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ABSTRACT

One of the main goals in the field of complex systems is the selection and extraction of relevant and meaningful
information about the properties of the underlying system from large datasets. In the last years different methods
have been proposed for filtering financial data by extracting a structure of interactions from cross-correlation
matrices where only few entries are selected by means of criteria borrowed from network theory. We discuss and
compare the stability and robustness of two methods: the Minimum Spanning Tree and the Planar Maximally
Filtered Graph. We construct such graphs dynamically by considering running windows of the whole dataset.
We study their stability and their edges’s persistence and we come to the conclusion that the Planar Maximally
Filtered Graph offers a richer and more significant structure with respect to the Minimum Spanning Tree, showing
also a stronger stability in the long run.

Keywords: Econophysics; Complex Systems; Networks; Minimum Spanning Tree; Planar Maximally Filtered
Graph; Financial Data Correlations.

1. INTRODUCTION

In the last few years, many filtering methods have been developed by econophysicists in order to extract relevant
information from huge amount of financial data. Two of such methods are the Minimum Spanning Tree (denoted
from now on as MST )1 used by Mantegna for financial data in ref.2 and the Planar Maximally Filtered Graph
(denoted from now on as PMFG) introduced by Tumminello et al. in ref.3

In this paper we analyze, compare and discuss the robustness, the stability and the structural fluctuations of
MST and PMFG considered as graphs dynamically evolving over time.

This paper is organized as follows. In section 2 we illustrate the data set and we introduce the correlation
matrices and the associated complete graphs from financial time series. We show that there are some similarities
between dynamical systems of correlations built on moving dynamical windows of different lengths ∆t and the
static system built on the entire data set which can be seen as its long run stable structure. In section 3
the dynamical MST and PMFG are introduced and described, and some properties of such subgraphs are
discussed and compared with the dynamical complete graphs from which they are extracted. In section 4 we
discuss differences in the averages and in standard deviations computed over subgraphs and complete graphs. A
comparison with systems of interest rates has been made and it shows significant differences which are directly
associated to the specific peculiarities of the markets. In order to assess the robustness of such graphs, in section
5 the frequencies of appearance of edges in the dynamical MST s and PMFGs are computed for each given ∆t.
In section 6 we introduce a new graph built as the union of all edges that can be reached with a T1 elementary
movement from a given PMFG.4,5 Intersections between dynamical subgraphs and their corresponding static
subgraphs are computed and relevant differences related to long-run time-persistence of edges are shown. In
section 7 we draw some conclusions and propose some suggestions for future research.

Send correspondence to frp110@rsphysse.anu.edu.au

Complex Systems II, edited by Derek Abbott, Tomaso Aste, Murray Batchelor, Robert Dewar,
 Tiziana Di Matteo, Tony Guttmann, Proc. of SPIE Vol. 6802, 68021E, (2008)

0277-786X/08/$18 · doi: 10.1117/12.758822

Proc. of SPIE Vol. 6802  68021E-1



2. DYNAMICAL CORRELATIONS

2.1 Data description

We have analyzed daily time series of the n = 300 most capitalized NY SE companies from 2001 to 2003, for
a total of T = 748 days. Return time series are computed as logarithmic differences of daily prices, and daily
prices are computed as averages of daily quotations. Closing quotations are excluded from the computation. In
the following we denote with Y the 748 × 300 matrix of returns.

Stocks are classified into 12 economic sectors and 77 economic subsectors.

2.2 Distance Matrices from correlations

Let us consider all time data subsets of dimensions ∆t × 300, where ∆t corresponds to a moving window, from
time (t) to time (t + ∆t − 1), where t = 1, 2 , ... , (T − ∆t + 1) and ∆t = 21, 42, 63, 84, 126, 251 days,
corresponding approximately to ∆t = 1, 2, 3, 4, 6, 12 months. For each t and ∆t, the resulting matrix is
denoted as Yτ,s with τ = t, (t + 1) , ..., (t + ∆t − 1) and s = 1, 2, ... , 300.

The number of these matrices, for each choice of ∆t, is shown in Table 1.

Table 1. Number of dynamical correlation matrices associated to the choice of the moving window ∆t.

∆t ∆t cases
months days no

1 21 728
2 42 707
3 63 686
4 84 665
6 126 623
12 251 498
36 748 1

For each of such matrices, we computed the correlation matrix C (t,∆t), which is a 300 × 300 matrix with
coefficients given by the formula

ci,j (t,∆t) =
〈Yτ,iYτ,j〉τ − 〈Yτ,i〉τ 〈Yτ,j〉τ√(〈

Y
2

τ,i

〉
τ
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〉
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where 〈fτ 〉τ = 1
∆t

∆t∑
τ=1

fτ is the time average of a given series fτ . From the correlation coefficients ci,j , we

can write a well-known measure of distance between stocks i and j: di,j =
√

2 (1 − ci,j). Such distance is the
euclidean metric distance computed between standardized returns Zτ,i of stocks i and j where

Zτ,i =
Yτ,i − 〈Yτ,i〉τ√(〈
Y

2

τ,i

〉
τ
− 〈Yτ,i〉2τ

) . (2)

The distance di,j is a function, d : Yτ,i × Yτ,j → R, such that di,j ∈ [0, 2], with di,j = 0 if ci,j = 1, di,j =
√

2
if ci,j = 0 and di,j = 2 if ci,j = −1. All standard properties of a metric distance are satisfied.

The matrices D (t,∆t) =
√

2 (1 − C (t,∆t)) can be interpreted as dynamical distance matrices of weighted
complete graphs K300 where all 300 stocks are interconnected.
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Figure 1. Correlations between the dynamical distance matrices D (t, ∆t), computed at ∆t = 21, 42, 63, 84, 126, 251
days, corresponding approximately to 1, 2, 3, 4, 6, 12 months, and the static distance matrix D∗ obtained by using
all T = 748 days available from data set of the 300 most capitalized NY SE stocks’ time series, corresponding to years
2001 − 2003. The higher curve is obtained for ∆t = 251 days, the lower for ∆t = 21 days. At the bottom, percentages of
companies whose standardized return, at each time t, exceeds two standard deviations or falls below minus two standard
deviations.

2.3 Static Graph and Dynamical Graphs

As a first step we computed the static distance matrix D∗ on the entire data set Y and, for each t and ∆t, we
computed the correlations between such matrix and the dynamical distance matrices D (t,∆t). Such correlations
are

E (t,∆t)=

〈
di,j(t,∆t)d∗i,j

〉
i,j
−〈di,j(t,∆t)〉i,j
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with di,j and d∗i,j respectively the elements of the distance matrices D (t,∆t) and D∗ and where 〈fi,j〉i,j =
2

n(n−1)

∑
i<j

fi,j denotes the average of fi,j over all edges.

Correlations E (t,∆t) for each t and ∆t are shown in Figure 1. At the bottom of the figure, we show the
percentage of companies whose standardized return, at each time t, exceeds two standard deviations (proxy
measure for booms, positive values) or falls below minus two standard deviations (proxy measure for crashes,
negative values).

As ∆t increases, we observe that the dynamical distance matrices get at every step closer to the static
distance matrix, built on the entire data set. Relevant fluctuations observed at low levels of ∆t, turn out to be
strongly damped at higher levels. We observe that, after periods of particular turbulence, the dynamical system
of correlations becomes closer to the static distance matrix. As we can see from Table 2, when ∆t = 21 days,
the range of correlations is from a minimum of 23.02% to a maximum of 63.67%, the average being 45.39% and
standard deviation 8.86%. When ∆t = 84 days, the range of correlations is from a minimum of 55.47% to a
maximum of 80.94%, the average being 69.95% and standard deviation 6.08%. When ∆t = 251 days, the range
of correlations is from a minimum of 80.28% to a maximum of 90.93%, the average being 87.73% and standard
deviation 2.34%. Thus, we see that the range becomes progressively narrower and the average higher.
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Table 2. Summary for correlations between static distance matrix D∗ and the dynamical distance matrices D (t, ∆t).

∆t Min Mean Max Std
21 0.2302 0.4539 0.6367 0.0886
42 0.3588 0.5778 0.7342 0.0803
63 0.4573 0.6510 0.7865 0.0683
84 0.5547 0.6995 0.8094 0.0608
126 0.6188 0.7664 0.8493 0.0492
251 0.8028 0.8773 0.9093 0.0234

It’s worth mentioning that dynamical distance matrices built on only one third of the entire data set (cor-
responding to ∆t = 251 days) are very close to the static distance matrix built on the entire data set. This is
showing a fast convergence with ∆t of the dynamical distances towards the static distances.

3. DYNAMICAL MINIMUM SPANNING TREES AND PLANAR MAXIMALLY
FILTERED GRAPHS

The graphs associated to matrices D (t,∆t) are complete graphs K300, which have n (n − 1) /2 = (300)(299)/2 =
44850 edges connecting all pairs of nodes. Different methods exist in literature in order to filter such a huge
amount of data, otherwise hardly readable and usable. One approach consists in extracting a sub-graph which
retains the most valuable information and eliminates most of the redundancies, producing identifiable hierarchies
and communities.

A widely used method is the Minimum Spanning Tree (MST ), used for the first time in finance literature by
Mantegna.2 The MST is a tree, a graph with no cycles, in which all nodes are connected, and edges are selected
in order to minimize the sum of distances. The total number of edges is n − 1, where n is the number of nodes.
Several algorithms to construct the MST have been developed by the community of computer scientists and
are widely known since 1926 (Otakar Boruvka’s Algorithm). The most commonly used are Prim and Kruskal
algorithms that find the MST in polynomial time. The efficiency of algorithms for finding the MST has been
continuously enhanced over years (see, for instance, Eisner6). An almost linear running time algorithm has been
recently developed by Chazelle.7 Since we have computed almost 4, 000 MST s out of 300 nodes’s graphs, the
efficiency of the algorithm had to be considered. We have used Prim’s algorithm implemented in Matlab and we
have found it efficient enough for our purposes.

A filtering method which uses a similar principle, but allows more interactions and a more complex and rich
structure, is the Planar Maximally Filtered Graph (PMFG), proposed for the first time by Tumminello et al. in
ref.3 Such method constructs a connected planar graph8 where edges are selected in order to minimize the sum
of distances. In this case, the total number of edges is 3 (n − 2), approximately the triple number of edges than
the MST . It has been proved by Tumminello et al. in ref.3 that the MST is always a subgraph of the PMFG.
For each dynamical distance matrix D (t,∆t) we computed the corresponding dynamical MST s and PMFGs.
We computed also the Static MST and PMFG, over the entire period, in order to be able to compare their
properties with those of the dynamical sub-graphs.

Averages and standard deviations have been computed for each t and ∆t for edges belonging to the complete
graphs D (t,∆t), to the dynamical MST (t,∆t) and to the dynamical PMFG (t,∆t). Moreover, for each t and
∆t we computed the averages and standard deviations for edges belonging to the Static MST and PMFG. The
average distances in the dynamically moving distance matrices for all the graphs, computed at ∆t = 21 days
and at ∆t = 251 days are shown in Figure 2.

We observe that the average of complete graphs’s distances can be considered as a superior limit: dynamical
MST s and PMFGs must have average distances lower or equal than the corresponding complete graphs. Con-
versely, distance averages of edges belonging to the Static MST and PMFG can be higher: but if this happens
it indicates the total lack of significance and robustness for the relative subgraphs’s selection.
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Figure 2. From top to bottom, on the left: the average distances in the dynamically moving distance matrices D (t, ∆t)
computed at ∆t = 21 days, for edges belonging to: the complete graph, the Static PMFG computed on all 748 days,
the Static MST computed on all 748 days, the dynamical PMFGs computed at ∆t = 21 days, the dynamical MST s
computed at ∆t = 21 days. On the right: ∆t = 251 days; averages of the dynamical PMFGs are above those of the
Static MST . At the bottom, percentages of companies whose standardized return, at each time t, exceeds two standard
deviations or falls below minus two standard deviations.

When ∆t = 21 days, the figure can be divided in three regions: at the top average distances of complete
graphs’s edges; in the middle average distances of the edges belonging to the Static PMFG and MST ; at the
bottom average distances of dynamical PMFGs and MST s. All curves show the same patterns and trends:
subgraphs MST s and PMFGs reproduce well the properties of their corresponding complete graphs.

When ∆t = 251 days, the figure can be divided in two regions only: at the top average distances of the
complete graphs; at the bottom, well beneath the first curve, average distances of edges belonging to the Static
PMFG; then the dynamical PMFG; and further down the Static MST followed by the dynamical MST . Note
that in this case, the Static MST is below the dynamical PMFG.

Dynamical PMFGs exhibit behaviors and performances thoroughly similar to dynamical MST s, with only
slightly higher average distances.

It is of some interest to note that a remarkable sudden fall, consequent to turbulences due to the July/October
2002 stock market downturn, is clearly visible and is protracted for the entire period ∆t (21 days in the first
case, 251 days in the second) and after that it is suddenly and completely re-absorbed. It is noteworthy that a
single anomalous data point in July 2002 influences the average distances for all ∆t following periods.

We observe that the average distances of the dynamical graphs MST and PMFG are closer to average
distances of edges belonging to the corresponding static graphs than to the complete graph, with tightening gaps
as ∆t increases. This means that the selection of edges performed by our graph’s filtering is significantly robust.

4. THE MEAN-σ PLANE

For each set of edges of the dynamical graphs and for each set of edges belonging to the static graphs, we
calculated both the average distance and the standard deviation σ in the matrices D (t,∆t). We then consider
the mean-σ plane finding that, when ∆t = 21 days, variances of subgraphs’s edges are almost always lower than
or equal to variances of complete graphs’s edges while, conversely, when ∆t = 251 days, variances of subgraphs
edges are always higher.

For each time t, at a given ∆t, each dynamical graph or each static edge selection is represented by one
point in the mean-σ plane. When ∆t = 21 days, these points in the mean-σ plane are distributed uniformly
on elliptical clouds, with each subgraph quite clustered. Differently, when ∆t = 251 days, the elliptical clouds
become smooth straight lines, now very well distinct from each other, and their slopes are negative. Increasing
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Figure 3. From top to bottom, slope in the mean-σ plane of the lines joining one mean-σ point of the dynamical complete
graphs’s edges to one mean-σ point of edges belonging to the dynamical MST and PMFG, and to the Static MST and
PMFG. On the left: ∆t = 21; on the right: ∆t = 251. At the bottom, percentages of companies whose standardized
return, at each time t, exceeds two standard deviations or falls below minus two standard deviations.

∆t, if the average distance increases then the variance decreases and viceversa. We also computed the slope of
the line connecting, at each time t, one mean-σ point of all edges (complete graphs’s) to one mean-σ point of the
dynamical MST or PMFG or the Static MST or PMFG. We find that, when ∆t = 21 days (Figure 3, left
side), the slopes between the complete graph and the dynamical MST or PMFG are always positive. Conversely
the slopes between the complete graph and the Static MST or PMFG are almost always negative, except for
periods of particularly intense turbulence. On the other hand, when ∆t = 251 days (Figure 3, right side), the
same slopes are always negative for all cases and for all periods. These findings imply that the system of 300
stocks is generally poorly correlated, with relatively small variances. But, during and after periods of intense
turbulence, the time series get suddenly correlated and the variances increase.

We have made the same computations for a system of 16 Eurodollar interest rates’s daily quotations and one
more system of 34 interest rates’s weekly quotations.9–14 We obtain in both cases the opposite result: a positive
slope on the mean-σ plane. This is not surprising because these are highly regulated systems indeed, monitored
under strict control and strongly influenced by an international institutional system made of many cooperating
national Central Banks. During a turbulent period, interest rates time series get partially decorrelated until
agents and authorities adjust their positions, and then the system gets correlated again. Conversely, stock
markets are highly competitive, hardly controllable, with dynamics hardly manageable and predictable, so they
are much more complex and turbulent systems. During calm periods, the system is less correlated than during
turbulent ones, when agents are driven by euphoria or panic; in such a system, public authorities have a lower
control.

5. FREQUENCIES OF SUB-GRAPHS’S EDGES

Both MST and PMFG select many statistically significant edges with high positive correlations but also some
residual edges with lower weights. The dynamical graphs have some edges which appear often and others that
are inserted only rarely. In order to detect significant edges, a frequency has been computed for each edge and
for each ∆t.

Both relative and absolute edge frequencies for dynamical MST s are shown in Table 3 and Table 4, analo-
gously for dynamical PMFGs in Table 5 and Table 6.

We find that, when ∆t = 251 days, that is when the filtering is particularly robust, several edges that never
appear in the dynamical MST s appear very often (more than 70% of cases) in the dynamical PMFGs instead.
We observe that more than 99.90% of all edges for dynamical MST s and more than 99.50% of all edges for
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Table 3. Relative frequencies, at each ∆t, for edges belonging to the dynamical MST s.

∆t = 0 < 0.1 < 0.2 ...
< 0.7 < 0.8 < 0.9 = 1

1 42.22% 99.31% 99.81% ... 99.99% 99.99% 100% 0.00%
2 66.68% 98.92% 99.59% ... 99.98% 99.99% 99.99% 0.00%
3 77.73% 98.68% 99.44% ... 99.98% 99.98% 99.99% 0.01%
4 83.62% 98.49% 99.34% ... 99.96% 99.98% 99.99% 0.01%
6 89.45% 98.25% 99.18% ... 99.93% 99.95% 99.98% 0.01%
12 95.48% 98.37% 98.96% ... 99.81% 99.86% 99.92% 0.03%

Table 4. Absolute frequencies, at each ∆t, for edges belonging to the dynamical MST s.

∆t = 0 > 0.1 > 0.2 ...
> 0.7 > 0.8 > 0.9 = 1

1 18, 936 310 85 ... 5 4 2 0
2 29, 907 485 182 ... 7 6 5 2
3 34, 864 593 250 ... 11 7 6 3
4 37, 505 675 295 ... 18 11 6 5
6 40, 120 785 370 ... 33 23 9 6
12 42, 821 731 466 ... 84 61 36 14

Table 5. Relative frequencies, at each ∆t, for edges belonging to the dynamical PMFGs.

∆t = 0 < 0.1 < 0.2 ...
< 0.7 < 0.8 < 0.9 = 1

1 8.76% 97.65% 99.03% ... 99.97% 99.98% 99.99% 0.00%
2 20.58% 96.93% 98.5% ... 99.88% 99.92% 99.96% 0.00%
3 34.38% 96.33% 98.21% ... 99.81% 99.88% 99.94% 0.01%
4 44.74% 95.92% 98.04% ... 99.74% 99.84% 99.92% 0.02%
6 58.82% 95.61% 97.72% ... 99.58% 99.75% 99.85% 0.06%
12 79.14% 95.56% 97.21% ... 99.23% 99.44% 99.63% 0.19%

Table 6. Absolute frequencies, at each ∆t, for edges belonging to the dynamical PMFGs.

∆t = 0 > 0.1 > 0.2 ...
> 0.7 > 0.8 > 0.9 = 1

1 3, 931 1, 054 435 ... 15 9 3 0
2 9, 232 1, 377 673 ... 54 36 16 2
3 15, 420 1, 646 803 ... 86 52 26 5
4 20, 068 1, 828 879 ... 115 73 37 11
6 26, 379 1, 967 1, 024 ... 189 113 69 25
12 35, 495 1, 992 1, 252 ... 347 249 166 84
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Table 7. Dynamical MST and PMFG edges, with 100% frequency. ∆t =251 days.
i CODE SECTOR SUBSECTOR CODE SECTOR SUBSECTOR

1 SBC Services CommunicationServices BLS Services CommunicationServices
2 FNM Financial ConsumFinancServ FRE Financial ConsumFinancServ
3 LEH Financial InvestmentServices BSC Financial InvestmentServices
4 MBI Financial InsProp.&Casualty ABK Financial InsProp.&Casualty
5 NEM BasicMaterials Gold&Silver ABX BasicMaterials Gold&Silver
6 RD Energy Oil&Gas − Integrated TOT Energy Oil&Gas − Integrated
7 WLP Financial InsAccidental&Health HMA Healthcare HealthcareFacilities
8 LIZ ConsumerCyclical Apparel/Accessories V FC ConsumerCyclical Apparel/Accessories
9 CTX CapitalGood ConstructionServices PHM CapitalGood ConstructionServices
10 JP Financial InsLife TMK Financial InsAccidental&Health
11 BJS Energy OilWellServ&Equip SII Energy OilWellServ&Equip
12 KRI Services Printing&Publishing DJ Services Printing&Publishing
13 WLP Financial InsAccidental&Health HUM Financial InsAccidental&Health
14 WHR ConsumerCyclical Appliance&Tool MY G ConsumerCyclical Appliance&Tool

Table 8. Dynamical PMFG edges, with high frequencies for PMFGs and 0% frequency for MST s. ∆t = 251 days.
i CODE SECTOR SUBSECTOR CODE SECTOR SUBSECTOR PMFG

1 GCI Services P rinting&P ublishing DJ Services P rinting&P ublishing 0.996
2 SP G Services RealEstateOperations DRE Services RealEstateOperations 0.9738
3 BLS Services CommunicationServices CT L Services CommunicationServices 0.9698
4 ABK F inancial InsP rop.&Casualty JP F inancial InsLife 0.9054
5 MCD Services Restaurants EAT Services Restaurants 0.8672
6 UTX Conglomerates Conglomerates GD CapitalGood Aerospace&Defense 0.8672

7 P F E Healthcare MajorDrugs ABT Healthcare MajorDrugs 0.8632
8 MBI F inancial InsP rop.&Casualty T MK F inancial InsAccidental&Health 0.8491
9 HMA Healthcare HealthcareFacilities HUM Financial InsAccidental&Health 0.8491

10 IP BasicMaterials P aper&P aperP roducts P P G BasicMaterials ChemicalManifacturing 0.8471
11 MAS ConsumerCyclical Furniture&Fixtures CTX CapitalGood ConstructionServices 0.829

12 HMA Healthcare HealthcareF acilities MME Healthcare N\A 0.8048
13 V F C ConsumerCyclical Apparel/Accessories JNY ConsumerCyclical Apparel/Accessories 0.7928
14 IP BasicMaterials P aper&P aperP roducts P D BasicMaterials MetalMining 0.7928
15 CMA F inancial RegionalBanks UP C F inancial N\A 0.7928
16 P X BasicMaterials ChemicalManifacturing ROH BasicMaterials Chemical − P lastic&Rubber 0.7827
17 RD Energy Oil&Gas − Integrated KMG Energy Oil&GasOperations 0.7807
18 GGP Services RealEstateOperations DRE Services RealEstateOperations 0.7746
19 GIS ConsNonCycl F oodP rocessing CP B ConsNonCycl F oodP rocessing 0.7485
20 BR Energy Oil&GasOperations UCL Energy Oil&GasOperations 0.7163
21 OXY Energy Oil&GasOperations T OT Energy Oil&Gas − Integrated 0.7163
22 NSM T echnology Semiconductors LSI T echnology Semiconductors 0.7143
23 MHP Services P rinting&P ublishing DJ Services P rinting&P ublishing 0.7022

dynamical PMFGs have persistence lower than 80%. More than 99% of all edges for dynamical MST s and
more than 97% of all edges for dynamical PMFGs have persistence lower than 20%. It is noteworthy to observe
that, when ∆t = 21 days, 42.2% of all edges for dynamical MST s but only 8.8% of all edges for dynamical
PMFGs never appear. While, when ∆t = 251 days, 95.5% of all edges for dynamical MST s and 79.1% of all
edges for dynamical PMFGs never appear. It is also remarkable that, when ∆t = 21 days, 99.3% of all edges
for dynamical MST s and 97.7% of all edges for dynamical PMFGs are selected in less than 10% of cases.

The most significant dynamical MST and PMFG edges, with 100% frequencies, are shown in Table 7. We
notice that all edges identify a specific economic activity: in the large majority of cases, the two nodes belong
to the same sector and sub-sector, and when this is not so, as in rows 7 and 10, the two activities are strictly
related in a specific economic sense (ie. Insurance Accidental & Health linked to Healthcare Facilities in the first
case, Insurance Accidental & Health linked to Insurance Life in the second case).

In Table 8 some of the most significant edges are shown which are often selected by PMFGs (with a frequency
of more than 70%) but never selected by MST s. All edges are, again, strictly associated to a specific economic
activity: in most of them the two nodes belong to the same sector and sub-sector. When this is not so, as in
rows 6, 9 and 11, the two activities are strictly related in a specific economic sense: UTX “provides a broad
range of high-technology products and support services to customers in the aerospace and building industries”
and it is linked to GD that is an industry specialized in “Aerospace design, Combat Systems, Marine Systems
design, Information Systems and Technology”. Similarly, row 9 links the same sectors and subsectors as row 7
of Table 7. Analogously, MAS is in the field of “Furniture & Fixtures (faucets, kitchen, bath cabinets, bath
and shower units, spas and hot tubs, shower and plumbing specialties, electronic lock sets and other builders’
hardware, air treatment products, ventilating equipment and pumps)”and it is linked to home building company
CTX whose main field is “Construction Services” and whose “principal activities are to provide residential and
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Table 9. Dynamical MST and PMFG edges, with 100% frequency for PMFGs and different frequencies for MST s.
∆t = 251 days.

i CODE SECTOR SUBSECTOR CODE SECTOR SUBSECTOR MST

1 P P G BasicMaterials ChemicalManifacturing W Y BasicMaterials F orestry&W oodP roducts 0.004
2 T XN T echnology Semiconductors NSM T echnology Semiconductors 0.012
3 SLB Energy OilW ellServ&Equip BJS Energy OilW ellServ&Equip 0.0141
4 OXY Energy Oil&GasOperations UCL Energy Oil&GasOperations 0.0703
5 SBC Services CommunicationServices AT Services CommunicationServices 0.1044
6 AHC Energy Oil&Gas − Integrated KMG Energy Oil&GasOperations 0.1225
7 MER F inancial InvestmentServices AGE F inancial InvestmentServices 0.1687
8 BNI T ransportation Railroad NSC T ransportation Railroad 0.1888
9 GCI Services P rinting&P ublishing T RB Services P rinting&P ublishing 0.241
10 P P G BasicMaterials ChemicalManifacturing P X BasicMaterials ChemicalManifacturing 0.2671
11 MME Healthcare N\A HUM Financial InsAccidental&Health 0.2871

12 P G ConsNonCycl P ersonal&HouseholdP roducts CLX ConsNonCycl P ersonal&HouseholdP roducts 0.3133
13 BHI Energy OilW ellServ&Equip BJS Energy OilW ellServ&Equip 0.3253
14 MER F inancial InvestmentServices BSC F inancial InvestmentServices 0.3414
15 P P G BasicMaterials ChemicalManifacturing AP D BasicMaterials ChemicalManifacturing 0.3514
16 MBI F inancial InsP rop.&Casualty MT G F inancial InsP rop.&Casualty 0.3735
17 UNP T ransportation Railroad NSC T ransportation Railroad 0.3835
18 DD BasicMaterials Chemical − P lastic&Rubber P P G BasicMaterials ChemicalManifacturing 0.4157
19 SLB Energy OilW ellServ&Equip SII Energy OilW ellServ&Equip 0.4438
20 EQR Services RealEstateOperations AIV Services RealEstateOperations 0.4839
21 UNP T ransportation Railroad BNI T ransportation Railroad 0.5141
22 UNP T ransportation Railroad CSX T ransportation Railroad 0.5402
23 AP A Energy Oil&GasOperations KMG Energy Oil&GasOperations 0.5422
24 SLB Energy OilW ellServ&Equip BHI Energy OilW ellServ&Equip 0.5442
25 LNC F inancial InsLife T MK F inancial InsAccidental&Health 0.5582
26 T RB Services P rinting&P ublishing KRI Services P rinting&P ublishing 0.5622
27 F P L Utilities ElectricUtilities CIN Utilities ElectricUtilities 0.5703
28 MBI F inancial InsP rop.&Casualty JP F inancial InsLife 0.5723
29 IP BasicMaterials P aper&P aperP roducts W Y BasicMaterials F orestry&W oodP roducts 0.5783
30 NSM T echnology Semiconductors T ER T echnology Semiconductors 0.6205
31 MER F inancial InvestmentServices LEH F inancial InvestmentServices 0.6225
32 KR Services RetailGrocery ABS Services RetailGrocery 0.6265
33 HD Services RetailHomeImprovement LOW Services RetailHomeImprovement 0.6305
34 SW Y Services RetailGrocery ABS Services RetailGrocery 0.6606
35 P P G BasicMaterials ChemicalManifacturing EC BasicMaterials ChemicalManifacturing 0.6627
36 BHI Energy OilW ellServ&Equip SII Energy OilW ellServ&Equip 0.6727
37 BNI T ransportation Railroad CSX T ransportation Railroad 0.6767
38 WLP Financial InsAccidental&Health MME Healthcare N\A 0.6767

39 NSC T ransportation Railroad CSX T ransportation Railroad 0.6968
40 IP BasicMaterials Paper&PaperProducts TIN Conglomerates Conglomerates 0.7048

41 KR Services RetailGrocery SW Y Services RetailGrocery 0.7129
42 WY BasicMaterials Forestry&WoodProducts TIN Conglomerates Conglomerates 0.7169

43 GP BasicMaterials Paper&PaperProducts TIN Conglomerates Conglomerates 0.7329

44 P X BasicMaterials ChemicalManifacturing AP D BasicMaterials ChemicalManifacturing 0.7771
45 GCI Services P rinting&P ublishing KRI Services P rinting&P ublishing 0.7992
46 P G ConsNonCycl P ersonal&HouseholdP roducts CL ConsNonCycl P ersonal&HouseholdP roducts 0.8072
47 MRK Healthcare MajorDrugs BMY Healthcare MajorDrugs 0.8153
48 CL ConsNonCycl P ersonal&HouseholdP roducts CLX ConsNonCycl P ersonal&HouseholdP roducts 0.8333
49 F D Services RetailDepartment&Discount JCP Services RetailDepartment&Discount 0.8394
50 ADI T echnology Semiconductors IRF T echnology Semiconductors 0.8474
51 EMC T echnology ComputerStorageDevices ADI T echnology Semiconductors 0.8494
52 UCL Energy Oil&GasOperations AHC Energy Oil&Gas − Integrated 0.8775
53 LT R F inancial InsP rop.&Casualty JP F inancial InsLife 0.8876
54 BLS Services CommunicationServices AT Services CommunicationServices 0.8956
55 CL ConsNonCycl P ersonal&HouseholdP roducts AV P ConsNonCycl P ersonal&HouseholdP roducts 0.9016
56 IT W CapitalGood Misc.CapitalGoods ET N CapitalGood Misc.CapitalGoods 0.9116
57 MRK Healthcare MajorDrugs ABT Healthcare MajorDrugs 0.9157
58 P P G BasicMaterials ChemicalManifacturing ROH BasicMaterials Chemical − P lastic&Rubber 0.9378
59 SP G Services RealEstateOperations EQR Services RealEstateOperations 0.9438
60 CB F inancial InsP rop.&Casualty JP F inancial InsLife 0.9478
61 T XN T echnology Semiconductors ADI T echnology Semiconductors 0.9558
62 ETN CapitalGood Misc.CapitalGoods PH BasicMaterials Misc.FabricatedProducts 0.9719

63 AP A Energy Oil&GasOperations AP C Energy Oil&GasOperations 0.9759
64 UCL Energy Oil&GasOperations KMG Energy Oil&GasOperations 0.9819
65 P F E Healthcare MajorDrugs MRK Healthcare MajorDrugs 0.99
66 SP G Services RealEstateOperations GGP Services RealEstateOperations 0.996
67 AT Services CommunicationServices CT L Services CommunicationServices 0.996
68 PPG BasicMaterials ChemicalManifacturing TIN Conglomerates Conglomerates 0.996

69 CAT CapitalGood Constr.&Agric.Machinery DE CapitalGood Constr.&Agric.Machinery 0.998
70 AP A Energy Oil&GasOperations BR Energy Oil&GasOperations 0.998

commercial constructions” for families and firms (details have been retrieved from companies’s Web pages).

Table 9 reports some of the most significant edges that are always selected by PMFGs but not always selected
by MST s. Once more, we see clearly that most of these edges have both nodes belonging to the same sector and
sub-sector, showing that the system of correlations is highly clustered. For instance, rows 11 and 38 are similar
to row 7 of Table 7 and row 9 of Table 8. We find particularly interesting the edges involving Temple-Inland
(TIN) (rows 40, 42, 43, 68), from the Conglomerates sector, that is always linked to companies belonging to
the sector of Basic Materials and subsectors Forestry, Wood, Paper and Chemical Products. Temple-Inland,
indeed, engages in corrugated packaging and forest products (real estate and financial services businesses). It
manufactures a range of building products including lumber, studs, gypsum wallboard, engineered wood siding
and trim, fiberboard sheathing.
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Figure 4. Percentages of persistent edges belonging (from top to bottom) to: graphs obtained by T1 expansion of PMFGs;
dynamical PMFG (t, ∆t), dynamical MST (t, ∆t). On the left: ∆t = 21; on the right: ∆t = 251. At the bottom,
percentages of companies whose standardized return, at each time t, exceeds two standard deviations or falls below minus
two standard deviations.

From Table 8 and Table 9, we see that the PMFG procedure selects some especially high quality edges that
are missing, always or most of the times, from the MST .

6. LONG RUN TIME PERSISTENCES FOR EDGES OF SUB-GRAPHS

Onnela15 and Johnson16 introduced some interesting measures of survival for edges belonging to dynamical
graphs: in particular they propose to calculate the common edges between G(t + k) and G(t) (single step
survival ratio); or between G(t + k), G(t + k − 1), ..., G(t + 1) and G(t) (k multi-step survival ratio). These are
short-run measures of persistence, weak in the former case; stronger, and rather restrictive, in the latter.

In this paper we have further considered the intersections between dynamical subgraphs and their corre-
sponding static subgraphs. We have then calculated, for each t and ∆t, the number of common edges between
dynamical MST (t,∆t) and the Static MST divided by the length of the MST ; the number of common edges
between dynamical PMFG (t,∆t) and the Static PMFG divided by the length of the PMFG. As we can see
in Figure 4, when ∆t = 21 days the dynamical PMFG (t,∆t) seem to be more stable than the dynamical
MST (t,∆t) and still slightly more stable also in the case ∆t = 251 days.

Following an insight from Ohlenbusch et al.4 and Aste et al.,5 we have considered for each t and ∆t, all local
T1 elementary topological movements for all edges of the PMFGs. A T1 movement is an edge-switching process
consisting in joining nodes c and d if and only if they are common neighbors of nodes a and b, where a and b
are already linked by an edge in the graph. After joining all such nodes, we obtain a new expanded graph that
contains all possible evolutions of the original planar through local T1 elementary topological movements. The
procedure described for the planar graphs cannot be carried out for trees, since if two nodes have two common
neighbors then there must be a cycle in the graph, so this cannot be a tree.

We find that the persistence of edges belonging to the new dynamical expanded planar graphs with respect
to the static planar is higher than the others when ∆t = 21 days and sensitively higher when ∆t = 251 days.

7. CONCLUSIONS AND FUTURE RESEARCH

Financial systems are highly complex systems. Available data need to be filtered in order to be able to extract
relevant and meaningful information out of an extremely huge amount of data.

In this paper we have shown that both MST and PMFG reproduce pretty well the properties of the system
and are structurally robust. They both select some particularly significant edges of the economic underlying
system. We have seen that edges selected by both MST and PMFG are impressively clustered within economic
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sectors and subsectors, with the PMFG having a richer number of high-quality details on the financial system
with respect to the MST s.

We have introduced a new measure of survival for edges of a graph that catches their long-run persistence.
We have found that the PMFG seems to be slightly more persistent from a structural point of view, in the
long-run, even in the case ∆t = 251 days when both subgraphs are particularly robust. We have seen that, if
we expand the PMFG by adding edges through local T1 elementary topological movements, we obtain a graph
that retains, in the most robust case, most of the edges belonging to the Static PMFG.

Further steps will be taken to investigate the robustness and the meaning of those edges that show high
clustering power from an economic sectorial point of view.
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