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Abstract Big Data technology has discarded tradi-

tional data modelling approaches as no longer applica-

ble to distributed data processing. It is, however, largely

recognised that Big Data impose novel challenges in

data and infrastructure management. Indeed, multiple

components and procedures must be coordinated to en-

sure a high level of data quality and accessibility for the

application layers, e.g. data analytics and reporting. In

this paper, the third of its kind co-authored by mem-
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bers of IFIP WG 2.6 on Data Semantics, we propose a

review of the literature addressing these topics and dis-

cuss relevant challenges for future research. Based on

our literature review, we argue that methods, princi-

ples, and perspectives developed by the Data Semantics

community can significantly contribute to address Big

Data challenges.

1 Introduction

The term “Big Data” is widely used to designate a dis-

continuity in data processing and analytics [1,2]. The

early literature described this discontinuity using the

“5 Vs” storyline that highlights the unprecedented data

Volume, Velocity (e.g. in terms of input data rate), Va-

riety (in terms of data types), as well as non-uniform

Veracity and Value of today’s applications [3–6]. In

other words, data-intensive applications require a data

processing rate that may exceed the resources available

on a single node and this condition is in general difficult

to predict when dealing with online data streams [7].

On-demand elastic computing platforms, such as Ama-

zon AWS [8], and distributed processing frameworks,

such as Apache Hadoop and Spark [9], have been de-

veloped as a technological solution for addressing these

scalability issues. The attention of the research commu-

nity has, accordingly, focused on processing functions

[10,11] and execution performance [12], giving less at-

tention to other key features of information manage-

ment, like for example reuse, verifiability, and modu-

larity.

Data and infrastructure management represent re-

curring challenges [5,13] for Big Data. Due to the het-

erogeneous nature of distributed data, Big Data ap-

plications do not make use of traditional data mod-



elling [14]. Distributed datasets and streams may con-

sist of unstructured, semi-structured or highly struc-

tured but still non-relational data items such as time

series or nested records to which traditional data model-

ing techniques are problematic. Clearly, heterogeneous

and/or weakly structured data make it difficult to de-

sign schemata in advance [15]. In addition, Big Data

datasets may be processed only a few times or even once

per use-case, making it too expensive to load them into

a database management system. In turn, data hetero-

geneity is taken to the extreme in data-intensive appli-

cations involving Cyber Physical Systems.

Another issue in Big Data representation is find-

ing data formats suitable for feeding a variety of al-

gorithms ranging from simple filters and aggregates to

complex machine learning models. Metadata, i.e. data

that describe other data or systems, are essential for

any data management activity including data integra-

tion and cleaning, maintaining consistency and fresh-

ness, and above all efficient querying. Traditional rela-

tional databases and data warehouses offer metadata

repositories and metadata management as a built-in

feature [16]. However, a metadata standard has not yet

been developed for Big Data technologies.

Moreover, Big Data involves multi-party processes,

with different legal frameworks that apply to the data

provider, the data collector, and the data miner. Data

management have then become a major area of inter-

est for data protection. In fact, collecting evidence on

the procedures and practices applied, using continuous

monitoring and assurance components [17], is today es-

sential.

In summary, Big Data still lacks a comprehensive,

sound approach to data management. Rethinking in-

formation management in the context of Big Data

technologies is a primary topic for future research. A

challenge that involves the whole process of the Big

Data pipeline, i.e. the set of tasks required to drive

Big Data computations. Documentation, reconfigura-

tion, data quality assurance, and verification are exam-

ples of crucial tasks not easily supported in the current

landscape of Big Data technologies.

The aim of this paper is to explain how Data Seman-

tics can support Big Data management. Based on this

perspective, we propose a review of the literature ad-

dressing this issue and discuss directions for future re-

search. In particular, our attention will focus the FAIR

principles [18] recommending procedures that generate

Findable, Accessible, Interoperable, and Re-usable data

or metadata.

Based on our literature review, as well as on the col-

lective vision of the members of the IFIP WG 2.6 on

Data Semantics we will discuss how methods, princi-

ples, and perspectives developed by the Data Semantics

community can contribute to address Big Data chal-

lenges. In this respect, this paper ideally continues the

tradition of WG 2.6 collective contributions [19,20].

The structure of this paper is the following. In Sec-

tion 2 and Section 3 we introduce our discussion by dis-

tinguishing different levels of representation that can be

adopted in Big Data management, taking into account

the different stages composing a Big Data pipeline. In

Section 4 we develop the central discussion of this pa-

per. Then, in Section 5, we review the research per-

spectives that emerge from our discussion and, finally,

in Section 6, we draw the conclusions.

2 Data Semantics Dimensions

Achieving the full potential of Big Data analytics re-

quires realizing a reconciliation between data distribu-

tion and data modeling principles [14,21]. An improper

data representation may reduce the accuracy of ana-

lytics or even invalidate their results [22]. It can also

impact the cost of execution of analytics. Besides, a

mismatch on the abstraction level adopted by different

data sources may occur even when they rely on a shared

data dictionary [23].

Data Semantics refers to the “meaning and mean-

ingful use of data” [24], i.e. the effective use of a data

object for representing a concept or object in the real

world. Such a general notion interconnects a large va-

riety of applications.

A historic achievement of the database community

was Representing Data via suitable schemata. Un-

fortunately, Big Data deal with evolving heterogeneous

data that make it difficult, or even impossible, to iden-

tify a data schema prior to data processing. Solutions

for integrating and querying schema-less data have then

received much attention [25].

However, since schema-based representation tech-

niques cannot be directly applied to describe Big Data,

more and more attention is being directed to Rep-

resenting Metadata within data-intensive applica-

tions. Managing a large volume of heterogeneous and

distributed data requires definition and continuous up-

dating of metadata describing different aspects of se-

mantics and data quality, such as data documentation,

provenance, trust, accuracy, and other properties [26].

Recently, the IEEE has launched an initiative aimed at

fostering standardisation in Big Data management1.

1 The IEEE Big Data Governance and
Metadata Management (BDGMM) group
(http://standards.ieee.org/develop/indconn/BDGMM index.html)
aims at enabling data integration among heterogeneous
datasets from diversified domain repositories and make data
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A further application of Data Semantics principles

to Big Data involves Modeling Data Processes and

flows, i.e. representing the entire pipeline making data

representation shareable and verifiable. This may fur-

thermore include the relationships interconnecting the

different stages of a pipeline, for example, processing

data stream requires to select appropriate data prepa-

ration modules and analytics.

Finally, we also underline the relevance of Data

Quality aspects. Each phase of the Big Data pipeline

has its own quality tasks that must be taken into ac-

count in order to get high-quality outputs from Big

Data analytics.

3 The Big Data Pipeline

It is well recognized that Big Data impacts the en-

tire workflow guiding the execution of analytics. The

complexity of Big Data technologies and the variety

of competences required to design applications rely-

ing on them [27] have emphasized the notion of Big

Data pipelines, as well as the relevance of systems for

managing [28] and documenting them. A pipeline is

the coordination of different tasks, integrating differ-

ent technologies, to achieve a specific solution [29,30].

The Hadoop Stack includes, for example, services re-

lated to five areas: Data Source, Data Format, Data

Stores, Data Staging, and Data Processing [5]. Among

the most comprehensive overviews on reference compo-

nents of a pipeline, the authors of [31] propose the fol-

lowing steps: Data Extraction, Data Loading and Pre-

processing, Data Processing, Data Analysis, Data Load-

ing and Transformation, as well as Data Interfacing and

Visualization. Ardagna et al. [32] focus on languages for

the explicit representation of a pipeline and propose the

following areas: Data Representation, Data Preparation,

Data Processing, Data Analytics, and Data Visualiza-

tion.

Without claiming to be comprehensive, in the fol-

lowings, we present a pipeline inspired by [33]. The ter-

minology introduced here will guide our discussion in

Sections 4 and 5.

– Data Acquisition and Recording. Big Data

arise from one or several data generating sources

that must be interpreted in the appropriate way,

filtering out irrelevant data before starting any pro-

cessing.

– Data Extraction and Annotation. Frequently,

the data collected will not be in a format suitable

discoverable, accessible, and usable through an actionable
standard infrastructure.

for analysis. A data extraction process is then re-

quired to format data in a structured form suitable

for analysis, for example by extracting structured

data from semi-structured or unstructured contents.

– Data Preparation and Cleaning. Records may

be inaccurate or corrupted. Detecting, correcting,

and removing such records from a dataset is a cru-

cial step. A preparation stage may also be required

to increase the obfuscation level of the data, for pre-

serving privacy, intellectual property, or strategical

knowledge.

– Data Integration and Aggregation. Given the

heterogeneity of distributed data, it is not enough

to merely load them into a distributed storage. A

certain degree of integration, summarization, and

standardization is necessary.

– Data Processing and Querying. Methods for

querying and mining Big Data are fundamentally

different from the traditional statistical analysis.

This is because the impact of data distribution and

performance requirements on algorithms, hence on

processing behavior, is significant.

– Data Interpretation and Reporting. The com-

plexity arising from Big Data technologies renders

a simple monitoring and reporting insufficient as a

means for interpretation and evaluation of results.

A rigorous interpretation requires multiple stages to

verify the assumptions that allow drawing safe con-

clusions.

Figure 1 offers a synthetic view on the pipeline adopted

as a reference for this paper.
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Reference Stages of the BD Pipeline Data Semantics Dim.
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Markl [14] x x
Ardagna et al. [34] x x x x x x
Azzini et al. [23] x x
Smith et al. [26] x x
Liao et al. [35] x x

Duggan et al. [36] x x
Sowmya et al. [37] x x

Zhou et al. [38] x x
Akoush et al. [39] x x

Glavic [40] x x
Berti-Equille et al. [41] x x

Kläs et al. [42] x x
Daiber et al. [43] x x
Shin et al. [44] x x x

Chiticariu et al. [45] x x
Fuhring et al. [46] x x

Bondiombouy et al. [47] x x
Bergamaschi et al. [48] x x

Ramakrishnan et al. [49] x x
Masseroli et al. [50] x x

Scannapieco et al.[51] x x
Gualtieri et al. [52] x x

Liu et al. [53] x x
Gulzar et al. [54] x x

De Wit [55] x x
Zardetto et al. [56] x x
Gonzalez et al. [57] x x

Junghanns et al. [58] x x
Yu et al. [59] x x
You et al. [60] x x

Hagedorn et al. [61] x x
Kornacker et al. [62] x x

Costea et al. [63] x x
Schätzle et al. [64] x x

Cudré-Mauroux et al. [65] x x
Appice et al. [66] x x

Khare2015 et al. [67] x x
Poggi et al. [68] x x
Um et al. [69] x x

Poole et al. [16] x x
Smith et al. [26] x x
Giese et al. [70] x x x

UNECE [71] x x
Severin et al. [72] x x

Mezghani et al. [73] x x
Ginsberg et al. [74] x x
Sculley et al. [75] x x x
Chang et al. [76] x x
Plale et al. [77] x x

Terrizzano et al. [78] x x
Teradata [79] x x

Scannapieco et al. [80] x x x
Agrawal et al. [81] x x

Liu et al. [82] x x
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Reference Stages of the BD Pipeline Data Semantics Dim.
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Damiani et al. [83] x x
Doan et al. [84] x x
Flood et al. [85] x x

Haryadi et al. [86] x x
Benedetti et al. [87] x x x

Ford et al. [88] x x
Haas et al. [89] x x
Cabot et al. [90] x x
Voigt et al. [91] x x
Soylu et al. [92] x x

McKenzie et al. [93] x x
Habib et al. [94] x x

Magnani et al. [95] x x x
Van Keulen [96] x x

Andrews et al. [97] x x
Sparks et al. [98] x x
Meng et al. [99] x x

Flunkert et al. [100] x x
Baylor et al. [101] x x

Table 1 References organized by Stages of the Big Data Pipleline and Data Semantics Dimensions

4 The Contribution of Data Semantics to Big

Data Management

In the next sections we organize our discussion following

the stages of the Big Data pipeline described in Section

3. A summary of this discussion is contained in Table 1

that lists the main references included in this discussion

and maps them to the most pertinent stages of the Big

Data Pipeline and Data Semantics dimensions.

4.1 Data Acquisition and Recording

Provenance represents a major issue and has been

recognised as a key requirement for Big Data appli-

cations [81]. Provenance is about tracking the transfor-

mation process that generated a certain piece of data.

This often implies recording a variety of metadata, for

example about the execution environment that gener-

ated a transformation, the authority that issued a data

set, or a quality measure that was recorded for this

data set. Such metadata can then be exploited in sup-

port of a variety of applications, including debugging,

trust, assurance, and security [40].

Malik et al. [38] present an approach for recording

provenance in a distributed environment. Provenance

metadata is recorded each time a file version is gen-

erated by a node that also maintains a summary of

the provenance metadata it generated and a link to

the nodes that shared files with him. This way, each

node is generating a local view on provenance but the

whole system organises a graph of provenance meta-

data that supports queries over the provenance across

node boundaries. Following a similar approach, prove-

nance systems that capture provenance data generated

by MapReduce computations within the Hadoop frame-

work were developed [35,39].

The “regulatory barrier”, i.e. concerns about viola-

tions of data access, sharing, and custody regulations

when using Big Data, and the high cost of obtaining

legal clearance for their specific scenario has been rec-
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ognized as a major factor hindering Big Data technolo-

gies [102].

According to the EU directive on data protection

[103], personal data is not simply data stored in the

entries of a repository but any information that can

be inferred by processing these entries in combination

to others. The information that can be inferred by a

service provider that manages user profiles, which in-

volve for instance personal interests, personal knowl-

edge, skills, goals, behavior, social, or environmental

context the user interacts with [83]. Stakeholders are

more and more aware of these capabilities and can per-

ceive risks in releasing data to third parties. Thus, it is

essential to design technologies capable of natively re-

porting how Big Data are stored and processed in the

different stages of their life-cycle.

For the acquisition/recording phase, it is impor-

tant to observe that the Big Data user is often dif-

ferent from the Big Data provider. This poses the very

relevant challenge of the authoritativeness of the Big

Data source. All the dimensions of the Trust cluster

[80] should be taken into account, namely: believabil-

ity, reliability, and reputation. In [41], the need for a

framework for truth discovery on the Web is claimed

and an indication of possible solutions to such a chal-

lenge are also provided. In Figure 1, the source quality

evaluation task takes this aspect into account.

4.2 Data Extraction and Annotation

As noted in [86], the adoption of Big Data platforms

requires an overhaul of traditional metadata manage-
ment processes to cope with potentially higher data di-

mensionality, higher acquisition rates, and multipartite

data. In particular, data extraction techniques have to

be upgraded to face these new realities. In the current

context, data extraction relates to the process of ex-

tracting (semi-) structured data from largely unstruc-

tured content such as natural language texts and im-

ages. Many recent works have been focusing on extract-

ing entities from documents. Entities are textual ele-

ments that are of interest to a data extraction task,

such as persons, places, companies, or events. Often,

such entities are first identified in text and then linked

to their counterpart in a knowledge base. In addition to

entities, relations connecting a pair of entities and/or

annotations adding labels to chunks of text are often

extracted. Many systems have been developed for this

purpose, such as SystemT [45], Textmarker [104], Du-

alist [105], MMAX [106], or BRAT [107].

Most of such systems address text in a single lan-

guage only. However, support for multiple language

is essential for data extraction and annotation tech-

niques. Contextual semantic analysis [87] is gathering

interest as a promising technique to tackle multilingual

computational tasks. The idea is to represent docu-

ments as contextual graphs that are sub-graphs of ref-

erence knowledge bases, such as the linked open data

cloud [108] and DBPedia [109]. A contextual graph is

represented in a semantic context vector which in turn

can be used to compare against other documents. The

paper [110], for instance, successfully leverages contex-

tual semantic analysis to build semantic relations be-

tween nominals across multi-lingual (English, German,

and Russian) and multi-genre documents. Deep canoni-

cal correlation analysis leverages multilingual semantics

(English/German) to improve word embeddings [111].

Data extraction methods often use statistical mea-

sures based on parallel corpora that include training

text from one language with translation into one or

more other languages. Approaches to parallel corpora

construction range from manually constructing parallel

documents to automated efforts that search for similar

documents across the web [43,112]. Wikipedia is one of

the largest semi-structured and semantically annotated

parallel corpora. Interestingly, the multilingual aspect

features more than information enrichment across cul-

tures and local preferences. It also exhibits conflicts and

edit wars that reflect priorities, regional, and cultural

differences [113]. Current repositories offering multilin-

gual resources include the Linguistic Data Consortium,

the European Language Resource Association, the Uni-

versity of Oxford Text Archive, GlobalPhone, Tractor,

EuroWordnet, GlobalWordNet, IXA pipes, and MUL-

Text.

Statistical techniques perform poorly for under-

resourced languages such as Chinese, Vietnamese,

and Arabic. Consequently, domain specific techniques

that use hand-crafted grammars [114], expert knowl-

edge that identify mappings rules [115] and language-

invariant features such as mappings of part-of-speech

(POS) and ontology-based annotations [116] have been

introduced to boost the performance of statistical au-

tomatic translation and information retrieval.

Technical reports, news articles, scientific papers,

web pages, and literary books contain multilingual texts

that in general respect presentation rules, layout struc-

tures, and linguistic grammar. However, several some

niche languages have sporadic structure if any. For ex-

ample, SMS and chat messages use proprietary abbre-

viations and no sentence structure. Notes in electronic

medical records [88] are similar except that medical

doctors compose them while paying attention to the pa-

tient and not the keyboard or the screen. This results

in more typing errors. Similar to under-resourced and

6



morphologically rich languages, such documents require

preprocessing and expert knowledge for information ex-

traction and machine translation tasks.

For the extraction/annotation phase, it is important

to extract or derive all quality metadata that could sup-

port the subsequent processing phases. Quality meta-

data are very much source- and task-dependent. As an

example, if wishing to perform an analysis of Twitter

data that needs to take into account the location infor-

mation associated to a specific tweet, then such loca-

tion related metadata should be part of the extraction.

A specific quality characterization of such metadata

should be performed, for instance to assess if location

is accurate by linking it to a geographical dictionary.

An interesting challenge is to develop tools that auto-

matically or semi-automatically allow to annotate data

with quality scores (see [46]). In Figure 1, the quality

metadata extraction and annotation task includes

such activities.

4.3 Data Preparation and Cleaning

Data preparation for Big Data analytics encounters

many obstacles. “Analysts report spending upwards of

80% of their time on problems in data cleaning” [89].

A central data quality problem is handling semantic

duplicates: two or more records that actually represent

the same real-world entity. Besides probabilistic evalu-

ation techniques being inherently imperfect, also merg-

ing records inevitably leads to conflicts. As a conse-

quence, the result of a data integration process is inher-

ently fuzzy. In particular if dealing with unstructured

data, such as data harvested from web sites (e.g., [44])

or from social media (e.g., [94]), where we are requested

to deal with natural language that is inherently ambigu-

ous, moreover, crowd-sourced data may be unreliable or

incomplete.

One important development is using metadata to

represent uncertainty. A nice survey on uncertainty in

data integration is [95]. In essence, the idea is to model

all kinds of data quality problems as uncertainty in the

data [96,117]. This way, uncertain data can be stored

and managed in a probabilistic database [118], or by

aggregating metadata in the form of possibilistic asser-

tions [119].

Semantic duplicates are almost never detected with

absolute certainty unless both records are identical.

Therefore, there is a grey area of record pairs that may

or may not be semantic duplicates. Instead of requiring

a manual inspection and an absolute decision, a prob-

abilistic database can simply directly store the inde-

terministic deduplication result [120]. Furthermore, the

resulting data can be directly queried and analyzed.

Imperfect results of information extraction can be

represented as uncertain data as well. For example, the

mentioning of a named entity like “Paris” can refer to

the capital of France, but also to more than 60 other

places called “Paris” or even to a person. Probabilistic

databases can easily represent such results directly as

well as any related data, such as population.

When resources do not allow for a full investigation

of detailed semantics, these techniques can be used as

a way to cast doubt over the data. Data profiling can

quickly give both valuable insights into the semantics of

data as well as into the source’s quality problems [121].

For example, various types of functional dependencies

can be mined from the data itself [122]. They spec-

ify constraints, or rather expectations, that the context

or application imposes on the data. Any violations of

these may uncover exceptional situations (semantics)

or errors (data quality).

These techniques have achieved right now a limited

adoption in Big Data commercial frameworks. How-

ever, various scholars have addressed the topic. In [53]

a metadata generation algorithm is used for enriching

data with description about context and usage patterns.

Metadata are then exploited to efficiently clean and re-

move inconsistencies in a dataset or in a set of linked

datasets.

The data preparation and cleaning phase can be de-

tailed in terms of sub-tasks. The most significant ones

are: (a) localization and correction of inconsistencies;

(b) localization and correction of incomplete data and

(c) localization of outliers (see [80] for an overview of

these approaches for traditional data). In terms of Big

Data sources, the techniques for performing the clean-

ing tasks are source- and task-specific. As an example,

the Automatic Identification System (AIS) is a system

that permits to detect ships, by providing the location

and status information of ships over a radio channel.

In [55] the authors describe the usage of these data

for maritime statistics and provide a good detail of the

very specific cleaning tasks for these data, such as the

removal of glitches due to errors in the identification

system. The specific tasks considered in Figure 1 are:

consistency checks, imputation procedures, out-

liers detection, duplicate detection.

4.4 Data Integration and Aggregation

Data Management in Big Data cannot be simply re-

solved by an efficient storage and query infrastructure.

Data Integration is equally important. Typically, Big

Data are being integrated by means of Data Lake (DL)

architectures [52,77–79]. A DL is a repository that
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START

S1: Data Acquisition and Recording

Source Quality Evaluation

Data Extraction and Annotation
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S4: Data Integration and Aggregation
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Quality Access

Quality of Queries
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Quality of Analytics

S7: Data Interpretation and Reporting

Task-specific Quality Evaluation

END

Fig. 1 Main stages of a Big Data Pipeline and related Data
Quality Tasks.

stores a vast amount of heterogeneous data in their orig-

inal formats, e.g., relational tables, Web tables, XML

and its variants, texts, images, sounds, videos, graphs,

time series. In most DL deployments, the data storage

layer is based on a distributed file system - HDFS or

GFS, and data is processed in parallel (typically, by a

MapReduce-like parallelisation patterns) [5,123].

In [79], the authors advocate the following four

stages of implementing a DL: (1) learning, planning,

and implementing mechanisms of ingesting data, (2)

improving the quality of data, by applying ETL/ELT

processes [123], (3) developing mechanisms for jointly

querying and analyzing data stored in an enterprise

Data Warehouse (DW) and the DL, (4) augmenting

the DL with the so-called ’enterprise capabilities’, i.e.,

governance, compliance, security, and auditing.

Often, DLs need to ingest data from multiple data

sources spread over the Web, in the framework of appli-

cations such as sentiment analysis, trend analysis, ad-

verse events analysis, or others. In such a context, it is

important to be able to: (1) discover the most relevant

data sources, (2) figure out their structures, content,

and quality, and finally (3) plug the discovered data

sources of interest into a DL integration architecture, to

ingest their content. These processes raise challenges in

developing methods for discovering and profiling [124]

data sources on the Web.

The processes that ingest data into a DL do not

change the structure of the data being uploaded but

store it in their original formats - this feature is known

as no schema on write. The structure of data is how-

ever important for applications that read, process, and

analyze the data. Therefore, such application has to

discover and understand data formats on the fly - this

feature is known as schema on read. To this end, rich

and well-organized metadata are needed to provide a

precise description of the data. In order to ease the

process of querying a DL, a kind of global schema on

various data structures in the DL is needed. This leads

us towards an observation that a revised data modeling

approach is needed that would be able to capture the

heterogeneity of data and that would give a foundation

for querying such data.

Having built a DL and having ingested data, an-

other issue is to keep the DL up-to-date, similarly as a

traditional DW. The content of a DL has to be refreshed

either periodically or in (near) real-time (for application

areas like fraud detection, installation monitoring). Re-

freshing a DL is much more complex than a traditional

DW. It is due to the fact that multiple data sources are

available on the Web with limited capabilities of access-

ing them. Therefore, detecting their data and structural

changes is challenging. Moreover, as data formats are

much more than simple tables, incorporating incremen-

tal updates to data stored in a DL is more difficult. To

this end, new change detection techniques and efficient

refreshing algorithms need to be developed, as even in-
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cremental refreshing may upload much larger data vol-

umes than in a traditional DW architecture.

Recall that the content of a DL typically stores

dumps from various data sources (including the Web)

whose data quality is often poor. Therefore, advanced

data cleaning, augmentation, and imputation tech-

niques (e.g., [125–128]) need to be applied to the con-

tent of a DL.

Today, integrating data in a data lake is handled

manually, for the most part, resulting in slow and cum-

bersome processes. In fact, data preparation and inte-

gration is often considered as the most time-consuming

part of a data science project2. As such, it is urgent to

develop better solutions to this problem.

To provide solutions for the aforementioned chal-

lenges, some research and development works have al-

ready been done, mainly in the field of querying a DL

and providing a schema-like view on the DL.

Three architectures that allow to execute SQL

queries on a Hadoop-based data lakes were identified

in [52]:

– Pure SQL for Hadoop - such an engine includes

an SQL interpreter that is capable of using Hive-

like external tables and exploiting metadata about

their definitions. Examples of such engines include

among others: Hive, Spark, Drill, Kylin, Impala, and

Presto.

– Boosted SQL for Hadoop - an engine supports more

advanced capabilities of query parsing, optimizing,

and scheduling. Examples of such engines include

among others: Actian Vortex, HP Vertica, IBM Big

SQL, JethroData, Pivotal HAWQ, Phoenix, Splice

Machine, and Virtuoso.

– Database+ for Hadoop - an access to data stored in

Hadoop is realized directly from a fully-functional

DBMS, by means of the standardized SQL provided

by this DBMS. To this end, a Hadoop data source

is linked to the DBMS by means of external tables.

Examples of such solutions include among others:

Microsoft PolyBase, Oracle Big Data SQL, Tera-

data QueryGrid, EMC Greenplum, SAP Vora. Such

technologies offer a means for querying jointly an

enterprise data warehouse and a data lake.

An overall architecture of a data lake (discussed in

this section) is shown in Figure 2.

Recently, another Big Data integration architecture

was proposed in [36], which is called a polystore. The

main idea behind it is to organize data sets into the

2 see for instance https://www.

nytimes.com/2014/08/18/technology/

for-big-data-scientists-hurdle-to-insights-is-janitor-work.

html

Fig. 2 An overall architecture of a data lake

so-called islands of information. An island of informa-

tion is defined as a collection of storage engines ac-

cessed with the same query language. For example, in

a data lake, several relational islands, graph islands,

XML islands (each managed by a separate system) can

be stored and all of them can be part of a polystore. An

island exhibits to a user its data model and provides a

common query language, similarly as a mediator [129].

The language and data model are mapped, by a soft-

ware module called a shim, into a specific language and

model of a data management system running the is-

land. This functionality is similar to what provides a

wrapper [129].

Query processing on an island is executed as fol-

lows. First, an island query is expressed in the island

native language. Second, the query is parsed into an

abstract syntax tree (AST). Third, the AST is decom-

posed into partial queries - one query for one DS in the

island. Fourth, partial queries are sent to appropriate

shims. Next, each shim translates its partial query into

a query in a native language of a data source. Finally,

the partial queries are executed in their proper data

sources. The query language of an island (proposed in

[36]) was extended with 2 clauses, namely: scope - for

specifying in which island a query is to be executed and

cast - for indicating an output data model and for copy-

ing data between islands. Multi-island queries are also

allowed by means of shims from different islands.

An example architecture of a polystore system is

shown in Figure 3. It is composed of two information

islands: a relational one and a NoSQL one. The first is-

land is composed of relational data sources DS1, DS2,

and DS3, each of which has its dedicated shim that

exposes a relational interface to the island. The sec-

ond island is composed of NoSQL data sources DS4

and DS5. Their shims expose a NoSQL interface to the

NoSQL island. Notice that DS3 is shared by both is-

lands through 2 shims, i.e., it can be queried from both

islands.
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Fig. 3 An example architecture of the polystore with two
islands of information

A lighter approach to integrating widely different

data in a data lake is to resort to a knowledge graph as

the main mediation layer. The knowledge graph in ques-

tion can be public (e.g., WikiData3 or DBPedia4) or

private (e.g., Google’s Knowledge Graph5). The idea is

then to link all instances in the data lake to instances in

the knowledge graph, and to retrieve all relevant pieces

of data for a given application by issuing search queries

(leveraging ad-hoc object retrieval [130] techniques).

The overall approach is termed entity-centric [131] in

the sense that entities in the knowledge graph play the

role of the global schema in a federated database.

Metadata are crucial to integrate and combine dif-

ferent datasources [84]. For example, the services pro-

vided by different medical centers may be recorded dif-

ferently in different data sets but they all refer to a same

set of standard codes that are ferried as metadata of the

dataset.

Making file metadata scalable is one of the top chal-

lenges addressed in the literature [49]. In connection to

this, scalable data integration methods have been also

investigated [26,48].

There are sectors where data integration is pursued

centers the emergence of a global standard for identify-

ing data objects. For example the legal entity identifier

(LEI) system is aimed at providing a unified approach

for representing financial data [85]. A metadata model

supporting data integration was proposed to link ge-

nomic feature data to their associated experimental, bi-

ological and clinical use [50]. However, global standards

alone are insufficient for high-quality integration [132].

In general, data integration is a difficult task to be au-

tomated as it often requires knowledgeable input from

domain experts. Thus, some authors suggest to explore

the use of advanced interactive approaches such as ac-

tive learning and crowd-sourcing [133].

The data integration and aggregation phase includes

record linkage as a specific quality task (see Figure

3 https://www.wikidata.org
4 http://wiki.dbpedia.org/
5 https://www.google.com/intl/en-419/insidesearch/

features/search/knowledge.html

1). When looking at record linkage for Big Data, there

are two major challenges. Big Data technologies can

indeed support traditional record linkage methods on

data that have a big size: this is indeed the purpose

of tools such as Dedoop [134]. Here the challenge is

to make traditional algorithms scalable. Second, the

record linkage pipeline for Big Data should be fully au-

tomatic. This means that several manual-based record

linkage steps should be overcome: supervised learning

techniques, clerically prepared training sets, user de-

fined classification thresholds, clerical review, interac-

tive evaluation of obtained results [51]. In this respect,

in terms of open challenges, fully automated techniques,

like e.g. [56], should find more and more space.

4.5 Data Processing and Querying

Storing and querying Big Data sets efficiently are fun-

damental services of any Big Data platform. The main

challenge in this context is to provide scalable and reli-

able distributed storage systems that supports a broad

range of data access patterns for different kinds of

queries and analytics. Several approaches have been de-

veloped towards that end.

Hadoop ecosystem. In the context of the Hadoop

ecosystem, numerous technologies have been developed

to support management and processing of Big Data.

A fundamental component is the HDFS distributed file

system, which was originally inspired by the Google file

system [135]. HDFS aims at: (i) scalability by storing

large files across multiple nodes (so called DataNodes)

as well as at (ii) reliability by replicating blocks of files
across multiple nodes (with default replication factor

set to 3). For better read performance, HDFS tries to

exploit data locality by executing mapper tasks on the

nodes storing the required data. However, HDFS is op-

timized for large and rather immutable files. In addi-

tion to standard text files such as text, CSV, etc. sev-

eral more advanced file formats are available, including

columnar storage formats such as Parquet and ORC,

which also support compression, indexing and Bloom

filters. Other approaches such as HAIL [136] propose

clustered indexes, which are created upon upload of the

data to HDFS in order to speed up query processing.

HDFS provides a foundation for several

MapReduce-like data processing frameworks such

as Hadoop MapReduce, Apache Spark or Flink [137].

The latter two extend the original MapReduce model

by additional programming abstractions simplifying

the formulation of complex analytical pipelines as

well as an in-memory processing model for better

performance.
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The core of Spark6 are abstractions for distributed

in-memory and immutable data collections, which can

be transformed by parallel operations (including re-

lational query operations). Originally, so-called RDDs

(resilient distributed datasets) [138] were used for this

purpose: recently so-called DataSets have been intro-

duced, which are strongly-typed and allow a better op-

timization of (relational) queries [139]. In addition to

the batch-processing model, both Spark and Flink also

provide extensions for processing data streams.

Another part of the Hadoop ecosystem based on

HDFS is HBase, which was inspired by Google’s

BigTable approach [76]. HBase is a distributed database

implementing a wide-column model. Though, it does

not support a declarative query interface directly, sev-

eral extensions have been developed on top of HBase,

such as Drill and Phoenix as SQL layers for HBase, and

Hive as a data warehouse solution.

Particularly for Spark and Flink, several higher level

frameworks for different data models exist that exploit

the underlying parallel dataflow engine for scalable pro-

cessing. This includes extensions for graph processing

and analytics such as GraphX [57] and GRADOOP [58]

for processing RDF data using SPARQL BGPs, for spa-

tial data processing, e.g. GeoSpark [59], SpatialSpark

[60], and STARK [140], as well as machine learning

frameworks such as MLlib [141].

S*QL on Hadoop. SQL-on-Hadoop systems can be

seen as a class of database systems running on cluster

infrastructures. However, they differ from traditional

systems by relying on scalable storage layers and cluster

resource management frameworks (such as Hadoop’s

YARN or Mesos7. In that sense, cluster resources can

be shared with other jobs, e.g., batch jobs for prepar-

ing data or iterative jobs performing complex machine

learning tasks.

One of the first attempts to build a database sys-

tem using Hadoop is HadoopDB [142], where Hadoop

is used as a coordinator to connect multiple single-node

databases. Other examples are Hive, HAWQ (formerly

known as Pivotal), Impala [62], and VectorH [63]. Par-

ticularly, VectorH does not only use HDFS for com-

pressed columnar storage and YARN for workload man-

agement, but also exploits HDFS block placement pol-

icy for locality and supports transactional updates. A

specific feature of Impala is the just-in-time code gen-

erator for query compilation. SparkSQL [139] is a dis-

tributed query engine integrating relational processing

with Spark’s functional programming API. SparkSQL

supports both a SQL interface as well as a declarative

API that integrates with procedural code. It includes an

6 https://spark.apache.org/
7 http://mesos.apache.org/

extensible optimizer supporting lower-level code gener-

ation to speed up query execution.

In addition to SQL support on Hadoop, there exist

also engines for other query languages like SPARQL.

Examples are HadoopRDF [143], Sempala [144] for

translating SPARQL to Impala’s SQL, and S2RDF for

translating SPARQL to Spark [64].

Besides Hadoop, numerous data management archi-

tectures exist aiming at the management of Big (se-

mantic) Data. The area of NoSQL databases covers a

wide range of solutions from scalable key-value stores

over document stores to graph databases. Notable ex-

amples includes CumulusRDF [145], which is based

on Cassandra and implements a SPARQL query in-

terface, Couchbase or MongoDB, which allows to store

and query tree/graph structures as JSON documents,

distributed graph databases, such as Neo4j and Alle-

groGraph, for storing and processing large graphs, and

scalable triple stores such as Virtuoso or GraphDB pro-

viding a SPARQL interface [146].

Data processing and querying can have a quality

counterpart in terms of quality access and querying

(see Figure 1). Quality-driven data access has been in-

vestigated in contexts where multiple sources could con-

tribute answering to user queries. For Big Data sources

this paradigm can be particularly relevant due to the

uncontrolled data generation mechanism that is often

inherent to such sources; indeed, even if the data gen-

eration is out of control, a user interested in the data

can rely on their quality features.

4.6 Data Analysis and Modelling

Executing Analytics on Big Data imposes new chal-

lenges.

Traditional algorithms for data mining assume to

have access to the entire dataset; while high data vol-

umes and real-time processing give access only to frac-

tions of the dataset. For example, data transforma-

tion techniques adopted in batch scenarios can be in-

appropriate in case of data distributions evolving over

time [147]. Moreover, data streams, as ordered and po-

tentially unbounded sequences of data points, typically

create non-stationary flows, in which the data distribu-

tion evolves over time. This means that finite training

sets and static models are no longer appropriate [148].

The situation is worsen by the fact that data is dis-

tributed over a variety of different sources having di-

versified latencies.

In Big Data, complex analytical procedures and

methods of various fields, e.g., machine learning, data

mining, statistics, and mathematics are often com-
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bined [66,149], as no single algorithm can perform op-

timally in all cases. Then, various methods have been

proposed to support model-selection, based on the ob-

served data and the analytics goals [37]. This requires

the data structure and the semantics of analytics to be

expressed in machine readable formats [150,151].

Adaptive Models are also proposed for managing

the architecture of large-scale distributed systems [152,

153]. These models provide abstractions of systems dur-

ing runtime to support dynamic state monitoring. Hart-

mann et al. [154] go one step further. They combine

the idea of runtime models with reactive programming

and peer-to-peer distribution. Reactive programming is

aimed at supporting interactive applications, which re-

act on events by focusing on streams. For this purpose

a typical publish/subscribe pattern is used. Khare et al.

show the application of such an approach in the IoT do-

main in [67]. In [68] semantic models are used to provide

a unified view of the heterogeneous elements composing

these systems, and reasoning mechanisms are leveraged

to drive adaptation strategies.

Even if the primary focus of Big Data analytics do

not involve the definition of an end-to-end processes,

some authors have studied its application to Business

Process [155]. Data science approaches tend to be pro-

cess agonistic whereas process science approaches tend

to be model-driven.

Luckham [156] introduces Complex Event Process-

ing (CEP) by defining complex events which are cor-

related among each other. Saleh et al. [61] apply the

data aggregation approach of CEP to data streams.

Process Mining (PM) is a process-centric management

technique bridging the gap between data mining and
traditional model-driven Business Process Management

(BPM) [157,158]. In this field of research, business pro-

cesses are analyzed on the basis of process execution

logs, so-called event logs. Events are defined as pro-

cess steps and event logs as sequential events recorded

by an information system [159]. The main objective of

PM is to extract valuable, process-related information

from logs for providing detailed information about ac-

tual processes for analytical purposes, e.g., to identify

bottlenecks, to anticipate problems, to record policy

violations, to streamline processes, etc. [158]. Current

event processing technologies usually monitor only a

single stream of events at a time. Even if users moni-

tor multiple streams, they often end up with multiple

“silo” views. A more unified view is needed that cor-

relates with events from multiple streams of different

sources and in different formats. Thereby, heterogeneity

and incompleteness of data are major challenges [81].

Mostly, PM operates on the basis of events that belong

to cases that are already completed [160]. This off-line

analysis is not suitable for cases which are still in the

pipeline. An open research question is whether current

algorithms to abstract models from logs are scalable

enough to handle data streams [155,161].

The analysis and modelling phase does also have an

important quality counterpart, quality analysis, c. f.

Figure 1. There are obviously quality metrics depending

on specific methods used, e.g. the F-measure for classifi-

cation tasks [162]. However, methods-independent qual-

ity measurements could be considered. In [71], a quality

framework for Official Statistics is proposed; an inter-

esting notion is steady states, meaning that the data

have to be processed through a series of stable rep-

resentation that can be referenced by future analytics

processes.

4.7 Data Interpretation and Reporting

While processing Big Data, a key issue is to support

the user’s comprehension of the process result. Visual

Analytics is an emerging field of research that aims at

combining the automatic computation with visual anal-

ysis, allowing the user to combine the two approaches.

While this combination has proven to be effective, Big

Data poses problems concerning the volume of data

to display (asking for more abstract visual represen-

tation), the velocity with which the data change, and

their variety. Capturing their volume and their vari-

ety requires solutions that are able to visually abstract

and/or aggregate the data, in order to allow their rep-

resentation as visual elements in a finite visual space.

Capturing data velocity poses additional challenges in

terms of how visually convey changes in order to main-
tain their traceability while ensuring a general stability

of the whole visualization, avoiding to confuse the fi-

nal user. Additionally, in the more demanding scenario

of data streams, accuracy of results, trend discovery,

and trend anticipation pose challenges for the visual-

ization, like handling uncertainty in the displayed data

or visualizing prediction accuracy in trend discovery. In

this context, data semantics can provide an additional

layer of information to be exploited for mitigating the

afore-mentioned issues at different levels (supporting

better user interaction, visualizing only the meaning-

ful portions of data, linking semantics with extensional

properties of the dataset), Also, visualization can be ex-

ploited in order to comprehend and refine the semantic

description of the data. In [163] the authors exploit data

semantics to automatically generate visualizations. The

proposed approach uses two different ontologies, one

that maps the semantics of the dataset and another

that maps the semantics of a set of visual represen-

tations, with the final goal of automatically proposing
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the best possible visual representation. On the same

topic, [91] extracts, through semantics modeling, a data

context used then to recommend a good visual repre-

sentation paradigm. The works in [164,165] propose a

cockpit for ontology visualization, in order to improve

the knowledge space exploration, evaluated on Linked

Open Data (LOD). Other approaches to ontology vi-

sualization and exploration are presented in [166–168].

Data semantics can be useful in the visual analysis pro-

cess design. Focused on applying a semantic transfor-

mation for the taxi trajectories, applied for the Shen-

zen city in China, is presented in [169]. It exploits se-

mantic information (street names, points of interest)

for discovering hidden patterns in the data and allow-

ing faster and more accurate taxi trajectories visual ex-

ploration. Supporting querying of ontology-based Big

Data through a visual query language is one of the

goals in the Optique project [92,70]. Several efforts have

been produced in the application of visualization for

representing semantics in social media analysis, recent

work [93] proposes a multi-granular, data-driven, and

theory-informed framework to interactively explore the

pulse of a city based on social media, while other re-

searchers [73] focused on wearable devices data in a

health-care domain.

The data interpretation and reporting phase has

also a specific quality task in the pipeline of Figure 1.

The quality of analyses deriving from Big Data should

be carefully evaluated [170]. A relevant example is the

Google work on flu trends [74] that estimates flu preva-

lence from flu-related Internet searches. In January

2013, Google flu trends estimated almost twice as many

flu cases as were reported by CDC, the Centers for Dis-

ease Control and Prevention. The initial Google paper

stated that the Google Flu Trends predictions were 97%

accurate compared to CDC data. This case is emblem-

atic of other challenges related to Big Data: (i) evalu-

ation of robustness over time of models based on Big

Data that may exhibit unexpected glitches (ii) evalua-

tion of the usage of Big Data-based models alone or in

conjunction with more traditional sources.

4.8 Representing Processes

The complexity of Big Data architectures has encour-

aged the definition of work-flow languages for manag-

ing pipelines. Among the most popular solutions we

have: Apache Oozie 8, AirBnB Airflow 9, LinkedIn Azk-

aban 10, and Spring Cloud Data Flow 11. These frame-

8 http://oozie.apache.org
9 https://airflow.apache.org

10 https://azkaban.github.io
11 https://cloud.spring.io/spring-cloud-dataflow/

works support orchestration of software components

written in different languages, enabling the integra-

tion of heterogeneous systems and facilitating program-

mers in choosing their favorite technologies. In princi-

ple, these frameworks provide a representation model

that can contribute to foster re-usability and modular-

ity. However, the level of portability achieved by these

languages is limited [97]. In fact, there is no explicit

integration between the execution work-flow and the

code that is executed by atomic tasks. This implies that

knowledge about task level code is required for inter-

facing elements. Moreover, these orchestration engines

do not provide support for validating a work-flow or

for optimization step. In particular, it has been argued

that the complex nature of Big Data processing makes

optimization strongly context dependent: for example,

the effectiveness of a pipeline depends on data distri-

bution and on the parallelization model adopted at the

deployment infrastructure.

Recent researches have faced these limitations re-

lay on platform-specific configuration libraries. Key-

stoneML [98], for example, introduced an approach to

large-scale pipeline optimization extending Spark ML

libraries [99]. The authors focus on capturing end-to-

end pipeline application characteristics that are used

to automatically optimize execution at both the oper-

ator and pipeline application levels.

A high-level data-flow abstraction for modeling

complex pipelines is proposed in [100]. The data-flows

proposed in this work are directed acyclic graphs that

specify some aspects of a pipeline delegating data

inspections and optimization to the execution stage.

In [101] the authors proposes an adaptation of Ten-

sorFlow, for supporting data analysis, transformation,

and validation. The aim is boosting automation in the

deployment of machine learning models.

The main limitations of the current proposals are

that they are closely tied to specific frameworks, such

as Spark in [98,100] or TensorFlow in [101] and lack of

a formal definition supporting verification procedures

for Big Data pipelines.

Although the above perspectives have been consid-

ered in the literature, there is a lack of a comprehen-

sive approach addressing the whole life-cycle of a Big

Data campaign. A general methodology for represent-

ing and reasoning on all steps of a Big Data pipeline

is proposed in [34]. This methodology is used for sev-

eral applications in the framework of the TOREADOR

project12.

12 http://www.toreador-project.eu
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5 Open Challenges

As a result of the discussion proposed in Section 4, we

propose a list of challenges that we consider relevant

for future research.

– Developing an integrated data model (at the

conceptual and logical level), capable of represent-

ing heterogeneous and complex models of various

data sources [90]. These models have to incorporate

techniques for managing data sources, i.e.,:

(semi)-automatic discovery of data sources which

are relevant to a user and dynamically plugging-in

the data sources into an existing integration archi-

tecture. Designing and implementing efficient Data

Integration Architectures for ingesting data

into a DL [171] and further, for producing clean and

more structured data. Since a Big Data ETL engine

processes much more complex ETL/ELT workflows

and much larger data volumes than a standard

one, its performance becomes vital. Moreover, to

handle the complexity of data, workflows require

in-house developed user-defined functions, whose

optimization is difficult. Performance optimization

of ETL/ELT workflows has not been fully solved for

traditional DW architectures and Big Data added

new problems into the already existing ones [172].

This includes efficient mechanisms for storing

and retrieving data in a DL. Finding a relevant

data set quickly requires additional data structures

(a counterpart of indexes in traditional DBs),

physical organization of data (a counterpart of

partitioning, row-store, column-store in traditional

DBs), and compression algorithms, suitable for

complex and heterogeneous data. A first challenge

arises from the continuous production of new data

combined with the need for real-time or on-line

analytics. Thus, Big Data platforms have to cope

both with (transient) streaming data and persistent

data while being able to process queries on both

kinds of data, in the form of continuous queries as

well as ad-hoc batch queries.

– Developing a query language capable of handling

data complexity, heterogeneity, and incompleteness.

Moreover, it seems to be important to include user

preferences in a query, like quality of service, quality

of data, output data format, and preferred way

of visualization. Another challenge is the support

for declarative queries and their optimization.

SQL is often considered as not powerful enough to

formulate complex analytical tasks. Therefore, data

scientists tend to prefer language-integrated DSLs

which basically combines programming languages

with domain specific language, scripting languages

like Python, dataflow languages like Pig Latin

[173], special-purpose languages like R [174] or

implement specific tasks in user-defined functions

(UDF). Particularly imperative languages like

Python or Java but also black-box UDFs make

it difficult to parallelize and optimize complex

dataflow programs, although, query optimization is

a well-studied field and recent developments, e.g.

around Spark and other Hadoop-based systems,

show a trend (back) towards declarative and

optimizable query languages such as SQL dialects.

– Developing a metadata standard and archi-

tecture. The latter should support: automatic or

semi-automatic metadata discovery and collection

from new data sources plugged into an integration

system, as well as efficient metadata storing,

searching, and visualizing. The benefit of metadata

management within Big Data technologies was also

established by surveys with Data Science profes-

sionals [175,102]. Metadata management opens

challenges that affect almost all aspects of Big

Data [26]. For example, the data processing engine

has to identify the data sets that can be used for

starting the ingestion procedure, as there may exist

multiple data sets storing semantically the same

data. The problem is then to figure out which data

sets to use based on the query to be answered or

the analytics to be applied. Different criteria may

be taken into consideration, e.g., data format, data

quality, data completeness, data freshness. Finally,

the results must be appropriately visualized [123].

Some work on this issue was initiated in [36,82].

For example, data in various formats could be

converted on-the-fly to the format preferred by

a user, e.g., relational, XML, graph, RDF. Also,

different data sources may have a different impact

on performance. Identifying these implications is

crucial to avoid overloading a single job.

– Developing solid techniques for dealing with in-

complete and uncertain data. For analytical

purposes (i) events have to be captured from data

streams, (ii) events of interest have to be separated

from noise, (iii) correlations with other streams and

databases have to be established, (iv) reaction to

events of interest must happen in real-time, and (v)

these events have to be stored in an appropriate

model structure equipped to deal with concept

drifts detection to then run on-line or off-line

analysis. Improving the scalability of probabilistic

and uncertainty data models is an important

14



issue as well as the expressiveness of the data and

uncertainty they can manage. Note that there are

multiple models for representing uncertainty: for

instance, the possibilistic or fuzzy set model [176],

and the Dempster-Shafer evidence model [177].

Furthermore, there are many different kinds of

integration and data quality problems that require

to manage uncertainty. For example, [178] presents

an approach for probabilistic integration of data on

groupings. It furthermore shows that probabilistic

database technology (in this case MayBMS [179])

is already close to being able to handle real-world

biological databases. When combined with an

effective method for data quality measurement, this

technology can deliver a good-enough approach

where small iterations reduce the overall effort in

data quality improvement.

– Designing and implementing efficient virtual data

integration architectures, as complementary to a

DL or polystore. Such architectures expose their

pitfall of being slow, since query resolving and data

integration is executed on the fly. For this reason,

new optimization techniques are needed. Some of

them could be based on caching the results at

two levels: in main memory and on disk. Using

the cached data requires their management, i.e.,

to decide what to cache, which queries should be

executed on data sources and which on cached data,

proactive refreshing is also needed in the spirit

of [180]. We can envision additional challenges

that cope with the capability to exploit the data

semantics to steer the visual analytics process in

Big Data analysis. More in detail, data semantics

could be exploited as a steering factor in Big

Data explorative analysis, following Progressive

Visual Analytics techniques [181–184], a novel

approach producing intermediate approximated

results allows for fast Big Data exploration. In this

approach, the user can steer the visual analysis

process, and the availability of data semantics can

be a way to express steering preferences (e.g., focus

the computation only on data having a particular

semantics) constitutes a challenge and opportunity.

Data semantics can also help while selecting the

right visual representations for a dataset, taking

into account additional semantic information like,

for example, the user’s task and the device capa-

bilities, encouraging the creation of a taxonomy

that binds together the semantics and the structure

of the data with the appropriate visualization

paradigms and techniques. A last challenge is

to use visual analytics on Big Data in order to

extract the semantics itself, with a semi-automated

process in which the user projects her knowledge of

the problem on the data representation (see, e.g.,

[185] for network visualizations), on a portion of

interest of the data or the full dataset. The visual

representation of a dataset can help in identifying

common properties of the data, trends, features,

that all together can help to form a semantic

description of the data.

– Developing models to support reproducibility

and verifiability of Big Data pipelines. Re-

producibility is a precondition to an efficient link

between research and production environments and

to support reuse and modularity. It involves the def-

inition of the Extract, Transform, and Load (ETL)

process executed, including the data sources inte-

grated with their metadata about provenance and

format. Verifiability is of fundamental importance

because low quality data will necessarily generate

low-quality analytics. It involves the definition of

input and output data type for each integrated

task or methods to examine data distribution in

order to verify essential preconditions for statistical

analysis. However, achieving these objectives in

Big Data architectures is not trivial. It has been

acknowledged that implementing complex pipelines

for real-world systems poses a huge challenge [75],

especially because the effectiveness of a pipeline

strictly depends on data distribution. This calls for

a representation of the interdependences between

the different stages of a pipeline.

– Developing models to represent regulatory knowl-

edge for automated compliance. Regulatory pe-

culiarities cannot be addressed on a project-by-

project basis. Rather, certified compliance of each

Big Data project (e.g., in the form of a Privacy Im-

pact Analysis) should be made available from the

outset to all actors that use Big Data analytics in

their business model. Also, data processing comes

with legal issues that may trigger unwanted liti-

gation. How to account intellectual property and

how to shape the economical exploitation of analyt-

ics in multi-party environments [186]? How to pro-

vide evidence that data processing is compliant with

ethics, beyond norms and directives [187]? Those are

among the questions that still require mature and

reliable solutions.
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6 Conclusions

The complexity of Big Data applications in conjunc-

tion with the lack of standards for representing their

components, computations, and processes, have made

the design of data-intensive applications a failure prone

and resource-intensive activity. In this paper, we argued

that no innovation in algorithms can compensate lack

of sound modeling practices. Indeed, we believe that the

major challenges facing Big Data research require - even

more than developing new analytics - devising inno-

vative data management techniques capable to deliver

non-functional properties like data quality, data inte-

gration, model compliance, or regulatory compliance.

Data Semantics research can address such challenges in

future research according to the FAIR principles [18],

for implementing design procedures that generate Find-

able, Accessible, Interoperable, and Reusable data.
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