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Abstract

Let q2 > 2 · 38 be odd. We prove that there exist exactly three non-equivalent
symplectic semifield spreads of PG(5, q2) whose associated semifield has center con-
taining Fq by proving that there exist exactly three non-equivalent Fq-linear sets of
rank 6 in PG(5, q2) disjoint from the secant variety of a Veronese surface V under
the action of the automorphism group of V.

1 Introduction

Let PG(r − 1, q) be the projective space of dimension r − 1 over the finite field Fq of
order q. A planar spread S of PG(2n − 1, q), which we will call simply spread from now
on, is a partition of the point-set in (n − 1)-dimensional subspaces. With any spread
S it is associated a translation plane A(S) of order qn in the following way: embed
PG(2n − 1, q) in PG(2n, q) as a hyperplane section, then the points of A(S) are the
points of PG(2n, q)\PG(2n−1, q), the lines are the n-dimensional subspaces of PG(2n, q)
intersecting PG(2n − 1, q) in an element of S and the incidence is containment (see e.g.
[9, Sect.5.1]). Translation planes associated with different spreads are isomorphic if and
only if there is a collineation of PG(2n− 1, q) mapping one spread to the other (see e.g.
[21]), and in such a case we say that the two spreads are equivalent. Let M(n, q) be the
vector space of the matrices of n × n with entries in Fq. Without loss of generality, we
may always assume that S(∞) := {(0,y),y ∈ Fnq } and S(0) := {(x,0),x ∈ Fnq } belong to
S, hence we may write S = {S(A), A ∈ C} ∪ S(∞), with S(A) := {(x,xA),x ∈ Fnq } and
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C ⊂ M(n, q) such that |C| = qn, C contains the zero matrix and A − B is non-singular
for every A,B ∈ C. The set C is called the spread set associated with S.

A spread S is said to be Desarguesian if A(S) is isomorphic to AG(2, qn) and hence
a plane coordinatized by the field of order qn. The spread S is said to be a semifield
spread if A(S) is a plane of Lenz-Barlotti class V and this is equivalent to saying that
A(S) is coordinatized by a semifield and it is called semifield plane. A finite semifield
(S,+, ∗) is a finite nonassociative division algebra. If (S,+, ∗) satisfies all the axioms for a
semifield except, possibly, the existence of an identity element for the multiplication, then
it is called a presemifield (see, e.g., [16] Chapter 6 for definitions and notations on finite
semifields). The left nucleus Nl and the center K of a semifield S are fields contained in S
as substructures (K subfield of Nl) and S is a vector space over Nl and over K. Semifields
are studied up to an equivalence relation called isotopy (which corresponds to the study
of semifield planes up to isomorphisms and hence to the study of semifield spreads up to
equivalences) and the dimensions of a semifield over its left nucleus and over its center
are invariant up to isotopy.

A semifield spread S is such that there exists an elementary abelian subgroup G of
PGL(2n, q) of order qn fixing an element X ∈ S point-wise and acting regularly on S. If
we set X = S(∞), then C turns out to be a subgroup of the additive group of M(n, q)
([9, Sect.5.1]) and hence it is a vector space over some subfield of Fq. Also, C is a set of qn

n× n matrices over Fq, containing the zero matrix and any nonzero matrix is invertible.
This has led to the following geometric interpretation (see [18] as it first appeared for
n = 2 and [15] for the general case). Let PM := PG(n2 − 1, q) = PG(M(n, q),Fq) be the
projective space induced by M(n, q). The Segre variety S = Sn,n(q) of PM is the set of all
points 〈X〉 of PG(n2 − 1, q) such that X is a matrix of rank 1. The variety Sn,n contains
two systems R1 and R2, all elements of which are (n− 1)−subspaces with the following
properties: (a) the subspaces of R1 (resp. R2) are mutually disjoint; (b) if A and B are
(n− 1)−subspaces belonging to different systems of Sn,n, then A ∩B is a point; (c) each
point of Sn,n belongs to a unique element of R1 and to a unique element of R2.

A k–dimensional subspace S of PG(n2 − 1, q) is a k–th secant subspace to Sn,n when
S = 〈P1, P2, . . . , Pk+1〉 and {P1, P2, . . . , Pk+1} ⊂ Sn,n. The (n−2)–th secant variety Ω(Sn,n)
of Sn,n is the set of all points of PG(n2−1, q) which belong to an (n−2)–th secant subspace
to Sn,n. Note that

Ω(Sn,n) = {〈X〉 | X ∈M(n,Fq), detX = 0},

i.e. Ω(Sn,n) is an algebraic variety, also called determinantal hypersurface, defined by the
non–invertible matrices of M(n, q) (see, e.g., [11, Section 25.5] and [10, Ch.9] for further
details).
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Define Γ := ΓAσB the collineation of PM induced by the semlinear map γ = γAσB of
M(n, q) whose rule is

γ : X ∈M(n, q) 7→ AXσB ∈M(n, q) (1)

(where A and B are invertible matrices of M(n, q) and σ ∈ Aut(Fq)). The collineation Γ
leaves invariant the Segre variety Sn,n and the set

H(Sn,n) := {ΓAσB : σ ∈ Aut(Fq), A and B invertible matrices of M(n, q)}

turns out to be the automorphism group of Sn,n preserving the systems R1 and R2 of
Sn,n (see [11]). The group H(Sn,n) has index 2 in the automorphism group Aut(Sn,n).

If C is an Fs-vector space, q = st, then dimFs C = nt and it defines a subset L(C)
of PG(n2 − 1, q) which is an Fs-linear set of rank nt. So finding a semifield spread of
PG(2n − 1, q) (and hence a semifield plane of order qn) is equivalent to finding an Fs-
linear set of PG(n2 − 1, q), q = st, of rank nt disjoint from Sn,n. More precisely:

Theorem 1. ([15, Cor. 5.3]) Let S1 and S2 be two semifields of order qn, with left nucleus
containing Fq and center containing Fs (q = st) and let C1 and C2 be the associated
semifield spread sets, respectively. Then S1 and S2 are isotopic if and only if there is a
collineation Γ of H(Sn,n) such that L(C2) = L(C1)Γ = L(Cγ

1), with Cγ
1 = C2.

By [19, Lemma 2], any collineation of the group H(Sn,n) interchanging the two sys-
tems of the variety defines another presemifield St, which is the so called transpose of S,
introduced by Knuth in [14].

If S is a symplectic semifield, we may assume that S is defined by a spread set C of
symmetric matrices (see, e.g., [13] and [23]). In this case the associated linear set L(C)

is contained in the projective subspace ∆ = PG(Symn(q),Fq) = PG(n(n+1)
2
− 1, q) of

PM defined by the symmetric matrices of order n over Fq, and it is disjoint from the
varietyM defined by the non–invertible n×n symmetric matrices over Fq. By [10, p.99],
M = M(Vn) is the (n − 2)-th secant variety of the quadric Veronesean Vn = ∆ ∩ Sn,n
defined by the n× n symmetric matrices of rank 1. Hence we have

Theorem 2. ([19, Thm. 2]) If S is a symplectic semifield of order qn, left nucleus
containing Fq and with center containing Fs (q = st), then the associated Fs–linear set L

of P = PG(n2−1, q) is contained in an (n(n+1)
2
−1)–dimensional subspace of P intersecting

Sn,n in a quadric Veronesean Vn.
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The converse of the previous theorem holds true as well (see [19, Remark 1]). The
automorphism group G of Vn consists of the collineations of PG(Symn(q),Fq) induced by
the semilinear maps γ = γAσAT of Symn(q) with rule

γ : X ∈ Symn(q) 7→ AXσAT ∈ Symn(q) (2)

(where A is an invertible matrix of M(n, q), AT denotes its transpose matrix and σ ∈
Aut(Fq)). Since any element of Aut(Vn) can be extended to an element of Aut(Sn,n), fixing
or interchanging the systems, and since any symplectic semifield is self–transpose (i.e. the
isotopy classes of S and St coincide), from Theorems 1 and 2, we have the following result.

Corollary 1. Let S1 and S2 be two symplectic semifields of order qn, with left nucleus
containing Fq and center containing Fs (q = st) and let C1 and C2 be the associated
semifield spread sets, respectively. Then S1 and S2 are isotopic if and only if there is a
collineation Γ of G such that L(C2) = L(C1)Γ = L(Cγ

1), with Cγ
1 = C2.

Symplectic semifield spreads and commutative semifields are related via the cubical
array ([14]) and, as noted in [13], we know few examples of such structures. After Kantor’s
paper was published, some examples of commutative semifields in odd characteristic have
been constructed, all obtained by using perfect nonlinear Dembowski–Ostrom polynomials
(see [26], [6], [3], [19], [4], [5] and [27]). For a complete list of proper commutative
presemifields of odd order see [22, Table 1].

In this paper we focus on the case n = 3, i.e. on the symplectic semifield spreads of
PG(5, q2), q odd, whose associated semifield has center containing Fq. When q is even
the only possibility is that the symplectic spread is Desarguesian ([8]).

About the case q odd, so far, the known symplectic semifield spreads of PG(5, q2)
whose associated semifield has center containing Fq are:

D The Desarguesian spread;

A The symplectic semifield spreads associated with the twisted fields ([1], [2]).

BH The symplectic semifield spreads associated with the commutative presemifields
constructed in [6];

LMPT The symplectic semifield spreads constructed in [19];

ZP The symplectic semifield spreads associated with the commutative presemifields
constructed in [27].

Here, using the connection with the associated linear sets, we get the following classi-
fication result.
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Theorem 3. Let q2 > 2 · 38 be odd. Then there exist only three non-equivalent symplectic
semifield spreads of PG(5, q2) whose associated semifield has center containing Fq: the
Desarguesian spread D, the symplectic semifield spread associated with a twisted field A
and a spread comprising the constructions BH,LMPT ,ZP.

2 Preliminary results

As we have observed in the introduction the study, up to equivalences, of symplectic semi-
field spreads of PG(5, q2) whose associated semifield has center containing Fq corresponds
to the study, up to isotopisms, of symplectic semifields of order q6, whose left nucleus
contains Fq2 and whose center contains Fq. Also, from Corollary 1, two Fq–linear sets of
rank 6 in P := PG(5, q2) disjoint from the secant variety of the Veronese surface V3 of P,
which are not equivalent under the action of the automorphism group G of V3, produce
non isotopic semifields.

From Theorems 1 and 2 this is equivalent to study up to the action of the collineation
group G of PΓL(6, q2) fixing V3.

2.1 Linear sets

The set L of P = PG(V,Fqt) = PG(r − 1, qt), V r-dimensional vector space over Fqt , is
said to be an Fq–linear set of rank m if it is defined by the non-zero vectors of an Fq-vector
subspace U of V of dimension m, i.e.

L = LU = {〈u〉Fqt : u ∈ U \ {0}}.

We point out that different vector subspaces can define the same linear set. For this
reason a linear set and the vector space defining it must be considered as coming in
pair. A point P = 〈v〉Fqt ∈ PG(r − 1, qt) has weight i in LU if dimFq(〈v〉Fqt ∩ U) = i,

hence a point belongs to LU if and only if it has weight at least 1. If LU 6= ∅, we have
|LU | ≤ qm−1 + qm−2 + · · ·+ q + 1 and |LU | ≡ 1 (mod q). An Fq–linear set LU of P of rank
m is scattered if all of its points have weight 1, or equivalently, if LU has maximum size
qm−1 + qm−2 + · · · + q + 1. If dimFqU = dimFqtV = r and 〈U〉qt = V , then the Fq–linear

set LU is a subgeometry of P isomorphic to PG(r − 1, q). If t = 2, then LU is a Baer
subgeometry of PG(r − 1, q2). (For further details on linear sets see [25].) Recall that
a subgeometry of P = PG(r − 1, qt) isomorphic to PG(r − 1, q) can be also defined as
the set of points of P fixed by a semilinear collineation σ of order t. A subspace S of P
intersects the subgeometry in a subspace of the same dimension if and only if S = Sσ and
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if two subspaces S1 and S2 fixed by σ meet in a subspace S3, then also S3 is obviously
fixed by σ and hence it intersects the subgeometry in a subspace of the same dimension.

In [20], the authors give the following characterization of Fq–linear sets. Let Σ =
PG(m−1, q) be a subgeometry of Σ∗ = PG(m−1, qt), let Γ be an (m−r−1)–dimensional
subspace of Σ∗ disjoint from Σ and let P = PG(r−1, qt) be an (r−1)–dimensional subspace
of Σ∗ disjoint from Γ. Denote by

L = {〈Γ, P 〉qt ∩ P : P ∈ Σ}

the projection of Σ from Γ to P. We call Γ and P, respectively, the center and the axis
of the projection. Denote by pΓ,P the map from Σ to L defined by P 7→ 〈Γ, P 〉qt ∩ P for
each point P of Σ. By definition pΓ,P is surjective and L = pΓ,P(Σ).

Theorem 4. [20, Theorems 1 and 2] If L is a projection of Σ = PG(m − 1, q) to P =
PG(r − 1, qt), then L is an Fq–linear set of P of rank m and 〈L〉qt = P. Conversely, if L
is an Fq–linear set of P of rank m and 〈L〉qt = P, then either L is a subgeometry of P or
for each (m− r− 1)–dimensional subspace Γ of Σ∗ = PG(m− 1, qt) disjoint from Λ there
exists a subgeometry Σ of Σ∗ disjoint from Γ such that L = pΓ,P(Σ).

2.1.1 Linear sets in PG(5, q2) of rank 6

Let us focus on the case t = 2. In such a case any point of LU has weight either 1 or 2. In
the following preliminary result we prove which are the possible geometric configurations
for an Fq–linear set of PG(5, q2) of rank 6.

Theorem 5. If LU is an Fq–linear set of rank 6 of P := PG(5, q2), then one of the
following configurations occurs:

(1) LU is a plane of P.

(2) LU is a union of q + 1 planes of P passing through a line and contained in a 3–
dimensional space of P.

(3) LU is a union of q3 + q2 + q + 1 lines passing through a point and contained in a
hyperplane of P.

(4) LU is a Baer subgeometry of P.

Proof. Let U1 be the maximal Fq2-subspace contained in U and let U2 be such that U =
U1⊕U2. Then LU is a cone with vertex LU1 and base LU2 and LU2 is a Baer subgeometry
of the projective subspace 〈LU2〉q2 of P∗. We have dimFq U = 6 = 2 dimFq2 U1 + dimFq U2

and dimFq2 U1 ∈ {0, 1, 2, 3}. Hence the configurations listed in the statement according to
dimFq2 U1.
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Since the previous configurations are invariant under the action of the collineation
group of the space, from Theorem 1 it follows that

Theorem 6. Two symplectic semifields spreads of PG(5, q2) whose associated Fq–linear
sets have two different configurations of Theorem 5 are not equivalent.

2.2 Quadric Veronesean and its secant variety

In this section we want to focus on the Veronese surface and its secant variety.

The Veronese surface is the variety V := V3 of PG(5, q) image of the Veronese embed-
ding of PG(2, q):

v : 〈(x0, x1, x2)〉 ∈ PG(2, q) 7→ 〈(x2
0, x

2
1, x

2
2, x0x1, x0x2, x1x2)〉 ∈ PG(5, q). (3)

We stress some important properties of the Veronese surface V (for further details about
the Veronese surface over finite fields see [11, Ch. 25]). If we use the so-called determi-
nantal representation of the Veronese variety of degree 2 (see [10, Example 2.6]), then
PG(5, q) = PG(Sym3(q), q), where Sym3(q) is the space of symmetric matrices of order
3, and the points of V correspond to the matrices of rank 1, i.e. P ∈ V if and only if

P = 〈

 x2
0 x0x1 x0x2

x0x1 x2
1 x1x2

x0x2 x1x2 x2
2

〉 for some (x0, x1, x2) 6= (0, 0, 0). The image of a line ` of

PG(2, q) is a conic, intersection of V with a suitable plane, which is then called a conic
plane of V . The variety V is smooth, hence every point P ∈ V has a tangent plane πP
such that πP ∩ V = {P}; the tangent lines of the conics of V at P are all contained in
πP . By [11, Thms 25.1.11, 25.1.16], every two conic planes and every two tangent planes
meet in a point. A section H ∩ V , where H is a hyperplane of PG(5, q), consists of the
points of v(C), where C is a conic of PG(2, q). Then, if C is a non–degenerate conic of
PG(2, q), then H meets V along a rational quartic curve. If C is a pair of distinct lines of
PG(2, q), then H meets V at two non–degenerate conics with exactly one point in com-
mon. If the conic C of PG(2, q) is a repeated line, then the corresponding hyperplane H
of PG(5, q) meets V at a non–degenerate conic. Finally, C can consist of two conjugated
lines of PG(2, q2) intersecting in an Fq–rational point, hence H ∩ V exactly consists of
one Fq–rational point. It follows that a hyperplane H contains a conic plane or a tangent
plane if and only if H ∩V = v(C) and C is a reducible (in PG(2, q) or in PG(2, q2)) conic.

The automorphism group G of V is the lifting of the group PΓL(3, q) acting in the
obvious way: v(P )g = v(P g), for each element g ∈ PΓL(3, q). The linear part of G is
given by the matrices:
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
a2

11 a2
12 a2

13 2a11a12 2a11a13 2a12a13

a2
21 a2

22 a2
23 2a21a22 2a21a23 2a22a23

a2
31 a2

32 a2
33 2a31a32 2a31a33 2a32a33

a11a21 a12a22 a13a23 a11a22 + a12a21 a11a23 + a13a21 a12a23 + a13a22

a11a31 a12a32 a13a33 a11a32 + a12a31 a11a33 + a13a31 a12a33 + a13a32

a21a31 a22a32 a23a33 a21a32 + a22a31 a21a33 + a23a31 a22a33 + a23a32

 (?)

such that aij ∈ Fq and the matrix

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 is non-singular.

The secant variety M of V is the variety of PG(5, q) consisting of the points lying on
a line secant to V . It is a determinantal variety, i.e., it consists of the points determined by

the symmetric matrices of order 3


 Y0 Y3 Y4

Y3 Y1 Y5

Y4 Y5 Y2

 : Yi ∈ Fq, i = 0, 1, . . . , 5, not all zero


with zero determinant. So, if we denote by (Y0, Y1, . . . , Y5) the homogeneous projective
coordinates in PG(5, q), M is the hypersurface with equation

M : Y0Y1Y2 − Y0Y
2

5 − Y1Y
2

4 − Y2Y
2

3 + 2Y3Y4Y5 = 0.

The hypersurfaceM has Veronesean V as double surface and the automorphism group G
of V is the automorphism group of M as well.

In the following, we describe the intersection of a tangent hyperplane to M with V .

Proposition 7. Each tangent hyperplane to M at a point on M\V intersects V in v(`),
where ` is a line of PG(2, q).

Proof. Let P ∈M\V , then the tangent hyperplane TP ofM at a point P = (u0, u1, u2, u3, u4, u5)
has equation (u1u2−u2

5)Y0 + (u0u2−u2
4)Y1 + (u0u1−u2

3)Y2 + 2(u4u5−u2u3)Y3 + 2(u3u5−
u1u4)Y4 + 2(u3u4 − u0u5)Y5 = 0. By [11, Thms. 25.1.11, 25.1.12], P is contained in a
unique conic plane π = 〈v(`)〉, with ` a line of PG(2, q). As PGL(3, q) acts transitively
on the lines of PG(2, q), so does G on the conics planes, hence we can assume that ` is
the line with equation x2 = 0 and π = {(u0, u1, 0, u3, 0, 0, ), ui ∈ Fq}. So, for each point of
π which is not on the Veronese surface the tangent hyperplane has equation Y2 = 0 and
such hyperplane intersects V in v(`).
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When q is even, the hypersurfaceM contains the plane πN : Y0 = Y1 = Y2 = 0, which
is disjoint from V . Such a plane is called the nucleus of V , and consists of all nuclei of
conics of V . The conic planes, the tangent plane and the nucleus (in even characteristic)
are the maximal projective subspaces contained in the variety M (see [8, Prop.1]).
By the Chevalley-Warning Theorem, the maximal projective subspaces disjoint byM are
planes. We conclude this paragraph with the following result on the planes disjoint from
M, which will be very useful in the sequel.

Proposition 8. A plane π of PG(5, q) is disjoint from the secant variety M of the
Veronese surface V if and only if in the cubic extension the intersection π ∩ M con-
sists of three nonconcurrent lines conjugated under the Fq–linear collineation induced by
Gal(Fq3/Fq). Moreover, if q is odd, then there are exactly two orbits of such planes under
the action of the automorphism group G of V.

Proof. For any projective subspace, say S, and for any algebraic variety, say W , of
PG(5, q) we will denote by S(qt) and W(qt), respectively, their extensions over Fqt .

The intersection C =M∩ π is a curve of degree 3. By the Hasse-Weil bound, it easy
follows that an absolutely irreducible cubic defined over Fq has at least one Fq–rational
points. Then C does not have any Fq–rational points if and only if it consists of three non–
concurrent lines over Fq3 , say `, `τ , `τ

2
, where τ is the semilinear collineation of PG(5, q3)

induced by the automorphism x 7→ xq. Then PG(5, q) = Fix τ and obviously Vτ = V and
Mτ = M. Let P be ` ∩ `τ , hence the points P, P τ , P τ2 are singular for C. Then either
P , P τ and P τ2 belong to V(q3) (hence they are singular forM(q3)) or the points are non
singular forM(q3) and π(q3) is contained in the intersection of their tangent hyperplanes.

In the first case, we have that P, P τ , P τ2 are points of V(q3) \ V . Then, using the
Veronese map defined in (3), it follows that P τ i = v(Rτ i), R ∈ PG(2, q3) \ PG(2, q),
i = 0, 1, 2, where by abuse of notation we have denoted by τ also the Fq–linear collineation
of PG(2, q3) induced by Gal(Fq3/Fq). If the points R,Rτ , Rτ2 were collinear, then π would
contain the image under v of the subline through them and contained in PG(2, q), i.e. π
would contain a conic of V and hence π ⊂M, a contradiction. It follows that R,Rτ , Rτ2

are not collinear. Let R = 〈(x, y, z)〉 ∈ PG(2, q3), then R,Rτ , Rτ2 are not collinear if and

only if

 x y z
xq yq zq

xq
2
yq

2
zq

2

 is nonsingular and by [17, Lemma 3.51] this is equivalent to

having {x, y, z} independent over Fq. Let R′ = 〈(x′, y′, z′)〉 ∈ PG(2, q3) be another point
such that R′, R′τ , R′τ

2
are not collinear, hence {x, y, z} and {x′, y′, z′} are two bases of Fq3

considered as Fq-vector space, so there exists an element g ∈ G = PGL(3, q) such that
{x, y, z}g = {x′, y′, z′}. As g and τ commute, ∀g ∈ G, we have that G is transitive on the
sets {R,Rτ , Rτ2} with R ∈ PG(2, q3) such that R,Rτ , Rτ2 are not collinear. This implies
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that the lifting G of G fixing V acts transitively on the planes of PG(5, q) disjoint from
M and containing three Fq3–rational points of V(q3).

Suppose that P is not a singular point forM(q3), then P, P τ , P τ2 are three Fq3–rational
points ofM(q3)\V(q3) and π(q3) ⊆ TP ∩TP τ ∩TP τ2 , where TP τi is the tangent hyperplane

to M(q3) at P τ i . Then, by Proposition 7, TP intersects V(q3) in v(`), with ` a line of
PG(2, q3). By [11, pag. 154]), a hyperplane intersecting V just in v(m), m a line, contains
the tangent plane to V at every point of v(m). So suppose that the line ` contains an
Fq-rational point R, then πv(R) ⊆ TP ∩ TP τ ∩ TP τ2 . Since TP ∩ TP τ ∩ TP τ2 and πv(R) are
both fixed by τ , then πv(R)(q) = πv(R) ∩ Fix τ is a subplane isomorphic to PG(2, q) and
πv(R) and π are both contained in the subspace TP ∩TP τ ∩TP τ2 ∩Fix τ which has at most
dimension 3. Then πv(R) and π intersect in at least a line. But πv(R) ⊂M and π∩M = ∅,
a contradiction. Hence ` does not contain Fq-rational points and the three lines `, `τ , `τ

2

of PG(2, q3) are nonconcurrent. Arguing as in the previous case (here we have just the
dual case), we have again only one orbit under the action of G.

Remark 1. By the proof of the last proposition, we see that if a plane π disjoint from
M such that π ⊂ TP , with TP a hyperplane tangent toM(q3) in a point P ∈M(q3)\M,
then TP ∩ V(q3) = v(`) with ` a line of PG(2, q3) with no Fq–rational points. So `, `τ , `τ

2

are nonconcurrent and hence TP , T
τ
P , T

τ2

P are independent hyperplanes, i.e. π(q3) = TP ∩
T τP ∩ T τ

2

P = TP ∩ TP τ ∩ TP τ2 .

2.3 A non–canonical embedding of PG(5, q) in PG(5, q3)

Let Y0, Y1, . . . , Y5 be homogeneous projective coordinates in P∗ := PG(5, q3), V∗ the
Veronese surface of P∗

V∗ = {〈(x2, y2, z2, xy, xz, yz)〉 : x, y, z ∈ Fq3 , (x, y, z) 6= (0, 0, 0)} (4)

and

M∗ : Y0Y1Y2 − Y0Y
2

5 − Y1Y
2

4 − Y2Y
2

3 + 2Y3Y4Y5 = 0 (5)

its secant variety. The geometric setting that we will adopt for the proof of the main
result is the following cyclic representation of P ∼= PG(5, q) inside P∗ (in a non–canonical
position):

P = {〈(a, aq, aq2 , bq2 , bq, b)〉 : a, b ∈ Fq3 , (a, b) 6= (0, 0)},

hence P is fixed by the Fq-linear collineation of order 3

τ : 〈(y0, y1, y2, y3, y4, y5)〉 ∈ P∗ 7→ 〈(yq2, y
q
0, y

q
1, y

q
4, y

q
5, y

q
3)〉 ∈ P∗.

10



The Veronese surface V∗ of P∗ is set-wise fixed by τ and it turns out

V = V∗ ∩ P = {〈(x2, x2q, x2q2 , xq+1, xq
2+1, xq+q

2

)〉 : x ∈ F∗q3}, (6)

whereas its secant variety M is represented by the equation

M : Nq3/q(x)− Trq3/q(xy2) + 2Nq3/q(y) = 0 (1). (7)

Again, let v be the Veronese embedding of PG(2, q3) in P∗ = PG(5, q3) defined in
(3). By abuse of notation, denote by τ the following semilinear collineation of order 3
of PG(2, q3): 〈(x0, x1, x2)〉 7→ 〈(xq2, x

q
0, x

q
1)〉. Then it is easy to see that V turns out to

be the image under v of Fix τ ∼= PG(2, q) = {〈(x, xq, xq2)〉, x ∈ F∗q3}. The subgroup of

PGL(3, q3) fixing such a PG(2, q) consists of the collineations commuting with τ , hence

by the non–singular matrices of the form

 a b c
cq aq bq

bq
2
cq

2
aq

2

 and then the linear part of

G, in this representation, consists of the lifting of such matrices.

In this model we have an easy description of the linear set disjoint from M, for q odd,
corresponding to the spreads D,A,LMPT (see [19]):

D corresponds, up to equivalence, to the plane of P

π1 = {〈(a, aq, aq2 , 0, 0, 0)〉 : a ∈ F∗q3}; (8)

A corresponds, up to equivalence, to the plane of P

π2 = {〈(0, 0, 0, bq2 , bq, b)〉 : b ∈ F∗q3}; (9)

LMPT corresponds, up to equivalence, to the Baer subgeometry of P

{〈(a, as2 , as, bq2 , bq, b)〉 : a ∈ Fs3 , b ∈ Fq3| Tq3/s3(b) = 0 and (a, b) 6= (0, 0)} (10)

isomorphic to PG(5, s), q = s2.

Remark 2. Let π∗i , i ∈ {1, 2}, denote the projective plane of P∗ generated by πi. Then,

π∗1 : Y3 = Y4 = Y5 = 0 and π∗2 : Y0 = Y1 = Y2 = 0.

1Here Nq3/q and Tq3/q denote the norm and the trace function from Fq3 to Fq, respectively
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If i = 1, then

π∗1 ∩M∗ = ` ∪ `τ ∪ `τ2 ,

where ` : Y0 = Y3 = Y4 = Y5 = 0 and the triangles determined by the three lines {`, `τ , `τ2}
is {P, P τ , P τ2}, with P := 〈(0, 0, 1, 0, 0, 0)〉, which are points of V∗ not in V .

If i = 2, then

π∗2 ∩M∗ = ` ∪ `τ ∪ `τ2 ,

where ` : Y0 = Y1 = Y2 = Y3 = 0 and the triangles determined by the three lines {`, `τ , `τ2}
is {P, P τ , P τ2}, with P := 〈(0, 0, 0, 0, 1, 0)〉, which are points of M∗ not in V∗.

Remark 3. By [12, Thm. 25.1.18] when q is odd there is a polarity in PG(5, q) which
maps the set of all conic planes of the Veronese surface V to the set of all tangent planes
of V . By [19, Thm. 4] such a polarity interchanges the planes π1 and π2.

By abuse of notation, let D be the G-orbit of planes containing π1 and A be the G-orbit
of planes containing π2, where recall G is the automorphism group of the Veronese surface
V of P (cf. Prop. 8).

We conclude this section with the following lemmas that will be very useful in the
sequel.

Lemma 1. Let G∗ be the automorphism group of the Veronese surface V∗ of P∗ =
PG(5, q3), q odd, and let g be a linear collineation of G∗ leaving invariant the subplane
πi, i = 1, 2, and fixing pointwise the vertices of the triangle arising from π∗i ∩M∗.

1. If i = 1, then g is determined by a matrix of type

Diag(a2, a2q, a2q2 , ε1a
q+1, ε2a

1+q2 , ε1ε2a
q+q2),

with εi = ±1.

2. If i = 2, then g is determined by a matrix of type

Diag(a2, a2q, a2q2 , aq+1, a1+q2 , aq+q
2

)

and hence g ∈ G.

Proof. If i = 1, by Remark 2, it is clear that g fixes the points 〈(1, 0, 0, 0, 0, 0)〉 =
v(〈(1, 0, 0)〉), 〈(0, 1, 0, 0, 0, 0)〉 = v(〈(0, 1, 0)〉) and 〈(0, 0, 1, 0, 0, 0)〉 = v(〈(0, 0, 1)〉) of V∗,
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where v is the Veronese embedding of PG(2, q3) in P∗ as defined in (3). Thus, by (?), g
is obviously determined by the lifting of a matrix

A =

 a11 0 0
0 a22 0
0 0 a33

 ,

with aii ∈ F∗q3 . This means that, g is represented by the matrix

Diag(a2
11, a

2
22, a

2
33, a11a22, a11a33, a22a33).

Since g fixes the subplane π1 of P∗, by (8), we get a22 = ±aq11 and a33 = ±aq
2

11 and we get
the first statement.

Let i = 2. Since g fixes π∗2, by (9) and by (?), we have that g is represented by
a matrix which is the lifting of a matrix A = (aij), i, j ∈ {1, 2, 3} such that, for each
i ∈ {1, 2, 3}, aijaih = 0 ∀j 6= h. Also, it is easy to see that g fixes pointwise the triangle
〈(0, 0, 0, 1, 0, 0)〉, 〈(0, 0, 0, 0, 1, 0)〉 and 〈(0, 0, 0, 0, 0, 1)〉 only if A = Diag(a11, a22, a33). The

subplane π2 is then fixed if and only if a11a33 = aq22a
q
33 and a11a22 = aq

2

22a
q2

33. It follows

that a33
a22

=
aq22a

q
33

aq
2

22a
q2

33

and hence a1−q+q2
33 = a−q

2+q+1
22 . Raising to the q + 1-th power, we get

a2
33 = a2q

22 and so a33 = ±aq22, but only a33 = aq22 fulfills a1−q+q2
33 = a−q

2+q+1
22 . Then

a11a33 = aq22a
q
33 ⇔ a11a

q
22 = aq+q

2

22 ⇔ a11 = aq
2

22. Hence a33 = aq22 and A = Diag(a, aq, aq
2
),

with a ∈ F∗q3 . By (6), it is clear that g fixes the Veronese surface V , i.e. g ∈ G.

Let ρ be another Fq–linear collineation of order 3, different from τ , of P∗ = PG(5, q3),
then Fix ρ ∼= PG(5, q). If ρ fixes M∗, then it is the lifting of an Fq–linear collineation of
order 3 of PG(2, q3) and Mρ := Fix ρ ∩M∗ ∼=M. If π is a plane of P∗ fixed by ρ, then
πρ := π ∩ Fix ρ is a subplane of the subgeometry Fix ρ. If πρ ∩Mρ = ∅, then we extend
the definition of families D and A to Fix ρ in the obvious way.

Lemma 2. Let π be a plane of P∗ = PG(5, q3) fixed by ρ such that πρ ∈ A with respect
to Mρ. Then the action of an element g ∈ G∗ fixing πρ and the vertices of the triangle
M∗ ∩ π is uniquely determined by its action on π.

Proof. Any automorphism of Fq3 leaves invariant the subplane π2 and fixes pointwise the
vertices of the triangle arising from π∗2 ∩M∗, hence an element g of G∗ with the same
property must have the linear part as in Lemma 1.2. So the action of g on π∗2 is given by
(0, 0, 0, y3, y4, y5) 7→ (0, 0, 0, a1+qyφ3 , a

q2+1yφ4 , a
q+q2yφ5 ), where φ is an automorphism of Fq3 .

So the collineation g′ of P∗ with linear part given by Diag(b2, b2q, b2q2 , bq+1, b1+q2 , bq+q
2
)
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and accompanying automorphism ψ ∈ Aut(Fq3) is such that g′ ≡ g on π∗2 if and only if

ψ = φ and bq+1

aq+1 = bq
2+1

aq2+1
⇒ bq

aq
= bq

2

aq2
⇒ b

a
∈ Fq and hence g = g′.

Let Π1 and Π2 be two subplanes of PG(2, q3) whose Veronese embedding in P ∗ are the
Veronese surface V defined in (6) and the Veronese surface Vρ underlyingMρ, respectively.
Since the subplanes of PG(2, q3) are all equivalent under the action of PΓL(3, q3), the
lifting ϕ of the collineation of the PG(2, q3) mapping Π2 to Π1 is an element of G∗ such
that Vϕρ = V . Hence ϕ(Fix ρ) = Fix τ and πϕρ is a subplane belonging to the orbit A
of the planes of Fix τ , disjoint from M, under the action the automorphism group of
G = Aut(V). Then there exists an element ψ ∈ G such that πηρ = π2, where η := ψ ◦ϕ. It
follows that η is an element of G∗ such that πηρ = π2 and hence πη = π∗2.

Let now h and h′ be two collineations of P∗ satisfying the assumptions of the statement
and such that h ≡ h′ on π. Then g ◦ h ◦ g−1 and g ◦ h′ ◦ g−1 are two elements of G∗ both
fixing π2 and the vertices of the triangle π∗2 ∩M∗ and such that g ◦ h ◦ g−1 ≡ g ◦ h′ ◦ g−1

on π∗2. Hence, by the previous arguments g ◦ h ◦ g−1 = g ◦ h′ ◦ g−1 in the whole space P∗,
i.e. h = h′.

3 Classification result

Let L be an Fq–linear set of P := PG(5, q2) of rank 6 disjoint from the secant variety of
the Versonese surface V of P:

M : Y0Y1Y2 − Y0Y
2

5 − Y1Y
2

4 − Y2Y
2

3 + 2Y3Y4Y5 = 0. (11)

As in the proof of Proposition 8, for any projective subspace, say S, and for any algebraic
variety, say W , of PG(r − 1, q) we will denote by S(qt) and W(qt), respectively, their
extensions over Fqt and by S̄ and W̄ their extensions over F. Let F denote the algebraic
closure of Fq.

Then L has one of the configuration of Theorem 5.

3.1 Case (1)

By Proposition 8, there are two orbits of planes disjoint from the secant variety M of
P under the action of the automorphism group of the Veronese surface V , which we
have denoted by D and A (cf. arguments after Remark 3). By Remark 2, the planes
of the family D are the ones whose Fq6–extension intersects V(q6) \ V in three points
which are the images under the Veronese embedding v of three non–collinear points of
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PG(2, q6) \PG(2, q2), whereas the planes of the family A are the ones contained in three
tangent hyerplanes of M(q6).

3.2 Case (2)

Let L be a linear set consisting of q + 1 planes in P = PG(5, q2) through a line, say `,
disjoint from M, then by the previous case they belong to D or A. Suppose that two of
these planes, namely π1 and π2, belong to A. Denoting by ⊥ the polarity of PG(5, q2)
defined in [19, Thm. 4] interchanging D and A, it follows that π⊥1 and π⊥2 are contained in
`⊥ and π⊥1 and π⊥2 ∈ D. So this configuration always implies that there exist two planes,
say α1 and α2, in D spanning a solid, say T . Such a solid intersects the Veronese surface
V in v(C1)∩v(C2), where Ci are conics. By Case (1), the cubic extension T (q6) of the solid
T must contain 6 points of V(q6), which implies that C1 and C2 are reducible and have a
common linear component m. It follows that T (q6)∩V(q6) consists either of just v(m) or
v(m) and a point, but in both cases we cannot have 6 points, 3 of them in α1(q6) and 3
of them in α2(q6).

3.3 Case (4)

Let Σ be a Baer subgeometry of P = PG(5, q2) and let σ be the semilinear collineation
of P of order 2 such that Σ = Fix σ. Set M :=M(q2), it turns out Σ ∩M ⊂M∩Mσ.
The variety M ∩Mσ in PG(5,F) has dimension 3 (see, e.g., [10, Exercise 11.6]) and

degM ∩Mσ = degM degMσ = 9 =
∑
i

µi deg(Wi), where the sum is over all the

irreducible components Wi of M∩Mσ of dimension 3 and µi is the multiplicity of Wi

(see [10, Theorem 18.4]). As M contains subspaces of dimension at most 2, we have
degWi ≥ 2. IfM∩Mσ was absolutely irreducible, then it would have at least one point
in Σ, for q big enough; by [7, Cor. 7.4] we get the bound q2 > 2·94. SoM∩Mσ is reducible.
Suppose that there is a component in PG(5, q2), say W , then M∩Mσ =W ∪Wσ ∪ Y ,
with Y a component not over Fq2 of dimension 3. Again, Y must be reducible over

some extension of Fq2 , so Y = Z ∪Zτ ∪ · · ·∪Zτn−1
, where τ is the collineation induced by

Gal(Fq2n|Fq2). As degW = degWσ and degZ = degZτ i , deg Y must be an odd composite
number less or equal to 5, a contradiction. So M∩Mσ does not have Fq2–components.

Let m be the smallest integer such thatM∩Mσ =
m−1⋃
i=0

Wτ i , with W possibly reducible,

mµ degW = 9 and µ the sum of the multiplicities of all the irreducible components of
W . As degW > 1 and m > 1, the only possibility is that m = degW = 3. Again, as we
cannot have components of degree 1, W must be irreducible. This means that M∩Mσ
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is reducible in PG(5, q6) and it turns out

M(q6) ∩Mσ(q6) =W ∪Wτ ∪Wτ2 , (12)

where τ is the Fq2–linear collineation of PG(5, q6) of order 3 such that P = PG(5, q2) =
Fix τ . The collineation σ has order 6 when it acts on PG(5, q6) and since σ2 is the identity
in Fix τ , we have that Fixτ = Fixσ2. Then, taking into account that τ has order 3,
either σ2 = τ or σ2 = τ 2. Since Fixτ = Fixτ 2, without loss of generality, we can assume
that σ2 = τ . Since Mσ is a variety defined in PG(5, q2) = Fix τ , Mσ(q6) = Mσ◦τ (q6)
and hence we can replace Mσ(q6) by Mσ∗

(q6), where σ∗ = σ ◦ τ . As in PG(5, q6) the
accompanying automorphisms of σ and τ have orders 6 and 3, respectively, it turns out σ∗

is a semilinear collineation of PG(5, q6) of order 2. We remark that σ ≡ σ∗ on PG(5, q2)
and observe that Mσ∗

(q6) =M(q6)σ
∗
.

Since W is a variety of dimension 3 and since the maximal subspaces contained in
M(q6) are planes, the projective space spanned by W has dimension either 4 or 5.

If 〈W〉 = PG(5, q6), thenW is a variety of minimal degree and, by [10, Theorem 19.9],
it is necessarily a Segre variety product of a line and a plane. Such a Segre variety consists
of disjoint planes, but the planes contained inM(q6) pairwise meet in at least one point,
a contradiction.

Hence 〈W〉 = H, where H is a hyperplane of PG(5, q6). So W is an irreducible
hypersurface of degree 3 contained in H ∩M(q6), henceW = H ∩M(q6) = H ∩Mσ∗

(q6).
The semilinear collineation σ∗ has order 2 onM(q6), henceM(q6) ∩Mσ∗

(q6) is fixed by
σ∗. Taking into account that the decomposition (12) is unique and that σ∗ ◦ τ = τ ◦ σ∗
(since σ∗ arises from a collineation of Fix τ), we haveW =Wσ∗

and hence H = Hσ∗
. Let

π = H ∩Hτ ∩Hτ2 and denote by πτ and πσ the intersection between π and PG(5, q2) =
Fix τ and Σ = Fix σ ∼= PG(5, q), respectively. Since π = πτ and π = πσ

∗
= πσ◦τ = πσ,

then πσ, πτ and π have the same projective dimension, which is 2 or 3. Now observe
that on the hyperplane H (as on Hτ and Hτ2) the varietiesM(q6) andMσ∗

(q6) coincide
with W (with Wτ and Wτ2 , respectively), then the same happens on the subspace π.
Hence π ∩ M(q6) is a hypersurface of degree 3 fixed by σ∗ and by τ and such that
πσ ∩M = π ∩Fix τ ∩Fix σ∗ ∩M ⊆ Σ∩M = ∅, hence π ∩M must be reducible. As σ∗

has order 2, τ has order 3 and they commute, we easily get that π ∩M = ` ∪ `τ ∪ `τ2 , `,
`τ and `τ

2
are hyperplanes of π fixed by σ∗. If S := ` ∩ `τ ∩ `τ2 6= ∅, then S turns out to

be a subspace of π(q) = π∩Fix τ ∩Fix σ∗ ⊂ Σ of the same dimension contained inM, a
contradiction. It follows that `∩ `τ ∩ `τ2 = ∅, hence necessarily π is a plane of PG(5, q6),
` is a line and also πτ ∩M = ∅.

Hence, by Case (1), πτ ∈ D or A. Let P := ` ∩ `τ , then P , P τ and P τ2 are fixed
by σ∗. As M(q6) and Mσ∗

(q6) coincide on H,Hτ , Hτ2 , on these hyperplanes σ∗ acts as

16



an element of the automorphism group of M(q6) (and hence of V(q6)). Also σ∗ fixes
πτ = H ∩Hτ ∩Hτ2 .

Embed P = PG(5, q2) in P∗ := PG(5, q6) as showed in Subsection 2.3. Using the same
notations we have that V andM are defined as in (6) and (7), respectively, whereas V(q6)
andM(q6) are the varieties V∗ andM∗ defined in (4) and in (5), respectively. Also, G and
G∗ denote the automorphism groups of V (and hence of M) and V∗ (and hence of M∗),
respectively. Since σ ≡ σ∗ in Fixτ ∼= PG(5, q2), and the accompanying automorphism of
σ∗ has order 2, we have that the accompanying automorphism of σ in Fix τ is

tσ : 〈(Y0, Y1, Y2, Y3, Y4, Y5)〉 7→ 〈(Y q
1 , Y

q
2 , Y

q
0 , Y

q
5 , Y

q
3 , Y

q
4 )〉 (13)

and we can explicitly note that

Mtσ =M. (14)

Also, σ and σ∗ have the same linear part g. We recall that the accompanying automor-
phism of σ∗ is

tσ∗ : 〈(Y0, Y1, Y2, Y3, Y4, Y5)〉 7→ 〈(Y q3

0 , Y q3

1 , Y q3

2 , Y q3

3 , Y q3

4 , Y q3

5 )〉 (15)

By Proposition 8, up to the action of G, we can assume that πτ is then

π1 = {〈(a, aq2 , aq4 , 0, 0, 0)〉 : a ∈ F∗q6}

or

π2 = {〈(0, 0, 0, aq4 , aq2 , a)〉 : a ∈ F∗q6}

(cf. (8) and (9)).
If πτ = π2, then tσ∗ fixes πτ and the points P, P τ , P τ2 , hence so does the linear part

g of σ∗. Hence, by Lemma 1, on Hτ i the map g corresponds to a linear collineation gi
represented by a matrix of type Diag(a2

i , a
2q2

i , a2q4

i , aq
2+1
i , aq

4+1
i , aq

4+q2

i ) ∈ G, with ai ∈ F∗q6 .
On πτ = H ∩ Hτ ∩ Hτ2 , g0 ≡ g1 ≡ g2 ≡ g, hence a0/a1 and a0/a2 belong to F∗q2 . This

means that g ≡ g0 ≡ g1 ≡ g2 ∈ G on three hyperplanes of PG(5, q6) and hence the linear
part g of σ∗ turns out to be the linear automorphism of M represented by the matrix

Diag(a2, a2q2 , a2q4 , aq
2+1, aq

4+1, aq
4+q2), (16)

with a ∈ F∗q6 . Then g is a linear collineation of Fix τ ∼= PG(5, q2) fixing M. Also,

by (14) we have Mσ = Mg◦tσ = M. By Chevalley–Warning Theorem, M∩ Σ 6= ∅, a
contradiction.
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Hence, necessarily, πτ = π1. By Remark 2 the plane π∗1 = H ∩Hτ ∩Hτ2 generated by
π1 in PG(5, q6) intersects M∗ in three lines `, `τ and `τ

2
and such lines form a triangle

P = 〈(0, 0, 1, 0, 0, 0)〉, P τ and P τ2 of points of V∗. Again, since tσ∗ fixes πτ and the points
P, P τ , P τ2 , so does g, hence by Lemma 1, on Hτ i , g ≡ gi where gi is induced by a matrix
of type

Diag(a2
i , a

2q2

i , a2q4

i , ε1a
q2+1
i , ε2a

q4+1
i , ε1ε2a

q4+q2

i ),

with ai ∈ F∗q6 and ε1, ε2 ∈ {1,−1}.
If gi = gj for some i 6= j, then g = gi = gj on PG(5, q6). As g is the linear part of σ, it

fixes Fix τ ∼= PG(5, q2) and hence g ∈ G, yielding, as before, to a contradiction. Hence,
gi 6= gj for each i 6= j. On the plane π∗1 = H ∩Hτ ∩Hτ2 , g0 ≡ g1 ≡ g2 and this implies
(a0
a1

)2, (a0
a2

)2 ∈ Fq2 .
From (a0

a1
)2q2 = (a0

a1
)2, we get (a0

a1
)q

2
= a0

a1
, and hence again the matrices representing g0

and g1 coincide up to a nonzero scalar in Fq2 . The same happens for g0 and g2. Hence,
we can assume (up to a nonzero scalar in Fq2) that a := a0 = a1 = a2.

On the 3–dimensional space H∩Hτ , g ≡ gi ≡ gj. Since gi 6= gj, it can be seen that the
only 3–dimensional space (containing the plane π) where two such collineations coincide
must have equations Yh = 0, Yk = 0 for some h 6= k ∈ {3, 4, 5}. Also, in the pencil of
hyperplanes through that solid the only two that are one the image of the other under τ
are the hyperplanes Yh = 0 and Yk = 0. So the hyperplanes H,Hτ , Hτ2 have necessarily
equations Yj = 0, j ∈ {3, 4, 5}.

Denoting by A = (aij), with aij ∈ Fq6 , i, j ∈ {0, 1, . . . , 5}, the nonsingular matrix
representing the linear part g of σ∗ (and hence of σ). Since g fixes the points P , P τ and
P τ2 and the hyperplanes H, Hτ and Hτ2 the matrix A must be diagonal. Also, σ∗ leaves
invariant the subgeometry PG(5, q2) = Fix τ (where it acts as σ) and hence it turns out

A =



c 0 0 0 0 0

0 cq
2

0 0 0 0

0 0 cq
4

0 0 0
0 0 0 d 0 0

0 0 0 0 dq
4

0

0 0 0 0 0 dq
2

 , (17)

with c, d ∈ F∗q6 .

Since on each hyperplane Hτ i , the matrix A must be equal (up to a nonzero scalar in
Fq2) to a matrix of type (16), it follows that ε := ε1 = ε2 and, up to a given nonzero scalar

in Fq2 , c = a2 and d = εaq
2+1, with a ∈ F∗q6 .
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If ε = 1, i.e. d = aq
2+1, then

A = Diag(a2, a2q2 , a2q4 , aq
2+1, aq

4+1, aq
4+q2),

and hence g leaves invariant the surface V . This implies g ∈ G and hence, by (14),
Mσ =M; a contradiction as before.

Then, ε = −1, i.e. d = −aq2+1, and

A = Diag(a2, a2q2 , a2q4 ,−aq2+1,−aq4+1,−aq4+q2).

Since σ has order 2 in Fixτ , taking into account its accompanying automorphism
(13), we have ρ := a2(q3+1) ∈ Fq2 . Since ρq

3−1 = ρq−1 = 1, then ρ ∈ Fq and we can choose

η ∈ F∗q6 such that aq
3+1 = η(q3+1)(q2+q+1). Hence a = ηq

2+q+1δ, where δq
3+1 = 1. Set

δ = γq
3−1, with γ ∈ F∗q6 , we have a = (ηγq−1)q

2+q+1 and hence

a = ξq
2+q+1,

for a given element ξ := ηγq−1 of F∗q6 .
Straightforward computations show that the subgeometry Σ = Fixσ is

{〈(ξ2qu, ξ2q3uq
2

, ξ2q5uq,
vq

4

ξ1+q4
,
vq

2

ξq4+q2
,

v

ξq2+1
)〉 : u ∈ Fq3 , v ∈ Fq6 , (u, v) 6= (0, 0), vq

3

= −v}.

As the matrix Diag(ξ2q, ξ2q3 , ξ2q5 , ξq
3+q, ξq

5+q, aq
3+q5)−1 induces a linear automorphism of

the Veronese surface V , up to the action of the group G, we have Σ is the subgeometry

{〈(u, uq2 , uq, (mv)q
4

, (mv)q
2

,mv)〉 : u ∈ Fq3 , v ∈ Fq6 , (u, v) 6= (0, 0), vq
3

= −v},

where m := ξ−(q2+1+q3+q5). Taking into account that m ∈ Fq3 , we have proved the
following result.

Theorem 9. If Σ is a Baer seubgeometry of PG(5, q2) disjoint from the secant variety
M of the Veronese surface V of PG(5, q2), then Σ is equivalent, under the action of the
automorphism group of V, to the subgeometry

{〈(x, xq2 , xq, yq4 , yq2 , y)〉 : x ∈ Fq3 , y ∈ Fq6 , (x, y) 6= (0, 0) and Tq6/q3(y) = 0}. (18)

19



3.4 Case (3)

Let L be an Fq-linear set with exactly one point of weight 2, hence 〈L〉q2 = PG(4, q2).
The linear set L has rank 6 and PG(4, q2) has rank 10 over Fq, hence in order to have
L ∩M = ∅, by Grassmann, M′ := PG(4, q2) ∩M must contain at most lines (over Fq2).
The planes contained inM are the conic planes and the tangent planes of V and they are
contained in a hyperplane H if and only if H ∩ V = V (C) and C is a reducible conic (cf.
Section 2.2). So we must have V ′ := PG(4, q2)∩V = v(C), with C a non–degenerate conic.
By Theorem 4, L is the projection in PG(5, q2) of a subgeometry Σ ∼= PG(5, q) from a
point P /∈ Σ and P /∈ PG(4, q2). Let K be the cone of PG(5, q2) with vertex P and base
M′. It is easy to see that L ∩M′ = ∅ if and only if Σ ∩ K = ∅. Let σ be the Fq-linear
collineation of order 2 of PG(5, q2) such that Σ = Fix σ. Let τ be the collineation of
PG(5, q6) of order 3 such that PG(5, q2) = Fix τ . Again, denote by σ∗ = σ ◦ τ the unique
collineation of order 2 of PG(5, q6) such that σ∗ ≡ σ in PG(5, q2). This means that σ
and σ∗ have the same linear part g (which is a collineation of PG(5, q2)).

Taking into account the previous arguments, we have Kσ(q6) = Kσ∗
(q6) = K(q6)σ

∗
.

Hence, as in Case (4), for q2 > 2 · 38,

K(q6) ∩ Kσ(q6) =W ∪Wτ ∪Wτ2 ,

where W is an irreducible variety of PG(5, q6) of dimension and degree 3 and each Wτ i ,
i ∈ {0, 1, 2}, is fixed by σ∗. The cone K is a hypersurface of PG(5, q2) of degree 3 which
does not contain solids (also in its extension over any field). Again, since W cannot be a
solid, that W is either a Segre variety (product of a line with a plane) or a hypersurface
of degree 3 contained in a hyperplane H of PG(5, q6).

Suppose that W is a Segre variety product of a line with a plane. Such a variety
consists of disjoint planes. Since M′(q6) does not contain planes, the planes of W are
projected over lines of M′(q6), hence they all contain the point P , a contradiction.

SoW is a hyperpsurface of degree 3 of a hyperplane H of PG(5, q6). Then Hτ iσ∗
= Hτ i

and on each hyperplane Hτ i the two cones K(q6) and Kσ(q6) coincide withWτ i . Suppose
that P ∈ Hτ i for some i ∈ {0, 1, 2}, i.e. P ∈ Wτ i , which implies P σ∗

= P σ ∈ W (since
P ∈ Fix τ). Then either P = P σ or PP σ is a line of the cone K, i.e. either P ∈ Σ or
K ∩ Σ 6= ∅; in both cases we get a contradiction. So P /∈ Hτ i for each i ∈ {0, 1, 2} and
this implies that each hyperplane Hτ i intersects the cone K(q6) in a copy of M′(q6), i.e.
W , Wτ and Wτ2 are copies of M′(q6).

Also, by the same arguments as in Case (4), π := H ∩Hτ ∩Hτ2 is a plane such that
π ∩ W = ` ∪ `τ ∪ `τ2 , with `, `τ , `τ

2
three nonconcurrent lines. Moreover π intersects

Fix τ ' PG(5, q2) in a subplane πτ isomorphic to PG(2, q2), σ∗ leaves invariant πτ , fixes
each line `τ

i
, i ∈ {0, 1, 2}, and each point of the triangles determined by them. We observe
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that W contains a subvariety M̂′ that is a copy of M′ obtained projecting M′ from P
over H. Also, M̂′ leaves in the projection from P over H of Fix τ (which is always
isomorphic to PG(5, q2)) also containing the subplane πτ and πτ ∩ M̂′ = ∅. We clearly
have the same for Wτ and Wτ2 .

As σ∗ fixes W , on H σ∗ ≡ σ∗0, with σ∗0 a collineation of W and hence it can be seen
as a collineation of the secant variety of a Veronese surface in PG(5, q6). Analogously,
on Hτ σ∗ ≡ σ∗1, with σ∗1 a collineation of Wτ and on H ∩Hτ , σ∗0 ≡ σ∗1 ≡ σ∗. Let σ∗ be
the restriction of σ∗0 on H ∩ Hτ , then σ∗1 is an extension of σ∗ fixing Wτ . Suppose that
πτ ∈ A with respect to M̂′τ (see the arguments before Lemma 2), then σ∗ satisfies all the
assumptions of Lemma 2 with respect to the subplane πτ and hence there exists only one
possible extension σ∗1 of σ∗ in Hτ fixing Wτ . Suppose now that πτ ∈ D with respect to
M̂′τ . A collineation fixing W τ also fixes the locus of its singular points, i.e., the Veronese
embedding of a non–singular conic. The collineation σ∗ is defined over H ∩ Hτ ⊃ π,
hence over the Veronese embedding of three points of such a conic. Hence, again, since
the accompanying automorphism of σ∗1 is the same as σ∗ (and it is uniquely determined)
there is only one possible extension σ∗1 of σ∗ in Hτ fixing W τ .

Let us consider the collineation ϕ of Hτ defined as follows. For every R ∈ Hτ , let
R′ := PR ∩H. Then Rϕ = PR′σ

∗
0 ∩Hτ . If R ∈ H ∩Hτ , then R′ = R and Rϕ = Rσ∗

0 =
Rσ∗

1 = Rσ∗ ∈ H ∩Hτ , i.e. ϕ is an extension of σ∗. Also, if R ∈ Wτ , the line PR belongs
to the cone K(q6) and hence R′ ∈ W . Since σ∗ fixes Wτ i , this implies that R′σ

∗
0 ∈ W and

hence Rϕ ∈ PR′σ∗
0 ⊂ K(q6), i.e. ϕ fixes W τ . Let now ` be a line of the cone K(q6) through

P and let R0 := `∩H and R1 := `∩Hτ , with R0 6= R1. Then P ∈ `σ∗
= R

σ∗
0

0 R
σ∗
1

1 = R
σ∗
0

0 R
ϕ
1

and hence P σ∗
= P σ = P , a contradiction.

3.5 Proof of Theorem 3

Let S be a symplectic semifield spread of PG(5, q2), q odd, whose associated semifield
S has center containing Fq and let L be the associated Fq–linear set of P := PG(5, q2)
of rank 6. Then, up to isotopism, S has order q6, left nucleus containg Fq2 and center
containing Fq and L has one of the configurations of Theorem 5 and must be disjoint from
the secant variety of the Versonese surface V of P. By the previous arguments Case (2)
and, for q2 > 2 · 38, Case (3) cannot occur. If L is as in Case (1), then the associated
symplectic semifield S is 3–dimensional over the center and hence by [24] it is isotopic
either to a field or to a Generalized twisted field. If L is as in Case (4), then comparing
(10) with (18), taking into account Corollary 1, Proposition 9 and the presemifields listed
in Section 1, we get the assertion for q2 > 2 · 38.
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[21] H. Lüneburg: Translation planes. Springer-Verlag (1980).

[22] G. Marino, O. Polverino: On the nuclei of a finite semifield. Theory and
applications of finite fields, Contemp. Math., 579, Amer. Math. Soc., Providence,
RI (2012), 123-141.

[23] A. Maschietti: Symplectic translation planes, Lecture notes of Seminario Inter-
disciplinare di Matematica, Vol. II (2003), 101–148.

[24] G. Menichetti: On a Kaplansky conjecture concerning three–dimensional division
algebras over a finite field, J. Algebra, 47 (1977), 400–410.

[25] O. Polverino: Linear sets in Finite Projective Spaces, Discrete Math., 310 (2010),
3096–3107.

[26] Z. Zha, G.M. Kyureghyan, X. Wang: Perfect nonlinear binomials and their
semifields, Finite Fields Appl., 15 No. 2 (2009), 125–133.

[27] Y. Zhou, A. Pott, A new family of semifields with 2 parameters, Adv. Math. 234
(2013), 43–60.

Giuseppe Marino
Dipartimento di Matematica e Fisica,
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