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Abstract
Trimming principles play an important role in robust statis-
tics. However, their use for clustering typically requires
some preliminary information about the contamination
rate and the number of groups. We suggest a fresh approach
to trimming that does not rely on this knowledge and that
proves to be particularly suited for solving problems in
robust cluster analysis. Our approach replaces the original
K-population (robust) estimation problem with K distinct
one-population steps, which take advantage of the good
breakdown properties of trimmed estimators when the
trimming level exceeds the usual bound of 0.5. In this set-
ting, we prove that exact affine equivariance is lost on one
hand but, on the other hand, an arbitrarily high breakdown
point can be achieved by “anchoring” the robust estima-
tor. We also support the use of adaptive trimming schemes,
in order to infer the contamination rate from the data. A
further bonus of our methodology is its ability to provide a
reliable choice of the usually unknown number of groups.
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1 INTRODUCTION

Trimming principles play an important role in robust statistics and allow solving complex prob-
lems in the analysis of contaminated multivariate data (see, e.g., Clarke & Schubert, 2006;
Cuesta-Albertos, Matrán, & Mayo-Iscar, 2008; García-Escudero, Gordaliza, Matrán, & Mayo-Iscar,
2008; Ritter, 2014; Farcomeni & Greco, 2015). Let  = {x1, … , xn} be a random sample of
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

© 2018 Board of the Foundation of the Scandinavian Journal of Statistics

Scand J Statist. 2018;1–22. wileyonlinelibrary.com/journal/sjos 1

https://doi.org/10.1111/sjos.12349
https://orcid.org/0000-0002-2485-5674
https://orcid.org/0000-0002-7104-5826
http://orcid.org/0000-0001-7886-2207


2 Scandinavian Journal of Statistics CERIOLI ET AL.

v-variate observations from a population with distribution function G(x). We assume that G(x) is
an unknown element within a family 𝔊 of distribution functions such that

𝔊 =
{

G(x) ∶ G(x) = (1 − 𝜖)G0(x) + 𝜖G1(x); x ∈ R
v; 𝜖 ∈ [0, 1)

}
, (1)

where G0(x) is the distribution function of the “good” part of the data, that is, G0(x) represents
the postulated null model, G1(x) is the contaminant distribution belonging to a class ℭ of distri-
butions, and 𝜖 is the contamination rate. Although it is not necessary to define ℭ as a specific
parametric family, some regularity conditions on it are often assumed (see, e.g., Cuesta-Albertos
et al., 2008; Cerioli, Farcomeni, & Riani, 2013).

In the one-population version of model (1), it is common to take

G0(x) = Φ𝜇,Σ(x), (2)

where Φ𝜇,Σ(x) is the distribution function of a v-variate normal random variable with mean 𝜇 and
dispersion Σ. The trimmed estimators of 𝜇 and Σ take the form

𝜇̃𝛼 = 1
W𝛼

n∑
i=1

wi,𝛼xi, (3)

Σ̃𝛼 = 𝜁𝛼

W𝛼

n∑
i=1

wi,𝛼(xi − 𝜇̃𝛼)(xi − 𝜇̃𝛼)′, (4)

where 𝛼 ∈ (0, 0.5), either wi,𝛼 = 0 or wi,𝛼 = 1, W𝛼 =
∑n

i=1 wi,𝛼 , and

𝜁𝛼 = 1 − 𝛼

G𝜒2
v+2

(
𝜒2

v,1−𝛼

) (5)

is a scaling factor ensuring the consistency of Σ̃𝛼 when 𝜖 = 0. In (5), we define G𝜒2
v
(·) to be the

distribution function of a 𝜒2
v random variable, whereas

𝜒2
v,1−𝛼 = G−1

𝜒2
v
(1 − 𝛼) (6)

is its (1 − 𝛼)th quantile. The computation of the binary weights wi,𝛼 , i = 1, … ,n, is sketched
in Sections 2.1 and 2.2 for two alternative trimmed estimators. In all cases, the weights wi,𝛼 are
defined in such a way that W𝛼 = ⌊(1 − 𝛼)n⌋, where ⌊·⌋ denotes the floor function. The number
𝛼 thus gives the trimming level, that is, the proportion of observations discarded by the robust
procedure. The squared distances

d2
i,𝛼 = (xi − 𝜇̃𝛼 )′ Σ̃−1

𝛼 (xi − 𝜇̃𝛼 ), i = 1, … ,n, (7)

are used for outlier identification and, more generally, for robustly ordering multivariate data
(Atkinson, Riani, & Cerioli, 2004; Hubert, Rousseeuw, & Van Aelst, 2008; Riani, Atkinson, &
Cerioli, 2009; Cerioli, 2010).

In the standard approach to trimming, 𝛼 must be fixed in advance, thus requiring some a priori
information on the degree of contamination in model (1). Otherwise, the usual suggestion is to
choose 𝛼 = 𝜖∗ − 1∕n, where

𝜖∗ = ⌊(n − v + 1)∕2⌋ ∕n ≈ 0.5 (8)

is the maximal value of the (replacement) breakdown point (BP) of 𝜇̃𝛼 and Σ̃𝛼 (Davies, 1987;
Lopuhaä & Rousseeuw, 1991). Under model (1), this choice corresponds to the assumption that
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at least 50% plus another ⌈(v − 1)∕2⌉ observations, where ⌈·⌉ is the ceiling function, come from
G0(x), that is,

𝜖 <
1
2
. (9)

Condition (9) is very natural in one-population models for G0(x), such as (2) (see, e.g., Rousseeuw
& Leroy, 1987, p. 14). However, choosing 𝛼 = 𝜖∗ − 1∕n makes the computation of the trimmed
estimators 𝜇̃𝛼 and Σ̃𝛼 virtually useless when there is more than one “good” population and the goal
is to robustly cluster the observations in  according to these populations. In a multipopulation
structure for G0(x), we typically assume that the “good” data come from

G0(x) =
K∑

k=1
𝜋kΦ𝜇k ,Σk (x), 𝜋k > 0,

K∑
k=1

𝜋k = 1, (10)

where K is the unknown number of populations, 𝜇k and Σk are population-specific parameters,
and 𝜋1, … , 𝜋K are the unknown mixing proportions. It is then possible to identify the largest
population in G0(x) through estimates (3) and (4), and the associated robust distances (7), only in
the unlikely situation where maxk𝜋k ≫ 0.5. Indeed, a simple example where trimming methods
fail to detect a multipopulation structure even if maxk𝜋k ≈ 0.6 is provided by Atkinson et al.
(2004, pp. 372–373). A related qualitative comment is made by Huber and Ronchetti (2009, p. 21).

The goal of this work is to suggest a fresh approach to trimming that allows for the computa-
tion of the trimmed estimators 𝜇̃𝛼 and Σ̃𝛼 also when G0(x) follows (10) with maxk𝜋k ≤ 0.5. Our
methodology is particularly suited for solving problems in robust cluster analysis, whose aim is
to identify individual membership to the populations that originate mixture (10). This is achieved
by replacing a K-population (robust) estimation step, at the heart of the available model-based
clustering algorithms, with K distinct one-population steps, which take advantage of (3) and (4).
Specifically, our proposal consists in computing the trimmed estimators 𝜇̃𝛼 and Σ̃𝛼 with 𝛼 ≥ 0.5,
and possibly much larger than the usual bound (𝜖∗ − 1∕n). We name our method wild trimming,
since we suggest to trim much more than it is customary following (8). Indeed, our trimming level
can be as large as the highest value of 𝛼 for which Σ̃𝛼 is positive definite. We also strongly support
the use of adaptive procedures (in the sense described by Huber & Ronchetti, 2009, p. 8) where
the trimming level is not fixed in advance, but different values of 𝛼 are used and the best one is
selected from the data, thus yielding a closer agreement between 𝛼 in (3) and (4) and 𝜖 in (1).
Therefore, the output of our methodology is a robust procedure where not all units in  are classi-
fied into groups, since we discard the observations that are believed to come from the contaminant
distribution G1(x), and where neither the number of groups K nor the trimming level 𝛼 is specified
a priori.

In spite of its simplicity, we believe that the idea behind wild trimming has not gained the
popularity that it deserves. One motivation lies in the often implicit assumption that the “good”
population should correspond to the majority of data. Instead, our point of view is different,
and we define the outlyingness of a multivariate observation with respect to a specific point, for
instance, x0, ideally sampled from G0(x). In our framework, the bulk of the data can become
anomalous if such is sufficiently far from x0. Wild trimming thus provides a very natural approach,
since condition (9) is not required. Although the robustness properties of the estimators obtained
with 𝛼 ≥ 0.5 turn out to be far from trivial, they are intuitively appealing and obviously do not
contradict the well-known findings for the case 𝛼 < 0.5, such as the fundamental bound (8). One
exception toward the application of wild trimming ideas is provided by the forward search (FS),
which has shown good potential for performing robust cluster analysis (Atkinson et al., 2004,
2017), but mainly in an exploratory context. Our work thus puts robust clustering through the
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FS within a statistically principled framework where the robustness properties of the algorithm
are made explicit. However, our goal is more ambitious, and through our methodology, we aim at
performing robust estimation and cluster analysis under the same umbrella, with a data-driven
selection of both K and 𝛼. This task is clearly not possible in the standard approach to trimming,
where 𝛼 < 0.5, and is also problematic through the available robust clustering techniques, which
require some a priori information about the features of models (1) and (10).

This paper is structured as follows. In Section 2, we introduce the two multivariate trimmed
estimators that we use in our work. In Section 3, we obtain the robustness properties of these
estimators under wild trimming, and we define a new class of estimators having the required
breakdown properties. The suggested robust divisive clustering method is detailed in Section 4.
We show the practical advantages of our proposal in Section 5, where we also provide compar-
isons. Some concluding remarks are given in Section 6. Further examples are provided in the
Supplementary Material.

2 MULTIVARIATE (ADAPTIVE) TRIMMING

2.1 The minimum covariance determinant
For trimming level 𝛼, the minimum covariance determinant (MCD) subset of  is defined as the
subsample of h𝛼 = ⌊(1 − 𝛼)n⌋ observations whose covariance matrix has the smallest deter-
minant. Let 𝜄♭𝛼 = {i1, … , ih𝛼

} denote the set of the indices of the observations belonging to this
subset. The MCD estimators of 𝜇 and Σ (Rousseeuw & Leroy, 1987, pp. 262–265) are then defined
by (3) and (4), with weights

wi,𝛼 = 1, if i ∈ 𝜄♭𝛼 (11)
= 0, otherwise,

and W𝛼 = h𝛼 . The MCD estimators are consistent under very general conditions on G(x) (Butler,
Davies, & Jhun, 1993; Cator & Lopuhaä, 2012). They also attain the breakdown bound (8) when
𝛼 = 𝜖∗ − 1∕n. To increase efficiency, while keeping a high BP, a one-step reweighting scheme is
often used. Reweighted estimators are computed by giving weight 0 to observations for which the
squared robust distance (7) exceeds a threshold value, defined in terms of a new trimming level
𝛼∗ ∈ (0, 𝛼) and such that 𝛼∗ ≪ 𝛼. The reweighted MCD estimates are then obtained through (3)
and (4), but now with weights

wi,𝛼∗ = 1, if d2
i,𝛼 ≤ d2

𝛼∗ (12)

= 0, otherwise,

and scaling factor 𝜁𝛼∗ = (1 − 𝛼∗)∕{G𝜒2
v+2

(𝜒2
v,1−𝛼∗ )}. A popular choice in (12) is 𝛼∗ = 0.025, so that

d2
𝛼∗ is the (1 − 𝛼∗) = 0.975th quantile of the distribution of the squared robust distances (7).

When the asymptotic distribution of such distances is considered, d2
𝛼∗ = 𝜒2

v,0.975, but more accu-
rate approximations exist (Hardin & Rocke, 2005; Cerioli, 2010). The reweighted MCD estimates
can thus be seen as the result of a two-step adaptive trimming procedure, computed using two
different subsets of  . Each of these subsets is defined by a specific trimming level: 𝛼 in the ini-
tial step and 𝛼∗ in the reweighting stage. An advantage is that the number of units declared to be
outliers by distances (7), and thus discarded in the second subset, can provide information on the
contamination rate 𝜖 in model (1). A fully adaptive procedure based on the MCD should extend
the reweighting scheme to a decreasing sequence of trimming levels, starting from 𝛼, and monitor
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the resulting changes in the parameter estimates (see Cerioli, Riani, Atkinson, & Corbellini, 2017;
Riani, Cerioli, Atkinson, & Perrotta, 2014). A similar approach is exploited in the FS.

2.2 The forward search
The FS is a flexible general method for detecting anomalies in structured data (Atkinson et al.,
2004). Given a sample of n observations and a generating model for them, the method starts from
a subset of cardinality m0 ≪ n, which is robustly chosen to contain observations coming from
the postulated model. This subset is used for fitting the model, and suitable deviance measures are
computed. The subsequent fitting subset is then obtained by taking the m0 + 1 observations with
the smallest deviance measures. The algorithm iterates this fitting and updating scheme until all
the observations are used in the fitting subset, thus yielding the classical statistical summary of
the data. Therefore, the FS applies a decreasing sequence of trimming levels 𝛼0 > 𝛼1 > · · · >

𝛼L > 0, with
𝛼0 = 1 − m0

n
, (13)

𝛼l = 𝛼l−1 −
1
n
, l = 1, … ,L, (14)

and L = n − m0. Clearly, 𝛼L = 1∕n, whereas in the last step of the FS, we have 𝛼L + 1 = 𝛼L −
1∕n = 0, and no trimming is performed. The typical initialization in a multivariate framework
is with m0 = v + 1 observations in (13), so that L = n − v − 1. A slightly larger value of m0 is
sometimes selected to improve the numerical stability of the initial estimates.

At step l = 1, … ,L of the FS, the trimmed estimators (3) and (4) are computed with weights

wi,𝛼l = 1, if i ∈ 𝜄†𝛼l
(15)

= 0, otherwise,

where 𝜄†𝛼 l
= {i1, … , iml} is the set of the indices of the ml = ⌊(1 − 𝛼l)n⌋ observations that form

the lth fitting subset. Specifically, 𝜄†𝛼 l
is obtained by taking the units with the ml smallest squared

distances, that is,
d2

i,𝛼 l−1
= (xi − 𝜇̃𝛼 l−1 )

′ Σ̃−1
𝛼 l−1

(xi − 𝜇̃𝛼 l−1 ), (16)

computed from the estimates with trimming level 𝛼l− 1. The initial set 𝜄†𝛼0
, of cardinality m0 =

⌊(1 − 𝛼0)n⌋, is instead defined through an exogenous criterion, such as the intersection of robust
bivariate projections or the optimization of a robust objective function on subsets of m0 observa-
tions. In Section 4, we adopt a random sampling strategy that proves to be suitable for clustering
purposes.

The presence of observations deviating from the null model can be displayed through pic-
tures that monitor relevant quantities along the search, such as the squared robust distances (16)
and their order statistics. For instance, if only n0 < n units actually belong to the postulated
population, we typically observe a peak in the monitoring plot of the minimum (squared) dis-
tance outside the fitting subset, when this subset only contains the n0 “good” observations and
the first outlier is about to enter. A formal procedure for the precise identification of the contami-
nated observations is developed by Riani et al. (2009) when (2) is the null model. Under the same
assumption, Cerioli, Farcomeni, and Riani (2014) show that the FS estimators are both consistent
and robust, whereas Johansen and Nielsen (2016a, 2016b) provide a general asymptotic theory
for the FS in regression.
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3 ROBUSTNESS PROPERTIES UNDER WILD TRIMMING
AND A NEW CLASS OF ESTIMATORS

Unless otherwise stated, in what follows, we make use of the replacement version of the BP of
an estimator, which is defined as the smallest fraction of outliers that can take the estimate over
all bounds. A well-known result in theorem 2.1 of Lopuhaä and Rousseeuw (1991) is that the
maximal BP of any translation-equivariant location estimator cannot exceed ⌊(n + 1)∕2⌋∕n. An
estimator of location t(·) is translation equivariant if t(x + c) = t(x) + c. Instead, we say that
an estimator is quasi–translation equivariant if it is translation equivariant within a subspace
(see Proposition 2 below).

The result in Lopuhaä and Rousseeuw (1991) corresponds to the intuitive statement that we
should trim, at most, a portion 𝛼 = ⌊(n − 1)∕2⌋∕n of the observations, in order to get rid of the
possible contaminants and to base our estimate on a subset of at least ⌊n∕2⌋ + 1 “good” data
points. However, in this paper, we use trimming levels much larger than 50%, and it is natural to
wonder what are the breakdown properties of our location estimators. There are only two pos-
sibilities: either our estimators are translation equivariant and their BP is ⌊(n + 1)∕2⌋∕n even if
the trimming level is much larger than ⌊(n − 1)∕2⌋∕n or they can achieve a BP much larger than
50%, but they are not translation equivariant. The latter claim holds. Formally, we define a class
of trimmed quasi–translation-equivariant location estimators whose BP can be arbitrarily higher
than 50%, depending on the chosen level of trimming.

To do so, we fix a point x0 ∈ Rv. We define an anchored class of estimators, for instance, tx0 (·),
which correspond to the original MCD (or FS, or other trimmed) estimator. Given a sample of
v-variate observations  = {x1, … , xn}, the anchored estimator of the location parameter 𝜇 for
trimming level 𝛼 is then

tx0 () = 1
⌊n(1 − 𝛼)⌋

⌊n(1−𝛼)⌋∑
i=1

x‡i , (17)

where x‡⌊n(1−𝛼)⌋ = {x‡1 , … , x‡⌊n(1−𝛼)⌋} is the minimizer of the objective function among all the sub-
sets of ⌊n(1 − 𝛼)⌋ points of  whose convex hull contains x0. We remark that in this paper, we
indicate with the term “objective function” the objective function of any estimator of interest,
be it MCD or any another high-breakdown multivariate estimator (excluding FS that involves a
sequence of selection steps), and with the term “solution” the objective function the estimator
itself. The anchored estimator arises as a solution to an anchored objective function, that is, a con-
strained objective function that we now formally define. Specifically, we look for solutions of the
objective function subject to

∃(𝜆1, … , 𝜆⌊n(1−𝛼)⌋) ∶ 𝜆i ≥ 0 and
⌊n(1−𝛼)⌋∑

i=1
𝜆i = 1 and

‖‖‖‖‖‖
x0 −

⌊n(1−𝛼)⌋∑
i=1

𝜆ix‡i

‖‖‖‖‖‖
= 0, (18)

for a norm || · ||.
Some results for anchored trimmed estimators follow. A key issue in their derivation is that

any point within the support of G0(x) also belongs to the convex hull of the points in the support.
Additionally, convex hulls are nondecreasing: For every two sets A and B, where A ⊆ B, the convex
hull of A is a subset of the convex hull of B.

Proposition 1. If x0 belongs to the convex hull of the points in  , the anchored trimmed esti-
mator exists. If x0 belongs to the interior of the support of G0(x), the probability that the anchored
trimmed estimator of location exists converges to the unity with the sample size.
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Proof. By the nondecreasing property of convex hulls, the convex hull of any subset of size
⌊n (1 − 𝛼)⌋ is a subset of the convex hull of  . Consider the set of all subsets of size ⌊n(1 − 𝛼)⌋
and call hj the convex hull of the jth subset and h the convex hull of  . It is straightforward to
check that ∪h𝑗 ⊆ h. Therefore, if x0 belongs to the convex hull of  , there must exist at least
one subset of size ⌊n(1 − 𝛼)⌋ whose convex hull contains x0. To see the second part, suppose
that ⌊n(1−𝛼)⌋ = {x1, … , x⌊n(1−𝛼)⌋} is sampled from G0(x). The probability that any x0 in the
interior of the support belongs to the convex hull of  obviously converges to unity.

For any x0 in the interior of G0(x), existence is often very likely even for small n. As few as two
or three well-placed points are enough regardless of v. It can also be argued that the solution is
unique if x0 is in the interior of a unimodal and elliptically contoured G0, in view of Proposition 1
and the uniqueness results in Davies (1987) and Butler et al. (1993). Additionally, x0 does not need
to be chosen in advance, as in the case of the FS (see Section 4, where we adopt a sampling strategy
for a data-driven choice of x0), or it can be easily tuned if no solution is found for an initial choice.
While the computation of a convex hull is rather computationally expensive (being, in general,
O(nv/2 + 1)), checking whether any x0 belongs to the convex hull of a set of n points has quadratic
complexity. Hence, if x0 is fixed, one could verify in advance whether the anchoring point belongs
to the convex hull of  before computing robust estimates.

The following result assumes that the anchoring point is fixed.

Proposition 2. The anchored trimmed estimator of location is quasi–translation equivariant.
Formally, for any collection of points  = {x1, … , xn} and a fixed x0 ∈ Rv within their convex
hull, there exists a set A(x0,) ⊆ Rv such that if t(x) + c ∈ A(x0,), then t(x + c) = t(x) + c.

Proof. If x0 belongs to the convex hull of  , there exists at least one anchored estimator by
Proposition 1. Let x‡⌊n(1−𝛼)⌋ denote this solution. Fix any vector of constants, for instance, b ∈
Rv. By the properties of the objective function, if x0 belongs to the convex hull of x‡⌊n(1−𝛼)⌋ + b,
then

tx0 ( + b) = tx0 () + b. (19)

If x0 does not belong to the convex hull of x‡⌊n(1−𝛼)⌋ + b, then x‡⌊n(1−𝛼)⌋ + b is not an admissi-
ble solution. Consequently, it will either happen that another subset of  + b is the solution
to the anchored estimator problem or that no solution exists. In both cases, the property of
translation equivariance is lost.

Denote with C the convex hull of  . From the proof of the previous proposition, it can be
seen that

A(x0,) =
{

b ∶ x0 ∈ Cx‡⌊n(1−𝛼)⌋+b

}
.

We now discuss a restricted version of the BP, suitable for anchored estimators.

Proposition 3. For a fixed 𝛼, consider the substitution of (⌊n𝛼⌋) points of such that the chosen
anchoring point x0 belongs to the convex hull of the remaining ⌈n(1 − 𝛼)⌉. Then, the anchored
estimator of location (17) cannot break down. Consequently, the BP (restricted to the substitution
of certain subsets of ) is equal to (⌊n𝛼⌋ + 1)∕n, where 𝛼 ∈ (0, 1) is the trimming level.

Proof. It is immediate to see that (⌊n𝛼⌋ + 1)∕n is an upper bound. Suppose that we replaced
⌊n𝛼⌋ + 1 observations with arbitrary values. By definition, at least one of these values would
not be discarded, hence leading to the breakdown of the anchored estimator. To see that
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(⌊n𝛼⌋ + 1)∕n is also a lower bound, fix a collection of (noncontaminated) points  =
{x1, … , xn}, with xi ∈ Rv. Let T = supx∈ ||tx0 (x)||. Replace, at most, ⌊n𝛼⌋ points of  with
arbitrary points to obtain  . Since there are ⌊n(1 − 𝛼)⌋ points of the original sample  and, by
assumption, these form a convex hull containing x0, there exists at least one solution for t(),
where t(·) is the unconstrained version of tx0(·). This solution is such that ||t()|| < T by the
properties of tx0(·). Consequently, after anchoring, there are one or more possible solutions to
the anchored objective function, at least one of which is bounded. The bound depends only on
the original sample points. It only remains to show that the anchored estimator tx0() chooses
one of the bounded solutions, which follows since the unbounded solutions either correspond
to unbounded objective functions or any x0 ∈ Rv does not belong to their convex hull.

An important remark about anchored estimators is that they are not translation equivariant.
A sort of hard shrinkage toward x0 happens: As soon as a translation moves  far enough from
x0, the translation-equivariant solution is mapped in a bounded set close to x0. This is illustrated
in Figure 1, where we set 𝛼 = 80%. In the top-left panel, the MCD and anchored MCD coincide
(blue dot). In the top-right panel, data are translated by a small amount, and still, the anchor x0
(red cross) is within the convex hull of the optimal MCD subset. If we translate by a larger amount,
the anchor is now poorly chosen, and the MCD (green X) no longer coincides with the anchored
MCD (bottom-left panel). A data-dependent choice of x0, such as the one adopted in Section 4,
will help prevent this situation. The fact that anchoring is useful is illustrated in the bottom-right
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the minimum covariance determinant (MCD), the MCD is shown as a green X [Colour figure can be viewed at
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panel, where a cluster of outliers is added. The MCD is now within this cluster, as its points have
a very small scatter, whereas the anchored MCD is not affected.

Another important remark concerns the seemingly restrictive assumption that the substitu-
tion of points in is restricted to a subset that guarantees the existence of a convex hull containing
x0. It shall be noted though that the substituted points are (as usual) replaced by arbitrary points.
Additionally, as said before, x0 need not be chosen in advance and can hence be tuned to guar-
antee existence. Once the anchored estimators exist, they cannot break down. For this reason, it
can be readily shown that the addition BP—which is based on adding contaminating points to
the data set instead of replacing them (see Hennig, 2004)—is not restricted.

Theorem 1. Fix g > 0 as the number of points to be trimmed. Suppose that the chosen anchoring
point x0 belongs to the convex hull of  . Then, the anchored estimator of location (17) has an
addition BP of g∕(n + g).

Proof. Suppose that g + 1 contaminated points are added. Since only g can be trimmed, at
least one contaminated point will be included in the estimators and possibly lead to break
down. Therefore, an upper bound for the addition BP is g∕(g + n). Note now that since the n
points originally included in data  are not modified or removed, by assumption on x0, the
anchored estimator exists with at least one solution such that

||tx0 ()|| ≤ T

for a certain finite value T that depends only on the original data. It only remains to show that
the anchored estimator tx0 () chooses one of the bounded solutions, which is straightforward
as the unbounded solutions either have unbounded objective functions or any x0 ∈ Rv does
not belong to their convex hull.

A fairly similar discussion can be put forward for affine-equivariant estimators. Recall, for
instance, that an estimator of location t (·) is affine equivariant if t(Ax + c) = At(x) + c. Davies
(1987) shows that the BP of any affine-equivariant covariance estimator is, at most, given by (8),
which might be much smaller than 50%. The trimming level obviously has an upper bound of
⌊(n − v − 1)⌋∕n to guarantee that the estimated covariance matrix is positive definite. If we use
a trimming level 𝛼 ∈ (0, 1 − (v + 1)∕n), a reasoning along the lines of the proof of Proposition 3
can be used to show that the BP of the anchored estimator of scatter is equal to (⌊n𝛼⌋ + 1)∕n.

The anchored estimator of scatter is found along the same lines as the anchored estimator of
location: Given a sample of v-variate observations  = {x1, … , xn} and trimming level 𝛼, the
anchored estimators of the location parameter 𝜇 and scatter Σ are

tx0 () = 1
⌊n(1 − 𝛼)⌋

⌊n(1−𝛼)⌋∑
i=1

x‡i , Tx0 () = 𝜁𝛼⌊n(1 − 𝛼)⌋
⌊n(1−𝛼)⌋∑

i=1

(
x‡i − tx0()

)(
x‡i − tx0()

)′
, (20)

where x‡⌊n(1−𝛼)⌋ = {x‡1 , … , x‡⌊n(1−𝛼)⌋} is the subset of ⌊n(1− 𝛼)⌋points of minimizing the objective
function among all subsets whose convex hull contains x0.

Theorem 2. Assume that contaminating points are in general position, that is, they do not lie
in a lower-dimensional space. For a fixed 𝛼, consider the substitution of (⌊n𝛼⌋) points of  such
that the chosen anchoring point x0 belongs to the convex hull of the remaining ⌈n(1 − 𝛼)⌉. For
𝛼 ∈ (0, 1 − (v + 1)∕n), the anchored estimator of scatter has a (restricted) BP (⌊n𝛼⌋ + 1)∕n.

Proof. The fact that (⌊n𝛼⌋ + 1)∕n is an upper bound is shown as in the proof of Proposition 3.
In fact, if 𝛼 = 1 − (v + 1)∕n, no positive definite solution exists. For smaller values of 𝛼, if we
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replace (⌊n𝛼⌋ + 1) observations with arbitrary values, at least one of these values would not be
discarded. Consequently, all solutions would become unbounded. To see that (⌊n𝛼⌋ + 1)∕n is
also a lower bound, we need to show two things. First, we need to show that the MCD cannot
be arbitrarily increased. To see this, replace, at most, ⌊n𝛼⌋ points of  with arbitrary points
to obtain  . Since there are ⌊n(1 − 𝛼)⌋ points of the original sample  and, by assumption,
there exists at least one anchored solution Σ̂, there exists at least one solution with a bounded
determinant. The anchored estimator chooses one of the bounded solutions as the unbounded
solutions either have unbounded objective functions or any x0 ∈ Rv does not belong to their
convex hull. Second, we need to show that the MCD cannot be arbitrarily decreased. This is
straightforward from the assumption that  and contaminating points are in general position
(see detailed reasoning on this point in Davies, 1987 and Lopuhaä & Rousseeuw, 1991).

As in Theorem 1, it is possible to show that the addition BP for Σ̂ is unrestricted.

4 WILD ADAPTIVE TRIMMING FOR ROBUST CLUSTER
ANALYSIS

Our main strategy for performing robust cluster analysis through wild (adaptive) trimming fol-
lows the general principle that several analyses from more than one starting point are necessary
to reveal the clustering structure. When the data come from model (10), the trimmed estima-
tors computed with 𝛼 < 0.5 typically use observations from several clusters and may thus fail
to identify the different populations. On the other hand, starting with a subset of observations
belonging to the same population would lead to high values of the robust distances (7) for the
observations from other clusters, which are then detected as outliers. Empirical evidence of this
behavior has been shown in an exploratory context (see, e.g., Atkinson et al., 2004, 2017), whereas
the robustness properties in Section 3 provide a more general theoretical justification.

With a slight abuse of notation, in what follows, we let G0(x) denote the distribution func-
tion of one of the normal mixture components in (10), to be taken as the target population with
parameters 𝜇 and Σ, instead of the distribution of the whole mixture. That is, we now let

G0(x) = Φ𝜇,Σ(x)

as in (2), with
𝜇 = 𝜇k∗ , Σ = Σk∗

for a given k∗ ∈ {1, … ,K}. Correspondingly, we take G1(x) to be the (unspecified) distribution
function mixturing all the other components and the contaminated observations. It is then crucial
to use trimming levels in the computation of (3) and (4) that could lead to the estimation of 𝜇 and
Σ and, thus, to the identification of G0(x), under model (1). This task is clearly made possible by
the adoption of a wild trimming approach and by the fact that, as noted, G0(x) now identifies a
single population.

We suggest a divisive clustering approach that splits the K-population estimation problem
defined by (10) into K one-population steps, which take advantage of the good breakdown prop-
erties of wild trimming estimators and do not force all units to be classified. In an adaptive
framework, we start the trimming procedure from values of 𝛼 much larger than 0.5, typically
including only v + 1 observations or a slightly larger number, in the first estimation step. The
details of our robust divisive clustering procedure are described below. For concreteness, we refer
to wild adaptive trimming through the FS, but any other procedure that shares the same properties
(e.g., based on the MCD) could be potentially used.
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1. Computation of minimum Mahalanobis distances from random starts. We perform
R FSs starting from R random subsets of size m0 = v + 1. For all the searches and each
ml = ⌊(1 − 𝛼l)n⌋, l = 0, … ,L, we control the ratio between the maximum and the minimum
eigenvalue of the estimated covariance matrix. We impose that this ratio is smaller than a
certain threshold, for instance, c, in order to avoid the detection of spurious groups due to
the presence of almost collinear points. We discard the searches (whose number, for instance,
is r) for which this condition is not fulfilled. For each of the R − r remaining searches and
each subset size ml, we store the value of the minimum Mahalanobis distance of the units not
belonging to the fitting subset, as follows:

dmin(ml) = min
√

d2
i,𝛼l
, i ∉ 𝜄†𝛼 l

, (21)

where, for l = 0, … ,L, d2
i,𝛼l

is defined as in (16). In all the examples that follow, we set R =
500, although a larger number of random searches should be performed in the case of big data
sets. Indeed, it usually suffices that the majority of points of the starting subset belongs to G0(x)
in order to obtain high values of the robust distances (7) and, thus, of (21) for the observations
not belonging to this population. The probability of randomly selecting 𝜂0 = ⌊m0∕2⌋ + 1
observations from a sample of N units drawn from G0(x) is

(
N
𝜂0

)
∕
(

n
𝜂0

)
, which is often not

exceedingly small when m0 = v + 1 and n is of the order of just a few hundreds. Furthermore,
in the FS, we observe that the method is often able to recover from a bad starting point, by
replacing contaminated observations in the fitting subset with others coming from G0(x) (see,
e.g., Atkinson et al., 2004). This phenomenon, which is called “interchange,” clearly enhances
the diagnostic power of (21) and increments the probability of detecting G0(x) with a fixed
number of random starts, as our empirical examples show in Section 5.

2. Envelope calibration. If all the units in 𝜄†𝛼 l
come from G0(x) and the units not in 𝜄†𝛼l

come
from different populations (separated from G0(x)), the observation giving rise to dmin(ml) will
be an outlier, and its distance will be large if compared to the distances of the units in 𝜄†𝛼l

. We
thus need to compare the value of dmin(ml) with the quantiles of its distribution for each step
l = 0, … ,L. The simulation results given in Atkinson, Riani, and Cerioli (2006) show that
the envelopes of dmin(ml) starting from random subsamples are much larger than those based
on robust initialization when ml < n∕3, especially in the case of extreme quantiles. However,
this difference decreases as l increases and becomes negligible for subsets of size ml > n∕2. A
reliable approximation to envelopes based on the theory of order statistics is given in Riani et al.
(2009), but only for the case of robust initialization. Since we are interested in values of ml that
may be much smaller than n∕2, we have simulated percentiles 1%, 50%, 75%, 90%, 95%, 99%,
99.9%, 99.99%, 99.999%, and 99.9999% of dmin(ml), for l = 0, … ,L, under the normal model
G0(x) = Φ𝜇,Σ(x) and using 1000000 random initializations. In what follows, we call these
envelopes the null envelopes, since they correspond to the situation where only one population
exists, that is, (10) holds with K = 1. They have been obtained for each value of v ≤ 10 and a
grid of values of n from 50 to 2000. If n is not in the grid, we use linear interpolation between
the two adjacent values.

3. Convex hull constraint and pruning. The observations entering in the first steps of the FS
are those more likely to come from G0(x). It is thus natural to adopt a data-dependent anchoring
procedure and to fix the anchor x0 as a point that lies inside the convex hull of the observations
belonging to the fitting subset 𝜄†𝛼l

. This way, the anchor will not be too far from the true mode of
G0(x), at least when G0(x) belongs to the elliptical family, until 𝜄†𝛼l

remains free of contaminated
observations. Therefore, we find 𝛼l as the trimming level prior to the first exceedance of the null
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envelope of dmin(ml) for a certain probability level, for instance, ς. As we see in Section 5, in the
first steps just after the random start, the values of dmin(ml)may be above the 99% threshold due
to random fluctuations, and the number of different trajectories diminishes considerably as ml
increases. In fact, all random starts of size m0 = v + 1 initialized with more than ⌊v∕2⌋ + 1
observations from G0(x), as soon as the subset size grows, tend to remove the observations from
the other groups and include other observations from G0(x). Therefore, after a few steps, the
R − r searches naturally anchor themselves to a few centroids and a few covariance matrices.
In what follows, we call m† the subset size for which we start to impose the “anchoring.” More
precisely, we have

m† = max
{(

min ml ∶ dmin(ml) > dς(ml)
)
,mingrsize + 1

}
− 1,

where dς(ml) is the ς-quantile of dmin(ml) and mingrsize is the minimum group size that we
are willing to tolerate. For all R − r trajectories, we monitor whether the units that are pro-
gressively included for ml > m† satisfy the convex hull constraint (18). Therefore, in practice,
there is no need to choose a particular anchoring point, such as the centroid or the median
of the units belonging to a subset at step m†, because the satisfaction of the convex hull con-
straint ensures we anchor to obtain an estimator that cannot break down (see Proposition 3).
As a result of this procedure, we prune some of the trajectories of dmin(ml), that is, their mon-
itoring ends much earlier than at the final step l = L because the convex hull constraint fails
to be satisfied. Let m† + at be the final subset size for trajectory t (t = 1, … ,R − r). In the
examples that follow, in order to obtain a satisfactory degree of pruning, we take ς = 0.9999.
It shall be noted that identical results can be obtained if we increase the confidence band to
99.9999% or decrease it to 99%. In the latter case, however, the number of random starts that
must be used has to be considerably increased. Otherwise, we may lose trajectories that com-
pletely end up into one group but that, due to random fluctuations, are pruned before the peak
due to loss of anchorage because the convex hull is too “small.”

4. Extreme exceedance of null envelopes. The envelopes of dmin(ml) are pointwise because
their confidence level is referred to a fixed subset size ml. In the adaptive trimming framework
of the FS, we potentially make many comparisons, one for each value of ml. Our detection
rule thus needs to allow for simultaneity. In order to avoid random exceedances, we select all
the pruned R − r trajectories of dmin(ml) for which there is an exceedance of a very extreme
threshold of the null envelope, for instance, dς∗ (ml). Let d(t)

min(ml) be the trajectory for the tth
pruned search. Then, m∗

t is the first subset size for which

d(t)
min(ml) > dς∗ (ml) ml = m†,m† + 1, … ,m† + at, t = 1, 2, … ,N − r. (22)

In what follows, we take ς∗ = 0.999999.
5. Divisive split. Given that our purpose is to identify and remove first the group that is most

remote from the others, among the searches for which condition (22) is verified, we take the
one (for instance, t∗) for which

rs𝑗∗ = argmax
t

rst, (23)

where

rst = max
ml

d(t)
min(ml) − d0.5(ml)

d0.99(ml) − d0.5(ml)
. (24)

We then assign the ml − 1 observations that form 𝜄†𝛼l−1
to a tentative group.



CERIOLI ET AL. Scandinavian Journal of Statistics 13

6. Iteration of previous steps. The previous steps (1–5) are iterated until with the units that
are left out, we end up with one of the two following cases: (a) their number is smaller than
mingrsize and (b) we do not observe any exceedance of the extreme null envelope.

7. Robust tree. At the end of the procedure, we display the binary splits and the resulting clus-
ters by a tree-like structure. In the vertical axis of the tree, we show the distance level rs𝑗∗ (see
Equation (23)) in which the various groups are formed (it is also possible to use a rescaled ver-
sion of rs𝑗∗ in case one wants to standardize the results over different data sets). One additional
bonus of the suggested procedure is that it enables us to immediately appreciate the degree
of separation (overlapping) of each group with the remaining part of the sample. Clearly, the
higher is the value of internal cohesion of a group with respect to the rest, the greater is the
value of rs𝑗∗ . The outliers and the other units not assigned to any of the tentative groups are
left aside, thus making the tree robust.

We note that by considering a crude rule like (22), we are likely not to consider all units belong-
ing to a particular group. Therefore, a successive reweighting step (which, in the spirit of the FS,
can be performed adaptively; see also Dotto, Farcomeni, García-Escudero, & Mayo-Iscar, 2017) is
necessary for refining the tentative groups that have been found. A preliminary proposal, rooted
in an exploratory framework, is described in Atkinson et al. (2004, p. 369). However, in our divi-
sive procedure, leaving out the units that are at the boundary of a particular group helps detect
the remaining groups in the successive steps of the procedure. The null envelopes obtained after
the removal of the first cluster, being based on a number of observations larger than the number
of units belonging to the remaining populations, will be flatter and tighter, thus increasing the
probability of exceedance of the extreme envelope in the central part of the algorithm.

5 ROBUST DIVISIVE CLUSTERING IN ACTION

5.1 Geyser data
In order to illustrate the performance of our divisive clustering procedure, we start by considering
the “geyser data set,” a well-known application in robust clustering (see, e.g., García-Escudero
& Gordaliza, 1999). This bivariate data set, obtained from the Old Faithful Geyser, contains the
eruption length and the length of the previous eruption for 271 eruptions of this geyser. Both
variables are measured in minutes. The data show the presence of three main groups. Close to
the origin, there is also a small group of “short followed by short” eruptions, which are not very
common (six observations, i.e., 2.2% of the sample size).

The left panel in Figure 2 shows the forward plot of the trajectories of minimum Mahalanobis
distances computed from 500 random starts, together with 1%, 50%, 99%, and 99.9999% simula-
tion envelopes from model (10) with K = 1. To provide a comparison with previous applications
of the FS, in this plot, we do not anchor the estimator, and all trajectories are monitored up to
ml = n. In the presence of a homogenous population of size n, all the R trajectories of dmin(ml)
rapidly converge to a single trajectory that tends to remain inside the envelopes up to ml = n.
In this situation, the shape of the envelopes of dmin(ml) looks like the prows of viking longships,
that is, they are virtually horizontal in the center of the plot and rapidly increase as ml tends to n
due to the inclusion in the final steps of the observations coming from the tails of the distribution.
On the contrary, if model (10) holds with K > 1 and if there is a group with size (for instance)
n × 0.2, for all the searches that start in this group, we observe a rapid increase in the trajectory
of dmin(ml) as ml tends to n × 0.2. The same also typically happens for the searches such that the
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FIGURE 2 Geyser data: (left panel) forward plot trajectories of minimum Mahalanobis distances from 500
random starts monitored up to ml = n with 1%, 50%, 99%, and extreme 99.9999% null envelopes; (right panel)
trajectories of minimum Mahalanobis distances pruned after anchoring the estimators and imposing the convex
hull constraint. In the right panel, the horizontal axis goes up to 110 ≈ max(m† + at) = 107) [Colour figure can
be viewed at wileyonlinelibrary.com]

m0 = v + 1 initial observations contain at least ⌊v∕2⌋ + 1 units from the group, due to the inter-
change of units from other groups as the subset size grows. After this subset size, as observations
from other groups join 𝜄†𝛼l

, we are likely to observe a sudden decrease in the trajectory of dmin(ml),
and its values will be even below the lower quantiles of the null envelopes for a single homoge-
nous population of size n. It is an evidence of the extreme effect that contamination by different
populations can produce on parameter estimates. The same effect will lead to a “loss of anchor-
age” when we impose the convex hull constraint (18). The plot in the left panel of Figure 2 reveals
some trajectories that go persistently above the extreme 99.9999% threshold around subset size
ml = 90. Similarly, around ml = 170, we can observe two trajectories that go outside the extreme
envelope and, to a minor extent, another trajectory that spends some time above this threshold
just before ml = 200. All trajectories converge into one from ml = 230 onward. It is interest-
ing to notice that before all the trajectories converge into one, there is a persistent exceedance
of the lower threshold. The same phenomenon is also visible around ml = 100, shortly after
the first peak. In this example, given that the first exceedance of the extreme envelope is when
m† = 76, for each of R − r trajectories, we impose the convex hull constraint from this step and
find m† + at (t = 1, 2, … ,R − r). The right panel in Figure 2 shows the pruned trajectories. For
example, for the three trajectories exceeding the extreme envelope, the constraint is fulfilled up
to m† + a1 = 107, m† + a2 = 107, and m† + a3 = 97. In order to understand which group
is the most remote from the others, we compute index rst given in Equation (24), select the tra-
jectory associated with the maximum value, and select the step where the first exceedance of the
extreme envelope takes place. In this case, this leads to the identification of a first tentative group
made up of m∗ = 83 units with a corresponding value of rs𝑗∗ = 9.71.

It is interesting to notice that the number of searches that end up with the three trajectories is
152, 144, and 177, respectively. Therefore, starting from 500 random initializations in almost 95%
of the times, we have reached trajectories that collapse into just one group. This also implies that
in this example, it was not necessary to consider as many as 500 random starts to elucidate the
existence of three distinct groups.

The random start FS procedure is repeated using the remaining 188 units, after the removal of
tentative Group 1. The left panel in Figure 3 shows the new pruned trajectories of dmin(ml) with
the corresponding null envelopes based on n = 188. The same argument described above leads

http://wileyonlinelibrary.com


CERIOLI ET AL. Scandinavian Journal of Statistics 15

20 40 60 80 100 20 40 60 80 100

2

3

4

5

2

3

4

5

subset size subset size

FIGURE 3 Geyser data: (left panel) forward plot of pruned trajectories of minimum Mahalanobis distances
after removing the units from the first tentative group; (right panel) forward plot of pruned trajectories of
minimum Mahalanobis distances after removing the units from tentative Groups 1 and 2 [Colour figure can be
viewed at wileyonlinelibrary.com]

FIGURE 4 Geyser data: robust tree showing the details of the divisive procedure. The 21 unassigned units
clearly stand apart in the last split

to the identification of a second tentative group, again of size 83 with a corresponding value of
rs𝑗∗ = 9.23. The results of the third iteration of our procedure are displayed in the right panel of
Figure 3, obtained after the removal also of tentative Group 2. The pruned trajectories of dmin(ml),
with null envelopes based on n = 105 units, now lead to the identification of a third tentative
group of size 84 with rs𝑗∗ = 4.56. These three steps leave us with 21 unassigned units without an
apparent structure. Therefore, the procedure terminates, and we set K = 3.

The binary splits and the resulting clusters are displayed in a tree-like structure in Figure 4,
whereas our robust tentative clustering of these data is given in Figure 5. The latter plot, given
that it has, on the vertical axis, the value of rs𝑗∗ , not only shows the order in which the groups are
found but also reflects their degree of compactness. Indeed, the group on the top left of Figure 5
(which is found in the first divisive step) appears to be the most compact one, whereas the cluster
on the top right (which is found in the third divisive step) is the most dispersed one. The units not
assigned to any of the three main clusters correspond to some borderline observations and to the

http://wileyonlinelibrary.com
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FIGURE 5 Geyser data: robust tentative clustering into K = 3 main groups after the divisive procedure
[Colour figure can be viewed at wileyonlinelibrary.com]

peculiar set of “short followed by short” eruptions. We do not insist in labeling these eruptions as
outliers or as representatives of a fourth, more uncommon, population. We believe that the final
interpretation will strongly depend on subject matter knowledge and on the purposes of the study.
The important statistical finding from our robust cluster analysis is that they do not belong to the
three main populations that our method identifies.

5.2 M5 data
The geyser data set originates from well-separated populations, with the possible addition of
markedly different outliers. Another application with similar features (to Swiss banknotes)
is described in the Supplementary Material. We now show the performance of our divisive
procedure in a case with highly overlapping populations. The M5 data were introduced by
García-Escudero et al. (2008) for assessing some trimming-based robust clustering methods. The
data (shown in Figure 6) are obtained from three normal bivariate distributions with fixed centers
but different scales and proportions. One of the components strongly overlaps with another one.
To these data, a uniform noise contamination is sometimes added. However, in this application,
we concentrate on the “uncontaminated version” of the data set with n = 1800, since our main
interest is not on the effect of widespread noise.

The top-left panel in Figure 7 shows the monitoring of the trajectories of minimum
Mahalanobis distances from 500 random starts without pruning. This plot displays three distinct
trajectories around ml = 400. It is interesting to see that around ml = 500, there is a dip below
the lower envelope for one trajectory before being absorbed by another one that stands above
the upper envelope. This data set has also been analyzed by Atkinson, Cerioli, Morelli, and Riani
(2015), who manually chose a particular step in the random start procedure and compared the
units inside the fitting subset for the various trajectories. The top-right panel in Figure 7, which
shows the pruned trajectories of the same minimum Mahalanobis distances, avoids this manual
choice because it enables us to appreciate that there is only one trajectory that exceeds the extreme
threshold and that terminates when ml = 427. All the other trajectories are pruned much earlier

http://wileyonlinelibrary.com
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FIGURE 6 M5 data: scatter plot of the two variables. Cluster 1 is very tight and lies completely inside cluster 2.
Clusters 2 and 3 also overlap [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 M5 data: (top-left panel) trajectories of minimum Mahalanobis distances from 500 random starts
without pruning, together with 1%, 50%, 99%, and 99.9999% envelopes; (top-right panel) forward plot of the same
pruned trajectories; (bottom-left panel) forward plot of pruned trajectories of minimum Mahalanobis distances
after removing the units from the first tentative group; (bottom-right panel) forward plot of pruned trajectories of
minimum Mahalanobis distances after removing the units from the first two tentative groups [Colour figure can
be viewed at wileyonlinelibrary.com]
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FIGURE 8 M5 data: robust tree showing the details of the divisive procedure
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FIGURE 9 M5 data: (left panel) tentative clustering from the divisive procedure; (right panel) tentative
clustering from TCLUST when K is set equal to 3 and the same trimming level is used as in the divisive
procedure. In both panels, 99% confidence ellipses have been added using the centroids and the covariance
matrices of the estimated groups [Colour figure can be viewed at wileyonlinelibrary.com]

and are completely inside the null envelopes. This is an indication that the remaining trajecto-
ries refer to searches that include observations from other groups outside the convex hull of the
reference group, and therefore, we lose the good properties of the anchored estimator. Consid-
ering the first exceedance of the extreme envelope leads to the identification of a first tentative
group of 308 observations. The two bottom panels show the pruned trajectories of minimum
Mahalanobis distances, again from 500 random initializations, in the two successive steps of the
divisive procedure. Furthermore, in this case, pruning enables the identification of just one trajec-
tory outside the extreme envelope and leads, in a natural way, to the identification of the underly-
ing group. The divisive procedure is detailed in Figure 8, whereas the left panel of Figure 9 shows
the scatter plot of the original data with the K = 3 tentative groups that have been found and the
unclassified units. For clarity of interpretation, in Figure 9, the 99% confidence ellipses have been
added using the centroids and the covariance matrices of the estimated groups. The overall per-
formance of our method is very good, with only 3.6% of the assigned observations clustered in the
wrong group.

http://wileyonlinelibrary.com
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5.3 Comparison with TCLUST
We conclude our empirical analysis by comparing the results of our divisive procedure with
those obtained through the TCLUST methodology of García-Escudero et al. (2008), Fritz, García-
Escudero, and Mayo-Iscar (2012), and Ruwet, García-Escudero, Gordaliza, and Mayo-Iscar (2013).
TCLUST is a robust model-based clustering technique that relies on constrained maximization of
a trimmed version of a generalized classification likelihood function. The constraint is that

maxK
k=1 𝜆̃1,k

minK
k=1 𝜆̃v,k

≤ c, (25)

where 𝜆̃1,k and 𝜆̃v,k denote the largest and the smallest eigenvalue of Σ̃k, respectively, and c ≥ 1
is a fixed constant specified by the user. Values of c close to 1 favor solutions with spherical clus-
ters, whereas high values of c tend to produce one (or more) large and dispersed cluster possibly
overlapping with the other groups.

It is important to emphasize that, unlike our method, TCLUST requires specifying in advance
a number of important parameters: the number of groups K, the level of trimming 𝛼 to be used
in the generalized classification likelihood function, and the eigenvalue ratio restriction (25). Our
adaptive trimming divisive procedure finds instead suitable values of K and 𝛼 from the data,
whereas (25) is not needed because we just fit one population at a time. Therefore, we can see this
comparison as a worst-case scenario for our technique, since we are not taking advantage of the
prior information that is used to initialize TCLUST.

In order to apply TCLUST to the data sets considered in this paper, we use the number of
clusters that we have found in an automatic way, and we set 𝛼 equal to the proportion of units
that are left unclassified by our procedure. We also fix the restriction factor c = 100 in order to
be able to find elongated clusters, such as the one present in the M5 data set. For the geyser data
and for the Swiss banknotes (analyzed in the Supplementary Material), the results from TCLUST
are similar to those obtained with our method. Indeed, the adjusted Rand index between the two
clusterings is 0.95 for the geyser data and 0.88 for the Swiss banknote data. This means that the
performance of our divisive procedure is virtually equivalent to that of TCLUST, provided that
the latter is properly tuned through appropriate a priori information. The outcome is somewhat
different in the case of the M5 data set, for which the right panel in Figure 9 shows the three-group
robust clustering obtained by TCLUST. Although the overall performance of this clustering is
very good (the misclassification rate is 2.4%), it is clear that TCLUST underestimates the size of
Population 3. The key issue for explaining such a poorer performance in the identification of a
dispersed group is the rigid use of the trimming level 𝛼 made by TCLUST. Since, in this example,
there are no outliers, fixing 𝛼 ≫ 0 leads TCLUST to trim all the observations that lie at the border
of the more dispersed population, which is not instead the case for our procedure. Through our
adaptive trimming approach, we are able to detect the population borders in a flexible way and
without penalizing uncommon structures too much. On the contrary, TCLUST treats the farthest
observations from Population 3, particularly those lying above Population 1, as uniform noise to
be trimmed. We may thus expect an improvement in the performance of TCLUST if the method
could be embedded in an adaptive trimming framework similar to that considered in our work.

6 CONCLUDING REMARKS

This work was motivated by the requirement of robust and efficient procedures for cluster-
ing multivariate data generated by mixture model (10) with additional contamination. Our
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approach replaces the original K-population (robust) estimation problem with K distinct (robust)
one-population steps, which take advantage of the good breakdown properties of trimmed esti-
mators. For this purpose, we have studied the theoretical behavior of trimmed estimators when
the trimming level exceeds the usual bound of 0.5, thus relaxing the familiar condition that at
least half of the data should correspond to the main population. We have shown that exact affine
equivariance must be lost, but it is a reasonable price to be paid in order to achieve an arbitrarily
high breakdown for the resulting trimmed estimators. This conclusion parallels similar findings
in other situations where contamination produces only a minority of “good” observations, as in
the case of cellwise contamination (see, e.g., Farcomeni, 2014a, 2014b; Agostinelli, Leung, Yohai,
& Zamar, 2015; Rousseeuw & Van den Bossche, 2017). We also support the use of adaptive trim-
ming schemes, in order to explore the effect of different levels of trimming and to find a sensible
trade-off between robustness and efficiency. A further bonus of our methodology is its ability to
provide a reliable choice of the usually unknown number of groups that correspond to genuine
populations in model (10).

We have provided empirical evidence that our technique can perform well even when there is
a considerable overlap among the groups. The price that we pay for separating the groups when
they partially overlap is to trim a bit more than necessary in steps (d) and (e) of our divisive proce-
dure. Even if our trimming approach is adaptive and provides a good trade-off between robustness
and efficiency, there is the need for additional theoretical work in order to find a stopping rule that
guarantees the required simultaneous test size when testing for exceedances of null envelopes.
Similarly, the precise estimation of the contamination rate in (1) and of the mixing proportions
in (10) is still an open issue. A refined estimate of the population sizes, as well as a refined iden-
tification of group membership, could be obtained by adding a confirmatory step to the tentative
clustering that we obtain by our divisive procedure. The confirmatory step could also help sepa-
rate small and concentrated groups of contaminated observations from background noise (Hennig
& Liao, 2013; Coretto & Hennig, 2016) and highlight the relationship between our procedure and
the robust fitting of mixture models. Both these topics are the subject of ongoing research.
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