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Abstract In this paper, a new model of the frequency dependence of the double-barrier THz
rectifier is presented. The new structure is of interest because it can be realized by CMOS
image sensor technology. Its application in a complex field such as that of THz receivers
requires the availability of an analytical model, which is reliable and able to highlight the
dependence on the parameters of the physical structure. The model is based on the hydrody-
namic semiconductor equations, solved in the small signal approximation. The model depicts
the mechanisms of the THz modulation of the charge in the depleted regions of the double-
barrier device and explains the self-mixing process, the frequency dependence, and the
detection capability of the structure. The model thus substantially improves the analytical
models of the THz rectification available in literature, mainly based on lamped equivalent
circuits.
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1 Introduction

The detection of high-frequency electromagnetic radiation by integrated circuit, in particular of
terahertz radiation (THz), with the goal to achieve resolute images, eventually colored by the
interaction with material chemical bonding, represent a very challenging task which is pushing
great experimental and theoretical activities. The radiations spectrum of interest practically
covers all the gap between the microwaves and the infrared regions. The strong penetrability,
the sensitivity to chemical bonds, and the high resolution make the THz range an attractive tool
for different applications, as medical imaging and security check.

Since the THz radiation is non-ionizing and the associated power is low, it is considered
safe. Nevertheless, THz wavelength is able to deeper scan the material under investigation.
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The combination between the safe and penetrating characteristics can be the winning qualities
in different applications, such as medical imaging, security/surveillance imaging, and spectro-
scopic applications.

Recently, a strong effort was spent in order to achieve THz sensors by using the standard,
low-cost, CMOS technology which, in particular, is characterized by a strong reproducibility
on a large area. This characteristic allows to achieve arrays of detectors, useful to have detector
panels for a large area approach.

Until now, the high-frequency detection, based on CMOS technology [1–4], was achieved
using a mechanism described by the plasma wave detection theory [5]. When a high-frequency
signal is applied between gate and source electrodes of a MOSFET, a 2D electron gas (located
in the inversion layer) converts THz radiation into a DC voltage. In order to increase the
detector responsivity, it was demonstrated that a strong downscaling of the gate length is
necessary [6]. Nevertheless, also for ultra-scaled technology nodes, the device parasitic
capacitance significantly influences the detector responsivity [7].

We recently proposed a new structure of high-frequency radiation detector [8], based on the
CMOS image sensor technology. The rectifying device is not a MOSFET, substituted by a
CMOS compatible new device, the double-barrier structure, while the already well-established
pixel electronics is used for the charge sensing and amplification after the detection. The new
double-barrier structure is based on the combination of the n/p+ barrier and a p+/metal Schottky
barrier. The double-barrier is mandatory to preserve the storage well structure of the pinned
photodiode [9], where the rectified charge has to be collected. The collected charge is then read
by the standard CMOS image sensor electronics, after the integration time.

The proposed structure is very effective in rectification of radiofrequency signal, as reported
in [8]. The asymmetry between the two barriers is the basis of the rectification capability. The
reported Technology Computer Aided Design (TCAD) simulations of the double-barrier
structure indicate that the detection capability is preserved up to very high-frequency range,
with a cutoff frequency of at least of 120 GHz. This property allows an effective application in
the THz range. This behavior is confirmed by comparison with the Schottky diode frequency
multiplier [10], where measurements and TCAD simulations show a smooth drop of the
conversion efficiency, until 840 GHz, followed by a drastic reduction above 1.4 THz.

The application of the new structure in a complex field such as that of THz receivers
requires the availability of an analytical model, which is reliable and able to highlight the
dependence on the parameters of the physical structure.

In contrast with the evidence of rectifying capabilities up to very high frequency, the
analytical models of the THz rectification available in literature, mainly based on lamped
equivalent circuits, show in general 1/ω2 dependence. For instance, in [11] an equivalent
circuit, with parameters obtained from low-frequency measurements, is used for the develop-
ment of an extended model of the Schottky barrier, while in [12] contact skin effect, and bulk-
spreading impedance was adopted. Nevertheless, a simply lumped barrier impedance was
used. Han et al. [13] related either the noise or the responsivity to the DC first and second
derivative of the Schottky diode I–V characteristics.

In contrast with these approaches, the Monte Carlo simulations [14] demonstrate how in the
Schottky diodes, the capacitance/voltage (C–V) nonlinearity dominate with respect to the
current/voltage (I–V) nonlinearity in the range 0.2–5 THz. C-V nonlinearities depend on the
charge inside the depletion layer, which cannot be described by the usual abrupt depletion
layer approximation which, in the small signal approximation, would led to a constant
equivalent capacitance.
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In this paper, we develop a new model of the self-mixing process in the double-barrier device, a
model that in principle can be extended also to different structures, e.g., the single barrier.

The model is based on the hydrodynamic semiconductor equations, solved in the small
signal approximation. The detector is assumed in the zero bias condition, as expected in a
detector, in order to reduce the junction noise. The model depicts the mechanisms of the THz
modulation of the charge in the depleted regions of the structure. As a result, we obtain the
frequency dependence of the detection capability of the double-barrier detector.

In the model, the frequency dependence of the rectification responsivity is not related to the
damping effect of the parasitic capacitances, but to the nonlinear effect of the carrier dynamic
within the depletion layer, the self-mixing process.

In our approach, thanks to the hydrodynamic semiconductor equations, we are able to
highlight different contributions coming from different portions of the two barriers structure.
Our approach connects both to the model of resonant-mixing detection in two dimensional
electronic fluids [5] and to the self-mixing model in semiconductor layered structures [15].

2 The Analytical Model

A sketch of the double-barrier structure is reported in Fig. 1. The origin is placed at the left
border of the depletion region of the n-type layer. At the same edge, it is placed an ohmic
contact (cathode). The n/p+ junction is assumed at x =wn, where wn is the depletion region
depth in the n-type silicon side, in the Babrupt edge^ depletion approximation. The p+ region
has thickness D and is assumed as completely depleted. The p+ region and the metal form a
Schottky barrier, located at x =W =wn +D. The metal forms the anode contact.

We first define the steady-state conditions of the structure. Due to the charge balance, we
can impose the following balance equation:

q
ϵ

wnND−DNAð Þ ¼ E2 ð1Þ

Fig. 1 The semiconductor structure and the sketch of the electric field distribution
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where ND is the density of donors in the n region, NA is density of acceptors in the p
+ region, q

is the absolute value of the electron charge, ϵ the dielectric constant in the semiconductor, and
E2 is the electric field at the p+/metal interface due to charge collected in the metal layer.

The built-in potential across the structure is due to the difference between the Fermi level in
the n layer and the metal work function. Assuming a metal work function of FM=4.33 eV
(titanium), we can write the built-in potential as reported below:

VBIN ¼ qχn þ
EG

2
−
kBT
q

log
ND

ni

� �� �
−FM ð2Þ

where qχn is the electron affinity of the n-doped silicon, kB the Boltzman constant, T the
absolute temperature, EG the semiconductor gap, and ni the intrinsic carrier concentration. The
steady-state electric field in the structure can be analytically expressed as follows:

E0 xð Þ ¼ q
ϵ
xND for x < wn ð3Þ

E0 xð Þ ¼ E1 þ q
ϵ
xNA x−wnð Þ for x > wn ð4Þ

where E1 ¼ q
ϵ wnND. We can integrate Eqs. (3) and (4) in order to obtain the potential drop

across the structure and impose it to be equal to the built-in voltage:Z
0

wn q
ϵ
xNDdxþ

Z
0

D

E1 þ E2−E1ð Þ
D

x′dx′ ¼ VBIN ð5Þ

Using Eqs. (1) and (5), the depletion region width, wn, and the value of E2 can be
calculated.

Assuming the thermal equilibrium condition for the carriers inside the structure, due to the
zero bias condition, and zero potential at x = 0, the electron density is given by the following:

n0 xð Þ ¼ nn0e
ϕ xð Þ
kBT
q ð6Þ

where ϕ(x) is the potential distribution inside the structure, and nn0 is the equilibrium electron
density at the cathode contact. Figure 2 reports the behavior of n0 inside the structure,
assuming the value of the numerical example presented in section III.
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Fig. 2 Comparison of the two
homogeneous terms in Eq. (14),
from solutions n̂C (continuous)
and n̂A (dashed), at the frequencies
of 320 GHz (blue), 1 THz (green),
and 3.2 THz (red), respectively
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An equivalent expression can be obtained assuming the zero potential at x =W:

n0 xð Þ ¼ nn0eVBINe
ϕ′ xð Þ
kBT
q ¼ nnMe

ϕ′ xð Þ
kBT
q ð7Þ

where ϕ′(x) = ϕ(x) − VBIN. nnM is the electron density at x =W, imposed by the metal work
function.

In order to describe the variation of the physical quantities in the structure, we introduce the
hydrodynamic semiconductor equation written as follows:

∂ϕ
∂x

¼ −E ð8Þ

∂E
∂x

¼ q
ε
n ð9Þ

dn
dt

¼ −
∂nv
∂x

þ Dn
∂2n
∂2x

ð10Þ

∂v
∂t

¼ v
∂v
∂x

þ q
m
E−

v
τ

ð11Þ

where n is the total electrons density (steady-state plus variations), and v is the total electrons
velocity. In this set of equations, we neglect the transport of holes, assuming them as minority
even in the depleted p+ region.

The delay due to the kinetic of electron, accelerated by the electric field, is described by the
Euler Eq. (11) limited by the effect of electron collision, where τ is the collision time.

In order to achieve a correct solution within the depletion layer of the junctions, we take
into account both the contributions due to transport and diffusion. The effect of the diffusion is
assumed instantaneous, thus considering the phonon frequency higher than the frequency of
applied signal. It gives rise to a limitation of the electron density variation at the lower
frequency. Its contribution starts decreasing above a frequency of 1011 Hz, n practice limiting
the general decrease of electron variation. Assuming only the transport term, combining the
dependence induced by the Euler equation with the continuity equation would result on a
frequency dependence proportional to 1/ω2, while, including the diffusion contribution, the
model obtained leads to a sub-linear dependence at low frequencies.

We consider that a sinusoidal radiofrequency voltage drop, VRF tð Þ ¼ v̂RFe−jϖt, is applied to
the structure (positive sign assumed at the cathode). In the sharp edge approximation, we can
assume that the maximum charge variation is located at the edges of the structure, at the edge
of the depletion layer in the zone n, x = 0, and in the metal, x =W. With this assumption, the
first-order variations of the electric field inside the structure do not depend on the position.

Therefore, we can write Ê xð Þ ¼ v̂RF=w.
With the assumption of a constant electric field, also the amplitude of the first-order electron

velocity variation can be assumed constant along the depletion region. Moreover, thanks to this
assumption, we can neglect the nonlinear term in Eq. (11).
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Assuming the small signal approximation, the first-order variation of the electron density
has a sinusoidal variations in time: n x; tð Þ ¼ n0 xð Þ þ n̂ xð Þe−jϖt , and variations of the electron
drift velocity are constant in space and sinusoidal in time: v tð Þ ¼ v0 xð Þ þ v̂e−jϖt. The semi-
conductor equations for the variations can be simplified as follows:

Ê≅v̂RF=W ð12Þ

v̂ ¼
q
m
Ê̂

jωþ 1

τ

ð13Þ

jϖn̂ ¼ − v̂
∂n0
∂x

þ n̂
∂v0
∂x

þ v0
∂n̂̂
∂x

� �
þ Dn

∂2 n̂̂
∂2x

ð14Þ

In the last equation, Eq. (14), a term n0 ∂v̂
∂x is neglected, due to the assumption that velocity

variations are constant in space within the depletion layer. The term ∂n0/∂x, in the following
referred as n1, can be analytically evaluated using the steady-state distribution of electrons,
Eqs. (6) and (7), and the distribution of the electric field ((3) and (4)). Therefore, assuming the
spatial constancy of the variations of electric field and velocity, substituting Eqs. (12) and (13)

into the differential Eq. (14), we find that the term v ∂n0
∂x represents a non-homogeneous term.

We also assume the presence of a DC term of the velocity into the depletion layer: v0(x) =
− μnE0(x), where the steady-state electric field in the different regions is given by expressions
(3) and (4). We obtain for Eq. (14):

jϖ−
q
ϵ
μnN J

� �
n̂̂−μnE0

∂n̂̂
∂x

−Dn
∂2 n̂̂
∂2x

¼ −v̂̂n1 ð15Þ

where NJ =ND is in the region x <wn, and NJ =NA is in the region w – D > x >w. In order to
overcome difficulties in obtaining the exact solution of Eq. (15), we adopt an Basymptotic^
approach. In this approach, we assume that the effect of each one of the three homogeneous
terms can be dominant or negligible, depending on the position inside the junction and on the
frequency value. We thus evaluate three distinct approximated solutions, respectively, n̂A xð Þ,
n̂B xð Þ , and n̂C xð Þ , in which the effect of only one of the three homogeneous terms is
considered dominant. The three asymptotic solutions are given by the following:

considering the first term : n̂̂A ¼ v̂̂n1 xð Þ
q
ϵ
μnND−jϖ

ð16Þ

considering the second term :
∂n̂B
∂x

¼ v̂
μnE0

∂n0
∂x

ð17Þ

with n̂B ¼ v̂n0
μnE

þ constant and:

considering the third term : Dn
∂2n̂C
∂2x

¼ v̂n1 xð Þ ð18Þ

Solution n̂A has the same spatial distribution of n1(x), and a strong frequency dependence.
At a very high frequency, the term results in quadrature with v̂. Solution n̂B has the same spatial
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distribution of n0(x), and it is in phase with v̂. We note that n̂B cannot represent the solution at
x = 0, since there, E0 is null. Regarding solution n̂C , in the region x <wn, with negative slope of
the electron density, from the known spatial distribution of n1(x), Eq. (18) can be integrated:

n̂C xð Þ ¼ v̂
Dn

∫x0∫
x0

0 n1dx
}dx

0 þ n 0ð Þ ¼ v̂
Dn

∫x0n0dx
0 ð19Þ

where the variation of electrons density at the edge of the depletion layer, n(0), is assumed to
be null. Substituting Eqs. (3), (4), (6), and (8) into the Eq. (19), we obtain (for 0 < x <wn):

n̂C xð Þ ¼ v̂
Dn

∫x0nn0e
−1
2
E1
w x02dx

0 ¼ π
2

v̂
Dn

nn0
1

ξ
erf ξxð Þ ð20Þ

where ξ ¼
ffiffiffiffiffiffiffiffiffiffi
E1

2wnvT

q
. Below the collision frequency, this solution is not depending on the

frequency. The only frequency dependence is given from the variation of the validity region.
Solution (20) of n̂C is valid only in a region with negative slope of the electrons density. In

open-circuit condition, we assume that the whole amount of electrons, varying following Eq.
(20), is fed by the reservoir of electrons of the non-depleted n region.

In the point D′ (see Fig. 1), the electric field is null. In the region D′< x <W, with
positive slope of the electrons density, we assume that the total amount of electrons
varying into this portion of the structure is furnished by the metal at x =W. For this
solution, we impose as boundary condition n(W) = 0, and, for a clearer formulation,
we change the variable, z =W − x. Integrating in this zone is follows:

n̂̂
0
C zð Þ ¼ n Wð Þ þ v̂̂

Dn
∫z0∫

z0

0 n1dz
}dz

0 ¼ v̂̂
Dn

∫z0n0 z
0

� �
dz

0 ð21Þ

Assuming for n0(x), in expression (7), we can write (D′ < z <0):

n̂
0
C zð Þ ¼ −

v̂
Dn

∫z0nnMe
−

E2j j
2D

0
VT

2D
0
z
0−z02ð Þ

dz
0 ¼

¼ π
2

v̂
Dn

nnMe
−

E2j jD0
2vT

1

ζ
erf ζD

0
� �

−erf ζ D
0
−z

� �h in o ð22Þ

where ζ ¼
ffiffiffiffiffiffiffiffiffiffi
E2j j

2D
0
vT

q
. An additional function should be evaluated, for the interval between wn

andW −D′. Nevertheless, since the dimension of this area is very small, and since the diffusion
term became negligible in this zone due to the low carrier concentration, we can avoid this
calculation.

Each asymptotic solution will be a valid approximation only in a given portions of
the structure; this portions depend in general on the operating frequency. The choice
between the three solutions, n̂A, n̂B, and n̂C , cannot be done by a direct comparison of
the three functions, since they contribute to Eq. (14) according to different operators.
We must then compare the contributions after the operator’s effect. In particular, if we
assume as valid solution n̂C , Eq. (18) allows to evaluate directly the effect of the
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operator tem as TC ¼ v̂n1 xð Þ. Evaluating also the other two operators for this same
solution n̂C , we obtain the following:

TA ¼ jϖ−
q
ϵ
μnN J

� �
n̂̂C xð Þ ð23Þ

TB ¼ −μnE0
∂n̂̂C
∂x

¼ −μnE0
v̂
Dn

n0 ð24Þ

where in Eq. (24), Eq. (19) or (21) depending on the zone, has been used. Numerical evaluation of
the three terms shows that TB is negligible everywhere at the frequency of interest. Figure 2 reports in
arbitrary units the amplitude of the two main terms, at the frequencies of 320 GHz and 1 and
3.2 THz, respectively. We can accept solution n̂A only in the inner zones, in which its contribution,
according to the correspondent operator, is the greatest. Since the term TA has a direct dependence on
the frequency, while TC has only the frequency dependence of v, the validity region of the diffusion
solution n̂A reduces increasing the frequency.

In Fig. 3 a, b, c, the distribution of real and imaginary part of the first-order variations of
electron density are reported, at the frequencies of 320 GHz and 1and 3.2 THz, respectively, as
obtained from the two solutions n̂A and n̂C . We note that the ratios between the real and the
imaginary parts inverts in the two solutions. In particular, following Eq. (16), we find that at
the highest frequencies, the solution n̂A reduces in module and tends to become in quadrature
with the velocity.

On the contrary, solution n̂C remains in phase, but the area of applicability reduces. The
sharp discontinuities are justified by asymptotic approach to the solution.

The electron density variation contributes to the nonlinear second term of Eq. (10), giving
rise to a DC self-mixing term, JDC = − q〈nv〉, as the time average of the electron flux. We note
that only the product between first-order terms in phase (we neglect higher order terms) gives a
DC term not null. Thus, from definitions (16), it results that the contribution of solution n̂A,
JDC_A = 〈qnAv〉 is null at high frequency, when it becomes in quadrature with the velocity.
Solution n̂C , always in phase, remains the only contribution to the DC self-mixing; neverthe-
less, its validity zone is canceled at high frequency, so that there is a sharp decrease of the
overall self-mixing effect at high frequency. Figure 4 reports the distribution of the DC self-
mixing current generated in the depletion layer, for 0 < x <wn, at 320 GHz and 1 and 3.2 THz,
respectively.
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Fig. 3 a–c Log of the distribution of real and imaginary parts of the first-order variations of electron density, as
obtained from the two solutions n̂A (green) and n̂C (red), respectively, at 320 GHz and 1 and 3.2 THz,
respectively
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As the frequency increases, the discrimination point between the two solutions moves
toward the edges. It results that at 3.2 THZ, the low-doped n-zone is completely covered by n̂A
solution, giving rise to a strong reduction of the self-mixing effect. At the highest frequency,
the zone close to the anode, with high density of electrons, still presents an n̂B solution,
corresponding to a negative contribution to the voltage generated.

The self-mixing terms is the non-homogeneous term in the DC current balance equation. At
zero frequency, and in open-circuit condition, the total current in the structure must be 0.
Therefore, the current equation can be written as follows:

JDC−qnvþ qDn
dn
dx

¼ 0 ð25Þ

where n and v, from now on, must be intended as the sum of an equilibrium term and of a
variation term now due to the self-mixing: n ¼ n0 þ ~n, v ¼ v0 þ ~v. Therefore, Eq. (25) can be
rewritten as reported below:

JDC ¼ qn0 evþq en v0−qDn
d en
dx

¼

¼ −qn0μn eE −qenμnE0−qDn
d en
dx

ð26Þ

~E; ~n; d~n
dx are respectively the DC variation of the electric field, electron density, and

derivative of the electrons density, introduced in the junction due to the DC self-mixing effect.
The self-mixing process gives rise to a variation of the electrostatic potential across the
structure. Different contributions to this variation occur from the different portion of the
structure itself. These contributions have all the dimension of an electric field, nevertheless,
since the different terms in Eq. (26) depicts different physical effects, we chose to define these

contributions with an particular symbol, ~ϕ yð Þ. Total potential, Vmix, can be obtained by the
integration of these contributes

Vmix ¼ ∫W0 ~ϕ xð Þdx ð27Þ

Since JDC(x) depends on the position inside the structure, the solution of Eq. (26) cannot be
directly evaluated. Adopting an Basymptotic^ approach, we can assume that only one of the
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three homogeneous terms has a dominant contribution. We can identify the dominant term
evaluating the correspondent current contribution. The three solutions are given by the
following:

~EA xð Þ ¼ −
JDC xð Þ
qμnn0

ð28Þ

~nB xð Þ ¼ −
JDC xð Þ
qμnE0

ð29Þ

d~nC xð Þ
dx

¼ −
JDC xð Þ
qDn

ð30Þ

Subscripts specifying the asymptotic solutions, respectively, are indicated as A, B, C. The

term ~EA of Eq. (28) corresponds to a local variation of the electric field, due to the first solution
A. The correspondent local differential contribution to the potential, if dominant, is as follows:

~ϕA xð Þ ¼ −~EA xð Þ ¼ JDC xð Þ
qμnn0

ð31Þ

The term in Eq. (29), on the contrary, gives rise to a local variation of the electron density.
Since we assume that, in open-circuit condition, all the electrons varying in the junction, for 0
< x <wn, are fed by the reserve of electrons contained into non-depleted n region, there, an
equivalent amount of positive charge must be accumulated. We obtain the local potential
contribute of the solution B as follows:

~ϕB xð Þ ¼ JDC xð Þ
εμnE0

x ð32Þ

A homologous solution, ϕ′B, can be written in the zone w −D′ > x >w. Figure 5 sketches the

effect of two electron variations ~nB and ~nB
0
, respectively, in the zone 0 < x <wn and wn < x <W,

giving rise to the two contributions to the potential drop ϕ B and ϕ′B.
Finally, also the third term in Eq. (26), after a first integration of Eq. (30) leads to the

variation of the electron density:

~nC xð Þ ¼ ~n0 þ ∫x0−
JDC zð Þ
qDn

dz ð33Þ

The boundary condition at the border of the depletion layer imposes: ~n0 ¼ 0. Since we
assume all the electrons varying in the junction, for 0 < x <wn are fed by the reserve of
electrons contained into non-depleted n region, there is an equivalent amount of positive
charge is accumulated.

We may obtain also for the third solution the local contribute to the self-mixing potential as
follows:

~ϕC xð Þ ¼ −
q
ε
~nC xð Þx ð34Þ

A homologous solution, ~ϕC , can be written in the zone w −D′ > x >w.
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The three terms formally appear as three current contributes in eq. (26). The sum of the
contributions must equate JDC under the same increment of the potential drop, ϕ(x). As
asymptotic solution, we choose the one which leads to the contribution with lower increment
of the potential drop for a given self-mixing tern, JDC.

The nonlinear term only appears as non-homogenous term; thus, no contributions to DC
self-mixing potential comes from charge accumulated at the borders of the depletion layer, X =
0, and at the metal.

Since the main goal of this paper is the description of the frequency dependence of the self-
mixing effect, we choose to avoid the complex analytical solution of the DC potential
distribution. A numerical integration of Eq. (27) was thus simply performed. The first result
was obtained at open-circuit condition. This condition is often verified in actual measurements,
with the measure of DC voltage decoupled from the THz potential applied by the antenna, e.g.,
this is the standard measurement condition in MOS THz detectors. In this condition, the DC
current across the structure was assumed to be null, and the continuity of potential and electric
field was imposed along the numerical integration.

Figure 6 reports the behavior of the electrostatic potential generated by the self-mixing
process across the double barrier, at the frequencies of 320 GHz and and 3.2 THz, respectively.
It can be observed how the asymmetry of the barriers generates the overall external potential.
Moreover, it is evident as only a portion of the depletion layer contributes to its generation. The
calculation of the potential distribution inside the structure was also performed assuming the
condition of DC short circuit between anode and cathode (decoupling the DC from the RF
boundary condition). The results will be reported in the inset of Fig. 9 for comparison with
TCAD simulations. The calculation was performed assuming as the negligibility of the DC
current across the structure and imposing the continuity of potential and electric field.

Figure 7 finally reports in log scale the frequency behavior of the double-barrier self-mixing
voltage. The low dependence on the frequency can be appreciated. It is compatible with the
results of the Monte Carlo simulations reported in [14].

Fig. 5 Sketch of the effect of electrons variations, nB and n′B, respectively, in the zone 0 < x <wn and w −D′ < x
<w, giving rise to the two contributions to the potential drop, ϕ B and ϕ′B
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3 TCAD Simulations

In order to confirm the results obtained using the proposed model, we performed numerical
simulations using Synopsys TCAD of a one-dimensional structure that approximated well the
structure used for the model. The n− region was 0.58 μm long, with a doping concentration of
5.1015 cm−3; the p+ region is 50 nm long, with a doping of 1.1018 cm−3; the metal work
function is 4.33 eV. The structure was slightly longer than the depletion region, in order to
avoid interference of the contact with the actual position of the depletion edge.

After simulations, we report in Fig. 8a, b, c, the behavior of the real and imaginary part of
the electrons variations in the structure, respectively, obtained at 360 GHz and 1.0 and
3.6 THz.

These results are important to confirm the model. In particular, they show the presence of a
region of the depleted n-doped region where the variation of the electrons density is in phase
with the RF signal. In this region, the real part is much greater than the imaginary part. At the
junction, the real part decreases more rapidly than the imaginary part, becoming negligible.
Increasing the frequency, the real part of the electron density variations decreases, while the
imaginary part presents a maximum result.
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Fig. 6 Electric potential generated
across the junction by the self-
mixing process, at open-circuit
condition, at the frequencies of
320 GHz (blue), 1THz (green), and
3.2 THz (red) respectively

Fig. 7 The frequency behavior of
the DC self-mixing voltage gener-
ated through the structure, with
different doping of the n layer
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Besides the abrupt variations due to the use of the approximation asymptotic adopted,
TCAD results and the results obtained using the proposed model (see Fig. 3) are very similar.
A straightforward comparison confirms the inversion between the real and imaginary part of
the electrons variations within the depletion zone, such as it is confirmed the shrinkage with
the frequency of the region where real part overcome the imaginary part. We note that the
phase of the variation of the electrons density is a good indicator of the physical effect driving
the DC self-mixing. The model indicates that below 1 THz, the electron variation (in phase) is
due to the predominant effect of diffusion, which overcomes the drift (asymptotic solution B).
Indeed, with asymptotic solution B, following Eq. (18), the electron density variations have the
same phase of the velocity ones, and the DC mixing term in Eq. (10) is not zero. This term on
the contrary is zero for the asymptotic solution A.

The harmonic balance analysis with TCAD was also performed in order to obtain the
second order potential distribution. The generation of a second order potential distribution is
directly related to the variations induced by the nonlinear self-mixing term. We note that
TCAD performs the harmonic balance simulations assuming the condition of short circuit
between anode and cathode contacts for all the harmonics, while open-circuit condition at the
anode was assumed in the DC analysis of the model, for result shown in Fig. 6. For a correct
comparison, the potential distribution was thus calculated using the model imposing DC short
circuit at the contacts.

Figure 9 shows the TCAD simulation of the second order potential distribution, generated
respectively at the frequency of 320 GHz and 1 and 3.2 THz. Results from the model are
reported in the inset. The moderate decrease of the pick potential can be observed, with the
increasing frequency, and its displacement toward the cathode, corresponding to a reduction of
the area active in the self-mixing generation. This behavior, predicted by the model, was
effectively described in Fig. 4.

4 On-Wafer Measurements

We developed a test structure, which may be obtained with minor changes from a commercial
CMOS image sensors (ISs) technology, in order to verify the rectification properties of the
double-barrier detector.

Nowadays, CMOS ISs mostly use a pinned photodiode as the photosensitive element of
each pixel, constituted by a p–n junction which collects photogenerated electrons and the

Fig. 8 a–c TCAD simulations of the real (red continuous line) and imaginary (black dashed line) part of the
small signal electron density variations, at 320 GHz and 1and 3.2 THz, respectively
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charge-storage well (SW) capacitance dedicated to the charge integration during the exposure
time [9]. A transistor (TX) is connected to the SW to extract the charge accumulated after the
integration time and restore the initial condition.

We demonstrated [8] that a modification of a limited region of the surface of the SW, placed
in contact with a metal whisker, could result in an efficient rectifying device, with no need to
rely on deep submicron technology. The test structure is reported in Fig. 10. The edge of a metal
whisker is in contact with the p+-type implanted surface layer, forming a metal-semiconductor
junction. The work function of the metal must be such as to ensure a position of the Fermi level
similar to those in highly n-doped silicon, e.g., titanium (Ti) with a work function of 4.33 eV, a
material compatible with CMOS technology, can be used as the terminal portion of the whisker.
The p+ Si layer under the whisker must have a controlled thickness, typically a few tenths of a

Fig. 10 The schematic description
of the test structure. Dimensions of
RF pads and SW are not to scale
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Fig. 9 TCAD simulation of potential distribution inside the structure, respectively, at the frequency of 320 GHz
(red), 1 THz (green), 3.2 THz (blue). In the inset: distribution obtained by the model of the potential variation
inside the structure calculated under short-circuit condition between anode and cathode, at the frequencies of
320 GHz (red), 1 THz (green), and 3.2 THz (blue) respectively
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nanometer, which can be easily implemented by choosing the dose and energy of the ion
implantation. The p+ Si layer and the weakly doped region, n− Si, of the SW form a Bsecond
junction.^Due to its reduced thickness, the p+ Si region becomes almost completely depleted of
carriers, giving rise to a reduction of the barrier, to a value of 0.3–0.5 eV with respect to the
silicon conduction band inside the SW. The doping concentration of the p+ Si region can be
modified in order to adjust this barrier height. The structure follows the model in Fig. 1.

In an actual receiver, the metal whicker would be the extreme edge of the antenna edge
[16]. The antenna coupled to the rectifying device (forming a Brectenna^) exposed to the
electromagnetic radiation gives rise to voltage variations across the double barrier, the self-
mixing produces charge injection into the SW. In the test structure, an RF signal is applied by a
radio frequency generator to emulate the excitation coming from the receiving antenna.

At the top metallization level, three pads were realized with dimensions suitable to be
contacted by RF microprobes. In particular, Cascade ACP40-GSG-150 microprobes were used
during the measurements. The external ground pads were electrically connected to the doped
substrate surrounding the SW by means of via holes and ohmic contacts.

Activation of the TX permits the flow of the rectified current toward the pico-ammeter. A
bias tee at the input of the VNA ensures the DC continuity toward ground and zeroes the bias
voltage from the RF source side.

In the RF, the measurement was performed by using Agilent E8363B VN. The structure
was tested at 1 and 40 GHz. Figure 11 reports the rectified current measured by a pico-
ammeter versus the RF power applied to the test pad. The TX gate voltage is equal to 2.8 V for
both curves and ensures that TX is in the ON state.

A linear approximation of the curves in Fig. 11 in the non-saturated region can be used to
evaluate the system sensitivity, calculating the power necessary to reach the noise level, in
particular the relationship between the RF power expressed in decibel-milliwatts, PdBm, and
ten times the logarithm of the current, IdBA, as given by

PdBm ¼ PdBm;0 þ k IdBA−IdBA;0
	 


; ð35Þ
where PdBm,0, IdBA,0, and the coefficient k can be calculated from geometrical regression of the
measured data. This approach makes it possible to account for eventual nonlinearities in the

Fig. 11 Measurement of current
variations in the time integration
regime at 1 GHz (squares) and
40 GHz (circles), from [8]. Dashed
lines are the fitting in the non-
saturated zone
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rectification. From the measurement at 1 GHz, we obtained k = 1.02, while at 40 GHz the
coefficient resulted in k = 0.84.

These results can now have a new interpretation in term of the self-mixing process. The
different values of k indeed can be related to the generation of the DC potential distribution
inside the structure, as reported in Fig. 10. This potential, which is higher at the lower
frequencies, partially drops the barriers in the short-circuit conditions of the measurement.
The drop is proportional to the applied RF power thus resulting in a change of the slope of the
log-log plot.

We believe that the one just presented can represent a good experimental demonstration of
the model, even if the frequency behavior still deserves a specific check.

5 Conclusions

We presented a new model of the self-mixing process in the double-barrier device. The double-
barrier rectifier is a new structure of THz detector recently proposed, which can be realized by
reuse of CMOS image sensor technology. The model is based on the hydrodynamic semicon-
ductor equations, solved in the small signal approximation. The detector was assumed in the
zero bias condition, as expected in a detector in order to reduce the junction noise. The model
effectively describes the frequency dependence of the detection capability of the structure,
which is not related to the damping effect of the parasitic capacitances, rather to the nonlinear
effect of the carrier’s dynamic within the depletion layer, the self-mixing process. The model
thus substantially improves the analytical models of the self-mixing available in literature,
mainly based on lamped equivalent circuits.

In particular, the model depicts the mechanisms of the THz modulation of the charge in the
depleted regions of the structure. The behaviors of themodel were confirmed byTCAD simulations.

Comparison with literature results on the Schottky diode frequency response, the and Monte
Carlo simulations indicate that the model could be extended also to other THz detectors structures.

The model furnishes new insight on former characterizations of the double-barrier structure.

Acknowledgments The authors would like to thank Aptina for allowing the realization of the test structure in
the state-of-art CMOS IS technology.
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