of single components
of the feature vector, but only a binary label telling us if the component was
used or not by the classification algorithm. Relevance learning [5, 86, 87] is a
valid alternative to overcome this limitation, since a confidence measure (formally
a metric) weighting the significance of each feature is obtained as part of the
classification outcome. That is, a continuous measure for each feature, proportional
to its relevance with respect the other components of the feature vector. Feature
selection can be considered as a particular instance of relevance learning, where a
binary relevance measure is computed for each feature (zero–one or useless–useful).
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Chapter 5

Coplanarity constrained
monocular visual odometry

5.1 Introduction

Visual odometry (VO) is the process of estimating the egomotion of an agent
using only the input of a single or multiple camera sensors attached to it [83]. In
contrast to the general structure from motion (SfM) system [33], the idea of the VO
is to provide a locally consistent estimation of the agent’s motion by sequential (i.e.
real-time, frame by frame) analysis of the input data. In particular, monocular VO
refers to the special case when only one camera sensor is employed. Monocular VO
is highly susceptible to drift, not only because errors introduced by the sequential
motion estimation accumulate over time, but also because the absolute scale of the
agent’s trajectory cannot be uniquely determined. Therefore, the computation
of accurate drift aware motion estimates relies on the availability of additional
geometric constraint necessary to improve the posedness of the problem.

For example, in the case of vehicles with constrained motions, different cues
have been exploited like the nonholonomic constraints of motion [77] or the con-
stant sensor height by robust estimation of the ground plane [92]. A general
alternative is to take advantage of the trinocular vision [75] to overcome the scale
ambiguity between successive frames. Despite, many state of the art monocu-
lar SLAM systems still rely on a VO core based on the stereo geometry arising
from the sensor’s motion, followed by a local bundle adjustment optimization over
a small subset of camera poses [30, 68, 31]. Mostly because the simplicity of the
stereo geometry of a calibrated device, good trade-off between accuracy and imple-
mentation complexity of the feature matching or tracking, handling of applications
with or without motion constraints, and the growing family of differential geomet-
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ric algorithms that have been developed for fast and accurate computation of the
associated essential matrices [62, 51, 94].

We can rework the above ideas by noting that unconstrained optimization
approaches are usually preferred, in the sense that frame-to-frame geometries are
estimated independently. As consequence, most differential geometric optimization
or “on-manifold” schemes are exclusively designed for the general unconstrained
estimation problem, where the compound sensor motion is assumed to lie on the
manifold M given by the product of the pair-wise motion manifolds Mij, i.e
M=M12×M23×. . .. However, simple geometrical facts [49] suffice to show that
the compound sensor motion does not lie on the entire product manifold but on a
sub-manifold of it, i.eM⊂M12×M23×. . .. For example, the calibrated geometry
between 3 views is given by 12 degrees of freedom, while the independent pair-wise
stereo analysis requires the estimation of 15 parameters.

Within this context, the present work aims to produce a reliable and accurate
constrained on-manifold algorithm that can jointly recover the pair-wise stereo
geometries between a small subset of views by considering the spatial coplanarity
of pair-wise baselines between three different calibrated views as the optimization
constraint. In particular, our research efforts have been focused in extending the
essential manifold optimization algorithm derived by Helmke et al. [51] for the
two-views case.

The advantage of using the coplanarity between baselines to constraint the
stereo geometry estimation is that it does not require the knowledge of the true
shape of the scene nor the relative scale between pair-wise geometry estimates
(note that the coplanarity between three vectors depends only on their spatial
orientation and not on their lengths) For a single moving sensor, this implies that
the knowledge of the true lengths of the camera translations are not necessary
to impose the constraint, and thus, neither to refine the joint estimation of the
pair-wise epipolar geometries, which by definition can only be known up to scale.
Moreover, a novel measure of consistency between essential matrices [11] is intro-
duced without requiring the a priori knowledge of the baselines.

The rest of the chapter is structured as follows. Section 5.2 provides a re-
view of the stereo geometry of calibrated views, including the essential manifold
parametrization and the derivation of the iterative optimization algorithm pro-
posed in [51]. Next, in Section 5.3 the formal algebraic description of coplanarity
constraint is introduced. After that, Section 5.4 describes two novel optimization
approaches for pair-wise stereo geometry exploiting the coplanarity constraint.
Finally, in Section 5.5 we provide some concluding.
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5.2 Stereo geometry revisited

5.2.1 Preliminaries

Assuming that we have two calibrated views I1 and I2 of some 3-dimensional
static scene, taken with the same camera whose internal parameters K are known.
We would like to compute the relative rigid transformation between the camera
poses used to acquire such images. All homogeneous point correspondences x1↔x2

are assumed well defined, known and already normalized or back-projected with
respect the calibration matrix

xi = K−1x̃i i=1, 2

where the tilde ·̃ means that the coordinates are given in projective (homogeneous
pixel) coordinates. In the following paragraphs, the rigid transformation between
views is defined by the transformation from the second view frame to the first,
denoted by the unknown rotation matrix R and the unknown translation vector t,
both with respect the first view frame. The epipolar geometry can be then defined
by the essential matrix E such that

λ1x1 = λ2Rx2 + t

λ1Ωx1 = λ2ΩRx2

0 = λ2x>1 ΩRx2

0 = x>1 ΩRx2

0 = x>1 Ex2

where the positive scale factors λi represents the depth of the of the 3-dimensional
point associated to the (back-projected) ray xi. As we observe, the epipolar con-
straint is linear with respect the essential matrix E, thus we re-write the above
expression as the following linear system

x>1 Ex2 = x>1
3∑
i=1

x2,i Ei (5.1)

= x2,1x>1 E1 + x2,2x>1 E2 + x>2,3x1 E3 (5.2)

= vec>
{(
x2,1x1 x2,2x1 x2,3x1

)}
vec{E} (5.3)

= vec>
{
x1x>2

}
vec{E} (5.4)
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One important property of the essential matrices is given by the characterization
theorem, which states that any essential matrix has one zero singular value and
two coincident non-zero singular values. This property can be easily proved by
recalling that any (3×3) skew-symmetric matrix

A = U(λZ)U> = U


0 −λ 0
λ 0 0
0 0 0


λZ

U>

can be decomposed as

U


0 −λ 0
λ 0 0
0 0 0


λ Z

U> = U


λ 0 0
0 λ 0
0 0 0


λ E0


0 −1 0
1 0 0
0 0 1


W>

U> = U
(
λE0W>

)
U>

with

λ = ‖A‖
2

2

where ‖A‖ denotes the Frobenius norm and ±λi are the nonzero eigenvalues of the
skew-symmetric matrix A. Based on such decomposition, we readily obtain that

E = U(λE0)
(
WU>R

)
which equals the above stated singular value decomposition of the essential matrix.
This proof gives us a way to compute the relative translation and rotation associ-
ated to a given normalized essential matrix, that is such that λ=1, or ‖E‖=‖Ω‖=

√
2

or equivalently ‖t‖=1

E = UE0V> = U(ZW)V> =
(
UZU>

)(
UWV>

)
= ΩR

Note that the above solution of the relative pose is not unique, because we still
have a sign ambiguity. Indeed, there are two possible translation candidates ±UZU>

together with two rotation candidates UWV> and UW>V>, for a total of four different
pose hypotheses. The true hypothesis can be identified by testing the sign of the
depth of the imaged points, known as the cheirality test.

In general, the singular value decomposition does not provide rotation matrices
but unitary ones, i.e., with determinant ±1, however we can freely flip the sign of
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the last row or column of the matrices U and V without altering the value of E, to
obtain a decomposition based on two proper rotation matrices belonging to the
special group SO(3). With this observation in mind, we note that any normalized
essential matrix E belongs to the following non-linear subset of R3×3, known as the
essential manifold

E =
{
ΩR

∣∣∣∣ Ω∈so(3), R∈SO(3), ‖Ω‖2 ≡ tr
{
Ω>Ω

}
=2
}

(5.5)

E =
{

UE0V>
∣∣∣∣ U, V∈SO(3)

}
(5.6)

Based on (5.5), it is clear that any matrix E∈E has only five degrees of freedom,
while with (5.6) seems to have six instead of five. However, this is not the case
because the pair of matrices (U, V) that gives rise to the essential matrix E is not
unique, there is a complete equivalence class of elements in SO(3)×SO(3) defining
such matrix. We can identify the underlying equivalence relation by specifying the
structure of the matrix G∈SO(3) such that E(U, V)=E(UG, VG), that is

UE0V> = UGE0G>V> =⇒ E0 = GE0G> =⇒ G =

Γ 0

0 det{Γ}

 (5.7)

with Γ∈O(2). In other words, G is a pure rotation about the z axis, a transformation
with a single degree of freedom. Therefore, the equivalence class of (U, V) is the set

{
(A, B) ∈ SO(3)×SO(3)

∣∣∣∣∣ (A, B) = (UG, VG), G given by (5.7)
}

(5.8)

5.2.2 Tangent space of the essential manifold E

Given a smooth curve

γ(t) = U(t) E0 V>(t)

on E , starting at E(0)=UE0V>, its tangent vector at time t∈R+ is defined by1

γ̇ = d
dt

{
UE0V>

}
= U̇ E0 V> + U E0 V̇> = ΩUU E0 V> − U E0 V>ΩV

where ΩU and ΩV are skew-symmetric matrices.
Let’s suppose now that the pair (U, V) is given by the smooth mapping ϕ(Ũ, Ṽ),

1The explicit dependence on time will be omitted to improve the readability of the formulae
contained in the present paragraph.
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with (Ũ, Ṽ) local coordinates in SO(3)×SO(3), centered at the point (U, V)

ϕ
(
Ũ, Ṽ

)
=
(
UŨ, VṼ

)
=⇒ ϕ(I, I) = (U, V) (5.9)

Using the new coordinates (5.9) the tangent vector γ̇ assumes the following form

γ̇ = d
dt

{
UŨ E0 Ṽ>V>

}
= U

[
ΩŨ Ũ E0 Ṽ> − Ũ E0 Ṽ>ΩṼ

]
V>

at time t=0 we have that (Ũ(0), Ṽ(0))=(I, I), then

γ̇(0) = d
dt

{
UŨ E0 Ṽ>V>

}∣∣∣∣∣
t=0

= U[ΩŨ(0) E0 − E0 ΩṼ(0)]V>

As consequence, the tangent space TEE at E of the essential manifold E , with
respect to a local coordinates chart centered at E, is the set of all tangent vectors
γ̇(0) such that

TEE =
{

U[ΩUE0 − E0ΩV]V>
∣∣∣∣∣ ΩU, ΩV∈so(3)

}
(5.10)

To conclude, let’s assume that ΩU=[ω]× and ΩV=[ψ]× , with ω, ψ∈R3. Then we have
that

U[ΩUE0 − E0ΩV]V> = U


0 ψ3 − ω3 −ψ2

ω3 − ψ3 0 ψ1

−ω2 ω1 0

V>

which implies that ω=ψ=(0, 0, x)>, x∈R, spans the null space of the tangent space
TEE . This is an expected result, since it reflects the equivalence relation defined
in (5.8). This imply that any vector field assigning to some point E of E a tangent
vector lying on its null space, then such vector field will emanates no flow from E.

5.2.3 Essential manifold parameterization

A smooth local parametrization, or chart, of an open subset S of the smooth n-
dimensional manifold M is defined by a diffeomorphic map between some open
subset U of Rn centered at the origin (e.g. a linear space) and S. Since any element
E of the essential manifold E have (at most) five different degrees of freedom, any
small open S⊂E is diffeomorphic to some small open U⊂R5. Let assume one more
time that the pair (U, V) is given by the aforementioned smooth mapping ϕ(Ũ, Ṽ).
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Exploiting the global exponential parametrization of the elements of SO(3), we
can substitute the pair (Ũ, Ṽ) by (exp ΩU(t), exp ΩV(t)) with ΩU(t) and ΩV(t) elements
of so(3), leading to the following parametrization of the essential matrix E

E(t) = U eΩU(t) E0 e
ΩV(t) V> (5.11)

However, we cannot yet guarantee that such mapping is diffeomorphic between an
small open subset of E containing E and some small open subset of R5. In fact,
we need specify the structure of the skew-symmetric exponents. By thinking E(t)
as a one parameter flow emanated from E, we implicitly assume that the vector
field generating the flow does not assign, at E, a vector lying in the kernel of TEE .
Thus, by simple computations, we obtain that a smooth local parametrization of
some small open S⊂E centered at E∈S, is given by (5.11) with

ΩU(t) =



x1(t)
x2(t)
x3(t)



×

ΩV(t) =




x4(t)
x5(t)
−x3(t)



×

(5.12)

where xi(t), i=1,. . ., 5, are the coordinates of parametric point x(t)∈U , where U is a
small open subset of R5containing the origin. Note that the time parametrization is
not strictly necessary to define the mapping U→S, however offers a clear, intuitive
and geometric interpretation of the parametrization.

5.2.4 Optimization on the essential manifold

Based on the linearity of the epipolar constraint with respect the entries of the es-
sential matrix E (see Eq. 5.4), given a set of N point correspondences x(i)

1 ↔x(i)
2 be-

tween images I1 and I2, we define our objective function as the following quadratic
expression

f(E) = 1
2N

N∑
i=1

(
vec>

{
M(i)

}
vec{E}

)2

= 1
2vec>{E}

(
1
N

N∑
i=1

vec
{
M(i)

}
vec>

{
M(i)

})
vec{E}

= 1
2vec>{E}Mvec{E}
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= 1
2
∥∥∥vec{E}

∥∥∥2

M

where M(i)=x(i)
1 x(i)>

2 is the compact representation of the i-th point correspondence.
We note that the definition of the data matrix M is possible only under the
assumption that the set of point correspondences is free of outliers.

The geometric optimization scheme introduced by Helmke et al. [51] is based
on the minimization of f(E) using interleaved iterations of the Newton and Gauss-
Newton methods over the essential manifold E . The algorithm is derived from the
second order Taylor approximation of the cost f(E) in terms of the parametrization
vector x∈U , U⊂R5, defined by equations (5.11) and (5.12)

f ◦ ϕ(x) = 1
2
∥∥∥vec

{
UeΩUE0e

ΩVV>
}∥∥∥2

M

= 1
2
∥∥∥(V⊗U)vec

{
eΩUE0e

ΩV
}∥∥∥2

M

The second order Taylor expansion of f(x) around zero is given by

f ◦ ϕ(x) ≈ f ◦ ϕ(0) +∇>(f ◦ ϕ)(0)x + x>Hf◦ϕ(0)x

where

∇>(f ◦ ϕ)(0)x = vec>{E}M(V⊗U)vec{ΩUE0 − E0ΩV}

= vec>{E}M(V⊗U)

(E0⊗I) vec{ΩU}
vec{ΩU} , QUx

− (I⊗E0) vec{ΩV}
vec{ΩV} , QVx


= vec>{E}M (V⊗U)

[
(E0⊗I)QU − (I⊗E0)QV

]
J , (V⊗U)

[
(E0⊗I)QU − (I⊗E0)QV

] x

, vec>{E}MJx

and, by analogous computations,

Hf◦ϕ(0) = J>MJ +
(
Q>U Q>V

)−(DE0⊗I) (D⊗E0)
(D>⊗E0) −(E0D⊗I)

QU

QV


with

vec{D} = (V >⊗U>)Mvec{E}
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The Newton and Gauss-Newton directions for optimizing f◦ϕ(x), respectively x∗N
and x∗GN , are computed as the solution of following linear systems

−∇>(f ◦ ϕ)(0) = Hf◦ϕ(0) x?N (5.13)

−∇>(f ◦ ϕ)(0) = J>MJ x?GN (5.14)

The complete algorithm apply the Newton method on a sufficiently small neigh-
borhood of the set of local minima of f(x), where the Hessian Hf◦ϕ(0) is full rank.
Outside of such a neighborhood, where the Hessian matrix may become either
nearly degenerate or indefinite, the algorithm switches to Gauss-Newton iterations,
thus enlarging the domain of attraction of the local minima. At each optimization
step k, matrices Uk+1 and Vk+1 are computed incrementally by means of the ex-
ponential parametrization introduced in (5.11), using the optimal parameters x?

calculated either with the Newton or Gauss-Newton scheme

Uk+1 = UkeΩ
?
U

Vk+1 = VkeΩ
?
V

(5.15)

The geometric optimization of the essential matrix is performed until the norm of
the gradient ∇>(f◦ϕ)(0) become smaller than some predefined small threshold.

5.3 Coplanarity constraint

5.3.1 Mixed algebraic matrix constraints

Suppose now that we have three different views instead of two, and that some
initial estimate of the pair-wise stereo geometry between views have been already
computed, i.e. the essential matrices E12, E23 and E31

2 are known. Moreover, let
also assume that the corresponding camera matrices have been previously disam-
biguated. Such camera poses can be represented by the following homogeneous
transformations3

M12 =
R12 λ1t12

0> 1

 R12 = U12W12V>12

M23 =
R23 λ2t23

0> 1

 R23 = U23W23V>23

2Eij represents the essential matrix between views i and j, with i as the reference view.
3Mij represents the homogeneous transformation form view j to view i with respect frame i.
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M31 =
R31 λ3t31

0> 1

 R31 = U31W31V>31

where Wij can be either W or W> (defined at Section 5.2.1) and λi∈R6=0 are the
unknown lengths of the unitary translations tij=Uijz , with z representing the
unitary vector along the z-axis.

As we know, any triplet of points defines a plane, conversely, all lines joining a
triplet of points are coplanar. In the case of three views, we have that the set of
lines connecting the (camera) centers are coplanar. With respect to the first view
frame, this condition can be written as the triple product

(
R>31t31

)>
· (t12 × R12t23) = 0

which, in terms of the essential matrix parametrization, can be expressed as

0 =
(
R>31t31

)>
[t12]×R12t23

= t>31R31[t12]×R12t23

=
(
z>U>31

)(
U31W31V>31

)
[U12z]×

(
U12W12V>12

)
(U23z)

=
(
z>U>31

)(
U31W31V>31

)(
U12[z]×U>12

)(
U12W12V>12

)
(U23z)

= z>W31V>31U12[z]×W12V>12U23z

= z>
[
V>31U12 (±E0) V>12U23

]
z (5.16)

where E0=diag{1, 1, 0} as defined in Section 5.2.1. Following analogous steps, we
can find equivalent expressions for the same coplanarity constraint with respect
the second and third views

0 = z>
[
V>12U23 (±E0) V>23U31

]
z (5.17)

0 = z>
[
V>23U31 (±E0) V>31U12

]
z (5.18)

Now, defining the matrices

A = V>31U12 =
A22 a

α> a



B = V>12U23 =
B22 b

β> b


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C = V>23U31 =
C22 c

γ> c


we can compactly rewrite equations (5.16), (5.17) and (5.18) as

0 = z>[A (±E0) B]z

0 = z>[B (±E0) C]z

0 = z>[C (±E0) A]z

(5.19)

Simple algebraic manipulations allow to show that the coplanarity constraint with
respect the first view implies that

0 = ±α>b =⇒ α ⊥ b

Analogously, with respect the remaining views, we also obtain that

β ⊥ c

γ ⊥ a

as consequence, the camera motion between three views does not lie on the prod-
uct manifold E12×E23×E31, given by the pair-wise essential manifolds, but on a
constrained sub-manifold of it. Our goal is to understand how the above orthog-
onality conditions can be exploited so as to characterize and possibly parametrize
such manifold.

5.3.2 Algebraic insights

The on-manifold optimization algorithm proposed in [51] depends on the parametriza-
tion vector x(t), belonging to the subspace U⊂R5 diffeomorphic to the tangent
space TEE , therefore we need to derive an alternative parametric expression de-
scribing the above perpendicularity constraints that can be effectively used for our
minimization purposes. In particular, we observe that the orthogonality conditions
α⊥b, β⊥c and γ⊥a are holonomic, therefore, we require an equivalent integrable
differential form to be inserted inside the optimization scheme.

We start by considering the A, B and C matrices, instead of considering the
underlying rotation matrices Uij and Vij used to compute them. Let represent them
in terms of the ZYZ Euler angles, that is, as the composition of three elementary
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rotations of the form

A = Rz(φA)Ry(θA)Rz(ψA)

B = Rz(φB)Ry(θB)Rz(ψB)

C = Rz(φC)Ry(θC)Rz(ψC)

(5.20)

Let’s now substitute (5.20) into equations (5.19). After few algebraic manipula-
tions, we obtain

0 = sin(θA) cos(ψA+φB) sin(θB) (5.21)

0 = sin(θB) cos(ψB+φC) sin(θC) (5.22)

0 = sin(θC) cos(ψC+φA) sin(θA) (5.23)

Equation (5.21) is satisfied whenever

θA = kπ

2 or θB = kπ

2 or ψA + φB = kπ

2

for any k∈Z6=0. Since all angular quantities defining A and B as the composition
of elementary rotations are arbitrary, the only feasible constraint is given by the
mixed term ψA+φB=kπ

2 . Extending this result to equations (5.22) and (5.23), we
finally obtain that

ψA+φB=kπ2

ψB+φC=kπ2

ψC+φA=kπ2

This is an interesting result, since the spatial coplanarity constraint has been
translated into a set of angular constraints. However, using this representation we
cannot be directly translate the constraint in terms of the underlying Uij and Vij
matrices.

Let now recall the orthogonality conditions (5.16), (5.17) and (5.18). To im-
prove the readability of the paragraph we relax the notation of matrices Mij as Mi,
also we identify the k row vector of Mi as imk and the l column vector as iml. The
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orthogonality conditions after some manipulations can be written as1u>1
1u>2

3v3 = ±
−1v>2

1v>1

2u3

2u>1
2u>2

1v3 = ±
−2v>2

2v>1

3u3

3u>1
3u>2

2v3 = ±
−3v>2

3v>1

1u3

(5.24)

This set of equations reflects that the orthogonality condition constraints the
columns and rows of the matrices Uij and Vij to satisfy a set of bilinear relations.

5.4 Constrained geometric optimization

5.4.1 Three-view soft-constrained optimization

Following the same notation and assumptions introduced at the beginning of the
previous Section, in the case of three views, we can refine each pair-wise stereo
geometry through the unconstrained optimization scheme defined by Helmke et al.
[51]. However, by simple algebraic manipulations, we can define a single parameter
space U⊂R15, by stacking together the three independent pair-wise parameters
x12, x23 and x31, and a single cost function f(x) such that all stereo geometries
are independently refined. We will denote this problem as the unconstrained three
view optimization. Again, to improve the readability of the paragraph we relax
the notation of matrices Mij as Mi and vectors xij as xi. For this unconstrained
problem, the cost function f(E1, E2, E3) is given as the sum of the single pair-wise
stereo geometry costs

f(E1, E2, E3) =
3∑
i=1

vec>{Ei}Mivec{Ei} (5.25)

Let now stack all parameters into the vector x=(x>1 x>2 x>3 )> and rewrite the cost
function in term of these

f◦ϕ(x) = 1
2

3∑
i=1

∥∥∥(Vi⊗Ui)vec
{
eΩUi E0e

ΩVi

}∥∥∥2

Mi

(5.26)
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with

ΩU1 =



x1

x2

x3



×

ΩV1 =




x4

x5

−x3



×

ΩU2 =



x6

x7

x8



×

ΩV2 =




x9

x10

−x8



×

ΩU3 =



x11

x12

x13



×

ΩV3 =




x14

x15

−x13



×

Following analogous algebraic computations as those presented on the Section 5.2.4,
it is easily to show that the compound gradient of this unconstrained problem cor-
respond to the stack of the single gradients, while the Hessian corresponds to a
block diagonal matrix with diagonal elements equal to the single pair-wise Hes-
sians. In formal notation we have

∇>(f ◦ ϕ)(0)
15×1

=
(
∇>(f1 ◦ ϕ1)(0)

5×1
∇>(f2 ◦ ϕ2)(0)

5×1
∇>(f3 ◦ ϕ3)(0)

5×1

)
(5.27)

Hf◦ϕ(0)

15×15
=



Hf1◦ϕ1(0)

5×5
0 0

0 Hf2◦ϕ2(0)

5×5
0

0 0 Hf3◦ϕ3(0)

5×5


(5.28)

We stress that the unconstrained optimization of the stacked problem is exactly
equivalent to optimizing each pair-wise stereo geometry independently, reason why
the simple block structure of the differential forms. In the remainder of the chapter,
we will develop algorithm based exclusively on the Gauss-Newton scheme, therefore
the computation of both gradient and Hessian depends uniquely on the definition
of the first differential form.

Based on constrains (5.16), (5.17) and (5.18), we would like to define a set of
regularizing terms form unconstrained problem previously described. To this end,
observe that each coplanarity constraint can be written in the following vector
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form

z>
[
V>k Ui(±E0)V>i Uj

]
z = vec>

{
zz>

}[
V>k Ui(±E0)V>i Uj

]
= 0 (5.29)

with i 6=j 6=k and i, j, k∈{1,2,3}. Now, defining the (9×9) matrix

Z = vec
{
zz>

}
vec>

{
zz>

}
the associated cost of the constraint (5.29) correspond to

fci
(x) = 1

2
(
z>
[
V>k Ui(±E0)V>i Uj

]
z
)2

= 1
2vec>

{
V>k UiE0V>i Uj

}
Z vec

{
V>k UiE0V>i Uj

}
we observe that the structure of the constraint resemble and generalize the struc-
ture of the cost function itself. In particular, the matrix

Eci
, V>k UiE0V>i Uj

depends on four different elements of SO(3), as belongs to some manifold N . The
expression of the tangent space is given by

TEci
N =

{
Eci

ΩUj
− ΩVk

Eci
+ V>k Ui [ΩUi

E0 − E0ΩVi
] V>i Uj

∣∣∣∣∣ ΩUi
, ΩUj

, ΩVi
, ΩVk

∈ so(3)
}

The directional derivative and the Gauss-Newton approximation of the Hessian
matrix result

∇>(fci
◦ ϕ)(0) = vec>{Eci

} Z vec
{
Eci

ΩUj
− ΩVk

Eci
+ V>k Ui(ΩUi

E0−E0ΩVi
)V>i Uj

}
, vec>{Eci

}
1×9

Z
9×9

Jci

9×15
x

15×1
(5.30)

Hfci◦ϕ(0) = J>ci
ZJci

(5.31)

where

Jci
, (I⊗Eci

)QUj
− (Eci

⊗I)QVk
+ (V>i Uj⊗V>k Ui)

[
(E0⊗I)QUi

− (I⊗E0)QVi

]
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Algorithm 2: Soft-constrained optimization of pair-wise stereo geometry
between three views
Data:
K: camera calibration matrix;
X12, X23, X31: point correspondences between views;
ε: desired accuracy;
λ1, λ2, λ3: desired regularization weights;

Result:
E12, E23, E31: pair-wise stereo geometry;

Step 0:
linear initialization of Eij (e.g., using the 8p [49] or Fiore [35] algorithm);
computation of Uij and Vij (i.e., projection of Eij into the essential manifold);

Step 1:
projection of Uij and Vij into the coplanarity constraint;

Step 2: regularized Gauss-Newton iterations;
do

compute the unconstrained gradient (5.27) and Hessian (5.28) of f(x);
compute the gradients (5.30) and Hessians (5.31) of each fci

(x);
compute the regularized gradient ∇̃(f◦ϕ)(0) and Hessian H̃(f◦ϕ)(0);
get the regularized Gauss-Newton optimal motion x̃?GN ;
update Uij and Vij using the exponential map (eq. 5.15);

while ε ≥ ‖∇̃(f◦ϕ)(0)‖;

The soft constrained or regularized cost function is thus defined as

f̃(x)=f(x) + λ
3∑
i=1

fci
(x), with λ>0

To derive a Gauss-Newton iterative optimization algorithm over the stacked pa-
rameters x, we observe that both the gradient and the Hessian of this soft-constrained
optimization problem, correspond to the sum of the unconstrained counterparts
(5.27) and (5.28) together with the constraints gradients (5.30) and Hessians (5.31),
respectively, weighted by the regularization term λ. As before, the update rule for
each rotation matrix involved in the minimization is given by the incremental con-
tribution computed from the optimal parameters x? using the exponential map.
The proposed algorithm is summarized in Algorithm 2.
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5.4.2 Experimental results

The soft constrained or regularized three view optimization algorithm has been
tested on a synthetic dataset. This dataset was created through a simulated cam-
era model, calibrated with OpenCV using a virtual calibration pattern (chess-
board). Camera model, chessboard pattern and sensor motion are all simulated
using OpenGL. The dataset is composed by 30 different views of the chessboard
pattern, ground truth motion of the sensor, estimated intrinsic parameters and the
set of point correspondences given by the tracked pattern corners. To evaluate the
improvement of the joint estimate of pair-wise stereo geometry, we analyze three
different error quantities. The first, ee, proportional to the symmetric epipolar
error and equivalent to (5.25). The second

ec =
3∑
i=1

fci
(x)

accounting for the soft coplanarity constraint. The third, measuring the rotational
consistency between the pair-wise rotation estimates

er = 1
2(3− tr{R3R1R2}))2

Figures 5.1 and 5.2 present sixteen different random configuration and the op-
timization results provided by both the unconstrained and the soft constrained
algorithms. In all cases, the coplanarity constraint provides an interesting im-
provement on the consistency between the estimates of the three stereo geometries.
We observe that the coplanarity error ec is always decreased with the respect the
unconstrained algorithm, for at least, four orders of magnitude. Instead, the rota-
tional error er is never worsened and in the vast majority of cases is also notably
improved. A key contradiction comes from the epipolar term ee, which is always
worsened within the constraint. This is, in fact, the expected behavior because
the algorithm plays with the trade off between over fitting of the images data
for independent pair-wise geometry estimation and keeping a consistent structure
between all stereo geometries.

Despite the improved accuracy, this regularized optimization schemes present
some drawbacks. First of all, outcomes fully depend on the value of the regular-
ization parameter λ, which it is arbitrarily defined, and an optimal choice requires
off-line parameters tuning, which in general is not desired for a visual odometry
algorithm that usually works on real-time. During the empirical evaluation we
observed that a good choice for the regularization parameter is the mean baseline
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Figure 5.1: Experimental evaluation of the soft-constrained algorithm over
synthetic data. On top of each figure are present the synthetic views of the virtual
chessboard used to estimate the pair-wise stereo geometries, from left (first view) to
right (third view). On bottom the associated errors: ee (magenta), ec (yellow) and
er (cyan); dashed lines correspond to the unconstrained optimization while continuous
lines to the soft constrained or regularized algorithm.
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Figure 5.2: Experimental evaluation of the soft-constrained algorithm over
synthetic data. On top of each figure are present the synthetic views of the virtual
chessboard used to estimate the pair-wise stereo geometries, from left (first view) to
right (third view). On bottom the associated errors: ee (magenta), ec (yellow) and
er (cyan); dashed lines correspond to the unconstrained optimization while continuous
lines to the soft constrained or regularized algorithm.
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length of the whole agent’s motion. We can justify this heuristic by noting that
the magnitude of the coplanarity error linearly depends on the true scale, which in
turns depends in the true length of the baselines; by approximating the mean base-
line length, we also provide a mean scale estimate. Second, a direct consequence
of the soft-constrained approach is that the monotonic convergence of the Helmke
et al. [51] algorithm can be lost, depending on the values of the regularization pa-
rameter. In fact, an estimate of the error reduction cannot be anymore computed
in terms of the number of iterations, since during convergence there may be either
transient oscillatory behaviors or premature arrival to a false minimum. Thus, the
number of iterations necessary for convergence may be dramatically increased with
respect the unconstrained counterpart. Some examples of this issues are presented
on Figure 5.3.

5.4.3 Three-view hard-constrained optimization

Until now we have introduced the coplanarity constraint as a regularization term
for the unconstrained optimization problem. The idea now is to map the set of
constraints 5.29 into the parameter space U⊂R15, to reduce the dimensionality
of the problem by projecting parameters motions into a feasible subspace that
preserves coplanarity during the algorithm’s iterations. We start by recalling the
definition of the matrix Jci

previously defined on equation 5.30

Jci
= (I⊗Eci

)QUj
− (Eci

⊗I)QVk
+ (V>i Uj⊗V>k Ui)

[
(E0⊗I)QUi

− (I⊗E0)QVi

]
Now, by computing the equivalent kinematic constraint, that is, by taken the
temporal derivative of the geometrical constraints 5.29, we have that

0 = vec>
{
zz>

}
Jci

x = j9
ci

x, x∈U

since the row vector vec>
{
zz>

}
is zero except for the last element, then the product

vec>
{
zz>

}
Jci

is equivalent to the ninth (last) row j9
ci

of Jci
. Now, we can stack

the above vector constraints to form a (3×15) matrix A holding all kinematic
constraints of feasible motions in the parameters space at the given state4.

A =


j9
c1

j9
c2

j9
c3

 =⇒ 0 = Ax =⇒ x∈N (A)⊂U (5.32)

4By state we refer to the current estimates of the set of matrices Uij and Vij under optimization.
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Figure 5.3: Soft-constrained optimization issues. As we observe, the monotonic
behavior of the unconstrained algorithm may be potentially lost when using regulariza-
tion. The above Figures show the coplanarity error evolution during optimization for
different values of the regularization parameter λ. Each graph is associated to a par-
ticular set of three randomly chosen views from the synthetic dataset. A nice behavior
is shown on Figure (c), where monotonic convergence is keep and also linearly acceler-
ated for increasing values of the regularization parameter λ. However, this is not the
only behavior that we can obtain, as shown on the rest of images. In Figure (a) we
can observe that convergence is not linearly associated to the regularization parameter,
since the worst result is obtained for a middle value of λ; we note that with respect the
number of iterations considered in the experiments, the worst behavior is characterized
by a local divergence of the error. Another example of this issue is provided in Figure
(b), where the worst result is defined by an oscillatory behavior for a middle value of λ;
moreover, we observe that the behavior of the best solution seems to reach a premature
local minimum before reaching a stable convergence. Finally, in Figure (d), we can ob-
serve how the premature minimum trap affects almost all regularized solutions together
with transient oscillations until convergence.
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where N (A) represents the null space of A.
At this point, the objective of our hard-constrained optimization problem is to

minimize the cost function 5.26 subject to the set of feasible motions 5.32. The
proposed constrained optimization scheme (Algorithm 3) is based on the iterative
refinement of pair-wise stereo geometry estimates, constrained to satisfy at each
iteration the coplanarity constraints. The first step consist in the linear initializa-
tion of the pair-wise stereo geometry between views and the successive projection
into the set of solutions satisfying the constraints from 5.16 to 5.18, that is, the
set where unitary translation vectors tij are all coplanar. A simple way to satisfy
this condition is

t31 =
−R>23

[
t23 + R>12t12

]
∥∥∥t23 + R>12t12

∥∥∥
The second step of the algorithm consists on the on-manifold iterative refine-

ment based on on-manifold Gauss-Newton iterations. Let’s us recall that the opti-
mal solution x?NG of the unconstrained three-view problem is obtained by solving
the linear system 5.14, where gradient and Hessian matrix are given by equations
5.27 and 5.28, respectively. Now, based on the motion constraint 5.32, we know
that the vector x can be parameterized in terms of a lower dimensional parameters
vector x̃∈R12, that is x=Gx̃, where G is a (15×12) orthonormal basis for the null
space of A. Therefore, by inserting this parametrization inside the Gauss-Newton
system we have

−∇̃>(f ◦ ϕ)(0) = H̃f◦ϕ(0) x̃?

x?GN = Gx̃?
with

∇̃(f ◦ ϕ) = G>∇(f ◦ ϕ)

H̃f◦ϕ = G>Hf◦ϕG
(5.33)

where ∇̃(·) and H̃(·) are, respectively, the constrained gradient and Hessian. There-
fore, the on-manifold iterative refinement is divided into two operations: compu-
tation of G based on the current estimates and computation of the optimal motion
using the constrained Gauss-Newton rule 5.33. Afterwards, the update rule 5.15
is used to calculate the new estimates.

5.4.4 Experimental results

The experimental setup, measured error quantities and outcome evaluation for
the analysis of the hard constrained algorithm correspond to those described in
Section 5.4.2 during the analysis of the regularized one.

As before, Figures 5.4 and 5.5 present sixteen different random configuration
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Algorithm 3: Hard-constrained optimization of pair-wise stereo geometry
between three views
Data:
K: camera calibration matrix;
X12, X23, X31: point correspondences between views;
ε: desired accuracy;

Result:
E12, E23, E31: pair-wise stereo geometry;

Step 0:
linear initialization of Eij (e.g., using the 8p [49] or Fiore [35] algorithm);
computation of Uij and Vij (i.e., projection of Eij into the essential manifold);

Step 1:
projection of Uij and Vij into the coplanarity constraint;

Step 2: constrained Gauss-Newton iterations;
do

compute the motion constraint matrix A (eq. 5.32);
compute the orthonormal basis G for the null space of A;
compute ∇̃(f◦ϕ)(0) and Hessian H̃(f◦ϕ)(0) (eq. 5.33);
get the constrained optimal motion x̃? (by solving eq. 5.33);
compute x?GN=Gx̃?;
update Uij and Vij using the exponential map (eq. 5.15);

while ε ≥ ‖∇̃(f◦ϕ)(0)‖;

and the optimization results provided by both the unconstrained and the hard
constrained algorithms. In all cases, coplanarity and rotational errors are al-
ways decreased with respect the unconstrained algorithm and, as consequence,
pair-wise stereo geometry estimates present a stronger consistency between them.
With respect the outcomes of the regularized algorithm, we observe that the hard-
constrained algorithm is faster, more stable and does not depend on any parameter.
In fact, few iterations are need for the algorithm to converge, due to the smaller
number of degrees of freedom involved in the optimization. Moreover, the stability
can be qualitatively analyzed through the convergence behavior, which is almost
monotone decreasing and smoother. Although the regularized algorithm can re-
duce the coplanarity error by two or more orders of magnitude, there is not a
direct nor clear effect on the rotational error, while the hard-constrained approach
apply the same order reduction to both coplanarity and rotational errors.
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Figure 5.4: Experimental evaluation of the hard-constrained algorithm over
synthetic data. On top of each figure are present the synthetic views of the virtual
chessboard used to estimate the pair-wise stereo geometries, from left (first view) to
right (third view). On bottom the associated errors: ee (magenta), ec (yellow) and
er (cyan); dashed lines correspond to the unconstrained optimization while continuous
lines to the constrained one.
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Figure 5.5: Experimental evaluation of the hard-constrained algorithm over
synthetic data. On top of each figure are present the synthetic views of the virtual
chessboard used to estimate the pair-wise stereo geometries, from left (first view) to
right (third view). On bottom the associated errors: ee (magenta), ec (yellow) and
er (cyan); dashed lines correspond to the unconstrained optimization while continuous
lines to the constrained one.
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5.5 Conclusions and future work

We have focused our study into the understanding of the coplanarity constraint and
how it can be exploited to produce optimization algorithms able to estimate con-
sistent pair-wise stereo geometries between three views. As a result, two different
optimization algorithms have been proposed. The first, introduces the coplanarity
constraint as a regularization term of the cost function. Optimal solutions are
obtained by unconstrained on-manifold optimization of pair-wise stereo geome-
tries. The accuracy of the tree-view consistency depends on the trade-off defined
by the regularization term. The second, translates the coplanarity constraints into
motion constraints directly in the tangent space of the manifold. Such optimal so-
lutions are consistent with the three view geometry. The validity and correctness
of the proposed algorithms has been tested and demonstrated using a synthetic cal-
ibration dataset. In particular, the constrained algorithm provides better results
in term of accuracy, computation complexity (optimization on lower dimensional
tangent space) and numerical stability (no parametric dependencies).

However, further experimental evaluation with standard datasets is required
to assess the accuracy of the proposed algorithms. Another important issue is
that computing optimal estimates alone is not sufficient [54], we must provide a
measure of how reliable an optimal solution is. The presented methods are purely
geometric models and completely lack a statistical measure of both the input noise,
and the fidelity of the solution. This is a non negligible weakness, since outliers
are ubiquitous in any computer vision inverse problem.

We have limited our analysis to the case of three views, however in the gen-
eral case of multiple-views, many interesting theoretical and practical implications
arise. In the case of four views, the coplanarity constraint is defined over four
different baseline planes, instead of one as in the three views case. In general,
for a number of views n, we observe that the number of planes is given by the
combination

nC3= n!
(n− 3)! 3!

with a total number of constraints equal to 3 nC3. On the other hand, the number
of degrees of freedom required for a full pair-wise stereo analysis over the n views
equals 5 nC2. Which implies that, for n=7, we have a number of constraints equal
to the number of degrees of freedom, and for n>7 the optimization becomes over
determined. Therefore, it is of fundamental regard to analyze –theoretically and
empirically– how coplanarity constraints can be defined over a fully-constrained
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(3<n≤7) or sparsely-constrained (n>3) set of views, and, in particular character-
ize an optimal number of coplanarity constraints that can be imposed to derive
optimal bundle adjustment strategies.

As a last remark, in Section 5.3.2 we have shown that the set of coplanarity
constrains represent an holonomic constraint, however we did not provide o proper
analytical representation of the associated geometric object. An interesting line
for future research could be to provide further insight in the intrinsic geometry of
the object and to determine its relation with other multiple views representations
like, for example, the trifocal and quadrifocal tensors, respectively, in the case of
three and four views.
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