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Abstract

This thesis deals with solving optimal control problems via swarm intelligence. Great
emphasis is given to the formulation of the optimal control problem regarding fun-
damental issues such as unknowns identification, numerical transcription and choice
of the nonlinear programming solver. The Particle Swarm Optimization is taken
into account, and most of the proposed problems are solved using a differential
flatness formulation. When the inverse-dynamics approach is used, the transcribed
parameter optimization problem is solved assuming that the unknown trajectories
are approximated with B-spline curves. The Inverse-dynamics Particle Swarm Opti-
mization technique, which is employed in the majority of the numerical applications
in this work, is a combination of Particle Swarm and differential flatness formulation.
This thesis also investigates other opportunities to solve optimal control problems
with swarm intelligence, for instance using a direct dynamics approach and imposing
a-priori the necessary optimality conditions to the control policy. For all the proposed
problems, results are analyzed and compared with other works in the literature.
This thesis shows that metaheuristic algorithms can be used to solve optimal control
problems, but near-optimal or optimal solutions can be attained depending on the
problem formulation.

Abstract (Italiano)

Questa tesi descrive come risolvere problemi di controllo ottimo tramite swarm in-
telligence. Grande enfasi viene posta circa la formulazione del problema di controllo
ottimo, in particolare riguardo a punti fondamentali come l’identificazione delle
incognite, la trascrizione numerica e la scelta del risolutore per la programmazione
non lineare. L’algoritmo Particle Swarm Optimization viene preso in considerazione
e la maggior parte dei problemi proposti sono risolti utilizzando una formulazione
differential flatness. Quando viene usato l’approccio di dinamica inversa, il problema
di ottimo relativo ai parametri di trascrizione è risolto assumendo che le traiettorie
da identificare siano approssimate con curve B-splines. La tecnica Inverse-dynamics

v



Particle Swarm Optimization, che viene impiegata nella maggior parte delle appli-
cazioni numeriche di questa tesi, è una combinazione del Particle Swarm e della
formulazione differential flatness. La tesi investiga anche altre opportunità di risol-
vere problemi di controllo ottimo tramite swarm intelligence, per esempio usando
un approccio di dinamica diretta e imponendo a priori le condizioni necessarie
di ottimalitá alla legge di controllo. Per tutti i problemi proposti, i risultati sono
analizzati e confrontati con altri lavori in letteratura. Questa tesi mostra quindi
the algoritmi metaeuristici possono essere usati per risolvere problemi di controllo
ottimo, ma soluzioni ottime o quasi-ottime possono essere ottenute al variare della
formulazione del problema.
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Preface

This thesis investigates new numerical approaches to solve optimal control prob-
lems. The most important feature of the proposed solutions is the employment
of meta-heuristic techniques to cope with the parameter optimization problems.
Summarizing the research activity that has already been published in journals and
presented at several international conferences, the Particle Swarm optimization is
the method that is mainly proposed. Another fundamental feature characterizing
most of the chapters of this thesis is the differential flatness formulation of the
dynamical systems. The combination of the Particle Swarm and the differential
flatness is the core characteristic of the Inverse-dynamics Particle Swarm Optimiza-
tion technique which is employed to solve most of the problems presented in the
thesis. However, some chapters are dedicated to the solution of optimal control
problems via other numerical methods, employing direct dynamics approaches or
using different technique for the parameters optimization. The structure of the thesis
is outlined below.

Part I The fundamental concepts behind the optimal control theory are introduced
and the parameters transcription required for numerical solutions is described. In
further details, this part is organized as follows.

• Chapter 1. The most important concepts concerning optimization, optimal
control and planning of maneuvers for space applications are presented. The
relationship between optimal control problem and parameter optimization
is explained and the reasons behind the choice of an heuristic technique are
given.

• Chapter 2. The mathematical statement of an optimal control problem is
introduced. Different formulations are reported to underline the impact of
the problem setting on the transcribed parameters optimization problem. The
differential flatness formulation employed in the Inverse-dynamics Particle
Swarm Optimization is described.
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Part II The common features of the numerical solutions presented in the thesis are
outlined. In further details, this part is organized as follows.

• Chapter 3. The Particle Swarm Optimization algorithm is presented. The
mathematical features of the different paradigms (global, local and unified)
are presented. The exploration and exploitation abilities are described, as their
meanings is fundamental to set properly the PSO parameters and allow one to
find the searched-for solution to the optimal control problem.

• Chapter 4. The Inverse-dynamics Particle Swarm Optimization is introduced.
The main important features are described, such as the differential flatness
implementation, the constraint handling technique and the approximation of
the flat output by means of B-spline curves.

Part III This part deals with spacecraft reorientation maneuvers. Different problem
formulations are proposed, and a major emphasis is given to the Inverse-dynamics
Particle Swarm Optimization. In further details, this part is organized as follows.

• Chapter 5. This chapter is based on Refs. [1, 2, 3, 4]. The Inverse Dynamics
Particle Swarm Optimization is employed to solve the problem of spacecraft
time-optimal reorientation maneuvers. Boundaries and path constraints are
considered. It is established that near time-optimal solutions satisfying all the
boundary and path constraints can be evaluated.

• Chapter 6. This chapter shows that the Inverse-dynamics Particle Swarm
Optimization can be used to find feasible near-optimal solutions for diffi-
cult problems with nonconvex state constraints and nonconvex cost func-
tions. Minimum-time, minimum-energy and minimum-effort maneuvers are
addressed considering the constrained slew-maneuver as a test case.

• Chapter 7. In this chapter direct dynamics method is presented. The Particle
Swarm Optimization is employed to search for minimum-time maneuvers
assigning a bang-bang control policy and dividing the search space into several
sub-domains. The Push In and Push Out features are introduced. Two different
test cases are reported to validate the method by comparison with other results
from the literature.

Part IV This part deals with formation flying reconfiguration maneuvers. In further
details, this part is organized as follows.

• Chapter 8. Minimum-time reconfiguration of satellite formations are pro-
posed considering the perturbation forces as control variables. The Inverse
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Dynamics Particle Swarm Optimization is employed. The evolution of the
configuration is simulated with a high-fidelity orbital simulator considering all
the perturbations that can affect the maneuver.

• Chapter 9. Near time-optimal maneuvers performed by satellite formations dur-
ing proximity operations and reconfiguration maneuvers are evaluated using a
differential flatness parametrization and the differential evolution algorithm
with local neighborhood. The Chebyshev and the B-spline approximations are
compared. Some preliminary results are reported to compare the performances
of the differential evolution with the particle swarm optimization.
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Part I
INTRODUCTORY ELEMENTS





1Optimization and Optimal
Control: an Overview

„Science is organized knowledge.

— Immanuel Kant
(German philosopher)

Abstract
The outline of the thesis is given, introducing the most important concepts concern-
ing optimization, optimal control and planning of maneuvers for space applications.
A brief historical perspective is given so that the reader can understand the context
surrounding the objective of this thesis. The reason why an optimal control problem
is transformed into a parameter optimization problem is explained and the reasons
behind the choice of an heuristic technique are given.

Nomenclature

X = Optimization parameters vector n = Optimization parameters number
S = Optimization direction α = Optimization step length
f(X) = NLP cost function J = OCP cost functional
f̄(X) = Extended NLP cost function λ = Inequality Lagrange multiplier
µ = Equality Lagrange multiplier g(X) = Inequality constraint
h(X) = Equality constraint ∇(·) = Gradient operator
L = Lagrangian ∇2(·)= Hessian matrix
G = Penalty function X = State admissible set
U = Control admissible set x(t) = State
u(t) = Control E = End-point cost functional
F = Running cost functional Nx = State dimension
Nu = Control dimension t = Time
b = Boundary constraint p = Path constraint
f = State (differential) equation (·)0/f= Initial/final time value
H = Hamiltonian Ea = Extended end-point cost functional

1.1 Introduction

Optimality is a fundamental principle that has always led the evolution of nature
and human beings, establishing natural lows, ruling biologic behaviors, and con-



ducting social activities . Natural processes that result in the survival or extinction
of a species are based on optimization laws, as well as every human being tries to
find the optimal solution in decision making problems. In fact, it is a matter of fact
that all of us are optimizers as we all make decisions for the purpose of maximizing
our quality of life, productivity in time and our welfare, in some way or another.
Human history can be analyzed as an ongoing struggle for creating the best possible
among many inferior designs. Hence, optimization was, is, and will always be the
core requirement of human life, yielding the development of a massive number of
innovations, novel techniques, scientific improvements, starting from the early ages
of civilization until now (see Ref. [5, 6] for a detailed description of the knowledge
fields interested in optimization processes).

Optimization is a recurrent concept in several fields of human knowledge (e.g.
economics, mathematics and engineering) and can be described as finding the
best solution to a given problem according to an agreed criterion. Such goal of the
optimization is usually referred to as cost function, objective function or performance
index. The study of optimization problems is also as old as science itself. It is known
that the ancient Greek mathematicians solved many optimization problems. For
example, around 300 B.C. Euclid proved that a square encloses the greatest area
among all possible rectangles with the same total length of four sides [7]. Obviously,
the same problem may have different optimal solutions changing the optimality
criterion to be satisfied. Planning a maneuver for a body going from a point A to a
point B can lead to different thrust profiles if the objective function is the minimum
time or the minimum consumption of fuel.

Depending on the object of the optimization process, the denomination of the
optimal problem can change. If a finite number of discrete values are searched
for, we deal with integer optimization. Continuous optimization, on the contrary,
deals with continuous variables. Optimal control is a special class of optimization
problems that can be defined within the frame of functional analysis. Consequently,
the object of optimal control are functions and the cost function can be referred to
as the cost functional as it generally depends on functions.

Two distinct families of approaches can be defined to solve a general optimization
problem, i.e. the analytical and the numerical ones. For many practical problems,
analytical solutions do not exist and numerical methods must be employed. However,
theoretical analysis gives us some necessary conditions that can be used along with
numerical methods to solve the optimization problem. Analytical approaches are
based on the evaluation of the first and second derivative of the cost function to find
the necessary and the sufficient conditions for optimality, respectively. In the field of
optimal control, derivatives are substituted by the variations of the cost functional.
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The majority of the optimization problems of practical interest are usually con-
strained such that the solution lies in a set of admissible or feasible solutions. The
simple problem of the rectangle with maximum area is constrained to have a fixed
perimeter. In this case, the constraint is necessary to obtain a meaningful solution,
otherwise the optimal rectangle would have been the one with infinitely-long sides.
In these cases, analytical solutions are hard to find but necessary conditions can be
obtained. The Karush–Kuhn–Tucker (KKT) conditions apply for continuous optimiza-
tion problems, whereas the Pontryagin Maximum Principle (PMP) can be employed
for optimal control problems (OCPs).

This chapter is intended to explain the relationship between parameter optimiza-
tion and optimal control. Among the several optimization problems, the OCPs
distinguish from the others as they deal with functions. A classical parameter opti-
mization problem (POP), instead, deals with finding a finite set of optimal parameter
(usually real or integer numbers). As several OCPs do not have an analytical solution,
they are usually transcribed into parameter optimization problems. The way OCPs
are transcribed into POPs considerably influences the solutions that can be found, as
it will be explained in Chapter 2.

The main result of this thesis is the development of the Inverse-Dynamics Particle
Swarm Optimization (IPSO), a numerical optimization technique developed for
solving OCPs already employed in Ref. [1, 2, 3, 8, 9]. This name has been chosen in
accordance with the following characteristics:

• The differentially flat formulation is employed for the definition of the opti-
mization problem. This method may be also referred to as the inverse dynamics
approach. The reader can find details about the differentially flat formulation
in Chapter 2.

• The Particle Swarm Optimization (PSO) is employed for the numerical solution
of the optimization problem. As other heuristic methods, the PSO has specific
characteristics which help finding the global minimum when the problem is
nonconvex. The reader can find details about the Particle Swarm Optimization
in Chapter 3.

The IPSO will be described in details in Chapter 4 and will be applied in Chapters 5,
6 and 8.

The remainder of this chapter is organized as follows. In Sec. 1.3 an outline of
the parameter optimization technique is presented, from the deterministic technique
to the heuristic and metaheuristic strategies. In Sec. 1.4 the standard problem
considered by the optimal control theory is presented, along with the classical
necessary conditions for optimality. Conclusions are given in Sec. 1.5.
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1.2 Statement of an optimization problem

To simplify the understanding of the differences among the following optimization
problems, a common approach for the statement of an optimization problem is
introduced. Usually, when a problem is to be solved in order to minimize/maximize
a used-defined goal, some features must be identified:

1. The optimization parameters

2. The goal of the optimization

3. The constraints influencing the solution

As a consequence, the general scheme used to state an optimization problem within
this thesis is the one reported in Fig. 1.1.

1.3 Optimization: brief outline of the available
techniques

To find a numerical solution to OCPs, a numerical optimization technique to search
for the optimal set of certain user-defined parameters must be used. In fact, after
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(they can be scalar quantities, vectors or 

functions) 

Statement of the optimization goal  

(this is a scalar quantity) 

Definition of the constraints  

(usually some functions of the optimization 

parameters reducing the feasible search 

space) 

Fig. 1.1: Common steps required to state an optimization problem.
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the proper discretization of the problem (which will be properly defined in Chapter
2), OCP is translated into POP [10, 11]. The word “programming” (which has
nothing to do with computing programming) is often used to mean planning and/or
optimization.

It is far beyond the scope of this work to provide an extensive analysis of the
techniques for solving a parameter optimization problem (a detailed description is
given in Ref. [12]). OCPs may fall into different parameter optimization problems
depending on their characteristics concerning non-linearities issues, constraints,
convexities.

The simplest optimization without any constraints is probably the search of the
maxima or minima of a function f(x). In 1646 Pierre de Fermat proposed a general
approach to compute local maxima/minima points of a differentiable function, that
is, setting the derivative of the function to be zero, i.e. df(x)/dx = 0. As we know
today, this is only a necessary condition for the existence of maxima/minima and
the sufficiency condition is related to the second derivative. For one-dimensional
problems, many of the classical optimization methods are based on the evaluation of
the first derivative and second derivatives, whereas for multi-dimensional problems
the gradient and the Hessian matrix are evaluated. Sometimes, this information is
obtained numerically after a proper polynomial approximation of the cost function
is introduced.

Linear constrained optimization, usually referred to as Linear Programming, is
generally solved with the simplex method [13] introduced by G.B. Dantzig in 1947.
For this class of problems, usually encountered in the economics field, both the
objective function and the constraints are linear. One of the earliest, classic examples
using linear programming is described by Dantzig in Ref. [13]. The problem was to
find the solution to the special optimal diet problem involving 9 equations and 77
unknowns using hand-operated desk calculators.

Most real-world problems are nonlinear and nonlinear mathematical programming
forms an important part of mathematical optimization methods. If the expressions
for the objective function and the constraints are fairly simple in terms of the design
variables, classical analytical methods of optimization can be used to solve the
problem. On the other hand, if the optimization problem involves the objective
function and/or constraints that are not stated as explicit functions of the design
variables or which are too complicated to manipulate, we cannot solve it by using
the classical analytical methods. One-dimensional numerical minimization methods
are divided into two big families, the Elimination methods (e.g. Unrestricted search,
Exhaustive search, Dichotomous search, Fibonacci method, Golden section method)
and the Interpolation methods (quadratic/cubic interpolation, Newton and quasi-
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Newton methods). The reader can refer to Chapter 5 of Ref. [12] for further
details.

Given the complexity of the problems that will be treated in the chapters concern-
ing the numerical applications (see Part III and Part IV), only numerical techniques
for solving multi-dimensional nonlinear problems will be briefly described.

1.3.1 Nonlinear programming for unconstrained problems

Nonlinear programming for unconstrained problems deals with the optimization
problem given as

Find X ∈ Rn

minimizing f(X)
(1.1)

where f(X) : Rn 7→ R. According to Ref. [12], the basic philosophy of most of the
numerical methods of nonlinear optimization is to produce a sequence of improved
approximations to the optimum according to the following scheme:

1. Start with an initial trial point X1.

2. Find a suitable direction Si (i = 1 to start with) that points in the general
direction of the optimum.

3. Find an appropriate step length αi for movement along the direction Si.

4. Obtain the new approximation Xi+1 as

Xi+1 = Xi + αiSi (1.2)

5. Test whether Xi+1 is optimum. If Xi+1 is optimum, stop the procedure.
Otherwise, set a new i = i+ 1 and repeat step (2) onward.

The iterative procedure indicated by Eq. (1.2) is valid for unconstrained as well
as constrained optimization problems. Eq. (1.2) indicates that the efficiency of an
optimization method depends on the efficiency with which the quantities αi and
Si are determined. The methods of finding the optimal step length α∗i are within
the family of one-dimensional numerical minimization methods. In fact, if f(X) is
the objective function to be minimized, the problem of determining α∗i reduces to
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finding the value αi = α∗i that minimizes f(Xi+1) = f(Xi + αiSi) = f(αi) for fixed
values of Xi and Si.

It is important to note that all the unconstrained minimization methods (1) require
an initial point X1 to start the iterative procedure, and (2) differ from one another
only in the method of generating the new point Xi+1 (from Xi) and in testing the
point Xi+1 for optimality.

The methods of finding Si may be divided into Direct search methods, which
do not require the evaluation of the function derivatives, and Descent methods,
which require the derivatives of the function. Among the several methods that
falls inside these categories, which are exhaustively described in Chapter 6 of Ref.
[12], there are some stochastic technique that can find the global optimum when
several local minima exist. For instance, the Random search methods work even
if the objective function is discontinuous and nondifferentiable at some of the
points. It is noteworthy that this method is heuristic in nature but does not have
any well-defined rule guiding the heuristic search. Another direct method is the
simplex method (which should not be confused with the simplex method of linear
programming) based on the reflection, contraction and expansion operation applied
to a simplex, a geometric figure formed by a set of n+ 1 points in an n-dimensional
space. Finally, descent or gradient-based methods (e.g., Newton’s Method, Steepest
Descent Method, Line Search, Conjugate Gradient Method) are usually characterized
by a local convergence and are strongly affected by the initial trial point.

1.3.2 Nonlinear programming for constrained problems

For nonlinear constrained optimization, classical methods provide necessary con-
dition which can be used to find the solution for continuous and differentiable
functions. These methods are analytical and make use of the techniques of differen-
tial calculus in locating the optimum points. Since some of the practical problems
involve objective functions that are not continuous and/or differentiable, the classical
optimization techniques have limited scope in practical applications.

For a nonlinear constrained optimization problem (with m inequality constraints
and p equality constraints) stated as
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Find X ∈ Rn

minimizing f(X)

subject to

gj(X) ≤ 0, j = 1, ...,m

hk(X) = 0, k = 1, ..., p

(1.3)

the necessary KKT conditions are (see Chapter 2 of Ref. [12]):

∇f +
m∑
j=1

λj∇gj −
p∑

k=1
µk∇hk = 0, (1.4a)

λjgj = 0, j = 1, ...,m (1.4b)

gj ≤ 0, j = 1, ...,m (1.4c)

λj ≥= 0, j = 1, ...,m (1.4d)

hk = 0, k = 1, ..., p. (1.4e)

The parameters λj and βk are called Lagrange multipliers. When gj = 0, the
constraint is called active while when gj < 0, the constraint is called nonactive. The
optimization problem stated in Eq. (1.7) is called a convex programming problem
if the objective function f(X) and the constraint functions are convex. In this case,
there will be no relative minima or saddle points and the KKT conditions are both
necessary and sufficient for an absolute minimum of at X∗. However, it is often very
difficult to ascertain whether the objective and constraint functions involved in a
practical engineering problem are convex.

For many engineering applications, the necessary KKT optimality conditions cannot
be directly used to find the solution X∗. There are many numerical techniques
available for the solution of a constrained nonlinear programming problem. All the
methods can be classified into two broad categories: direct methods and indirect
methods. In the direct methods, the constraints are handled in an explicit manner,
whereas in most of the indirect methods the constrained problem is solved as a
sequence of unconstrained minimization problems.

Direct methods

Within the family of direct methods, there are several approaches. Only the Sequen-
tial Linear Programming (SLP) and the Sequential Quadratic Programming (SQP)
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are therein described. An exhaustive description of the most used approaches can be
found in Chapter 7 of Ref. [12].

In the SLP method, the solution of the original nonlinear programming problem
is found by solving a series of linear programming problems. Each LP problem is
generated by approximating the nonlinear objective and constraint functions using
first-order Taylor series expansions about the current design vector, Xi. The resulting
LP problem is solved using the simplex method to find the new design vector Xi+1.
If Xi+1 does not satisfy the stated convergence criteria, the problem is re-linearized
about the point Xi+1 and the procedure is continued until the optimum solution X∗

is found. If the problem is a convex programming problem, the linearized constraints
always lie entirely outside the feasible region. Hence the optimum solution of the
approximating LP problem, which lies at a vertex of the new feasible region, will lie
outside the original feasible region. However, by re-linearizing the problem about
the new point and repeating the process, we can achieve convergence to the solution
of the original problem in few iterations. When equality and inequality constraints
are taken into account, the SLP problem is defined as

Find X ∈ Rn

minimizing f(Xi) +∇fT (X−Xi)

subject to

gj +∇gTj (X−Xi) ≤ 0, j = 1, ...,m

hk +∇hTk (X−Xi) = 0, k = 1, ..., p.

(1.5)

The SQP is one of the most recently developed and perhaps one of the best
methods of optimization. The method has a theoretical basis that is related to 1) the
solution of a set of nonlinear equations using Newton’s method, and 2) the derivation
of simultaneous nonlinear equations applying KKT conditions to the Lagrangian of
the constrained optimization problem. When equality and inequality constraints are
taken into account, the SQP problem is defined as

Find X ∈ Rn

minimizing ∇fT∆X + 1
2∆XT [∇2L]∆X

subject to

gj +∇gTj ∆X ≤ 0, j = 1, ...,m

hk +∇hTk ∆X = 0, k = 1, ..., p

(1.6)
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where ∆X = (X−Xi), [∇2L] is the Hessian matrix of the Lagrangian (also known
as Lagrange function) which is given by

L = f(X) +
m∑
j=1

λjgj(X) +
p∑

k=1
µkhk(X). (1.7)

SQP is a globally convergent algorithm, i.e., it will converge to some local solution
from any remote starting point (under suitable conditions). Nonlinear optimization
problems can have multiple local solutions; the global solution is that local solution
corresponding to the least value of f(X). SQP methods, like Newton’s method and
steepest descent, are only guaranteed to find a local solution of NLP; they should not
be confused with algorithms for finding the global solution, which are of an entirely
different flavor.

Several numerical techniques have been developed based on SQP implementation.
For instance, the software SNOPT (Sparse Nonlinear OPTimizer) is designed for
large-scale nonlinear constrained optimization, see Ref. [14]. Note that the solution
obtained with SNOPT is generally a local optimum (which may or may not be a
global optimum).

Indirect methods and penalty functions

Indirect methods transform the original problem into a sequence of unconstrained
minimization problems. There are two main families of indirect methods, the first
based on transformation techniques which automatically include the constraints into
the problem, the second based on the definition of penalty functions.

Transformation techniques Making a change of variables, a constrained optimiza-
tion problem may be converted into an unconstrained one (such transformations are
not always allowed). For example, consider the constraint represented by ‖X‖∞ ≤ 1,
where ‖X‖∞ is the L∞-norm defined as ‖X‖∞ = max{|xi(t)| : i = 1, ..., n} and xi
is the ith component of the design vector X. In this case, defined the new design
variable yi ∈ R, one of the following transformation can be used:

xi = sin2 yi, (1.8a)

xi = cos2 yi, (1.8b)

xi = eyi

eyi + e−yi
, (1.8c)

xi = y2
i

1 + y2
i

. (1.8d)
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Note the following aspects of transformation techniques:

1. The constraints gj(X) have to be very simple functions of xi.

2. For certain constraints it may not be possible to find the necessary transforma-
tion.

3. If it is not possible to eliminate all the constraints by making a change of
variables, it may be better not to use the transformation at all. The partial
transformation may sometimes produce a distorted objective function which
might be more difficult to minimize than the original function.

Penalty functions The performance index can be properly modified to take into
account the alteration of the search space induced by the constraints. All the
constraints are treated as inequalities. Let us suppose to have p equality constraints
and m inequality constraints. Accordingly, the generic equality constraint hk(X) = 0,
k = 1, ..., p, is relaxed and treated as |hk(X)| −∆k ≤ 0, defining the new inequality
constraint gk+m(X) ≤ 0. Note that gk+m converge to hk as ∆k → 0.

Penalty function methods transform the basic optimization problem into alterna-
tive formulations such that numerical solutions are sought by solving a sequence
of unconstrained minimization problems. Let the basic optimization problem, with
inequality constraints, be of the form:

Find X ∈ Rn

minimizing f(X)

subject to

gj(X) ≤ 0, j = 1, ...,m+ p

(1.9)

This problem is converted into an unconstrained minimization problem by defining
the problem an extended cost function f̄ (or performance index) as

Find X ∈ Rn

minimizing f̄k = f̄(X, rk) = f(X) + rk

m∑
j=1

Gj [gj(X)]
(1.10)

where Gj is some function of the constraint gj , and rk is a positive constant known
as the penalty parameter. The second term on the right side of Eq. (1.10) is called
the penalty term and the generic term Gj is the penalty function associated to the
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constraint gj(X). If the unconstrained minimization of the f̄ function is repeated
for a sequence of values of the penalty parameter rk, (k = 1, 2, ...), the solution
may be brought to converge to that of the original problem stated in Eq. (1.9).
This is the reason why the penalty function methods are also known as sequential
unconstrained minimization techniques (SUMTs). The penalty function formulations
for inequality constrained problems can be divided into two categories: interior and
exterior methods. In the interior formulations, some popularly used forms of Gj are
given by

Gj = − 1
gj(X) , (1.11)

Gj = log
(
− gj(X)

)
. (1.12)

Some commonly used forms of the function Gj in the case of exterior penalty
function formulations are

Gj = max[0, gj(X)], (1.13)

Gj = (max[0, gj(X)])2. (1.14)

In the interior methods, the unconstrained minima of f̄k all lie in the feasible region
and converge to the solution of Eq. (1.9) as rk is varied in a particular manner. In
the exterior methods, the unconstrained minima of f̄k all lie in the infeasible region
and converge to the desired solution from the outside as rk is changed in a specified
manner. The convergence of the unconstrained minima of f̄k is illustrated in Fig. 1.2
for the simple problem

Find X = {x1} which minimizes f(X) = αx1

subject to

g1(X) = β − x1 ≤ 0

(1.15)

It can be seen from Fig. 1.2a that the unconstrained minima of f̄(X, rk) converge to
the optimum point X∗ as the parameter rk is increased sequentially. On the other
hand, the interior method shown in Fig. 1.2b gives convergence as the parameter rk
is decreased sequentially.

There are several reasons for the appeal of the penalty function formulations. One
main reason, which can be observed from Fig. 1.2, is that the sequential nature of
the method allows a gradual or sequential approach to criticality of the constraints.
In addition, the sequential process permits a graded approximation to be used in
analysis of the system. This means that if the evaluation of f and gj (and hence
f̄(X, rk)) for any specified design vector X is computationally very difficult, we
can use coarse approximations during the early stages of optimization (when the
unconstrained minima of f̄k are far away from the optimum) and finer or more

26 Chapter 1 Optimization and Optimal Control: an Overview



f , f

f
f

f *

Fig. 1.2: Penalty function methods: (a) exterior method; (b) interior method (adapted from
Ref. [12]).

detailed analysis approximation during the final stages of optimization. Another
reason is that the algorithms for the unconstrained minimization of rather arbitrary
functions are well studied and generally are quite reliable.

Among the penalty function methods, the class of by the interior-point methods
has received particular attention [15]. Commercial softwares have been developed
basing on interior-point implementations, such as IPOPT (Interior Point OPTimizer,
pronounced eye-pea-Opt) which is described in Ref. [16]. Note that these software
are generally designed to find local solutions of nonlinear constrained optimization
problems.

1.3.3 Heuristic and metaheuristic programming

Most traditional optimization paradigms move from one point in the decision
hyperspace to another using some deterministic rule. One of the drawbacks of this
approach is the likelihood of getting stuck at a local optimum.

Stochastic algorithms generally overcome this issue, as they are usually intended
for searching the global optimal solution for problem with multiple local minima
(usually nonconvex problems). For stochastic algorithms, we have in general two
types: heuristic and metaheuristic, though their difference is small.
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A stochastic algorithm is often the second-best way to solve a problem. Classical
methods such as linear programming should often be tried first, as should customized
approaches that take full advantage of knowledge about the problem. However,
classical and customized approaches are often not feasible, while heuristic and
metaheuristic paradigms are usable in a vast number of situations. In fact, the real
strength of heuristic and metaheuristic paradigms is that they are generally quite
robust. In this field, robustness means that an algorithm can be used to solve many
problems, and even many kinds of problems, with a minimum amount of special
adjustments to account for special qualities of a particular problem. Typically a
stochastic algorithm requires specification of the length of the problem solution
vectors, some details of their encoding, and an evaluation function—the rest of the
program does not need to be changed.

Heuristics

A heuristic algorithm is defined in Ref. [17] as a technique consisting of a rule (or a
set of rules) which seeks (and hopefully finds) good solutions at a reasonable com-
putational cost. A heuristic is approximate in the sense that it provides (hopefully) a
good solution for relatively little effort, but it does not guarantee optimality. Heuris-
tics provide simple means of indicating which among several alternatives seems to
be best. That is, heuristics are criteria, methods, or principles for deciding which
among several alternative courses of action promises to be the most effective in
order to achieve some goal. They represent compromises between two requirements:
the need to make such criteria simple and, at the same time, the desire to see them
discriminate correctly between good and bad choices. A heuristic may be a rule of
thumb that is used to guide one’s action.

According to Ref. [7], heuristic means “to find” or “to discover by trial and error”.
Quality solutions to a tough optimization problem can be found in a reasonable
amount of time, but there is no guarantee that optimal solutions are reached. It is
expected that these algorithms work most of the time, but not all the time. This is
usually good enough when we do not necessarily want the best solutions but rather
good solutions which are easily reachable.

Random search methods for unconstrained minimization (described in Sec. 1.3.1)
can be used, with minor modifications, to solve a constrained optimization problem.
This approach generates a trial design vector using one random number for each
design variable. If any constraint is violated (the equality constraints are considered
satisfied whenever their magnitudes lie within a specified tolerance), new trial
vectors are generated and verified. Once a trial vector satisfies all the constraints,
it is kept as the best design vector if it gives a reduced objective function value

28 Chapter 1 Optimization and Optimal Control: an Overview



compared to the previous best available design vector. Otherwise, new trial design
vectors are generated until a specified maximum number of trial design vectors have
been tried. Further details are given in Ref. [18].

Metaheuristics

Further development over the heuristic algorithms is the so-called metaheuristic
algorithms. According to Ref. [7], meta means “beyond” or “higher level”, and
they generally perform better than simple heuristics. In addition, all metaheuristic
algorithms use certain trade-off of randomization and local search. It is worth
pointing out that no agreed definitions of heuristics and metaheuristics exist in the
literature, i.e. some use “heuristics” and “metaheuristics” interchangeably. However,
recent trends tend to name all stochastic algorithms with randomization and local
search as metaheuristic. Randomization provides a good way to move away from
local search to a search on the global scale. Therefore, almost all metaheuristic
algorithms intend to be suitable for global optimization.

In Ref. [17], a metaheuristic algorithm is defined as a top-level strategy that guides
an underlying heuristic solving a given problem. Metaheuristics, in their modern
forms, are based on a variety of interpretations of what may be called intelligent
search, where the term “intelligent search” has been made prominent by Pearl in Ref.
[19]. In that sense we may also consider the following definition in Ref. [20]: “A
metaheuristic is an iterative generation process which guides a subordinate heuristic
by combining intelligently different concepts for exploring and exploiting the search
spaces using learning strategies to structure information in order to find efficiently
near-optimal solutions”. To summarize, the following definition seems to be most
appropriate: “A metaheuristic is an iterative master process that guides and modifies
the operations of subordinate heuristics to efficiently produce high-quality solutions.
It may manipulate a complete (or incomplete) single solution or a collection of
solutions at each iteration.” (page ix in Ref. [21]).

A slightly different definition of a metaheuristic algorithm is given in Ref. [22],
where it is defined as an algorithm designed to solve approximately a wide range
of hard optimization problems without having to deeply adapt to each problem.
Indeed, the Greek prefix meta, present in the name, is used to indicate that these
algorithms are higher level heuristics, in contrast with problem-specific heuristics.
Metaheuristics are generally applied to problems for which there is no satisfactory
problem-specific algorithm to solve them.

As reported in Ref. [22], almost all metaheuristic algorithms share the following
characteristics:
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• they are nature-inspired, based on some principles from physics, biology or
ethology;

• they make use of stochastic components (involving random variables);

• they do not use the gradient or Hessian matrix of the objective function;

• they have several parameters that need to be fitted to the problem at hand.

Exploration and exploitation

As reported in Ref. [22], a metaheuristic approach will be successful on a given
optimization problem if it can provide a balance between the exploration (or diversi-
fication) and the exploitation (or intensification). Exploration is usually associated
with global search ability, whereas exploitation is related to local search. In further
details, Ref. [23] states that “exploration is the process of visiting entirely new
regions of a search space, whilst exploitation is the process of visiting those regions
of a search space within the neighborhood of previously visited points. In order to be
successful, a search algorithm needs to establish a good ratio between exploration
and exploitation”.

Exploitation is needed to identify parts of the search space with high quality
solutions, and it is important to intensify the search in some promising areas of
the accumulated search experience. The main differences between the existing
metaheuristics concern the particular way in which they try to achieve this balance.
Many classification criteria may be used for metaheuristics. This may be illustrated by
considering the classification of metaheuristics in terms of their features with respect
to different aspects concerning the search path they follow, the use of memory, the
kind of neighborhood exploration used or the number of current solutions carried
from one iteration to the next.

Classification of metaheuristic algorithms

Following the classification reported in Ref. [22], metaheuristic algorithms differen-
tiates between single-solution based metaheuristics (also known as trajectory-based
metaheuristics) and population-based metaheuristics. Roughly speaking, single-
solution based metaheuristics (e.g., simulated annealing) are more exploitation
oriented whereas population-based metaheuristics (e.g., evolutionary computation
algorithms) are more exploration oriented.
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Among the single-solution based metaheuristic approaches there are simulated
annealing, Tabu search, GRASP method, variable neighborhood search, guided local
search, iterated local search (refer to Ref. [22] for details). For example, simulated
annealing uses a single agent or solution which moves through the design space
or search space in a piecewise style. A better move or solution is always accepted,
while a not-so-good move can be accepted with certain probability. The steps or
moves trace a trajectory in the search space, with a non-zero probability that this
trajectory can reach the global optimum.

Population-based metaheuristic algorithms may be subdivided into:

• Evolutionary Computation, EC (e.g., genetic algorithm, evolution strategy,
evolutionary programming, genetic programming, differential evolution). A
description of the most important approaches is reported in Ref. [22].

• Swarm Intelligence, SI (e.g., particle swarm optimization, ant colony optimiza-
tion, bacterial foraging optimization algorithm). The reader can refer to Ref.
[24, 22] for a summary of the approaches within this class.

A detailed description of the Particle Swarm Optimization (PSO) will be given in
Chapter 3. Moreover, the Differential Evolution (DE) algorithm will be exploited in
Chapter 9.

Most metaheuristic algorithms are nature (biology, bio)-inspired as they have been
developed based on some abstraction of nature. Nature has evolved over millions
of years and has found perfect solutions to almost all the faced problems. We can
thus learn the success of problem-solving from nature and develop nature-inspired
heuristic algorithms.

Two major components of any metaheuristic algorithms are 1) selection of the best
solutions and 2) randomization. The selection of the best ensures that the solutions
will converge to the optimality, while the randomization avoids the solutions being
trapped at local optima and, at the same, increase the diversity of the solutions.
The selection in here intended as recognition of the best solutions. For most EC
techniques, selection is related to discarding (from future investigation) non-selected
individuals. The good combination of these two components will usually ensure that
the global optimality is achievable. Heuristic algorithms can be classified in many
ways.

Population-based paradigms are generally characterized by

1. utilizing a population of points (potential solutions) in their search.
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2. using direct fitness information instead of function derivatives or other related
knowledge.

3. using probabilistic, rather than deterministic, transition rules.

In addition, EC implementations sometimes encode the parameters in binary or
other symbols, rather than working with the parameters themselves.

Population-based metaheuristic algorithms start with a population of points (hy-
perspace vectors). They typically generate a new population with the same number
of members each epoch, or generation. Thus, many maxima or minima can be
explored simultaneously, lowering the probability of getting stuck. Operators such
as crossover and mutation typical of evolutionary computation techniques, or the
PSO velocity, effectively enhance this parallel search capability. The main important
differences between evolutionary computation and swarm intelligence lye in the
way the population of solutions is modified through successive iterations. Selection
of individuals for reproduction to constitute a new population (often called a new
generation) is usually based upon fitness values. If the goal is the minimization
of the fitness, the lower the fitness, the more likely it is that the individual will be
selected for the new generation. Some paradigms that are sometimes considered
evolutionary, such as particle swarm optimization, can retain all population members
from epoch to epoch.

Regardless of the implemented paradigm, population based algorithms often
follow a similar procedure:

1. Initialize the population.

2. Calculate the fitness for each individual in the population.

3. Produce a new population basing on some rules that strictly depend on the
fitness of each individual.

4. Loop to step 2 until some condition is met.

Initialization is most commonly done by seeding the population with random
values. When the parameters are represented by binary strings, this simply means
generating random strings of ones and zeros (with a uniform probability for each
value) of the fixed length described earlier. It is sometimes feasible to seed the
population with promising values, known to be in the hyperspace region relatively
close to the optimum. The total number of individuals chosen to make up the
population is both problem and paradigm dependent, but is often in the range of a
few dozen to a few hundred. The fitness value is often proportional to the output
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value of the function being optimized, though it may also be derived from some
combination of a number of function outputs.

Termination of the algorithm is usually based either on achieving a population
member with some specified fitness or on having run the algorithm for a given
number of generations. In many, if not most, cases, a global optimum exists at one
point in the decision hyperspace. Frequently there are very good local optima as
well. For these and other reasons, the bottom line is that it is often unreasonable to
expect any optimization method to find a global optimum (even if it exists) within a
finite time. The best that can be hoped for is to find near-optimum solutions and to
hope that the time it takes to find them increases less than exponentially with the
number of variables.

1.4 Optimal control problems

In this section a general continuous-time OCP is defined and the first-order nec-
essary optimality conditions for that problem are derived using the calculus of
variations. Pontryagin’s principle, which is used to solve for the optimal control in
some special cases, is also discussed.

1.4.1 Continuous-time optimal control problem

If an optimization problem involves the minimization (or maximization) of a
functional subject to the constraints of the same type, the decision variable will not
be a number, but it will be a function. The calculus of variations can be used to solve
this type of optimization problems. The main aim of the calculus of variations is to
find a function that makes the integral stationary, making the value of the integral
a local maximum or minimum. For example, in mechanics we may want to find
the shape y(x) of a rope or chain when suspended under its own weight from two
fixed points. In this case, the calculus of variations provides a method for finding
the function y(x) so that the curve y(x) minimizes the gravitational potential energy
of the hanging rope system.

When the objective is an integral and the constraints are differential equation, the
optimization problem becomes an OCP. Optimal control is an important branch of
optimization and control research, especially in engineering design and economics.
For example, in order to reach from point A to B on a road u(t), we can vary the
speed a(t) of a car so as to minimize the fuel consumption is an OCP. Similarly, to
design a railway path on a hilly landscape with the constraint of slope or gradient so
as to minimize the distance between any two stations also requires optimal control.
OCPs involve two types of variables: the control and state variables, which are
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related to each other by a set of differential equations. Optimal control theory can
be used for solving such problems.

Here and in the following chapters we will only deal with free final time problems,
whereas the initial time will be considered as a fixed value (usually equal to zero).
Given x ∈ X ⊂ RNx and u ∈ U ⊂ RNu (Nx and Nu are scalar problem-dependent
parameters), the standard OCP for a dynamical system subject to the dynamics

ẋ(t) = f(x(t),u(t), t), (1.16)

with boundary constraints (defined as equality constraints)

b(x(t0),x(tf ), t0, tf ) = 0 (1.17)

and state-control path constraints given by the inequality constraint

p(x(t),u(t)) ≤ 0, (1.18)

may be stated as:

min J [x(t),u(t), tf ] = E(x(t0),x(tf ), tf ) +
∫ tf

t0
F (x(t),u(t), t) dt (1.19)

subject to Eq. (1.16), (1.17) and (1.18). It is assumed that f : RNx×RNu×R→ RNx ,
b : RNx × RNx × R × R → RNe and p : RNx × RNu → RNp . As well as Nx and
Nu, also Ne and Np are problem dependent. All these functions are assumed to
be continuously differentiable with respect to their arguments. In Eq. (1.19),
E : RNx×RNx×R×R 7→ R is the terminal cost function, F : RNx×RNu×R 7→ R is
the running cost function.

Following the general rules of Sec. 1.2 for the statement of an optimization
problem, an optimal control problem is written as

Find x(t) : t→ X ⊂ RNx ,u(t) : t→ U ∈ RNu , tf ∈ R

minimizing

J [x(t),u(t), t0, tf ] = E(x(t0),x(tf ), t0, tf ) +
∫ tf

t0
F (x(t),u(t), t) dt

subject to, ∀t ∈ [t0, tf ]

Dynamics constraints: ẋ(t) = f(x(t),u(t), t),

Boundary constraints: b(x(t0),x(tf ), t0, tf ) = 0,

Path Constraints: p(x(t),u(t)) ≤ 0.

(1.20)
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When stating an optimal control problem, state and control should be defined as
functions. Usually, the state is a continuous and piecewise differentiable function
whereas the control is piecewise continuous function. However, since this thesis
mainly deal with numerical solutions to optimal control problems, we are not
interested in the mathematical properties of the state and control functions. Instead,
the dimension of state and control are important from the numerical point of view.
Accordingly, state and control functions are defined by means of their vectorial
values corresponding to the generic time instant t. As reported in Eq. (1.20), such
vectors live in the state space X and in the control space U, respectively.

The solution of the minimization problem in Eq. (1.19) is given in several standard
textbooks (see Ref. [25, 26]). The solution reported below is taken from Ref. [27].
As usual, let us define the Hamiltonian as

H(x,u,λ) = λT (t)f(x(t),u(t), t) + F (x(t),u(t), t). (1.21)

The optimality necessary condition are stated by the Pontryagin’s Maximum
Principle which is described in Sec. 1.4.2. In presence of path constraint, the
Lagrangian of the Hamiltonian may be introduced,

L(x,u,λ,µ) = H(x,u,λ) + µTp(t)(x(t),u(t)). (1.22)

Note that Eq. (1.22) is the functional counterpart of Eq. (1.7). Finally, it can be
shown that the necessary conditions are stated as

ẋ(t) = ∂L(t)
∂λ

(1.23)

λ̇(t) = −∂L(t)
∂x

(1.24)

∂L

∂u
= 0 (1.25)

{λ(t0),λ(tf )} =
{
− ∂Ea
∂x(t0) ,

∂Ea
∂x(tf )

}
(1.26)

{H(t0),H(tf )} =
{
− ∂Ea

∂t0
,
∂Ea
∂tf

}
(1.27)

µT (t)p(t) = 0 , p ≤ 0 , µ ≥ 0 (1.28)

where the extended end-point cost functional Ea is defined as

Ea(x(t0),x(tf ), t0, tf ,ν) = E(x(t0),x(tf ), t0, tf ) + νTb(Ea(x(t0),x(tf ), t0, tf ).
(1.29)

If the path constraint in Eq. (1.18) is independent of the control (i.e. a pure state
constraint) then the costate λ(t) must satisfy the jump condition reported in [28].
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1.4.2 Pontryagin’s principle

The Pontryagin’s Minimum Principle (PMP) (originally introduced as Pontryagin’s
Maximum Principle) is given as

H(x∗(t),u∗(t),λ∗(t), t) ≤ H(x∗(t),u(t),λ∗(t), t). (1.30)

Note that, in Eq. (1.30), ( )∗ stands for a function which is considered optimal
with regard to the imposed performance measure. Eq. (1.30) has been firstly
introduced in Ref. [29] and states that the optimal control u∗ is such to minimize the
Hamiltonian. In the case the control region is unbounded, the necessary condition
in Eq. (1.30) can be expresed as

∂H
∂u

(x∗(t),u∗(t),λ∗(t), t) = 0. (1.31)

If Eq. (1.31) is satisfied, and the matrix

∂2H
∂u2 (x∗(t),u∗(t),λ∗(t), t) (1.32)

is positive definite, this is sufficient to guarantee that u∗(t) causes H to be a local
minimum. However, if H is a quadratic form in u(t), then Eqs. (1.31)-(1.32)
guarantee that u∗(t) is a global minimum.

During the 1960s, the Maximum Principle came to be the primary tool for solving
OCPs. Flight trajectory optimization continued to be the main application and the
driving force in the field. PMP transforms the OCP into a two-point boundary-
value problem (TPBVP, see Ref. [30]). For most cases, other than simple textbook
problems, the solution procedure poses a serious obstacle for implementation.

Let us solve a minimum-time problem for a control-affine dynamical system
employing PMP. The dynamical system is described by

ẋ(t) = f (x (t)) + g (x (t))u (t) , (1.33)

where X(t) : t → RNX is the state function (which has to satisfy some continuity
properties up to the first time derivative) and U(t) : t→ RNU is the external control
function (which does not necessarily have to be continuous). NX and NU are the
state and the control dimensions, respectively. The control U(t) is supposed to lye
in an admissible region [umin,umax]. Note that Eq. (7.1) may be non-linear in the
state (through the term f(x(t))) but is affine in the control. The operator g(x(t))
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may be non-linearly dependent on the state and it is expressed by a Nx ×Nu matrix.
The dynamical system may also be affected by equality boundary conditions

b(x0, ẋ0,xf , ẋf , t0, tf ) = 0 (1.34)

and, ∀t ∈ [t0, tf ], by inequality path constraints

p(x(t), ẋ(t), t) ≤ 0 . (1.35)

Note that both Eq. (7.2) and (7.3) do not depend on u(t).

The performance measure to be minimized is

J = tf . (1.36)

The theory for this class of problems is known and may be found in Ref. [25, 26].
Here, we are only interested in giving the justification and the definition of the typical
bang-bang structure of the external control. Hence, let us define the Hamiltonian H
as

H(x,u,λ, t) = λT (t)
(
f (x (t)) + g (x (t))u (t)

)
, (1.37)

where λ(t) is the costate function. When the path constraint p does not depend on
u(t), the Pontryagin Maximum Principle [29] holds and Eq. (1.30) must be true
∀t ∈ [t0, tf ]. It follows that, if gi(x) is the ith column of g(x), than the ith component
ui(t) of u(t) is given by

ui(t) =


umax if λT (t)gi(x(t)) < 0,

umin if λT (t)gi(x(t)) > 0,

Undetermined if λT (t)gi(x(t)) = 0 .

(1.38)

In the following, we make the assumption that the optimal solution is not affected
by singular arcs with undetermined control. As a consequence, the optimal control
structure is bang-bang, i.e. u(t) does only take extremal values, umin or umax,
∀t ∈ [t0, tf ]. Moreover, after the appropriate normalization, we can state that
umin = −1 and umax = +1.

1.5 Endnotes

In this introductory chapter, the most important features of an optimal control
problems have been outlined. The relationship between optimization and optimal
control problems has been described, stating that the latter is a sub-family of the
general optimization problems as it deals with functions. However, numerical

1.5 Endnotes 37



solutions transcribe the initial optimal control problem into a parameter optimization
problem, so that a numerical technique for nonlinear programming is required.
In this thesis, the swarm intelligence will be employed, obtained solutions for
complex problems by means of the Particle Swarm Optimization. Accordingly, after
a brief explanation of classical deterministic techniques, the general features of the
metaheuristic approaches have been described, underlining the ability to search for
the global optimal solution.
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2Numerical Transcription of an
Optimal Control Problem

„The formulation of the problem is often more
essential than its solution, which may be merely
a matter of mathematical or experimental skill.

— Albert Einstein
(German physicist)

Abstract
The numerical transcription of an optimal control problem is a necessary step
when an approximated solution is searched for. An essential role is played on
the way the optimal control problem is transcribed. Different definitions of the
independent variables, different number of optimization variables and different
numerical optimization techniques can make an optimization problem attain several
solutions. Also, the same solution can be obtained with different computational
efforts depending on the numerical transcription. This chapter introduces the reader
to the differential flatness formulation of an optimal control problem, reporting the
general advantages and disadvantages of this approach.

Nomenclature

x(t) = State u(t) = Control
Nx = State dimension Nu = Control dimension
E = End-point cost functional F = Running cost functional
J = Performance index b = BC function
p = State-control PC function (·)N = Numerical approximation
φ = Polynomial basis F = Differential inclusion map
NP = Number of polynomial coefficients y = Flat output
(·)0/f= Initial/final time value X = State admissible set
U = Control admissible set q1, q2 = Numerical example state
m, g = Numerical example parameters I1, I2 = Numerical example parameters
(̃·) = Approximation coefficient NT = Discretization points
k, l = Numerical example parameters t = Time
X = State space U = Control space
Y = Flat output space f = State dynamics function



2.1 Introduction

Every time an optimal control problem (OCP) is to be solved, most of the time to
get the solution must be spent in understanding the problem and finding the proper
transcription. The way the problem is formulated strongly affect the results that can
be obtained or the computational effort required for the evaluation of the optimal
control policy.

The optimal control theory typically employed in engineering fields is based upon
two important quantities, the state and the control [25]. The former describes
the behavior of the dynamical system whereas the latter represents the input that
dictates the evolution of the system. This distinction is employed in classical studies
concerning optimal control. For instance, PMP provides the necessary conditions an
optimal control policy should have in order to minimize/maximize the cost function,
as described in Sec. 1.4.2. The limits of this theory lie in the fact that one can state
the necessary optimality conditions for some dynamical systems, but the control
policy may be found only in very special and simplified cases. In Sec. 1.4.2 an
example of application has been reported. However, as one can see, we only have
discovered the extremal nature of the optimal control policy. We can infer the
number of switches and the values of the control only analyzing the problem, and it
is possible only for simple, academic cases.

For a great number of dynamical systems, however, different formulations may
be used which involve fewer independent quantities to describe the problem. The
idea of the inverse dynamics approach is very common in mathematics where it is
often referred to as differential inclusion (DI). Many works related to this topic have
been published (e.g., see Ref. [31]). Here, the classical PMP has been revised and
extended to more complicated dynamical systems.

Many of the applications reported in this thesis employ the differential flatness
(DF) formulation [32] which is based on the identification of a minimum number
of independent flat outputs that can completely describe and solve an OCP. The
advantage of reducing the number of unknowns, however, is usually coupled to other
undesirable numerical properties. Using collocation-based methods, for instance, the
differential inclusion formulation can worsen the tractability of the state equations
[33]. In the same way, for generic Bolza problems with running cost and terminal
cost, the differential flatness formulation may transform an initial convex cost
functional into a nonconvex one [34].

The convexity problem plays a crucial role both for the mathematical treatment of
OCPs and for numerical applications [35]. Usually, for nonconvex problems, some
related relaxed OCPs are introduced to simplify the study. The convexification tech-
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nique is quite usual both for mathematical[36, 37] and engineering application[38,
39] and allows one to approximate the original nonconvex problem with another,
similar one recovering the convexity property. In fact, several numerical techniques
can easily get stuck over local minima introduced by nonconvex problems. For
instance, applying a pseudospectral approach [40] based on a sequential quadratic
programming solver[41], it has been shown that a nonconvex cost functional can
create severe convergence problems [34].

Nonconvexity issues for OCPs can be due to [42]: 1) nonconvex cost, 2) nonlinear
state dynamics, 3) nonconvex state constraints and 4) nonconvex control constraints.
Such nonconvexity problems may be either due to the nature of the problem or they
may arise depending on the parametrization employed for the formulation of the
optimization problem. Due to the implementation of a differential flatness approach,
the problem that will be taken into account possesses all the above issues.

In the following sections several abstract, mathematical formulations of the Bolza
problem are given in order to understand the differentially flat formulation employed
in the IPSO and compare it to other typical formulations. The example taken into
account will clarify how the formulation impacts the practical solution. We will
focus on autonomous dynamical systems where the time variable does not appear
explicitly in the equations. These systems are often encountered in engineering
problems and the reported example is taken from this class of problems.

The chapter is organized as follows. In Sec. 2.2 an introduction to the relationships
between formulation and transcription of OCPs is given. In Sec. 2.3 an example
problem is introduced to make it easier understand the proposed OCP formulations.
In Secs. 2.4, 2.5 and 2.6 the state-control, differential inclusion and differential
flatness formulations are described, respectively. Finally, final remarks are given in
Sec. 2.7.

2.2 Formulation of the optimal control problem

Three different possible ways to set and solve a Bolza Optimal Control Problem
(BOCP) are described, where the last one is the DF approach. On the one hand we
will give the required mathematical formulation, without entering into the details
of the necessary optimality conditions that can be derived. On the other hand, we
will describe the necessary transcription required when solving a BOCP. In fact,
in the mathematical formulation of the BOCP, the solution lives in some infinite-
dimension function space (e.g., the absolutely continuous functions or the piecewise
continuous functions). The numerical transcription of the BOCP transforms the
infinite-dimension problem into a finite-dimension problem where only a finite
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number of parameters must be found. With this regard, we can consider that each
unknown function is written as a polynomial completely identified by NP unknown
parameters.

The classification of the OCP transcriptions has been considered in several works.
The classical distinction is between direct methods and indirect methods. In Ref. [43],
for example, it is reported that the indirect methods are based on the calculus of
variations or the Pontryagin’s maximum principle, i.e. the conditions described in
Sec. 1.4. To obtain solutions from these necessary conditions we may use 1) methods
which are based on the special structure of these necessary conditions, e.g. so-called
gradient methods, or 2) multiple shooting methods, which require rather good initial
approximations of the optimal trajectory and an a-priori knowledge of the switching
structure of the constraints. All in all, the user must have a deep insight into the
physical and mathematical nature of the optimization problem. In direct approaches
OCP is transformed into a nonlinear programming problem. For example, this can
be done with a so-called direct shooting method through a parameterization of the
controls. For this we choose u(t) from a finite dimensional space of control functions
and use explicit numerical integration to satisfy the differential equations for the
state dynamics. Inside this class, one of the most used approach is the collocation
method. This method was firstly introduced by Hargraves and Paris in Ref. [44]
and is based on the polynomial approximation of both state and control. The state
dynamics differential equation is then transformed into an equality constraint and
the OCP is solved using NLP techniques.

An introductory survey of numerical methods for trajectory optimization may be
found in Ref. [11], where the possibility to use heuristic methods (in particular
genetic algorithms) is also taken into account. In Ref. [45] an interesting collocation
methods using B-splines is reported. In Ref. [46] a description of the most recent
numerical techniques to solve OCP is reported and typical aerospace test cases
are solved. In the following, the pseudospectral approach will be described in
further details as it will employed to compare and validate the IPSO results. A
pseudospectral approach is a direct method that is able to estimate the costate
and verify the necessary conditions given the particular choice of the polynomial
approximation functions and the node distribution.

In this work, we are reporting a classification of OCP based on the identification
of the histories to be transcribed. In general, conversion of OCPs into POPs is
accomplished by replacing the control and/or state histories by control and/or
state parameters and forming the histories by interpolation [10]. Following the
analysis reported in Ref. [47], we will consider the formulation of an OCP in the
state-control (SC) space, using the differential-inclusion (DI) formalism and the
differential flatness (DF) description. The goal of this analysis is to make the reader
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understand the reasoning that has lead to the development of IPSO, which is based
on a DF implementation.

When the control (alone or along with the state) is approximated, the SC space
formulation is employed. When the state is approximated, the DI formulation may
be employed. Lastly, when the minimal set of independent functions is approximated,
the DF formulation must be considered.

2.3 An example problem

The following example problem has been taken from Ref. [34, 48]. The system
has two degrees of freedom, q1 and q2 (angles measuread in rad), and one control
input, u (torque, measured in N-m), and is described by a 4th order differential
equation. The OCP is minimizing

J =
∫ tf

t0
u2(t)dt (2.1)

subject to the state dynamics equations

I1q̈1 +mgl sin q1 + k(q1 − q2) = 0, (2.2)

I2q̈2 − k(q1 − q2) = u, (2.3)

where the reported quantities are, in MKS units,

I1 = I2 = 1.0 kg ·m2, k = 1.0 N-m,

g = 9.8 m · s−2, m = 0.01 kg, l = 0.5 m.
(2.4)

End-point constraint are imposed as

[q1(t0), q2(t0), q̇1(t0), q̇2(t0)] = [0.03 rad, 0.01 rad, 0.04 rad/s, 0.05 rad/s], (2.5)

[q1(tf ), q2(tf ), q̇1(tf ), q̇2(tf )] = [0.06 rad, 0.02 rad, 0.08 rad/s, 0.02 rad/s], (2.6)

and the control constraint is

|u(t)| ≤ 15 N-m ∀t ∈ [t0, tf ]. (2.7)

2.4 State-Control Problem (PSC)

Let us introduce the generic state function x(·) with values x(t) ∈ X ⊂ RNx ,
where Nx is the dimension of the state space, and the generic control function u(·)
with values u(t) ∈ U ⊂ RNu , where Nu is the dimension of the control space. The
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Bolza problem defined by means of the state-control space formulation, PSC, is an
optimization problem usually defined as

Find x(t) : t→ X ⊂ RNx ,u(t) : t→ U ∈ RNu , tf ∈ R

minimizing

J [x(t),u(t), t0, tf ] = E(x(t0),x(tf ), t0, tf ) +
∫ tf

t0
F (x(t),u(t), t) dt

subject to, ∀t ∈ [t0, tf ]

Dynamics constraints: ẋ(t) = f(x(t),u(t), t),

Boundary constraints: b(x(t0),x(tf ), t0, tf ) = 0,

Path Constraints: p(x(t),u(t)) ≤ 0.

(2.8)

When studying the existence or the uniqueness of the solution to the above
problem, x(·) is usually supposed to be an absolutely continuous function (i.e.,
x(·) ∈ AC[t0, tf ]) or a Lipschitz-continuous function (i.e., x(·) ∈W 1,∞[t0, tf ]).

From the theoretical point of view, when solving a fixed-time problem, the total
number of unknowns is given by the Nx components of the state function plus the
Nu components of the control functions. For a free-time problem one more value
must be determined corresponding to the total time of application of the control.

APPLICATION Considering the example problem of Sec. 2.3, we can introduce xi,
i = 1, ..., Nx, with Nx = 4, given as

x1

x2

x3

x4

 =


q1

q2

q̇1

q̇2

 . (2.9)

For this example Nu = 1. The OCP is formulated as

minimize J =
∫ tf

t0
u2(t)dt

subject to, ∀t ∈ [t0, tf ]

dynamics constraints: ẋ1(t) = x3(t)

ẋ2(t) = x4(t)

ẋ3(t) = −mgl sin x1(t) + k(x1(t)− x2(t))
I1

(2.10)

ẋ4(t) = k(x1(t)− x2(t)) + u(t)
I2
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boundary constraints: [x1, x2, x3, x4]t0 = [0.03, 0.01, 0.04, 0.05]

[x1, x2, x3, x4]tf = [0.06, 0.02, 0.08, 0.02]

control constraint: |u(t)| ≤ 15

From the numerical point of view, the number of unknowns depends on the
parametrization used for solving the optimization problem. For instance, a colloca-
tion method as well as a pseudospectral approach would transcribe the optimization
problem approximating both x and u with polynomial expressions [40]. As a conse-
quence, for the proposed problem we would have (Nx+Nu)NP = 5NP optimization
parameters for a fixed-time problem and 5NP + 1 optimization parameters for a
free-time problem. With this numerical approach, the differential equations related
to the dynamics constraints in Eq. (2.10) are treated as equality constraints.

Another approach that can be used to reduce the number of the optimization
parameters is given by approximating the control and integrating the state-dynamics
equation to obtain the state. In this case, the number of optimization parameters
is reduced to NuNP = NP for a fixed-time problem and NP + 1 for a free-time
problem. With this approach, the differential equations related to the dynamics
constraints in Eq. (2.10) are treated as ODEs requiring a numerical solver (e.g., a
Runge-Kutta scheme). Spiller et al.[1] have considered this approach, referred to as
direct dynamics method, to solve the same example problem considered here.

2.4.1 Direct dynamics method

When only the control is transcribed into a polynomial approximation, we deal
with what is known as a direct dynamic approach. In this case, the control u is
substituted by its numerical approximation uN which is given by

uN =
NP−1∑
i=0

ũiφi(t) (2.11)

where φi(t) is the ith polynomial basis weighted by the coefficient ũi. In this ap-
proach, the state is obtained integrating the dynamics dictated by the approximated
control. Usually, NP coefficients are introduced, and the time is discretized into
NT + 1 points, i.e. t = [t0 < t1 < ... < tNT ]. Different numerical approaches can
be developed changing the polynomial bases, which can be Lagrange polynomial,
Chebyshev polynomial or B-Splines. In Ref. [1], the author of this thesis presented
a method based on a third-degree spline approximation, which will be taken into
account in Sec. 5.3. In that paper, the author used the direct method to solve a
constrained attitude reorientation problem.
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The set of parameters involved in the optimization process are [ũ0, ..., ũNp−1] for
a fixed time problem and [tf , ũ0, ..., ũNp−1] for a free-time problem. The OCP is
transcribed such that an approximated cost function is introduced, JN , given as

JN = E(xN (t0),xN (tf ), t0, tf ) + IN (F ) (2.12)

where xN is obtained via numerical integration and IN (F ) is the numerical ap-
proximation of the running cost function integration. For example, if a trapezoidal
method is used, this term is given as

JN = tf − t0
2NT

NT∑
j=1

(
FNj−1 + FNj

)
, (2.13)

where
FNj = F (xN (tj),uN (tj), tj). (2.14)

The problems is then transcribed into a constrained NLP problem that can be
solved with one of the numerical techniques described in Sec. 1.3.2.

2.4.2 Collocation methods and pseudospectral approaches

Another class of approaches based on the state-control formulation is the colloca-
tion method. In this case, both the state and the control are discretized, i.e.

xN =
NP−1∑
i=0

x̃iφi(t) (2.15)

uN =
NP−1∑
i=0

ũiφi(t) (2.16)

The idea is to represent states and controls by polynomials that can be easily
integrated and differentiated. The following principles are applied:

1. The states and controls at nodes (depending on the discretization of the time
domain) are taken as free parameters.

2. Between nodes, states and controls are represented by polynomials. In the
local approach, piecewise polynomials are exploited, i.e. different polynomial
are defined for each interval; in the global approach, a unique polynomial is
used.

3. State rates at the nodes are calculated by the dynamic equations.
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4. Implicit integration is performed to enforce the dynamic equation at the
segment’s center.

5. A constrained NLP problem is solved with one of the numerical techniques
described in Sec. 1.3.2.

In Ref. [44], a local method employing cubic splines has been presented. In that
paper, the algorithm for the direct numerical solution of an optimal control problem
was based on cubic polynomials to represent state variables. The control vari-
ables were linearly interpolated and collocation was used to satisfy the differential
equations.

In recent years pseudospectral methods have increased in popularity. An introduc-
tion to this family of methods is reported in Ref. [49]. A pseudospectral method is
a global form of orthogonal collocation (see Ref. [40, 50]), i.e., in a pseudospec-
tral method the state and the control are approximated using a global polynomial
and collocation is performed at chosen points. The basis functions are typically
Chebyshev or Lagrange polynomials. Pseudospectral methods were developed orig-
inally to solve problems in computational fluid dynamics. The rationale for using
a global polynomial with orthogonally collocated points is that the approximation
will converge spectrally (i.e., at an exponential rate) as a function of the number of
collocation points (see Ref. [51]).

In Ref. [52], moreover, a comparison between local and global pseudospectral
methods has been reported. The characteristic of this class of methods is that they
can provide an estimation of the costate, as reported in Ref. [40, 53, 54, 55, 56],
through the Covector Mapping Principle.

Using the pseudospectral approach, some of the currently most-used commercial
software for optimal control have been developed, i.e. DIDO (based on the theory
described in Ref. [27]) and GPOPS (described in Ref. [57]).

2.5 Differential Inclusion Problem (PDI)

An approach often used in engineering [58, 59, 60] and mathematics [36, 37,
61] to solve the previous problem is based on the formulation of the Differential
Inclusion Problem PDI. Such DI problems are natural generalizations of free/fixed
time problems in both the calculus of variations and optimal control[62]. Moreover,
DI models allow one to consider closed-loop control systems with control regions
where u = u(x).
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With this formulation, the control u(t) does not appear explicitly in the cost
function, i.e. the OCP is written as

Find x(t) : t→ X ⊂ RNx , tf ∈ R

minimizing

J [x(·), tf ] = E(x(t0),x(tf ), tf ) +
∫ tf

t0
F (x(t), ẋ(t), t) dt

subject to, ∀t ∈ [t0, tf ]

Dynamics constraints: ẋ(t) ∈ F(x(t)),

Boundary constraints: b(x(t0),x(tf ), t0, tf ) = 0,

Path Constraints: p(x(t), ẋ(t)) ≤ 0.

(2.17)

In this case, the optimal control problem is defined over all arcs x(·) satisfying the
differential inclusion

ẋ(t) ∈ F(x(t)) a.e. on [t0, tf ] (2.18)

where
F(x(t)) = {v ∈ X : v = f(x(t),u(t)), u(t) ∈ U(t)} (2.19)

From the numerical point of view, this approach is advantageous if Eq. (2.18) admits
a control of the form

u(t) = g(x(t), ẋ(t)). (2.20)

In this case, the control set is given as U(x(t), t) and Eq. (2.19) may be rewritten as

F(x(t)) = {v ∈ X : v = f(x(t),u(t)), u(t) ∈ U(x(t), t)} (2.21)

APPLICATION For the example problem proposed in Sec. 2.3, a solution can be
obtained by means of the DI approach approximating only the state and substituting
u with

u = I2ẋ4 − k(x1 − x2) (2.22)

The end-point constraints are expressed in the same way as in Sec. 2.4, but the
remaining of the OCP is modified as

minimize J =
∫ tf

t0
(I2ẋ4 − k(x1 − x2))2(t)dt

subject to, ∀t ∈ [t0, tf ]

dynamics constraints: ẋ1 = x3

ẋ2 = x4 (2.23)

ẋ3 = −mgl sin x1 + k(x1 − x2)
I1
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boundary constraints: [x1, x2, x3, x4]t0 = [0.03, 0.01, 0.04, 0.05]

[x1, x2, x3, x4]tf = [0.06, 0.02, 0.08, 0.02]

control constraint: |I2ẋ4 − k(x1 − x2)| ≤ 15

As can be seen, DI formulation allows one to reduce the number of unknown
quantities to be determined with respect to the state-control space formulation. In
fact, the control u(t) is no longer an independent function but is obtained directly
from the dynamics equation.

At this point, one can choose to approximate all the Nx components of the state
function and treat the dynamics constraint equations in Eq. (2.23) as an equality
constraint. Hence, when solving a fixed-time problem, the total number of unknowns
is equal to NxNP = 4NP whereas, for a free-time problem, it is 4NP + 1.

2.5.1 Differential inclusion transcription

In this case, only the state is transcribed, i.e.

xN =
NP−1∑
i=0

x̃iφi(t). (2.24)

The control is obtained from the state differential equation and does not need to be
approximated. On the contrary, the control does exactly satisfy the state differential
equation. The remaining differential equation concerning only the state are treated
as equality constraints.

The advantage of a differential inclusion approach over the common collocation
approach is not completely assessed. In Ref. [63], the authors states that the DI
approach leads to some computational advantages but the difficulties lie in the
formulation of an OCP in differential inclusion form. In Ref. [64, 33], the author
state that the differential inclusion formulation usually requires more iterations to
converge to results with the same precision of a collocation approach. However,
these conclusions highly depends on the numerical techniques employed for the
polynomial approximation, the NLP used to solve the problem and other technical
details defining the numerical procedure.
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2.6 Differential Flatness Problem (PDF)

Let us suppose that a flat output y(t), with the same dimension as the control
u(t), can be defined as (see Ref. [32]),

y = c
(
x,u, u̇, ...,u(α)

)
, y ∈ RNu , (2.25)

where
u(α) = dαu

dtα
(2.26)

with α ∈ N. If such a flat output exists for the dynamical system taken into account,
then the state and the control can be written as

x = a
(
y, ẏ, ...,y(β)

)
, u = b

(
y, ẏ, ...,y(β+1)

)
, (2.27)

where the value of β ∈ N depends on the problem. Let us introduce a particular
notation, concerning the set of the time derivatives of y(t) from the first derivative
to the ν-th derivative, given as

{
y(ν)(t)

}
=
{
ẏ(t), ÿ(t), ...,y(ν)(t)

}
. (2.28)

Consequently, the Bolza problem can be stated as a function of the flat output as

Find y(t) : t→ Y ⊂ RNu , tf ∈ R

minimizing

J [y(·), tf ] = E(y(t0),
{
y(β)(t0)

}
,y(tf ),

{
y(β)(tf )

}
, tf )

+
∫ tf

t0
F
(
y(t),

{
y(β)(t)

}
, t
)
dt

subject to, ∀t ∈ [t0, tf ]

Boundary constraints: b(y(t0),
{
y(β)(t0)

}
,y(tf ),

{
y(β)(tf )

}
, tf ) = 0,

Path Constraints: p(y(t),
{
y(β+1)(t)

}
, t) ≤ 0.

(2.29)

Using the differentially flat approach, the dynamical system is expressed as a static
system [47, 65]. In other words, there are no more differential constraints and both
the state and the control are expressed as an explicit function of the flat output and
its time derivatives.
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APPLICATION For the example problem proposed in Sec. 2.3, we can choose as
flat output y = x1. With few simple mathematical manipulations, it can be shown
that

x1 = y, (2.30a)

x2 = I1ÿ +mgl sin y
k1

+ y, (2.30b)

x3 = ẏ, (2.30c)

x4 = I1y
(3) +mglẏ cos y

k1
+ ẏ, (2.30d)

u = y(4)(β2 cos y + β3)ÿ − (β4ẏ
2 + β5) sin y

β1
, (2.30e)

where

β1 = k

I1I2
, β2 = −mgl

I1
, β3 = −k(I1 + I2)

I1I2
(2.31)

β4 = −β2, β5 = −mkgl
I1I2

. (2.32)

As a consequence of this choice, the OCP is formulated as

minimize J= 1
β2

1

∫ tf

t0

(
y(4)(β2 cos y+β3)ÿ−(β4ẏ

2+β5) sin y
)2
dt

subject to, ∀t ∈ [t0, tf ]

boundary constraints:



y
I1ÿ +mgl sin y

k1
+ y

ẏ

I1y
(3) +mglẏ cos y

k1
+ ẏ


t0

=


0.03
0.01
0.04
0.05

 (2.33)



y
I1ÿ +mgl sin y

k1
+ y

ẏ

I1y
(3) +mglẏ cos y

k1
+ ẏ


tf

=


0.06
0.02
0.08
0.02



control constraint:

∣∣∣∣∣y(4)(β2 cos y + β3)ÿ − (β4ẏ
2 + β5) sin y

β1

∣∣∣∣∣ ≤ 15

This approach leads to the minimum number of unknown parameters without
requiring a numerical integration (NP for a fixed-time problem, NP + 1 for a free
time problem). Note that the time derivatives of y, i.e. ẏ, ÿ, y(3) and y(4), are
not independent functions as they are derived analytically from y once the specific
polynomial approximation is imposed.
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The issue often related to this approach is that it can add some difficulties to the
cost function after the transcription has been carried out.

2.6.1 Differential flatness transcription

In this case, only the flat output is transcribed, i.e.

yN =
NP−1∑
i=0

ỹiφi(t). (2.34)

The control and the state are obtained as closed form solution once the values of
the flat output are given. As for the differential inclusion, the control does exactly
satisfy the state differential equation. The problem is no more subject to dynamical
constraints.

Substituting Eq. (2.34) into Eq. (2.33), we can see that the cost function becomes
a nonconvex function of the optimization parameters. It is noteworthy that, for both
PSC and PDI, the transcribed cost function was a convex function of the optimization
parameters. The nonconvexity issue related to the DF formulation can be overcome
with global metaheuristic optimization techniques.

2.7 Endnotes

This chapter has focused on the key-role played by the problem formulation when
an OCP is to be solved. As the core of the thesis is the development of the Inverse-
dynamics Particle Swarm Optimization, the philosophy of this chapter has been to
guide the reader into the process that allows one to formulate an optimal control
problem with the differential flatness formalism. However, it is a firm opinion of
the author that trying to identify a unique, global approach to solve all the optimal
control problems is not the best way to search for solutions. Every single optimization
problem has its own characteristics, and different formulations of the transcribed
parameter optimization can lead to different solutions. To conclude, the final remark
of this chapter is that the formulation of the optimal control problem quite almost
defines the solution to the problem itself.
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Part II
SOLUTION OF OPTIMAL CONTROL

PROBLEM VIA SWARM INTELLIGENCE





3Particle Swarm Optimization

„Learning would be exceedingly laborious, not to
mention hazardous, if people had to rely solely
on the effects of their own actions to inform them
what to do.

— Albert Bandura
(American psychologist)

Abstract
In this chapter the Particle Swarm Optimization is described. The origin of the
method, its connection with sociological investigations and the main mathematical
features of the algorithms are presented. This metaheuristic method is employed in
the Inverse-dynamics Particle Swarm Optimization since it mixes a very easy and
straightforward numerical implementation with the ability to search for the global
optimum in hard optimization problem affected by nonlinearities and nonconvexity
issues.

Nomenclature

NS = Number of particles in the swarm r(·) = Random number
x = Particle in the swarm K = Coefficient of the PSO-parameters
v = Velocity of the particles lbest = Local best particle
J = Performance index pbest = Personal best particle
Jl = Local best performance index gbest = Global best particle
Jp = Personal best performance index N = Local search neighborhood
Jg = Global best performance index LR = Local search radius
cl = Local parameter (·)i = Feature of the ith particle
cp = Personal parameter (·)(k) = Value at the kth iteration
cg = Global parameter (·)0 = Value at the first iteration
w = Inertia weight (·)f = Value at the final iteration
x∗ = Minimizing particle J∗ = Minimum performance index
k̂ = Index for gbest updating ε = Convergence threshold
Neval= Number of evaluation of J tCPU = Computational time



3.1 Introduction

The Particle Swarm Optimization (PSO) has been firstly introduced in 1995 by J.
Kennedy and R. C. Eberhart in Ref. [66]. After that, several papers and books have
been published dealing with PSO. Among them, Ref. [67] explains the relationships
of the optimization technique with psychological and sociological research fields,
while Ref. [68] focuses on mathematical and implementation details.

Among the several metaheuristic algorithms developed until present days, PSO
is one of the most used technique, as demonstrated by the several works in lit-
erature relying on this method (e.g., see Ref. [67, 68, 69]). PSO belongs to the
family of swarm intelligence algorithms, it is based on very simple formulas and
it requires a straightforward implementation. The most interesting feature of PSO
is its relationships with nature and sociological issues. The algorithm was born to
simulate the social behavior of bird flocking or fish schooling. The contributions in
the displacement of the particle are related to speculations related to the interaction
of human beings. Knowledge and welfare related to a specific person can improve
when the individual is included in a social contest where interaction and commu-
nication play a fundamental role. This extremely interesting investigations can be
found in Ref. [67], a book written by one of the creators of the PSO, James Kennedy,
which actually is a social psychologist.

PSO is a metaheuristic algorithm with enhanced ability to perform global optimiza-
tion [67]. The method exploits a fixed-size population of particles, i.e. candidate
solutions containing the optimization parameters. The swarm includes NS particles
(typically NS ∈ {30, ..., 50}) which move inside the Search Space (SS) modifying
their position (i.e., the values of the parameters associated with it) by means of
an appropriate perturbation called velocity. The velocity term at the kth iteration
is usually given by several contributions evaluated on the basis of the Performance
Index J (k)

i of every ith particle, a measure of the particle optimality which takes into
account the goal of the optimization and the imposed constraints. The objective of
the PSO algorithm is the minimization of the performance index.

The chapter is organized as follows. In Sec. 3.2 the original global version of
the PSO is described. In Sec. 3.3 the socio-cognitive background is given, stating
the relationship with sociological investigations that characterizes the optimizer,
while in Sec. 3.4 the origin of the terms “swarm” and “particle” is explained. In
Sec. 3.5 the local version of the PSO is presented, which is extremely useful in cases
where several local minima exist. The exploration and exploitation abilities of the
PSO are investigated in Sec. 3.6, and the unified paradigm is presented in Sec. 3.7.
Some notes on the PSO convergence properties are given in Sec. 3.8 and concluding
remarks are reported in Sec. 3.9.
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3.2 Global version

Although the original intent was to graphically simulate the graceful but unpre-
dictable choreography of a bird flock (see Ref. [66]), the first version of the future
PSO algorithm was quite soon recognized as a good optimization method.

The very first model of PSO is the so called “global version”. Let us introduce the
m-dimensional particle xi ∈ Rm, i = 1, ..., NS , where NS is the number of particles
within the swarm. The particle contains the optimization variables of the problem.
The PSO is based on the definition of a perturbation term called “velocity” which
allows the particle to perform a “displacement” to explore the search space.

Let us firstly consider the primitive formulation reported in Ref. [66]. With
reference to Fig. 3.1, the generic ith particle at the iteration k, xki , moves from the
iteration k to the iteration k + 1 according to the rule

x(k+1)
i = x(k)

i + v(k+1)
i , (3.1)

where v(k+1)
i is the velocity required to pass from the iteration k to the next one,

given by
v(k+1)
i = v(k)

i + r1cp
(
p

(k)
best,i− x(k)

i

)
+ r2cg

(
g

(k)
best− x(k)

i

)
(3.2)

where r1 and r2 are random number uniformly distributes in [0, 1] and cp and cg are
parameters set equal to 2 in Ref. [66]. Note that the term vi is not a velocity in the
traditional physical sense, i.e. vi 6= dxi/dt, but the velocity is the rate at which the
position per generation changes.
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Fig. 3.1: Displacement of a particle in the global paradigm.
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As already stated in the introduction of this chapter, the velocity term at the kth

iteration is given by several contributions evaluated on the basis of the Performance
Index J (k)

i of every ith particle, a measure of the particle optimality which takes into
account the goal of the optimization and the imposed constraints. The performance
index is a function depending on the particle position, i.e.

J
(k)
i = f(x(k)

i ), (3.3)

where the function f is defined by the optimization problem. The three contributions
in Eq. (3.2) are defined as:

• Inertia vector v(k)
i , pointing from x(k−1)

i to x(k)
i .

• Individual vector p(k)
best,i− x(k)

i , pointing to the personal best p(k)
best,i given by

J
(k)
p,i = min

1<j<k
J

(j)
i . In particular,

if min
1<j<k

J
(j)
i < J

(k)
p,i ⇒ J

(k)
p,i = min

1<j<k
J

(j)
i ⇒ p

(k)
best,i = x

(k)
i (3.4)

• Global search vector g(k)
best,i− x(k)

i , pointing to the global best g(k)
best given by

J (k)
g = min

1≤j≤NS
J

(k)
p,i . In particular,

if min
1≤j≤NS

J
(k)
p,i < J (k)

g ⇒ J (k)
g = min

1≤j≤NS
J

(k)
p,i ⇒ g

(k)
best = p

(k)
best,i (3.5)

The variables pbest,i and gbest have been introduced for different reasons. Concep-
tually, pbest,i resembles autobiographical memory, as each i-th individual remembers
its own experience (though only one fact about it), and the velocity adjustment
associated with pbest,i can be called “simple nostalgia” in that the individual tends
to return to the place that most satisfied it in the past. On the other hand, gbest is
conceptually similar to publicized knowledge, or a group norm or standard, which
individuals seek to attain. In the simulations, a high value of the pbest,i-increment
relative to the gbest-increment results in excessive wandering of isolated individuals
through the problem space, while the reverse (relatively high gbest-increment) results
in the flock rushing prematurely toward local minima. Approximately equal values
of the two increments seem to result in the most effective search of the problem
domain.

In Ref. [70] a refined version of Eq. (3.2) has been introduced, which is

v(k+1)
i = wv(k)

i + r1cp
(
p

(k)
best,i− x(k)

i

)
+ r2cg

(
g

(k)
best− x(k)

i

)
. (3.6)
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Here, a fixed inertia weight has been introduced to properly weight the previous
particle velocity with respect to the other two contributions. In Ref. [70], the authors
suggest to use a value of w in [0.9, 1.2]. However, a linearly decreasing w is also
suggested, such that

v(k+1)
i = w(k)v(k)

i + r1cp
(
p

(k)
best,i− x(k)

i

)
+ r2cg

(
g

(k)
best− x(k)

i

)
. (3.7)

and

w(k) =

w
0 − (w0 − wf )k − 1

K
if k ≤ K ,

wf if k > K .
(3.8)

where K is a user-defined parameter, w0 and wf are the initial and final values,
respectively. In Ref. [70], suggested values for the parameters in Eq. (3.8) are
K = 4000, w0 = 1.4 and wf = 0, while in Ref. [71] w0 = 0.9 and wf = 0.4, with
K ∈ {1000, 1500, 2000}.

The particles move only within the SS since the velocity and the displacement
are imposed to lie inside the iper-parallelepids with lower limits vmin and xmin and
upper limit vmax and xmax, respectively. Most usually, vmin = −vmax whereas xmin
and xmax depend on the optimization problem. As a consequence, the following
inequality constraints must be satisfied:

vmin ≤ v ≤ vmax , xmin ≤ x ≤ xmax (3.9)

The maximum and minimum values of the velocity and the displacement are defined
by the user. Usually, the maximum value of the velocity is set at about 10− 20% of
the dynamic range of the variable (which is given by xmax − xmin).

3.3 Socio-cognitive background

In their first pioneering work, Ref. [66], J. Kennedy and R. C. Eberhart introduced
the relationships between particle swarm optimization and both artificial life and
genetic algorithms.

As already stated, the PSO is a method for optimization of continuous nonlinear
functions that has been discovered through simulation of a simplified social model.
PSO has roots in two main component methodologies. Perhaps more obvious are its
ties to artificial life (A-life) in general, and to bird flocking, fish schooling, and swarm-
ing theory in particular. It is also related, however, to evolutionary computation, and
has ties to both genetic algorithms and evolutionary programming.
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PSO comprises a very simple concept, and paradigms can be implemented in a
few lines of computer code. It requires only primitive mathematical operators, and
is computationally inexpensive in terms of both memory requirements and speed.
Early testing has found the implementation to be effective with several kinds of
problems (see Ref. [66]).

The origins of the PSO lie in the study of the processes that underlie the unpre-
dictable group dynamics of bird social behavior, i.e. the underlying rules that enabled
large numbers of birds to flock synchronously, often changing direction suddenly,
scattering and regrouping, etc. It was thought that manipulation of inter-individual
distances was of primary importance; that is, the synchrony of flocking behavior was
thought to be a function of birds’ efforts to maintain an optimum distance between
themselves and their neighbors. A fundamental hypothesis to the development of
particle swarm optimization was the belief that social sharing of information among
conspeciates offers an evolutionary advantage.

Besides, another motive for developing the simulation was to model human social
behavior, which is of course not identical to fish schooling or bird flocking. One
important difference is its abstractness. Birds and fish adjust their physical movement
to avoid predators, seek food and mates, optimize environmental parameters such
as temperature, etc. Humans adjust not only physical movement but cognitive or
experiential variables as well. We do not usually walk in step and turn in unison;
rather, we tend to adjust our beliefs and attitudes to conform with those to our social
peers.

Particle swarm optimization is an extremely simple algorithm that seems to be
effective for optimizing a wide range of functions. We view it as a mid-level form
of A-life or biologically derived algorithm, occupying the space in nature between
evolutionary search, which requires eons, and neural processing, which occurs
on the order of milliseconds. Social optimization occurs in the time frame of
ordinary experience - in fact, it is ordinary experience. In addition to its ties with
A-life, particle swarm optimization has obvious ties with evolutionary computation.
Conceptually, it seems to lie somewhere between genetic algorithms and evolutionary
programming. It is highly dependent on stochastic processes, like evolutionary
programming. The adjustment toward pbest,i and gbest by the PSO is conceptually
similar to the crossover operation utilized by genetic algorithms. It uses the concept
fitness, as do all evolutionary computation paradigms.
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3.4 The origin of the terminology

The term swarm has a basis in the literature. In particular, the authors of PSO
use the term in accordance with a paper by Millonas [72],who developed his swarm
models for applications in artificial life, and articulated five basic principles of swarm
intelligence. They are reported here in the following list:

P1 Proximity principle: the population should be able to carry out simple space
and time computations.

P2 Quality principle: the population should be able to respond to quality factors
in the environment.

P3 Principle of diverse response: the population should not commit its activities
along excessively narrow channels.

P4 Principle of stability: the population should not change its mode of behavior
every time the environment changes.

P5 Principle of adaptability: the population must be able to change behavior mode
when it’s worth the computational price.

Note that principles P4 and P5 are the opposite sides of the same coin. The particle
swarm optimization concept and paradigm presented in Sec. 3.2 seem to adhere
to all five principles. Basic to the paradigm are m-dimensional space calculations
carried out over a series of time steps (P1). The population is responding to the
quality factors pbest,i and gbest (P2). The allocation of responses between pbest,i and
gbest ensures a diversity of response (P3). The population changes its state (mode of
behavior) only when gbest changes, thus adhering to the principle of stability (P4).
The population is adaptive because it does change when gbest changes (P5).

The term particle was selected as a compromise. While it could be argued that
the population members are mass-less and volume-less, and thus could be called
“points”, it is felt that velocities and accelerations are more appropriately applied to
particles, even if each is defined to have arbitrarily small mass and volume. Thus
the label the authors have chosen to represent the optimization concept is particle
swarm.
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3.5 Local version

In Ref. [73] a locally-oriented paradigm of the PSO has been introduced. With
reference to Fig. 3.2, the velocity perturbation is evaluated as

v(k+1)
i = w(k)v(k)

i + r1cp
(
p

(k)
best,i− x(k)

i

)
+ r2cg

(
l
(k)
best,i− x(k)

i

)
. (3.10)

where the local search vector l(k)
best,i− x(k)

i is defined, pointing to the local best l(k)
best

given by J (k)
l,i = min

j∈Ni
J

(k)
p,i . The neighborhood Ni is a set containing the particles from

i− LR to i+ LR, where LR is a user-defined parameter (Ni is properly defined to
consider the boundary cases where i− LR ≤ 0 and i+ LR > NS). In particular,

if min
j∈Ni

J
(k)
p,i < J

(k)
l,i ⇒ J

(k)
l,i = min

j∈Ni
J

(k)
p,i ⇒ l

(k)
best,i = p

(k)
best,i (3.11)

The advantage of the local paradigm is that, usually, a number of groups of
particles spontaneously separate and explore different regions of the SS. It is thus a
more flexible approach to information processing than the gbest model. However,
generally this is implementation is slower than the global paradigm to converge
toward user-defined exit-tolerances.
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Fig. 3.2: Displacement of a PSO particle in the local paradigm.
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3.6 Exploration and exploitation

As already discussed in Sec. 1.3.3, exploration and exploitation are two key
aspects of a metaheuristic technique.

The exploration ability of the PSO may be enhanced in several ways, e.g. using
the local paradigm or setting high values of vmax and w. The exploitation ability,
instead, is increased with the global paradigm or setting low values of vmax and w.
An inspection of the contribution of the several factors is reported in Ref. [74].

The best compromise is usually given by trying to enhance the exploration ability
at the beginning of the optimization process. Toward the end of the search, the
exploration ability should be improved in order to refine the final solution. The
transition from exploration to exploitation of the SS can be obtained defining
adaptive coefficients weighting the different velocity contributions. The following
unified version of the PSO is the approach that is suggested in this work.

3.7 Unified version

Summarizing what has been described so far, we can state that

• The global version of the PSO converges fast but can be trapped into local
minima when the problem is very hard (results may vary depending on the
population initialization or the exploration ability)

• The local version of the PSO can improve the exploration ability of the swarm,
but the computational time for the convergence is greater than the one of the
global paradigm.

Taking advantage of both the global and local paradigms, a unified PSO version has
been introduced in Ref. [75]. In this case, one can define a law according to which
the PSO can switch from the local paradigm to the global one. In fact, starting with
the local version, the swarm can properly explore the SS and identify the regions
that must be exploited. From a comparison of all the regions, the optimizer may find
the global optimal position. After that, the global version allows a rapid convergence
toward the global minimum.

Referring to Fig. 3.3, the particle velocity is defined as

v(k+1)
i = w(k)v(k)

i + r1cp
(
p

(k)
best,i− x(k)

i

)
+ r2c

(k)
l

(
l
(k)
best,i− x(k)

i

)
+ r3c

(k)
g

(
g

(k)
best− x(k)

i

)
(3.12)
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Fig. 3.3: Displacement of a PSO particle in the unified paradigm.

where c(k)
l and c(k)

l change during the optimization process. The switch from the
local version to the global version may be implemented in a variety of manners (see
Ref. [75]). In this thesis, a linear transition is used. Accordingly, the c(k)

l and c(k)
g

weights are given as

c
(k)
(·) =

c
0
(·) − (c0

(·) − c
f
(·))

k − 1
K

if k ≤ K ,

cf(·) if k > K .
(3.13)

which is the same linear law used for the inertia weight in Eq. (3.8). In this thesis,
whenever the unified version is implemented, we will impose c0

l = 2, cfl = 0, c0
g = 0

and cfg = 2.

It is noteworthy that for very hard problems where many local minima exist in the
SS, the unified version can still make the swarm converge toward local minima. In
these cases, the local version is the most suitable paradigm.

3.8 Convergence

Convergence of the swarm towards a stable position with velocity tending to zero
is demonstrated in Ref. [68]. The time required for convergence depends on the
parameters in Eq. (3.12) and on the number of particles. Nothing guarantees that
the point of convergence is the sought optimum.

The decision for stopping the algorithm can depend on several criteria, related to
the available problem information, resources, or the ability of the algorithm to attain
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further solutions. In [69], several strategies for computing the PSO convergence are
reported. Such methods apply not only to PSO, but can be used with most of the
metaheuristic algorithms. A brief explanation of these strategies is reported below.
In the following, let x∗ be a local or global minimizer of the cost function and

J∗ = f(x∗) (3.14)

be the corresponding (local or global) minimum. Moreover, ε > 0 is a small user-
defined parameter determining the achievement of convergence.

3.8.1 Convergence in search space

If ‖ · ‖ denotes a distance measure in the search space, then convergence in SS is
defined as:

lim
k→∞

‖g(k)
best − x∗‖ = 0. (3.15)

Since the available number of iterations is always finite, the convergence criterion
can be relaxed as follows: for any desirable accuracy, ε > 0, there is an integer,
k∗ > 0, such that:

‖g(k)
best − x∗‖ ≤ ε, ∀k ≥ k∗. (3.16)

Thus, the algorithm is terminated as soon as a solution adequately close to the
minimizer is detected.

In practice, the minimizer x∗ is unknown; thus, we can identify convergence by
monitoring the gradient at the approximating solutions. However, in order to extract
sound conclusions through gradients, the existence of strong mathematical properties
(such as continuous differentiability) are required for the objective function. The
computation of first-order and second-order derivatives to check the minimizing
condition is not always easy for complex problems. In addition, there is no way
to distinguish whether the obtained minimizer is the global one, unless additional
restrictions (e.g., convexity) are considered in the form of the objective function.
PSO and, in general, evolutionary algorithms have been designed to solve problems
where the aforementioned required mathematical properties are not necessarily met.
Thus, this type of exit condition is of limited practical interest.

3.8.2 Convergence in function values

Convergence can be defined in function values. Indeed, we can reasonably state
that PSO has reached convergence if the variation of the cost function is smaller
than a user defined threshold. Let us define k̂ as the iteration index where the global
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best is updated. Accordingly, knowing that J (k̂−1)
g > J

(k̂)
g ∀ k̂, the simple stopping

criterion
J (k̂−1)
g − J (k̂)

g < ε (3.17)

could be defined. However, the stopping criterion in Eq. (3.17) can lead to false
stop condition if PSO is not stable around the value J (k̂)

g . Indeed, it may happen
that two successive improvements of the global best particle are very close to each
other also in the very first part of the PSO evolution. To increase the reliability of Eq.
(3.17), the stopping condition is stated as

δJ = 1
M

k̂∑
i=k̂−M+1

(
J (i−1)
g − J (i)

g

)
< ε (3.18)

where M is a user defined parameter. Eq. (3.18) evaluates the stopping criterion by
an average value of the difference of successive values of J . Finally, Eq. (3.18) can
be improved substituting absolute differences of J with relative differences, i.e.

δJ = 1
M

k̂∑
i=k̂−M+1

J
(i−1)
g − J (i)

g

J
(i)
g

< ε. (3.19)

This last formulation makes it easier to adopt the same stopping criterion with
completely different optimization problems, as the exit tolerance is related to relative
variations instead of absolute variations. Indeed, absolute variations of J can have
different orders of magnitude for different optimization problems, whereas relative
differences at convergence have more similar values. Such an exit condition allows
the PSO to converge until all the particles are within the same neighborhood around
the detected minimum.

In the literature there are several optimization problems where the global mini-
mum J∗ is a priori known due to the form of the objective function. For example,
neural network training is equivalent to the minimization of a function that is usually
defined as the summed square-error of the network’s output. By construction, this
function has the global minimum equal to zero. In such cases, the exit criterion in
function values is stated as

|J (k̂)
g − J∗| ≤ ε. (3.20)

3.8.3 Prescribed computational burden

In modern applications, the available time for computation is usually limited.
Time critical decisions and on-line control of systems require algorithms that provide
satisfactory solutions within very restrictive time frames. An example of such
a time-critical problem is represented by autonomous systems implemented on-
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board of modern (and even more in future) satellites. For instance, implementing
autonomous guidance systems to plan reference maneuvers directly on-board of
the satellite requires very efficient algorithms with low computational cost. In fact,
on-board computers usually have limited computational performances. Moreover,
scheduled queues are usually defined to execute all the different tasks required
by the satellite (navigation, control, communication, etc) inside predefined CPU
cycles. Therefore, limitations are usually posed on the available computational time
(CPU time) for the execution of an algorithm. Interesting discussions about the
opportunity to implement real-time optimal control (RTOC) are reported in [27]
where such issues are properly considered.

Limitations are also imposed for reasons of comparison. In order to have fair
comparisons among algorithms on a specific problem, they must assume the same
computational budget. However, a significant issue arises at this point. The time
needed for the execution of a program depends heavily on the implementation, pro-
gramming language, programmer skills, and machine load at the time of execution.
Thus, any comparison between two algorithms, in terms of the required CPU time,
without taking these factors into consideration is condemned to be biased. For this
reason, researchers have made a compromise. The most computationally expensive
part in solving a complex problem is expected to be the evaluation of the objective
function, which may be computed through complex mathematical procedures or
become available directly from experimental devices. Thus, the time required for all
function evaluations during the execution of an algorithm is expected to constitute
the largest fraction of the overall computation burden. For this purpose, the required
number of function evaluations serves very often as a performance measure for
optimization algorithms.

Based on the aforementioned discussions, two exit conditions can be defined.
Let tCPU be the CPU time (e.g., in seconds) required by the algorithm from the
beginning of its execution and

Neval = kNS (3.21)

denote the corresponding number of function evaluations required up to step k.
It is noteworthy that, in evolutionary algorithms, it is very common to use the
number of iterations k instead of function evaluations Neval as a stopping criterion.
This is actually one of the best practice with PSO, where population size NS and
number of function evaluations per population member are fixed at each iteration
of the algorithm. However, if there is a variable number of function evaluations
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per iteration, then only the function evaluations can be used to define the stopping
criterion. Accordingly, for PSO the following exit conditions can be defined:

tCPU ≥ tmax (3.22)

and,
k ≥ Nmax, (3.23)

where tmax is the maximum available CPU time and Nmax is the maximum allowed
number of PSO iterations. Thus, the algorithm will stop as soon as its CPU time
exceeds the available time frame or the number of iterations required so far exceeds
an upper limit. For reasons explained above, the condition of Eq. (3.23) is preferred
against that of Eq. (3.22). In the following of this thesis, exit condition of Eq. (3.23)
is usually employed to end the PSO computation in case that exit condition of Eq.
(3.19) is never satisfied for k ≤ Nmax.

3.8.4 Search stagnation

Monitoring the progress of an algorithm during the optimization procedure pro-
vides insight regarding its efficiency and potential for further improvement of the
obtained solutions. The lack of such potential is called search stagnation, and it can
be attributed to several factors. In evolutionary algorithms, search stagnation can be
identified by monitoring changes of the overall best solution within a specific number
of iterations. An algorithm is considered to suffer stagnation if its best solution has
not been improved for a number Nframe of consecutive iterations, which is defined
as a fraction of the maximum number of iterations Nmax, i.e.

Nframe = hNmax , h ∈ (0, 1). (3.24)

Alternatively, one can identify search stagnation by monitoring diversity of the
population, which is usually defined as its spread in the search space. The standard
deviation of the population is a commonly used diversity measure. If it falls under a
predefined (usually problem-dependent) threshold, then the population is considered
to be collapsed on a single point, having limited potential for further improvement.
Other features of the PSO algorithm can be used to define diversity. For example, if
velocities of all particles become smaller than a threshold, then the swarm can be
regarded as immobilized. Thus, its ability for further improvement is limited, and it
is questionable whether its further execution can offer any gain.
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3.8.5 Selection of the exit condition

There is no general rule for selecting a proper exit condition applicable to all
algorithms and problems. Generally, the user has to combine several criteria to
ensure that the algorithm is not stalled and worth continuing its execution. From the
author’s experience, the exit criterion in Eq. (3.19) can be easily implemented for
different problems with satisfactory results. Indeed, in the remainder of this thesis
the exit condition is implemented as in (3.19) unless stated otherwise. Commonly,
exit conditions in function values are combined with condition in Eq. (3.23). In this
way, if for some reason no convergence is achieved, PSO stops after a reasonable
number of iterations. This is quite useful when dealing with a new optimization
problem for the first times, when coding or understanding errors can affect the
behavior of the algorithm. In the same way, a measure of search stagnation can help
understanding if the population is concentrating around the global best particle or
is exploring the search space. For instance, high values of the standard deviation
of the population are expected during the exploration phase, whereas small values
characterize the exploitation phase.

3.9 Endnotes

In this chapter the Particle Swarm Optimization has been described. Three dif-
ferent paradigms has been presented, global, local and unified. The exploration
and exploitation ability of the algorithm have been described and linked to the
parameters defining the swarm intelligence algorithm. Coding-simplicity and low
computational effort are fundamental characteristics of the algorithm and explain
why this approach has been chosen to solve the nonlinear optimization problem
in the following chapters. Other metaheuristic algorithms exist in literature, and
a comparison with the Differential Evolution will be given in the last chapter of
this thesis. In the remaining of this thesis, the Particle Swarm Optimization will be
employed to solve the proposed optimal control problems, leading to efficient and
reliable solutions.
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4Definition of the
Inverse-dynamics Particle
Swarm Optimization

„Order and simplification are the first steps
toward the mastery of a subject.

— Thomas Mann
(German writer)

Abstract
The Inverse-dynamics Particle Swarm Optimization is the main topic of this thesis.
This optimization method has been developed to find near-optimal solutions to
optimal control problems in a straightforward way with low computational effort.
The assumptions upon which the optimizer is based are described, as well as the
main important characteristics required for the implementation of the algorithm.

Nomenclature

x(t) = State of the dynamical system u(t) = Control of the dynamical system
y(t) = Flat output Nu = Control dimension
J = Cost functional E = End-point cost functional
F = Running cost functional t = Time (s)
K = Knot vector κ = Component of the knot vector
x(k) = PSO particle (̃·) = Parameter defining the B-spline
B = B-spline λ = B-spline independent variable
NP = Number of B-spline polynomials N = B-spline basis function
(·)N = B-spline approximation D = B-spline degree
U = B-spline control point ˙(·) = First time derivative
(̈·) = Second time derivative J = Extended cost functional
(·)′ = λ-derivative γf = Graph of the generic function f
NT = Discretization points k = PSO iteration
P = PC penalty functions (·)0/f= Initial/final time value
Nviol = Number of violated constraints m = Knot vector length parameter
π, µ = Penalty function weights ∆ = Constraint tolerance
k̄ = Exterior cycle index δ = Decreasing tolerance parameter



Nδ = Decreasing tolerance parameter δJg = Convergence index
YB = Set of BC-compliant functions YB = Set of BC-compliant parameters
Y = Flat output space εc = Convergence tolerance

4.1 Introduction

The Inverse Dynamics Particle Swarm Optimization (IPSO) is a numerical tech-
nique to solve optimal control problems first presented by Spiller et al. in 2015
(see Ref. [1]) and improved in successive works (see Refs. [2, 3, 8, 9]). The main
characteristics of IPSO are reported in [4] and are summarized below:

1. A differential flatness parametrization of the optimal control problem is em-
ployed, with the straightforward advantage of reducing to the minimum
number the independent optimization parameters.

2. The approximation of the flat parameter is accomplished with B-spline curves
[76, 77]. A variable time-mesh is introduced describing the time function
as a B-spline. Hence, each component of the flat output is described with a
2 degree-of-freedom curve. This feature is referred to as improved B-spline
approximation.

3. The optimal parameters of the transcribed BOCP are searched for with the
Particle Swarm Optimization [66, 67].

4. The differential flatness parametrization allows one to satisfy a-priori the
boundary conditions, eliminating the related equality constraints.

5. Adaptive decreasing tolerances (see Ref. [3, 8]) are employed to take into
account inequality constraints. This technique helps the optimizer exploring
the search space and comparing several local minima. The IPSO implements
the refined law described in Sec. 4.5.2.

The IPSO is a technique that can be employed for all the optimization problems
that accept a differential flatness formulation. To the best of the author knowledge,
most of the problems of engineering interest may be cast in a differential flatness
formulation.

In the following of this chapter, we will introduce several approaches for imple-
menting the B-splines approximation and the decreasing tolerances. To follow the
historical development of the IPSO, two versions are identified:
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• Basic IPSO: this version is based on the basic B-spline approximation and the
basic adaptive decreasing tolerance law.

• Improved IPSO: this version is based on the improved B-spline approximation
and the improved adaptive decreasing tolerance law.

Details about the B-spline approximation approaches and the adaptive decreasing
tolerance laws are given in Sec. 4.2 and Sec. 4.5.2, respectively. The reader should
note that the improved IPSO represents the current version of IPSO used in the most
recent author’s papers. Accordingly, in this work, the acronym IPSO will always refer
to the improved implementation when it is not explicitly put the adjective “basic”.

The acronym IPSO comes from the combination of the inverse dynamics approach
(in the form of a differential flatness parametrization) and the Particle Swarm
Optimization. As it will explained in detail in Chapter 6, the combination of this two
features allows one to solve complicated nonconvex optimal control problems.

The general problem that is addressed by the IPSO has been described in Sec. 2.6
and is summarized here for clarity. Given the flat output y( · ) ∈ RNu and having

x = a
(
y, ẏ, ...,y(β)

)
, u = b

(
y, ẏ, ...,y(β+1)

)
, β ∈ N (4.1)

solve the following problem,

Find y(t) : t→ Y ⊂ RNu , tf ∈ R

minimizing

J [y(·), tf ] = E(y(t0),
{
y(β)(t0)

}
,y(tf ),

{
y(β)(tf )

}
, tf )

+
∫ tf

t0
F
(
y(t),

{
y(β)(t)

}
, t
)
dt

subject to, ∀t ∈ [t0, tf ]

Boundary constraints: b(y(t0),
{
y(β)(t0)

}
,y(tf ),

{
y(β)(tf )

}
, tf ) = 0,

Path Constraints: p(y(t),
{
y(β+1)(t)

}
, t) ≤ 0.

(4.2)

In the following chapters of this thesis, we will refer to the Feasible Search Space
(FSS) as the set of solutions which satisfy all the end-point and path constraints.

The remainder of this chapter is organized as follows. In Sec. 4.2 an outline of
the most important features of the B-spline curves is given, explaining the difference
between the basic and the improved approximation techniques. In Sec. 4.4 the
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global search ability of the IPSO is related to using the unified PSO paradigm. In
Sec. 4.3 the technique for the a-priori satisfaction of the boundary constraints
is explained, whereas in Sec. 4.5 the constraint handling technique is described.
Finally, conclusion notes are given in Sec. 4.7.

4.2 Curves approximation with B-splines

B-spline curves have been introduced in Ref. [76, 77, 78] and are a well-known
instrument in computer aided engineering design.

The reason why B-splines curves have been chosen to approximate the flat output
is that they are spline functions that have minimal support with respect to a given
degree, smoothness, and domain partition (see Ref. [79]). Consequently, B-spline
curves can guarantee good approximation of the optimal flat output history with
a reduced number of optimization parameters. A comparison of B-spline curves
with Chabyshev polynomials is carried out in Chapter 9, where it is numerically
demonstrated that the the former approach guarantees better results then the latter.
The B-spline approximation has been also proposed in Ref. [45] associated to a
collocation method.

In the following of this chapter functions will be defined upon input arguments
and parameters. The following syntax will be used:

function_name(1st variable, 2nd variable, ... ; 1st parameter, 2nd parameter, ...)

A semicolon is used to separate variables from parameters. Quite often, the terms
variables and parameters are used interchangeably, but with a semicolon the meaning
is that we are defining a function of the parameters that returns a function of the
variables. For example, the syntax f(x1, x2, . . . ; p1, p2, . . . ) is used to mean that, by
supplying the parameters (p1, p2, . . . ), a new function is created whose arguments
are (x1, x2, . . . ).

For the flat output y, the B-spline approximation B(λ; ỹ,K) is defined upon a
strictly increasing independent variable 0 ≤ λ ≤ 1 and depends on the coefficient
vector ỹ and the knot vector K with m+ 1 components defined as

K = {κi, i = 0, ...,m |κ0 = 0, κm = 1, κi ≤ κi+1} . (4.3)

A B-spline combining NP polynomials of Dth degree satisfies m = NP + D. The
generic component y of the flat output (the subscript for the jth component of
the flat output is not reported to avoid confusion) vector can be approximated as
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Fig. 4.1: B-spline basis functions Ni,D with NP = D + 1 = 8.

a B-spline B(λ; ỹ,K) function. Indeed, the approximated flat parameter yN (λ) is
defined as

yN (λ) : λ 7→ B(λ; ỹ,K). (4.4)

Hence, given the optimization parameters in ỹ and the fixed vector K, the flat
parameter is a function of the independent variable λ. In further details, yN (λ) is
evaluated as

yN (λ) = B(λ; ỹ,K) =
NP−1∑
i=0

ỹiNi,D(λ;K), (4.5)

where the basis functions Ni,d(λ;K) are defined through the Cox-de Boor recursion
formula. For d = 0,

Ni,0(λ;K) =

1 if κi ≤ λ < κi+1 ,

0 otherwise ,
(4.6)

where i = 0, ...,m− 1. For 1 ≤ d ≤ D,

Ni,d(λ;K) = λ− κi
κi+d−1 − κi

Ni,d−1(λ;K) + κi+d − λ
κi+d − κi+1

Ni+1,d−1(λ;K) , (4.7)

where i = 0, ...,m− d.

An example of the basis functions obtained with NP = D + 1 = 8 is reported in
Fig. 4.1. Note that the range of the basis functions is [0, 1].

Full advantage of the B-spline is taken approximating the trajectory as a curve[8,
2, 3, 9], not as a function. To build a B-spline curve, a polyline defined over the
control points Uj = [t̃jtf , ỹj ], j = 0, ..., NP − 1, is introduced. In this case, the time
is not an independent variable (usually identified with λ, once normalized) but is a
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real-valued function evaluated as a B-spline. Introducing the time coefficient vector
t̃ = [t̃i,1 = 0, t̃i,2 > t̃i,1, ..., t̃i,NP−1 = 1], the time is defined as

tN (λ) : λ 7→ tfB(λ; t̃,K) (4.8)

and it is evaluated as

tN (λ) = tfB(λ; t̃,K) = tf

NP−1∑
i=0

t̃iNi,D(λ;K) . (4.9)

As a consequence, the independent variable used for the description of the problem
is λ. Hence, ∀ tN (λ) ∈ [0, tf ], the flat parameter time-history is a function described
by the two-dimensional graph

γy(λ) =
{(
tN (λ) , yN (λ)

)
, λ ∈ [0, 1]

}
. (4.10)

An explicit function ȳN
(
tN
)

is not easily evaluable, so the B-spline approximation
of the flat parameter expressed as a function of the time is given in a tabular form
(as a series of pairs (tN (λ) , yN (λ))). The first time derivative of y is evaluated as

ẏN (λ) = dB(λ; ỹ,K)
dtN

= ∂B(λ; ỹ,K)
∂λ

∂λ

∂tN
(4.11)

and, by means of Eq. (4.9) and defining B′y = ∂B(λ; ỹ,K)/∂λ, B′t = ∂B(λ; t̃,K)/∂λ,

ẏN (λ) = ∂B(λ; ỹ,K)
∂λ

∂λ

∂B(λ; t̃,K)
=

B′y
B′t

. (4.12)

Analogously, the second time derivative is given by

ÿN (λ) = d2B(λ; ỹ,K)
d(tN )2 =

B′′yB′t − B′′t B′y
B′3t

. (4.13)

The terms B′y and B′′y (similarly B′t and B′′t ) are given by

B′y =
NP−2∑
i=0

ỹ
(1)
i Ni+1,D−1(λ;K) , B′′y =

NP−3∑
i=0

ỹ
(2)
i Ni+2,D−2(λ;K) , (4.14)

where the coefficients ỹ(1)
i and ỹ(2)

i are the following finite differences:

ỹ
(1)
i = D ỹi+1 − ỹi

κi+D − κi
, ỹ

(2)
i = (D − 1)

ỹ′i+1 − ỹ′i
κi+D−1 − κi

. (4.15)

The B-spline approximation of a generic curve is shown in Fig. 4.2. It is noteworthy
that the control points may move 1) in the vertical direction, which represent a
variation of the approximated parameter (either state or control or flat output), and
2) in the horizontal direction, which represent a variation of the time mesh.
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Fig. 4.2: Improved B-splines curve approximation.

Note that, when Eq. (4.9) is modified using t = tfλ, Eqs. (4.12)-(4.13) converge
to

ẏN (λ) = t−1
f B′ , ÿN (λ) = t−2

f B′′. (4.16)

In this case, we can recognize t as the independent variable such that y(t) = yN (t/tf )
and the flat parameter time-history is a function described by the two-dimensional
graph

γy(λ) =
{(
tfλ, y

N (λ)
)
, λ ∈ [0, 1]

}
. (4.17)

The method described from Eq. (4.5) to Eq. (4.13) can be referred to as improved
B-spline approximation, opposed to the basic B-spline approximation given by Eq.
(4.16). The advantages of the improved model is that the curve is shaped with 2
degrees of freedom, whereas the basic model is described by 1 degree of freedom.
With regard to Fig. 4.2, the control points of the basic B-spline approximation can
only move in the vertical direction.

In the following of this thesis, second order three-dimensional differential equa-
tions will be employed to describe the dynamical systems involved in the pro-
posed OCPs. From Eq. (4.1) and Eqs. (4.12)-(4.15), the generic component ui,
i = 1, ..., Nu, of external control is obtained as a closed-form solution in terms of
the B-spline approximated flat parameters yNi (λ), i = 1, ..., Nu. Using the improved
B-spline approximation, however, an explicit time-function of the control is not
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identified. On the contrary, the control can be easily described in terms of the curves
(t, ui) parametrized by λ, i.e.

γu(λ) =
{(
tN (λ) , ui (λ)

)
, λ ∈ [0, 1]

}
=
{(
tN (λ) , bi

(
yN1 (λ) , ..., yNNu (λ)

))
, λ ∈ [0, 1]

}
.

(4.18)

4.3 A-priori satisfaction of boundary constraints

Using an inverse dynamics approach with a differential flatness parametrization,
the end-point condition concerning the state in t0 and tf may be imposed a-priori
using a proper polynomial approximation. The B-spline approximation allows the
user to impose the values of the initial and final flat output. Accondingly, in the
sequel the clamped B-spline will be employed: in this case, the curve passes through
A0 and ANP−1 and it is obtained using non-uniform knot points given by

κj = 0 if 0 ≤ j ≤ D ,

κj = j −D
NP −D

if D < j ≤ NP − 1 ,

κj = 1 if NP − 1 < j ≤ m.

(4.19)

For a clamped B-splines it is verified that Ni,d(0;K) = δi,D−d and Ni,d(1;K) =
δi,D+d, where δi,j is the Kronecker delta. Hence, from Eq. (4.15), it can be proved
that the clamped B-spline is tangent to the first and to the last leg of the control
polyline. Accordingly, initial and final conditions for y(t) are imposed setting

ỹ0 = y(t0), ỹ1 = ỹ0 + (t̃1 − t̃0)ẏ(t0) ,

ỹNP−1 = y(tf ), ỹNP−2 = ỹNP−1 − (t̃NP−1 − t̃NP−2)ẏ(tf ) .
(4.20)

The reader should remember that ỹj , j = 1, ..., NP , are the optimization variables
of the problem. With the conditions in Eq. (4.20) we reduce the number of unknown
parameters and we guarantee from the beginning of the optimization process the
satisfaction of the boundary conditions. This is an important advantage with respect
to direct dynamics methods. In fact, in that case only initial conditions may be
imposed at the beginning of the integration process, whereas final condition can be
satisfied only accepting a final error within a user-defined tolerance. By imposing
boundary conditions before the numerical optimization, the transcribed problem
does no more require to consider boundary constraints.
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To underline that a flat output approximation yN satisfies the boundary constraints
by means of Eq. (4.20), the set of BC-compliant functions

YB = {yN (λ) = B(λ; ỹ,K) : ỹ is defined as in Eq. (4.20)} (4.21)

is introduced. Accordingly, the statement yN ∈ YB means that yN satisfies the
boundary constraints. In the same way, we can define the set of BC-compliant
parameters

YB = {ỹ : ỹ is defined as in Eq. (4.20)} (4.22)

such that ỹ ∈ YB means that the B-spline parameters are defined in order to
guarantee yN ∈ YB.

4.4 Particle Swarm transcription

Having introduced the clamped B-spline and the a-priori satisfaction of the end-
point constraints, the optimization problem addressed by the IPSO can be simplified
to:

Find y(t) : t→ Y = RNu such thaty ∈ YB, tf ∈ R

minimizing

J [y(·), tf ] = E(y(t0),
{
y(β)(t0)

}
,y(tf ),

{
y(β)(tf )

}
, tf )

+
∫ tf

t0
F
(
y(t),

{
y(β)(t)

}
, t
)
dt

subject to, ∀t ∈ [t0, tf ]

Path Constraints: p(y(t),
{
y(β+1)(t)

}
, t) ≤ 0.

(4.23)

The basic paradigms of the PSO have been described in Chapter 3. The IPSO
employees the PSO to exploit its global search ability for hard optimization problems
affected by nonconvexity issues.

The IPSO is based on the application of the unified paradigm. This implementation
allows the optimizer to take advantage of the enhanced exploration ability of the
local PSO version. Moreover, at the end of the optimization process, the exploitation
characteristic of the global PSO version are used to refine the final solution.

It is to be noted that for extremely difficult problems, affected by several distinct
local minima, the local paradigm may perform better than the unified paradigm. In
the following, it will explicitly reported what PSO is employed for each problem.
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To take advantage of the exploration and exploitation abilities of PSO, the unified
paradigm described in Sec. 3.7 is employed. Accordingly, the coefficients cl and
cg in Eq. (3.12) vary during the optimization process in order to allow the swarm
to explore the search space in the beginning of the optimization process and then
converge toward the optimal solution at the end of the evolution. In particular, the
global and local coefficients follow the linear law expressed in Eq. (3.13).

For the implementation of the IPSO, the particle can be defined in different ways
depending on what type of B-pline approximation is used. We remind the reader
that the flat output y is defined in RNu . When the improved B-spline approximation
is used, the number of time meshes is equal to Nu, as every component of the flat
output has its own time mesh.

IPSO particle with basic B-spline approximation In this case, the basic B-spline
approximation is employed and a unique linear time mesh is introduced. Therefore,
the minimum number of parameters is employed. For a fixed-time optimal control
problem, the IPSO particle is defined as

x = [ỹ1, ..., ỹNu ] ∈ RNuNP , (4.24)

whereas for a free-time problem the particle is

x = [ỹ1, ..., ỹNu , tf ] ∈ RNuNP+1. (4.25)

IPSO particle with improved B-spline approximation In this case, the improved B-
spline approximation is employed and the related time mesh is introduced, increasing
the dimension of the particle with respect to the previous case. For a fixed-time
optimal control problem, the IPSO particle is defined as

x = [ỹ1, ..., ỹNu , t̃1, ..., t̃Nu ] ∈ R2NuNP , (4.26)

whereas for a free-time problem the particle is

x = [ỹ1, ..., ỹNu , t̃1, ..., t̃Nu , tf ] ∈ R2NuNP+1. (4.27)

In the general case, defining the vectors Ỹ = [ỹ1, ..., ỹNu ] and T̃ = [t̃1, ..., t̃Nu ],
the PSO particle is

x = [Ỹ , T̃ , tf ] ∈ R2NuNP+1. (4.28)

In Sec. 4.2 we have seen that the flat parameter history and its time derivatives
are evaluated as a function of the optimization parameters ỹ. Similarly, the time is
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parameterized by t̃. As a consequence, the transcribed optimization problem can be
written in terms of the quantities inside the PSO particle x as

Find x = [Ỹ , T̃ , tf ] ∈ R2NuNP+1 such that ỹi ∈ YB, ∀i = 1, ..., Nu

minimizing

JN (Ỹ , T̃ , tf ) = EN (Ỹ , T̃ , tf ) + IN (Ỹ , T̃ , λ; t0, tf )

subject to, ∀t ∈ [t0, tf ]

Path Constraints: pN (Ỹ , T̃ , λ) ≤ 0 ∀λ ∈ [0, 1].

(4.29)

In Eq. (4.29), the terms EN and IN are the numerical transcribed counterparts
of the end-point cost function E and the integral of the running cost function F .
The function pN is the path constraint evaluated as a function of the optimization
parameters.

4.5 Constraint handling technique

Dealing with constrained optimization, the performance index must be prop-
erly modified to take into account the alteration of the SS induced by the con-
straints. Hence, an extended performance index J is defined as the summation of
the original cost functional J (i.e., the goal of the problem, which may be minimum-
time, minimum-energy or minimum-effort) and the penalty functions related to
the constraints. The exterior penalty function described in Sec. 1.3.2 is employed.
This means that, considering only path inequality constraints, for every constraint
p(x(t),u(t), t) ≤ 0, c : RNx×RNu×R 7→ R, a scalar penalty function P is introduced
that penalizes the solution if and only if the constraint p is violated.

To evaluate the numerical solution of the optimal control problem, the perfor-
mance index is evaluated after the transcription of the original problem. Accordingly,
the approximated extended cost function JN is evaluated. The difference between J
and JN is that the former is defined over the state and control functions whereas
the latter is defined by means of the approximated state and control functions and
depends explicitly on the optimization parameters.

It is noteworthy that, for the IPSO, only inequality constraints must be taken into
account in the cost function. In fact, as explained in Sec. 4.3, the equality constraints
related to the end-point conditions are automatically satisfied and do not need to
be imposed inside the optimization problem. The inequality path constraints may

4.5 Constraint handling technique 81



concern both the state and the control (in the latter case, they are also known as
control constraint).

For numerical reasons, the values of the independent variable λ (introduced in
Sec. 4.2) are discretized such that λj = j/NT , j = 0, ..., NT . The cost function JN

changes depending on the goal of the maneuver, i.e.:

• For minimum-time maneuvers IN = 0 and EN 6= 0, i.e.

JN = tf . (4.30)

Note that in this case there not formal difference between J and JN .

• For minimum-effort maneuvers EN = 0 and IN 6= 0, i.e.

JN = tf − t0
2NT

3∑
i=1

NT∑
j=1

(|ui|(λj − 1) + |ui|(λj)) . (4.31)

• For minimum-energy maneuvers EN = 0 and IN 6= 0, i.e.

JN = tf − t0
2NT

3∑
i=1

NT∑
j=1

(
u2
i (λj − 1) + u2

i (λj)
)
. (4.32)

In Eq. (4.31) and Eq. (4.32), the trapezoidal numerical integration has been
employed to approximate Eq. (6.37) and Eq. (6.38), respectively.

The approximated extended cost function J
N is evaluated adding to JN the

exterior penalty functions related to the path constraints. Supposing NC constraints,
the PSO performance index is thus given by (see Ref. [1, 8])

J
N = JN +

NC∑
i=1

NT∑
j=0

πiPi(λj) + µNviol , (4.33)

where πi and µ are user-defined constant weights and Nviol is the number of violated
constraints. Pi is the penalty function associated with the constraint pi.

The IPSO method handles the path constraints using a relaxation technique. In
fact, the generic inequality constraint pNi (Ỹ , T̃ , λj)−αi ≤ 0 is relaxed and treated as
|pNi (Ỹ , T̃ , λj)−αi| ≤ ∆i. The penalty function Pi may be evaluated in two different
ways:
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1. Pi ∈ N,

Pi(λj) =

0 if |pNi
(
Ỹ , T̃ , λj)

)
− αi| ≤ ∆i ,

1 otherwise.
(4.34)

2. Pi ∈ R,

Pi(λj) =

0 if |pi
(
Ỹ , T̃ , λj

)
− αi| ≤ ∆i ,

pi(Ỹ , T̃ , λj)− αi −∆i otherwise.
(4.35)

The difference between the two formulations is that the generic weight πi attains
different values in order to give consistent values of the penalty functions.

When the penalty functions will be defined in the numerical applications reported
in the following chapters, the path constraints penalty functions may be splitted
into those related to the state (or the flat output) and those related to the control.
However, the strategy employed to define the penalty function will always be the
one defined in this section.

4.5.1 Exterior and interior cycles

A solution to the proposed problem would be considered optimal if and only if
the aforementioned tolerances ∆i were zero. However, two considerations are in
order:

• ∆i related to equality constraints cannot be set to zero due to the numerical
integration errors. It means that the optimality of the solution will be associated
with relaxed final conditions with ∆i close but not equal to zero.

• The PSO method suffers from convergence problems if tolerances are set equal
or very close to zero from the beginning of the algorithm.

The first issue has been already taken into account. In fact, equality constraints
are automatically satisfied thanks to the properties of the clamped B-spline. Note
that, when all the inequality constraints are satisfied and the maneuver is completely
feasible, the extended cost function is equal to J0. Since the IPSO is able to satisfy all
the constraints in few iterations (as it will be shown in the chapters concerning the
numerical results), this means that the introduction of the extended cost function
does not perturb the original problem, but it does restrict the search to only feasible
maneuvers in the very first part of the search operation. On the contrary, when a
direct dynamics approach is employed, the equality constraints associated to the
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Fig. 4.3: IPSO External and internal cycle.

end-point conditions are never completely satisfied, and the optimal numerical value
of J will only be an approximation of the optimal value of J .

With regard to the second issue, the penalty functions Pi are designed with
adaptive decreasing tolerances ∆i (see Ref. [8]) to help the swarm convergence. The
tolerances change their values if and only if the global best particle in the swarm
satisfies all the imposed constraints, i.e. if and only if N (gbest)

viol =0. Accordingly, the
tolerances decrease in an external loop if and only if the evolution of the swarm in
the internal loop has led to N (gbest)

viol =0. In the external while loop all the performance
indices are reinitialized since the swarm is going to explore a new search environment
where the previous solution is no longer valid. This technique is shown in a block
diagram in Fig. 4.3.

4.5.2 Adaptive decreasing tolerances

Basic law First, the decreasing tolerance technique employed in Ref. [1] is reported,
where a piecewise linear decreasing law was used. The intervals of the piecewise
linear function are defined as a function of the tolerance itself. Let us refer to the
steps where Nviol = 0 as k̄. The generic tolerance ∆(·) is therefor updated as

∆(k̄+1)
(·) = ∆(k̄)

(·) − 10−ξ (4.36)

where ξ is selected to satisfy 10−ξ < ∆(k̄)
(·) ≤ 10−ξ+1 with ξ ∈ N. For inequality

constraint, after a certain user-defined value k̄∗, the tolerance may be set to zero.

Refined law Instead of the piecewise decreasing law, in successive works a more
effective law based on only two parameters has been introduced. Starting from user-
defined and problem-dependent initial values, the tolerances decrease according to
the following law:

∆(k̄+1)
(·) = ∆(k̄)

(·)

(
1− δ(k̄)

)
, (4.37)
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Fig. 4.4: Example of a decreasing tolerance with ∆(1) = 0.15, Nδ = 103 and δ(1) = 5 · 10−3.

δ(k̄+1) =

δ
(k̄) + k̄

Nδ
if δ(k̄) + k̄

Nδ
≤ 1 ,

1 otherwise.
(4.38)

where Nδ is a user-defined constant. Clearly, starting from ∆(1)
(·) 6= 0, ∆(k̄+1)

(·) = 0 if

and only if δ(k̄) = 1. Note that the condition in Eq. (4.38) is violated if:

δ(k̄) + k̄

Nδ
= δ(k̄−1) + k̄ − 1

Nδ
+ k̄

Nδ
(4.39)

= δ(k̄−2) + k̄ − 2
Nδ

+ k̄ − 1
Nδ

+ k̄

Nδ

= ... = δ(1) + 1
Nδ

+ 2
Nδ

+ ...+ k̄

Nδ

= δ(1) +
k̄∑

n=1

n

Nδ
= δ(1) + 1

Nδ

k̄(k̄ − 1)
2 > 1

Eq. (4.39) is equivalent to:

k̄2 + k̄ −
(
2Nδ

(
1− δ(1)

))
> 0, (4.40)

which leads to the only acceptable solution k̄∗ ∈ N:

k̄∗ =


−1 +

√
1 + 8Nδ

(
1− δ(1))

2

 . (4.41)

In Eq. (4.41), dxe is the ceiling function giving the smallest integer greater than or
equal to x. As a consequence, with the decreasing tolerances modeled as in Eqs.
(4.37)-(4.38), the two parameters δ(1) and Nδ impose the initial slope of the curve
in Fig. 4.4 and the number of external cycles k̄∗ required to set the tolerances to
zero.
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4.5.3 Exit condition

With reference to what has been stated in Sec. 3.8.2 and introducing the user-
defined tolerance εc, IPSO stops according to the following convergence criterion:

δJg = 1
M

k̂∑
i=k̂−M+1

J
(i−1)
g − J (i)

g

J
(i)
g

< εc, (4.42)

where M is usually set equal to 10. Such an exit condition allows the PSO to
converge until all the particles are within the same neighborhood around the detected
minimum.

4.6 Global optimization

Choosing the PSO parameters such that a good balance between exploration
and exploitation is guaranteed, the final solution can be the accepted as optimal
solution. As it will be shown in the following chapters, Monte-Carlo simulation may
help studying the convergence properties of the algorithm. For instance, one can
understand if, solving several times the same optimization problem, the PSO always
converges toward the same solution. However, we do not know if this solution is
the best of all the possible solutions to the given problem. Indeed, in [27], when
discussing about the optimality guaranteed by numerical softwares, it is stated
that:

“A practical test for optimality is not the claim of a globally optimal solution; rather, it
is whether a new solution to an old problem is better than the old solution (and by how

much) or whether the problem posed is itself new so that any (feasible) solution is
desirable to the alternative (of no solution).”

As a consequence, most of the time the optimality of the solution is stated basing on
the personal experience and the knowledge of the problem reported in the literature
by the scientific community.

4.7 Endnotes

In this chapter, the Inverse-dynamics Particle Swarm Optimization has been de-
scribed. This method has been developed to solve optimal control problems by
1) using an inverse dynamics approach with differential flatness formulation and
2) solving the nonlinear parameter optimization problem with the Particle Swarm
Optimization. These are the key points of the proposed algorithm, allowing the
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technique to tackle optimal control problems using the minimum number of in-
dependent unknowns and searching for the global optimal solution by means of
the swarm intelligence. Other important features have been described, such as the
approximation of the unknown optimal functions with B-spline and the adaptive
decreasing tolerances technique. All in all, the Inverse-dynamics Particle Swarm
Optimization can guarantee the computation of feasible near-optimal solutions with
the satisfaction of all the end-point equality constraints and the path inequality
constraints.
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Part III
PLANNING OF CONSTRAINED

ATTITUDE MANEUVERS





5Time-optimal Reorientation
Maneuvers with Keep-out
Cones*

Abstract
The chapter deals with the problem of spacecraft time-optimal reorientation ma-
neuvers under boundaries and path constraints. The minimum time solution with
keep-out constraints is proposed using the Particle Swarm Optimization technique.
The Inverse Dynamics Particle Swarm Optimization is used and compared with a
direct dynamics approach. The comparison between basic and improved B-spline
approximation is carried out. It is established that the computation of the mini-
mum time maneuver with the proposed inverse technique leads to near optimal
solutions, which fully satisfy all the boundaries and path constraints. Finally, the
minimum-time planning is accomplished with a refined dynamical model including
the reaction wheels dynamics.

Nomenclature

x = PSO particle B = Body (satellite) reference frame
W = Satellite wheels I = Inertia tensor
ω = Body angular velocity (̂·) = Unit vector
u = External control J = Performance index
t = Time (s) N = B-spline basis function
(·)N = Numerical approximation D = B-spline degree
U = Approximation control point ˙(·) = First time derivative
(̈·) = Second time derivative p = Modified Rodrigues Parameters
k̄ = External loop index (·)0/f= Initial/final time value
σ = Optical axis σs = Light-source direction
αs = Light-source half-angle (rad) β = Angle between σ and σs (rad)
NP = Number of approximation coefficients NS = Number of PSO particles
η = Quaternions θ, n̂ = Angle-axis of rotation
Ξ,Ψ = Angular kinematics matrices R = Rotation matrix
(̃·) = Approximation parameter umax = Maximum external control
NT = Number of discretization points ∆ = Penalty function tolerance
B = BC penalty function P = PC penalty function
Nviol = Number of constraints violation f = Feasibility penalty function

*This chapter is based on Refs. [1, 2, 3, 4].



YB = Set of BC-compliant functions U = Control space
Y = Flat output space B0 = Inertial reference frame
Θf = Slew angle S = Satellite-fixed frame
I = Inertial frame T int = Internal torque
H = Angular momentum

5.1 Introduction

Time-optimal spacecraft reorientation maneuvers under boundaries and path
constraints are difficult to compute, because the solutions are related to complex
nonlinear problems. The minimum time reorientation maneuver of a rigid spacecraft
is a well-known problem: the first related work regarding a numerical approach
dates back to the 90s [80, 81, 82, 83].

Unconstrained, minimum-time rest-to-rest maneuvers through large angles (so-
called slew maneuvers) were first taken into account by Bilimoria and Wie [80].
Considering a rigid spacecraft with spherically symmetric mass distribution and with
equal control-torque authority for all three axes, they showed that the intuitively
obvious rotation about the eigenaxis is not the time-optimal solution. Bai and
Junkins [84] reconsidered this problem proving that if the total control vector
is constrained to have a maximum magnitude (i.e., with the orthogonal control
components not necessarily independent), then the time-optimal solution is the
eigenaxis maneuver.

These papers have been used as a reference providing some test cases for suc-
cessive works as in [85, 86, 87]; the research still focuses on this problem with
several approaches, for example, through homotopic approach algorithms [88],
pseudospectral optimization analysis [89, 90] or with hybrid numerical techniques
[84].

The problem of reorientation maneuvers with path constraints has been initially
studied by McInnes in [91]. The path constraints are determined by bright sources
such as the Sun or the Moon that need to be avoided by payloads such as telescopes
or sensors as with star trackers [92]. The path planning has to take into account
exclusion cones with an angle greater than the effective angular diameter of the
bright source, due to its very low apparent magnitude. Other path constraints could
include pointing boundaries for antennas to maintain communication [93]. The
angle of exclusion is determined by the sensor baffle and the source (considering its
angular dimension and its intensity), and it is typically between 15 and 45 degrees
depending on the sensitive optical sensor [94, 95, 96]. Several numerical methods,
such as the Randomized Motion Planning [97], the Logarithmic Barrier Potentials
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[98] or the Lie group variational integrator [99], have been used to obtain the
optimal solution.

Heuristic and metaheuristic algorithms have been recently proposed for the plan-
ning of slew maneuvers, as in [100, 101] . Metaheuristic algorithms may be used to
find sub-optimal solutions: for instance, Melton proposed a hybrid technique where
a metaheuristic solution was used as the best available initial guess for a pseudospec-
tral optimizer [102]. The hybrid technique has been newly proposed in [103], where
the initial guess is carried out with the covariance matrix adaptation-evolutionary
strategy. The metaheuristic algorithms are being studied extensively and the high
interest generated from their results is shown in the research performed by NASA
[104]. With regards to the PSO, it has been used not only for the planning of attitude
maneuvers as in [105, 106], but also for the trajectory planning [107, 108, 109, 110,
111] or for attitude determination [112, 113].

From the previous works, the optimization of attitude maneuvers uses the PSO
applied to the control. This approach here is referred to as Direct Method. This
chapter shows how such an approach fails in satisfying the boundary constraints
(i.e. final position and final velocity). In this following, the Inverse-dynamics Particle
Swarm Optimization is applied to solve the reorientation problem, where the final
boundary constraints are straight satisfied.

The chapter is organized as follows. In Sec. 5.2 the attitude reorientation problem
is described. This problem will be taken into account also in Chapters 6-7. Sec. 5.3
and Sec. 5.4 describe the direct dynamics and the inverse dynamics approaches
that have been investigated in Ref. [1]. The inverse-dynamics approach that will
be described is very close to the final IPSO depicted in Chapter 4, even though the
adaptive decreasing tolerances were not clearly designed and the basic B-spline
approximation was used. In Sec. 5.6 the comparison between the direct and the
inverse dynamics approaches is carried out. This section summarizes the results
reported in Ref. [1], showing the better performances of the inverse method with
regard to the direct method. In Sec. 5.7 the results of IPSO embedding the improved
B-spline approximation are reported, showing improved performances with respect
to those obtained with the basic B-spline approximation in Sec. 5.6.2. In Sec. 5.8
the reorientation problem is solved including in the satellite dynamical model the
reaction-wheels dynamics. Here, the definitive version of the IPSO is employed.
Concluding remarks are given in Sec. 5.9.
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5.2 Problem statement

This study deals with the problem of a slew maneuver. A satellite must perform a
reorientation maneuver where some optical instruments (for example a star tracker)
cannot be exposed to sources of bright light such as the Earth, the Sun and the Moon.
The maneuver angle Θf and the initial and final attitudes are known. The slewing
motion must be constrained to prevent the sensor axis from entering into established
“keep-out” zones known as cones. Such areas have central axes pointing to the Sun,
the Earth and the Moon, and specified half-angles depending on the light magnitude,
the distance from the satellite and the angular diameter of the source. Moreover,
the maneuver must be rest-to-rest, i.e. the angular velocity must be equal to zero for
t = t0 and t = tf . In particular t0 is a constant parameter (that may be set equal to
zero).

The objective is to minimize the maneuver overall time tf − t0, so the performance
index is

J = tf − t0. (5.1)

A definition for the used reference frames is needed in order to describe the
maneuver. First, let us denote the body-fixed reference frame as B = {êx, êy, êz},
whereas the body axes are xB, yB, zB.

One important hypothesis is that the time for completing the maneuver is neg-
ligible with respect to the time for completing an orbit. In this case, with regards
to an Earth-Centered Inertial reference frame ECI, it is possible to approximate
the velocity of the satellite center of mass to zero. This approximation allows the
definition of an inertial reference frame fixed in the original position of the body-
fixed frame at time t = t0 that will be referred to as B0 = {ê0,x, ê0,y, ê0,z}. As a
consequence, the positions of the keep-out cones defined in this inertial frame do
not change during the maneuver. In the body-fixed frame, the body angular velocity
is ω = ωxêx + ωyêy + ωzêz and the body torques are u = uxêx + uyêy + uzêz.

The maneuver is a rotation around the initial body-fixed x-axis, i.e. êx. In
the case without path constraints, the minimum-time rotation takes place with
nutation components around the y and the z axes, as known from the well-known
results firstly presented in Ref. [80]. More details on the maneuvers without path
constraints may be found in Chapter 6. If one or more keep-out cones are present, all
the components of ω are different from zero to guarantee a feasible maneuver and
minimize the maneuver time by means of the nutation contributions. The rigid-body
motion is described by the Euler’s equation expressed in the most general form as

Iω̇ + ω × Iω = u, (5.2)
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Fig. 5.1: Graphical representation of the keep-out cone constraint.

where I is the inertia tensor and u the total torque vector. In the following, three
independent torques aligned with the axes of the body-fixed frame will be consid-
ered.

While moving from the initial to the final attitude, the sensor axis σ must be
kept at least at the minimum angular distance αs from each light source. Using the
notation from [90] we can define the so-called keep-out constraints as

Cs(t) = σ(t) · σs − cos(αs) ≤ 0 ∀t ∈ [t0, tf ], (5.3)

where σ(t) is the direction pointed to by the optical sensor and σs is vector placed
in the center of mass of the satellite and pointing to the generic source of light, here
represented by s.

The constraint is shown in Fig. 5.1. On the left, a feasible configuration is
reported: the sensor axis σ is outside the keep-out cone. On the right, an unfeasible
configuration is reported: in this case, the sensor axis σ is inside the keep-out cone.
Introducing the new variable β defined as β(t) = cos−1(σ(t) · σs), the constraint in
Eq. (5.3) may be re-written more easily as

β(t) ≥ αs ∀t ∈ [t0, tf ]. (5.4)

The cone defined for each source of light will be referred to as keep-out cone.
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5.3 Direct-dynamics approach

The first analysis has been made by directly integrating the control law, as in Ref.
[100]. For clarification, Eq. (5.50) is used in the following form:

ω̇ = I−1 (u− ω × Iω) (5.5)

This approach has been already described in Sec. 2.4.1. In the following pages
the acronym DPSO will be used to refer to this technique, where “D” stands for
Direct integration of the dynamics. This method is based on the approximation of
the control policy and the numerical integration of the dynamics.

5.3.1 Description of the attitude kinematics

The attitude is described by quaternions of rotation given by

η̄ =
[
η

η4

]
= [η1 η2 η3 η4]T , (5.6)

where
η = sin (θ/2) n̂ , η4 = cos (θ/2) , (5.7)

with n̂ representing the Euler rotation axis and θ is the Euler angle of rotation. The
vector η̄ is a function of time, even though it is not explicitly reported.

The detailed description of the quaternions along with the description of the
associated rotation matrix R(η̄) and the kinematic matrix Ξ(η̄) may be found in Ref.
[114]. For completeness, the rotation matrix is

R(η̄) =


η2

1 − η2
2 − η2

3 + η2
4 2(η1η2 + η4η3) 2(η1η3 − η4η2)

2(η2η1 − η4η3) −η2
1 + η2

2 − η2
3 + η2

4 2(η2η3 + η4η1)
2(η3η1 + η4η2) 2(η3η2 − η4η1) −η2

1 − η2
2 + η2

3 + η2
4

 (5.8)

and the kinematic equation for the quaternions is

˙̄η = 1
2 Ξ(η̄)ω, (5.9)

where the matrix Ξ(η̄) is defined as

Ξ(η̄) =


η4 −η3 η2

η3 η4 −η1

−η2 η1 η4

−η1 −η2 −η3

 . (5.10)
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Eq. (5.9) needs to be integrated with Eq. (5.5) in order to update the angular
position.

The position of the rotated sensor axis σ(t) at some time instant t in the initial
inertial reference frame B0 is obtained rotating the initial position of sensor axis
σ(t0) as

σ(t) = R(η̄)T σ(t0). (5.11)

5.3.2 Definition of the particle

Each particle of the swarm contains information about the control law in the body-
axes and the final time for the maneuver. The ith particle is an array containing:

• The maneuver time tf .

• The coefficients for the polynomial approximation of the control policy. The
external control u(t) is approximated with a cubic spline function uN (t) de-
fined by the spline control points Uj,k = [tk, ũj,k], where j = 1, 2, 3 is the
maneuver axis and k = 1, 2, ..., NP , being NP the number of points that will be
used for the interpolation of the control. The NP points are associated to time
instants equally spaced between t0 and tf . The approximated control uN (t) is
discretized in NT + 1 integration points (so that t = t0, t1, ..., tNT = tf ) inter-
polating the NP points Uj,k with cubic splines. Using the PSO displacement
rules, each control policy generated with the spline approximation is feasible
since

if |uNj (ti)| > umax ⇒ |uNj (ti)| = umax, ∀ 0 ≤ i ≤ NT , j = 1, 2, 3. (5.12)

In this way, the control path constraint is imposed a-priori and does not need
to be taken into account in the optimization process.

To summarize, the DPSO particle is defined as

x = [ũ1,1, ..., ũ1,NP , ũ2,1, ..., ũ2,NP , ũ3,1, ..., ũ3,NP , tf ], (5.13)

or, by defining ũi = [ũi,1, ..., ũi,NP ],

x = [ũ1, ũ2, ũ3, tf ]. (5.14)
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With regard to the PSO velocity constraints, ∆ũj,k and ∆tf are defined as the PSO
velocities associated with the control and the maneuver time of each particle. Eq.
(3.9) is taken into account as

|∆ũj,k| ≤ 0.2 · umax , |ũj,k| ≤ umax,

|∆tf | < 0.1 · (tmax − tmin) , tmin < tf < tmax,

k = 1, ..., NP , j = 1, 2, 3.

(5.15)

where umax is the known maximum value of the actuators, while tmax and tmin

may be defined by knowing the unconstrained solution. The values 0.1 and 0.2 are
chosen in order to make the maximum velocities equal to the 10% of the dynamic
range of the particles, as already explained in relation to Eq. (3.9).

The initialization of the time and the control of each particle is based on a uniform
random distribution of the particles within the constraints of Eq. (5.15).

5.3.3 Implementation of the DPSO

Recalling what has been stated in Sec. 2.4.1, let us summarize the details of
the optimization problem so far outlined. Let us write the optimization problem
as a function of the approximated state and control, i.e. ηN , ωN and uN . It is
noteworthy to remind the reader that we approximate only the control and derive
the angular acceleration and the attitude by integrating the rotational dynamics and
the kinematics. The optimization of the constrained slew maneuver with the direct
dynamics approach has the following mathematical form:

Find uN (t) : t→ U ⊂ RNu , tf ∈ R

minimizing

JN = tf − t0
subject to, ∀t ∈ [t0, tf ]

Dynamic constraints: ω̇N = I−1 (uN − ωN × IωN )

˙̄ηN = 1
2 Ξ(η̄N )ωN

Boundary constraints: ωN (t0) = 0 ωN (tf ) = 0

η̄N (t0)− η̄0 = 0, η̄N (tf )− η̄f = 0,

State path constraints: R(η̄N )T σ(t0) · σs − cosαs ≤ 0.

(5.16)

In Eq. (5.16), η̄0 and η̄f denote the exact initial and final angular positions; the
angular velocity must be zero in t = t0 and in t = tf . The end-point constraints
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are equality constraints, while the path constraint is in the form of an inequality
constraint. The solutions that satisfy all the boundary and path constraints lie inside
the FSS. Note that there is no control constraint, as every solution considered by the
optimizer does automatically satisfy ‖u(t)‖∞ − umax ≤ 0 (as usual the L∞-norm is
defined as ‖u(t)‖∞ = max{|ui(t)| : i = 1, 2, 3}). The dynamics constraint is satisfied
via numerical integration.

The swarm progressively moves towards the individuals (if the local best search is
chosen) or individual (if instead the global best search is preferred), which provides
the minimum time of maneuver, ensuring the fulfillment of boundary and path
constraints.

The fitness function is selected in the form of an Exterior Penalty Function (ex-
plained in Sec. 1.3.2). However, differently from the inverse dynamics approach
described in Sec. 4.5 where only inequality path constraints were considered, the di-
rect approach requires the introduction of penalty functions for equality constraints.
Accordingly, the extended performance index is

J
N = tf + b

Neq∑
i

Bi + πP + µNviol + f (5.17)

where Bi is the penalty function for the ith boundary equality constraint with weight
bi, P is the penalty function for the path inequality constraints with weight π, Nviol is
the number of violated constraints with weight µ and f is a feasibility parameter. The
equality constraints (i.e the boundary conditions in Eq. (5.16)) have been divided
into position and velocity.

Given the end-point constraints in Eq. (5.16), Neq = 2 and the penalty functions
B1, B2 are

B1 =
3∑
j=1

max{0,
∣∣∣ωNj (tf )

∣∣∣−∆eq1},

B2 =
4∑
j=1

max{0,
∣∣∣ηNj (tf )− ηj,f

∣∣∣−∆eq2}.
(5.18)

The constraints are taken into account with decreasing tolerances and ∆eq1 and
∆eq2 tend to zero according to the basic decreasing law given in Sec. 4.5.2. However,
equality tolerances are never set to zero, as the optimizer is not able to exactly satisfy
equality constraints. This issue is related to the numerical approximation of the
control and the numerical errors introduced by the numerical integrator.
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The path penalty function P , defined as in Sec. 4.5, is

P =

NT∑
j=0

si(tj) +
NT∑
j=0

mi(tj)

 , (5.19)

where si(ti) and mi(ti) are

si(tj) =

0 if σN (tj) · σS − cosαS < ∆S

1 otherwise
(5.20)

mi(tj) =

0 if σN (tj) · σM − cosαM < ∆M

1 otherwise
(5.21)

and ∆S and ∆M are the constraint tolerances. The angles αS and αM are the
exclusion angles of the Sun and the Moon, respectively. The inequality constraints
are fully satisfied only when ∆S = ∆M = 0. Similarly to the case of the equality
constraints, ∆S and ∆M are decreasing tolerances following the basic law of Sec.
4.5.2.

The term Nviol is the counter that considers the violated constraints. Every time
the global best particle reaches the value of Nviol = 0 the precision is improved, and
the tolerances decrease. The control constraint in Eq. (5.16) is accounted for in Eq.
(5.15). As described in Sec. 4.5.1, we can recognize one internal and one external
loop. In the internal loop, the swarm tries to find a feasible minimum-time solution
considering the current value of the tolerances. As soon as a feasible solution has
been found, the tolerances values are updated in the external loop.

The last parameter f in Eq. (5.17) may be regarded as a feasibility constraint
and it takes into account the geometry of the problem. This term is set to 0 if the
keep-out cones do not intersect. In this case a generic maneuver can pass through
the keep-out cones, even though the best maneuver may lie outside this region. On
the other hand, if the keep-out cones intersect, then f = fmax if the optical sensor
axis σ passes between the axes of the cones and f = 0 otherwise.

Algorithm 1 reports the main characteristics of the DPSO algorithm. Denoting
with k̄ the index of the external loop, the constraint tolerances decrease according
to the following scheme:

1. For k̄ = 1 the keep-out cones constraint is not considered. The swarm moves
towards the maneuver that goes from the initial to the final points, thus
minimizing the time. If the optimal maneuver for this unconstrained case is
known, it can be used as a guess: in this case, only one particle of the swarm
is set to take the form of this optimal maneuver. In this manner, all the other
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Algorithm 1: DPSO algorithm
1 Initialization of constants, swarm and tolerances;
2 while δJg > εc do
3 update constraints tolerances;
4 reset J(k)

p,i , J
(k)
g , J

(k)
l,i ∀i = 1, ..., NS ;

5 while N (gbest)
viol > 0 and δJg > εc do

6 update w, cl, cg;
7 for i = 1 : NS do
8 evaluate the control approximation;
9 integrate Euler’s Equation and the kinematics;

10 compute the sensor orientation;
11 compute the extended performance index ;
12 update J(k)

p,i , J
(k)
g , J

(k)
l,i ;

13 update N (gbest)
viol

14 end
15 for i = 1 : NS do
16 update the i-th particle velocity ;
17 update the i-th particle position;
18 end
19 end
20 end

particles move towards this position, ensuring that the swarm starts the search
inside the FSS.

2. From k̄ = 2 to k̄ = k̄∗ (where k̄∗ may be defined by the user) the keep-out
cones constraint is gradually included. Consequently, if all constraints are
satisfied, the tolerances decrease as j increases from k̄ = 2 to k̄ = k̄∗ . In
particular, in this first part of the loop the local search is set in order to be
more significant than the global search. As a result, the swarm is divided
into different search groups that increase the probability to find the global
minimum of the problem.

3. From k̄ = k̄∗+1 until the end of the external loop, the keep-out cones constraint
is entirely included (i.e. ∆Sun = ∆Moon = 0), and the swarm will continue to
minimize the maneuver time, improving the accuracy of the solution. Note
that ∆eq1 and ∆eq2 are never set equal to zero.

The exit criterion is the one described in Sec. 4.5.3 with M = 3, i.e.

δJg = 1
3

k̂∑
i=k̂−2

J
(i−1)
g − J (i)

g

J
(i)
g

< εc, (5.22)

where the superscript N has not been reported and k̂ is the iteration index where
the global best particle is updated.
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5.4 Inverse-dynamics approach

The direct integration of the control law is a simple and traditional way of dealing
with these types of problems. However, it shows some issues due to the low speed of
the integration process and because it is subject to numerical errors. In fact, in the
numerical code, the use of a function for the integration of the Euler equations is
necessary and it affects the computational performances when high performances
are required. Moreover, boundary constraints cannot be completely satisfied.

In this section the IPSO is used to obtain the solution to the minimum-time
reorientation problem. The novelties and the main important features of the IPSO
method have been already described in Chapter 4. In this section the very first
version the IPSO is described (refer to Ref. [1]). The most important differences
with the definitive IPSO version described in Chapter 4 are 1) the basic B-spline
approximation is employed and 2) the basic adaptive decreasing tolerances consisting
of a piecewise linear law (described in Sec. (4.5.2)) is adopted.

As it will be described, the IPSO may be used as a sub-optimal planner or in
combination with a Pseudospectral Optimal Control Software (POCS) (in this work,
the GPOPS software is employed, see Ref. [57]) to provide a feasible near-optimal
initial guess.

5.4.1 Attitude parametrization

According to the theory introduced in Chapter 4, the inverse dynamics approach is
based on the identification of a flat output vector, y, with the same dimension of the
control. Accordingly, the state must be found as a closed-form analytical function
of the flat output as well as the control, which is evaluated by means of the Euler’s
equation (5.50). As a consequence, ω and ω̇ must be expressed in function of y and
its time derivatives in order to obtain u.

In this section it is proved that the Modified Rodriguez Parameters vector may be
chosen as flat output. Since the control is defined in R3, an attitude description with
only three parameters is required to use the differential flatness formulation. The
Modified Rodrigues Parameters (MRPs, see Ref. [114] for further details) are chosen
as they show no singularity during the maneuver when Θf is below 2π.

The mathematical formulation that describes the kinematics through the MRPs is
reported below. A vector p is defined as

p = η

1 + η4
, (5.23)
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where η and η4 are the vectorial and scalar components of the quaternion. Moreover
p may be rewritten in terms of axis and angle of rotation as

p(n̂, θ) = tan(θ/4)n̂. (5.24)

The rotation matrix using MRPs is

R(p) = I + 4 (1− |p|2)
(1 + |p|2)2 [p̃] + 8

(1 + |p|2)2 [p̃]2, (5.25)

where [p̃] is defined as

[p̃] =


0 p3 −p2

−p3 0 p1

p2 −p1 0

 . (5.26)

The axis angle at time t is given by

σ(t) = R(p)T σ(t0). (5.27)

The derivative of the MRPs vector is related to the angular velocity by the equation

ṗ = 1
4Ψ(p)ω, (5.28)

where the matrix Ψ(p) is defined as

Ψ(p) =
[(

1− pTp
)
I + 2[p̃] + 2ppT

]
. (5.29)

For the following development of the inverse dynamics with PSO algorithm, it is
necessary to find ω(p, ṗ) and ω̇(p, ṗ, p̈). As far as the former vector is concerned, it
is quite simple to obtain it from Eq. (5.28) as

ω = 4Ψ−1(p)ṗ. (5.30)

Imposing the MRPs vector as flat output, i.e. y = p, Eq. (4.1) can be written for
the slew maneuver problem as

x = a (p, ṗ) =
[
p

ω

]
=
[
I3×3

4Ψ−1

] [
p

ṗ

]
. (5.31)

The parameter β in Eq. (4.1) is clearly equal to 1. The matrix Ψ−1 is defined as a
near-orthogonal matrix since its inverse matrix is proportional to its transpose, i.e.

Ψ−1(p) = ΨT (p)
(1 + pTp)2 . (5.32)
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From Eq. (5.30) an important consequence may be drawn, that is

ω = 0 ⇐⇒ ṗ = 0, (5.33)

meaning that a zero angular velocity is obtained whenever the time derivative of the
MRPs vector is zero. From Eq. (5.30), ω̇(p, ṗ, p̈) may be derived as

ω̇ = 4
(
Ψ̇−1(p) ṗ+ Ψ−1(p) p̈

)
, (5.34)

where Ψ̇ and Ψ̇−1 are evaluated as

Ψ̇ =
[
−(ṗTp+ pT ṗ)I + 2[˜̇p] + 2(ṗpT + pṗT )

]
, (5.35)

Ψ̇−1 = Ψ̇T

(1 + pTp)2 −
2ΨT

(1 + pTp)3 (ṗTp+ pT ṗ). (5.36)

These equations fully describe the attitude kinematics through the MRPs vector. The
main feature of the above equations is that an analytical closed-form solution is
found to compute ω and ω̇. Although the mathematical form of these equations
is more complex than the mathematical form described in the attitude kinematics
with the quaternions, the advantage is in dealing with square matrices. In order
to summarize these results, placing Eq. (5.30) and (5.34) in Eq. (5.50), we can
identify b in Eq. (4.1) as the nonlinear function

u = b(p, ṗ, p̈) = Iω̇ + ω × Iω. (5.37)

5.4.2 Definition of the particle

As previously stated in this section, the original method presented in Ref. [1]
was based on the basic B-spline approximation. Hence, similarly to the previous
direct-dynamics case, the particles are arrays containing:

• The value of the maneuver time tf .

• The angular displacement parameters p̃j,k with j = 1, 2, 3 and k = 1, 2, ..., NP .
As before, NP is the number of points used for the interpolation of the angular
displacement. The NP points are associated to time instants equally spaced
between t0 and tf . The kinematics is obtained in NT + 1 points (so that
t = t0, t1, ..., tNT = tf) interpolating the NP points Uj,k = [tk, p̃j,k] with
B-splines.

To summarize, the IPSO particle is defined as:

x = [p̃1,1, ..., p̃1,NP , p̃2,1, ..., p̃2,NP , p̃3,1, ..., p̃3,NP , tf ], (5.38)
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or, by defining p̃i = [p̃i,1, ..., p̃i,NP ],

x = [p̃1, p̃2, p̃3, tf ]. (5.39)

As in the previous approach, ∆p̃j(k) and ∆tf are the velocities associated to the
kinematics and the maneuver time of each particle of the swarm. In this case Eq.
(3.9) takes the following form:

|∆p̃j,k| ≤ 0.2 · tan(θ∗/4) , |p̃j,k| ≤ tan(θ∗/4)

|∆tf | < 0.1 · (tmax − tmin) , tmin < tf < tmax

k = 1, ..., NP , j = 1, 2, 3.

(5.40)

The expression tan(θ∗/4) is explained in Eq. (5.24), while θ∗ is an angle which
satisfies θ∗ ≥ Θf , being Θf the imposed angle of maneuver. The time constraints
tmax and tmin may be defined by knowing the unconstrained solution. The values
0.1 and 0.2 are selected to make the maximum velocities equal to the 10% of the
dynamic range of the particles, as already explained with regards to Eq. (3.9).

The initialization of the kinematics and the maneuver time of each particle is
based on a uniform random distribution of the particles within the constraints of Eq.
(5.40).

5.4.3 Implementation of the basic IPSO

Considering that boundary constraints are a-priori satisfied with the technique pre-
sented in Sec. 4.3, the inverse dynamics formulation of the problem is summarized
as

Find pN (t) : t→ Y = RNu such that pN ∈ YB, tf ∈ R

minimizing

JN = tf − t0
subject to, ∀t ∈ [t0, tf ]

State path constraint: R(pN )T σ(t0) · σs − cosαs ≤ 0,

Control path constraint: ‖b(pN (t), ṗN (t), p̈N (t))‖∞ − umax ≤ 0

(5.41)

As in Sec. 4.3, YB is the set of the flat output approximation functions that satisfy
the boundary constraints. The extreme simplification of this approach lies in the fact
that both the boundary constraints and the initial conditions are imposed a priori for
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each particle. Moreover, the dynamic constraints is no more reported as it is satisfied
analytically by means of Eq. (5.37).

The fitness function is chosen as in Sec. 4.5, i.e.

JN = tf + πP + γC + µNviol + f (5.42)

where π, γ and µ are user-defined weights, P is defined as in Eq. (8.36) and the
control penalty function C is

C =
3∑
i=1

Nt∑
j=0

ci(tj) (5.43)

where ci(ti) is

ci(tj) =

0 if ui(p(t), ṗ(t), p̈(t)) < umax

1 otherwise
(5.44)

This term penalizes the particles whose values of the control exceed umax. The
meanings of Nviol, Gi and f is the same as in Eq. (5.17). As it can be seen, the
fitness function does not need to consider the equality constraints as each particle is
built to fully satisfy the boundary constraints. Consequently, no decreasing tolerances
are introduced for the final attitude and angular velocity.

To clarify the main concepts of the proposed approach, the algorithm is reported
in Algorithm 2. For completeness, the phases in which the algorithm is subdivided
are reported. Though they are quite similar to those showed in the previous section,
these phases also underline the fundamental differences between the IPSO and the
DPSO. Let us call with k̄ the index of the external cycle, where the tolerances values
are updated. Hence, the tolerances decrease according to the following scheme:

1. For k̄ = 1 the keep-out cones constraint is not considered. The swarm must
fly towards the maneuver from the initial point to the final point minimizing
the time. If the optimal maneuver is known, it can be used as the initial guess:
in this case, only one particle of the swarm takes the form of this optimal
maneuver. Differently from the DPSO, in this case the maneuver starts from
the exact point and ends at the exact point. Particles with values of the control
that exceed Mmax are penalized in the fitness function.

2. From k̄ = 2 to k̄ = k̄∗ the keep-out cones constraint is gradually included, i.e. it
is included with a user-defined tolerance. This tolerance decreases according to
user-defined piecewise linear law only when the actual global best solution of
the swarm satisfies the keep-out cones constraint. Consequently, as k̄ increases
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from k̄ = 2 to k̄ = k̄∗, if the keep-out cones constraint is satisfied, the tolerance
is decreased. In particular, in order to avoid the risk of converging to a local
minimum, in the first cycle the local version of PSO is adopted instead of the
global version.

3. From k̄ = k̄∗+1 to the end of the optimization, the keep-out cones constraint is
totally included, and the swarm will continue to minimize only the maneuver
time. Instead of optimizing final position, final velocity and time as in DPSO,
in this case only the time must be optimized, being final position and final
velocity set to their precise value a priori as mentioned above.

The esit criterion is defined as in Eq. (5.22).

5.5 Definition of the test case

In this section the general test case used from this point until the end of the
present chapter is outlined. A satellite for Earth observation in LEO is taken as test
case. The nominal attitude is defined as:

• The zB axis points in the nadir direction towards the Earth.

• The xB axis is in the direction of the spacecraft velocity vector for circular
orbits.

Algorithm 2: IPSO algorithm
1 Initialization of constants, swarm and tolerances;
2 while δJg > εc do
3 update constraints tolerances;
4 reset J(k)

p,i , J
(k)
g , J

(k)
l,i ∀i = 1, ..., NS ;

5 while N (gbest)
viol > 0 and δJg > εc do

6 update w, cl and cg;
7 for i = 1 : NS do
8 approximate p and evaluate ṗ, p̈;
9 compute the sensor orientation;

10 compute of ω, ω̇ and u;
11 compute the extended performance index ;
12 update J(k)

p,i , J
(k)
g , J

(k)
l,i ;

13 update N (gbest)
viol

14 end
15 for i = 1 : NS do
16 update the i-th particle velocity ;
17 update the i-th particle position;
18 end
19 end
20 end
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Fig. 5.2: Right and left looking configurations of the Body Reference Frame.

• The yB axis completes the right-handed coordinate system and it is perpendic-
ular to the orbital plane in the negative orbit normal direction.

A typical operative maneuver is defined as a rotation around the xB axis (roll
rotation): the satellite switches between the Right-Pointing, with a positive roll angle
and zB and pointing to the right with respect to the ground track, and the symmetric
Left-Pointing configuration with a negative roll angle, see Fig. 5.2. In the following
simulation roll angles set to Θf = 60◦ and Θf = 135◦ will be used to switch from
the Right-Pointing position to the Left-Pointing position.

Assuming that the inertia tensor is diagonal in the B and has the following values:

I =


I1 0 0
0 I2 0
0 0 I3

 =


3000 0 0

0 4500 0
0 0 6000

 kg ·m2 (5.45)

Let us consider a star tracker sensor mounted on the yBzB plane with the unit
vector σ expressed in the in BRF as:

σ = 0 ê1 − 0.62 ê2 − 0.79 ê3 (5.46)
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We assume that the attitude maneuvers are obtained through three independent
torques aligned with the axes of the body reference frame B with same maximum
value umax = 0.25 N-m.

Two keep-out cones are considered, centered respectively on the Sun and on the
Moon. The corresponding half-angles are set to 40 deg and 17 deg. The orientations
of the keep-out cones are reported in the following section.

5.6 Comparison of DPSO and basic IPSO

Three different case studies are proposed, whose characteristics are reported in the
Tables 5.2. The roll angle is set to Θf = 60 deg for cases 1 and 2, whereas Θf = 135
deg for the third case. The free angle is the space between the two keep-out cones.
As a further explanation, the geometry of scenario 1 is represented in Fig. 5.3, where
the two keep-out cones, the optimal maneuver and the inertial frame are reported.

The particles explore the search space by means of the unified PSO velocity
expressed in Eq. (3.12). The inertia weight w, the local best constant cl and the
global best constant cg decrease according to Eq. (3.8) and Eq. (3.13). The value of
the parameter K is reported in Table 5.3-5.4, along with all the PSO parameters, for
both DPSO and IPSO. The iteration index j∗ related to the setting ∆ineq = 0 is the
external iteration related to ∆ = 0.08. The total number of external iterations is a
function of the tolerance criteria: both the DPSO and the IPSO stop according to the
criterion in Eq. (4.42) with εc = 10−8 and M = 3.

For numerical reasons, normalized units are considered: the control is divided
by umax, the inertia matrix by I1 and the maneuver time by

√
I1/umax. As a

consequence, Eq. (5.17) and Eq. (5.63) are non- dimensional.

For scenario 1, the PSO solutions will be shown and compared with the optimal
solution obtained with a Pseudospectral Optimal Control Software POCS (the free
version of GPOPS-II for academic purposes has been used, see Ref. [57] for details).

Tab. 5.2: Direction of Sun and Moon in B0 for the proposed scenarios.

Scenario Sun (in B0) Moon (in B0) Free
Angle

N. Θf type σS,x σS,y σS,z σM,x σM,y σM,z

(deg) (deg)

1 60 roll -0.58 -0.08 -0.81 0.41 -0.13 -0.91 0.52
2 60 roll -0.65 0.28 -0.71 0.15 -0.25 -0.96 0.84
3 135 roll -0.18 0.56 0.81 0.95 0.00 0.31 26.41
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Fig. 5.3: 3D plot of the basic IPSO solution for scenario 1.

Tab. 5.3: Basic IPSO constant parameters

Parameter Value Parameter Value

NS 30 εc 10−8

NP 8 b 10
D 7 π 10
K 1000 γ 10
cp 1.5 µ 10
fmax 1010 LR 3

Tab. 5.4: Basic IPSO variable parameters

Parameter Initial Final
Value Value

∆eq(·) 0.14 variable
∆S = ∆M 0.14 0
w 1.2 0.6
cl 2 0
cg 0 2

Scenario 2 is presented to underline that the IPSO approach performs better than
the DPSO approach. However, the graphs of the solutions for scenario 2 do not differ
much from those of scenario 1, and consequently will be not reported.

All results are obtained considering a PC with a processor Intel® CoreTM i7-
2670QM CPU @ 2.20GHz and with 6.00 GB of RAM.

5.6.1 DPSO Results

The DPSO algorithm produces a solution with a sub-optimal final time; moreover,
the boundary constraints are not completely satisfied. However, this kind of solution
may be used as optimal initial guess to be given to a POCS, which may eventually
find the optimal solution.

The only disadvantage is that the DPSO algorithm is strongly affected by the
chosen geometry. The same algorithm may deliver excellent results with regards to
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Fig. 5.4: Control policy from DPSO and POCS, scenario 1.
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Fig. 5.5: Angular velocity history from DPSO and POCS, scenario 1.

the fulfillment of the boundary conditions for one geometry, and poor results for
another one.
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Fig. 5.6: Quaternions history from DPSO and POCS, scenario 1.

Tab. 5.5: Final state values for a sample experiment with DPSO, scenario 1.

Expected Absolute
Units Final value final value error

ω1 (rad/s) −2.5061 · 10−6 0 −2.5061 · 10−6

ω2 (rad/s) −8.3160 · 10−7 0 −8.3160 · 10−7

ω3 (rad/s) −1.9921 · 10−7 0 −1.9921 · 10−7

η1 (-) 0.4998 0.5 0.0002
η2 (-) −2.8491 · 10−4 0 −2.8491 · 10−4

η3 (-) 2.1350 · 10−4 0 2.1350 · 10−4

η4 (-) 0.8661 0.8660 0.0001
tf (s) 228.6434 225.3324 3.3110

The results obtained in case 1 are shown in Fig. 5.4, Fig. 5.5 and Fig. 5.6, where
they are compared with the optimal solution given by the POCS. In this case, both
the angular displacement and the angular velocity reach the desired final value with
acceptable tolerance values. The errors on the boundary constraints are reported in
Table 5.5 where the results of a generic simulation are chosen. From the comparison
with the POCS optimal solution, it is clear that the result is in agreement with the
optimal solution.

In Table 5.6, ten example results obtained with the DPSO are reported. T refers
to the computational time, tf is the obtained maneuver time and ε represents the
percentage relative error with respect to the POCS optimal time t∗f = 225.33 s. The
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Tab. 5.6: List of 10 results obtained with DPSO, scenario 1.

Case TDPSO tf ε ∆θ ∆‖ω‖
(s) (s) (-) (deg) (deg/s)

1 217.51 228.19 1.27 % 0.12 0.05
2 263.98 234.83 4.22 % 0.29 0.09
3 284.46 228.11 1.23 % 0.08 0.03
4 242.52 225.22 -0.05 % 2.10 0.87
5 218.06 249.17 10.58 % 0.06 0.02
6 190.74 240.22 6.61 % 0.75 0.27
7 216.35 225.10 -0.10 % 2.34 0.71
8 216.87 228.51 1.41 % 0.05 0.03
9 248.90 228.09 1.22 % 0.08 0.06
10 221.10 235.95 4.71 % 0.05 0.03

Tab. 5.7: Final state values from a sample experiment obtained with DPSO, scenario 2.

Expected Absolute
Units Final value final value error

ω1 (rad/s) 1.7812 · 10−4 0 1.7812 · 10−4

ω2 (rad/s) 1.7981 · 10−4 0 1.7981 · 10−4

ω3 (rad/s) −1.3373 · 10−4 0 1.3373 · 10−4

η1 (-) 0.4804 0.5 0.0196
η2 (-) −0.0200 0 0.0200
η3 (-) −0.0070 0 0.0070
η4 (-) 0.8768 0.8660 0.0108
tf (s) 222.1578 225.9021 3.7443

value ∆θ is the difference between the obtained angle of rotation θ and the imposed
Θf while ∆‖ω‖ is the norm of the error of the final angular velocity. With the DPSO
approach, the maneuver time is affected by highly variable relative errors. Moreover,
the tests 4 and 7 show that, when tf is in proximity with t∗f , the rotation angle is
affected by a relatively high error. Furthermore, the required computational time
varies from one test to another. This unstable trend of results makes the generic
DPSO solution unreliable.

When case 2 is analyzed with DPSO, the results are poorer than those obtained in
the first case. The errors on the boundary constraints are reported in Table 5.7: it
can be seen that the errors are greater than those obtained in case 1. The maneuver
time tf , however, is as positive as in those solutions of the first case.

The solutions in cases 1 and 2 using the DPSO approach cannot be used as
stand-alone solutions unless a further control system improves the final time of the
maneuver. However, the DPSO solution may always be used as the initial guess for a
POCS.
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5.6.2 Basic IPSO results

In this section the results obtained with the IPSO are shown. Note that these
results are related to the first version of the IPSO, and improved results are reported
in the following sections.

The advantage of the IPSO approach may be evaluated comparing its solution
with the DPSO solution. In Fig. 5.7, Fig. 5.9 and Fig. 5.8, where case 1 is studied,
the IPSO solution is compared with the POCS solution. The IPSO result captures all
the essential characteristics of the optimal maneuver. Although the IPSO algorithm
uses the Modified Rodrigues Parameter, the angular displacement is described using
the quaternions, in order to easily compare the solutions offered by the different
methods. Therefore, for example, the IPSO control shown in Fig. 5.7 is positive on
each axis when the optimal maneuver requires a positive bang, and negative when
the optimal maneuver requires a negative bang. The trend of the quaternions (Fig.
5.9) and that of the angular velocity (Fig. 5.8) is still closer to the optimal one. Both
the angular displacement (i.e. the values of the quaternion) and the angular velocity
reach the imposed final value. In fact, the most important difference between the
IPSO and the DPSO algorithm is that the IPSO satisfies completely all the boundary
conditions since they are imposed at the beginning of the algorithm.
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Fig. 5.7: Control policy from basic IPSO and POCS, scenario 1.
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Fig. 5.9: Quaternions history from basic IPSO and POCS, scenario 1.

The evolution of the swarm is reported through Fig. 5.10, Fig. 5.11 and Fig. 5.12,
where the maneuver is shown in the inertial reference frame in terms of latitude
and longitude. The reference frame is rotated in order to make the figures easier to
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Fig. 5.10: Sensor path at the initialization of the basic IPSO algorithm, scenario 2.
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Fig. 5.11: Evolution of the sensor path associated to the global best particle, scenario 2.

read, i.e. the axes of the keep-out cones are brought near the equator axis (where
the latitude is equal to zero) to minimize the deformation of the cones.

As it can be seen in Fig. 5.10, in the first step, the sensor axis goes from A to B
without considering the two keep-out cones and passing through them. The idea
used in the simulation is that one of the particles of the swarm is initialized with a
linear interpolation between the initial and the final values of the Modified Rodriguez
Parameters, while for the value of the final time it is not required to select particular
value. This expedient guarantees that all particles enter the feasible search space in
the first cycle of the evolution, when the keep-out cones are not contemplated.

In the following cycles (Fig. 5.11), the swarm moves in such a way that the
keep-out cones constraint is progressively satisfied: the global best particle moves
from A to B in order to minimize the maneuver time and the inclusion of the keep-out
cones simultaneously. The arrows and the different colors of the maneuvers show
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Fig. 5.12: Optimal sensor path at the end of the evolution, scenario 2.

the direction of the evolution. The progressive removal of the keep-out cones is
implemented to make the evolution faster. In fact, only a little alteration of the
global best is needed in order to completely satisfy the renewed tolerance value.

Finally, as it can be seen in Fig. 5.12, the swarm satisfies completely the keep-out
cones constraint and evolves ito minimize the maneuver time. With regards to the
kinematics, no relevant differences are to be seen between the IPSO and the POCS
solutions. The most important criterion, which is to prevent the axis from entering
the keep-out cones, is a common characteristic of all the geometries studied with
the IPSO approach.

We observe an important feature of the IPSO through the different numerical
simulations: even when the evaluation of the direction of the trajectory is incorrect
in the first cycles (i.e. the maneuver does not pass between the cones), the swarm is
able to change direction and set the new global best particle thanks to the division
of the swarm in several search groups.

With regards to the computational time, a list of 10 different experiments carried
out for case 1 are reported in Table 5.8. As before, T refers to the computational
time, tf refers to the maneuver time and ε represents the relative error with respect
to the POCS optimal time t∗f = 225.33 s. The following important remarks may be
pointed out:

• The computational time does not substantially change from one experiment to
another.

• The computational time has been halved with respect to the computational
time required by the DPSO algorithm.
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Tab. 5.8: List of 10 results obtained with IPSO, scenario 1.

Case TIPSO tf ε
(s) (s)

1 107.60 232.23 3.06 %
2 107.15 232.03 2.97 %
3 107.85 232.09 3.00 %
4 108.53 232.12 3.01 %
5 108.09 231.93 2.93 %
6 108.48 232.45 3.16 %
7 107.62 231.92 2.92 %
8 108.15 233.11 3.45 %
9 108.11 232.33 3.11 %
10 108.10 232.85 3.34 %

• The error between the obtained final time and the optimal one (225.33 s) is
always about 3%, which is a very reasonable result. The unstable trend of the
DPSO approach is removed, making the IPSO a more reliable solution.

With regards to the solution in case 2, IPSO provides the same results as in case 1.
The computational time is equal to the computational time in case 1. The boundary
constraints are completely satisfied, as well as the constraint defined by the keep-out
cones and the error of the final time is always about 3%. The performances are the
same reported in Table 5.8, with errors sharing the same order of magnitude about
the maneuver time tf .

The strength of the IPSO lies in the fact that a near-optimal solution can be found
for all geometries without requiring different computational times. As a final remark,
it is important to underline that the IPSO solution is able to fully satisfy all the
boundary and path constraints offering a maneuver time slightly greater than the
optimal one. If the constraint about the optimal minimum time is relaxed and a
near-optimal solution consistent with the constraints is accepted, then the IPSO
solution is favorable considering the computational time required. Moreover, while
no differences have been reported when analyzing cases 1 and 2 applying the IPSO
approach, using a POCS, case 2 is more difficult to solve than case 1, because it
requires greater computational times to obtain a positive solution.

5.6.3 Basic IPSO solution used as best guess

The IPSO approach may be used as:

1. Initial guess for a POCS, as the DPSO approach.
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Tab. 5.9: List of 10 results obtained with the Hybrid Method technique, scenario 1.

Case TIPSO tf,IPSO TPOCS tf,POCS TTOT
(s) (s) (s) (s) (s)

1 107.60 232.23 178.17 225.33 285.77
2 107.15 232.03 61.23 225.33 168.38
3 107.85 232.09 203.68 225.33 311.53
4 108.53 232.12 67.78 225.33 176.31
5 108.09 231.93 87.86 225.33 195.95
6 108.48 232.45 75.76 225.33 184.24
7 107.62 231.92 107.78 225.33 215.40
8 108.15 233.11 88.60 225.33 196.74
9 108.11 232.33 93.31 225.33 201.42
10 108.10 232.85 207.39 225.33 315.49

2. Planner for near minimum-time maneuvers: in fact the algorithm guarantee
that all constraints are satisfied. Moreover, the numerical results will prove
that the maneuver time is very close to that obtained with the POCS approach.

If the computation of the exact optimal solution is required, the IPSO algorithm
alone is not sufficient, since it only gives a near-optimal solution. As mentioned in
the previous sections, the exact solution may be obtained using a POCS which often
requires high computational times. Differently from the proposed PSO algorithms,
which require always the same computational time regardless of the geometry, the
POCS may significantly change in behavior depending on the studied geometry. In
order to prevent such a problem, a hybrid method is proposed (such a strategy has
already been proposed in [102]): a sub-optimal solution produced by IPSO is given
as best guess to the POCS, which may now obtain the optimal solution in very low
computational times. In this case, in fact, the POCS only needs to improve the IPSO
solution, that is closer to the optimum. Furthermore, the DPSO may be used as the
initial guess obtaining the same improvement in the computational time required
by the POCS. However, the IPSO minimizes the total computational time, requiring
less time to evaluate the sub-optimal solution than the DPSO. When no initial guess
is given, the POCS creates the initial solution as a linear interpolation between the
initial and the final values both for the state and the control.

It is important to underline that the behavior of the pseudospectral optimization
software is strongly related to the required tolerance at the mesh points. When a
bang-bang solution is the optimal solution, a high value of the tolerance is needed,
and the computational time is quite high. For the reported experiments, the mesh
tolerance is set to 10−11. Obviously, when higher tolerances are required, the hybrid
method is even more useful.
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Tab. 5.10: List of 10 results obtained with the Hybrid Method technique, scenario 3.

Case TIPSO tf,IPSO TPOCS tf,POCS TTOT
(s) (s) (s) (s) (s)

1 99.32 443.82 150.06 404.71 249.38
2 100.42 452.61 141.63 404.71 242.05
3 99.61 447.78 175.41 404.71 275.01
4 99.79 449.83 346.00 404.71 445.79
5 96.50 443.39 252.11 404.71 348.61
6 96.49 453.79 234.74 404.71 331.22
7 100.22 443.63 259.96 404.71 360.18
8 105.58 446.79 188.97 404.71 294.56
9 99.75 456.66 151.34 404.71 251.09
10 100.20 453.49 197.74 404.71 297.94

With regards to scenario 1, the optimal solution is shown in Fig. 5.7, Fig. 5.9
and Fig. 5.8, where the behaviour of angular displacements, angular velocities and
control are reported. As far as the computational time is concerned, the Table 5.9
reports the computational time required by the hybrid method. The total required
time is, on average, 225.12 seconds; when using the POCS without the best guess,
the computational time is on average 351.25 seconds. As it can be seen, the hybrid
method leads to a timesavings of 35.91%. The advantage may be also seen in the
mesh refinements and the total variables needed in order to obtain the optimal
solution: their value is always higher when a best guess is not given.

For scenario 3 in Table 5.10, the computational time required by the hybrid method
is on average 323.77 seconds, as reported in Table 5.10. When no best guess is used,
the average computational time required by the POCS is 1522.57 seconds, which
is almost five times the computational effort of the hybrid approach. This test has
been carried out using the same satellite but with different positions of the sensor
axis and different exclusion cones.

It may be important to underline that if, on one hand, the pseudospectral al-
gorithm provides the optimal solution, on the other hand, it may require greater
computational times. Sometimes, as for scenario 2, the optimal solution may be
obtained with only very high tolerances.

5.7 Improved IPSO results

In this section the results from Ref. [2] are reported. In this section the definitive
IPSO version is implemented, i.e. the one described in Sec. 4.1. When IPSO with
improved B-spline approximation is employed, the particles are arrays containing:
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• The value of the maneuver time tf .

• The angular displacement parameters p̃j,k with j = 1, 2, 3 and k = 1, 2, ..., NP .
As before, n is the number of scalars required by the chosen angular represen-
tation and NP is the number of points used for the interpolation of the angular
displacement.

• the time instants t̃j,k. The kinematics is obtained in NT + 1 points (so that
t̃ = [t̃i,1 = 0, t̃i,2 > t̃i,1, ..., t̃i,NP−1 = 1]) interpolating the NP points Uj,k =
[tj,k, p̃j,k] with B-splines.

The difference between the basic B-spline approximation is that the parameters
t
(i)
k are no more equally spaced but are variable used to shape the time B-spline

mesh, as described in Sec. 4.4. Accordingly, the IPSO particle is defined as:

x = [p̃1, ..., p̃Nu , t̃1, ..., t̃Nu , tf ] ∈ R2NuNP+1. (5.47)

In the following, it is shown that the improved B-spline approximation leads to
more accurate solutions with respect to the basic B-spline approximation. This is
due to the fact that each flat output parameter can vary its time mesh in order to
improve the approximation of the optimal flat output trajectory.

Five different case studies are proposed, whose characteristics are reported in
Table 5.11. The geometries of the first four scenarios are reported in Fig. 5.13. The
directions of the Moon and the Sun are expressed in B0. The first and the second
cases are different roll rotations with the minimum-time maneuver between the
keep-out cones. The third case is a pitch rotation and the fourth case is a roll rotation
where the minimum-time maneuver is not between the two cones. The maneuvers
reported in Fig. 5.13 have been obtained with the IPSO approach. Note that case 1
is the same as case 1 in Sec. 5.6. Scenario 5 will be considered in Sec. 5.7.3 since it
is a special case with zero free angle.

The exit criterion is the one described in Sec. 4.5.3 with M = 10, i.e.

δJg = 1
10

k̂∑
i=k̂−9

J
(i−1)
g − J (i)

g

J
(i)
g

< εc, (5.48)

where the superscript N has not been reported and k̂ is the iteration index where
the global best particle is updated.
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Fig. 5.13: Proposed scenarios for the improved IPSO tests.

5.7.1 Keep-out cone constraint

First of all it is interesting to report how the improved strategy for the decreasing
tolerances (see Sec. 4.5.2 for details) affects the keep-out cones constraint whose
evolution during the IPSO process is reported in Fig. 5.14. In the first step (sub-
figure 5.14.a), the keep-out cone constraint is not taken into account. As can be
seen, one particle of the swarm may be initialized with a sensor trajectory going
from the initial position to the final position along a straight line. In particular, the
angular distance between the Sun and the Moon axes and this straight trajectory

Tab. 5.11: Direction of Sun and Moon in B0 for the proposed case studies with improved
IPSO.

Scenario Sun (in B0) Moon (in B0) Free
Angle

N. Θf type σS,x σS,y σS,z σM,x σM,y σM,z

(deg) (deg)

1 60 roll -0.58 -0.08 -0.81 0.41 -0.13 -0.91 0.52
2 60 roll -0.65 -0.65 -0.40 0.10 -0.29 -0.95 0.84
3 60 pitch -0.12 -0.98 -0.19 -0.19 -0.32 -0.93 0.60
4 60 roll -0.88 -0.13 -0.45 -0.06 0.02 -0.99 0.78
5 60 roll -0.58 -0.08 -0.81 0.29 -0.09 -0.95 0
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Fig. 5.14: Decreasing tolerances strategy for the keep-out cones, scenario 1.

may be evaluated and designated β0
S and β0

M according to Fig. 5.1. Considering the
Sun keep-out constraint, the initial value of the keep-out tolerance may be set as

∆(0)
S =


ε1 if β0

S ≥ αS
1− cos

(
αS − ε2β0

S

)
if αS > β0

S≥ε3
1− cos αS if β0

S < ε3

(5.49)

where, for this work, ε1 = 0.05, ε2 = 0.8 and ε3 = 10 degree. The initial value of the
Moon keep-out tolerance is evaluated in the same way.

As can be seen from Fig. 5.14, the keep-out constraints are are slowly introduced
in the optimization process (sub-figures 5.14.b and 5.14.c) until they are completely
satisfied as in 5.14.d. Though other initial values of the keep-out constraint toler-
ances may be chosen, it is of the utmost importance to underline that the decreasing
tolerances strategy leads to a very straightforward evolution of the swarm which
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is difficult to achieve when the cone constraints are completely taken into account
from the beginning of the evolution.

5.7.2 Free angle between keep-out cones

All the results obtained with the proposed approach have been compared with the
results obtained with a POCS. In Fig. 5.15 the percentage error of the IPSO otimal
time with respect to the POCS optimal time is reported after having carried out 600
experiments. As it can be seen, case 1 and case 3 have a mean error of about 2%,
while in the other two cases we arrive at a maximum mean error of about 6%. It can
be seen that, for case 1, the performances have been improved with respect to those
obtained with the basic B-spline approximation in Sec. 5.6.

The most important characteristic of the proposed approach is that the solution is
always around the POCS solution, i.e. the problem of local minima associated with
other possible trajectory around the exclusion cone is completely avoided. This is
particularly important for cases 2 and 4, where a local minimum with final time close
to the obtained minimum time exists on the opposite side of the reported maneuver
(Fig. 5.13).

Detailed results have been reported for scenario 1 choosing one reference experi-
ment. From Fig. 5.16, 5.17 and 5.18 we can see that the IPSO solution along the
x axis is quite identical to the POCS solution. In this case, the maneuver is mainly
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Fig. 5.15: Distribution of the improved IPSO results (600 test cases).
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Fig. 5.16: Control policy from improved IPSO and POCS, scenario 1.
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Fig. 5.18: MRPs history from improved IPSO and POCS, scenario 1.

along the xB axis: this result means that the main characteristics of the maneuver
have been caught from the IPSO solution. The yB and zB axes show IPSO trends
that differ from the POCS ones. It must be noted that all the constraints are satisfied
by both the IPSO and POCS solutions.

With a refinement of the implemented code, the mean computational times
required by the proposed IPSO approach has been reduced with respect to the one
reported in Sec. 5.6: for the reported test cases about 50 seconds are required for the
obtainment of the solution. This time does not depend on the particular geometry of
the analyzed cases. A further reduction of the computational time will be one of the
goal of the future development of the algorithm.

Accordingly with previous works in literature (e.g, see Ref. [102]) and similarly
to Sec. 5.6.3, it has been noted that, using the IPSO solution as best guess for the
POCS, computational times may be considerably reduced. For example, solving case
2 with the IPSO guess requires about 70 seconds, while about 3800 seconds are
required without best guess.
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5.7.3 No free angle between keep-out cones

In the previous section the reliability of the IPSO has been demonstrated through
4 different scenarios. In this section, scenario 5 in Table 5.11 is investigated to show
the maneuver that can be evaluated when the two keep-out cones intersect each
other. In this case, the parameter f introduced in Eq. (5.63) plays a fundamental
role in understanding the feasibility of the PSO particle. We remind the reader that
the method requires a complete knowledge of the keep-out cones geometries, so
that the parameter f may be evaluated and used to compute the performance index
of the particles.
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Fig. 5.19: IPSO trajectory with no free angle, scenario 5.

The geometry considered in this section is scenario 5 reported in Table 5.11. The
reader can verify that no free angle is left between the cones. The near-optimal
IPSO solution is reported in Fig. 5.19. The maneuver takes 430.75 s. The IPSO
performances are consistent with the ones reported in the previous section. Also in
this case, moreover, the control resembles a bang-bang policy.

5.8 Spacecraft modelled with reaction wheels

This chapter examines a new numerical solution based on IPSO to determine
the approximate solutions for a constrained, time-optimal satellite reorientation
problem accomplished with reaction wheels. The theory and the results reported
in the following are taken from the author’s paper, Ref. [3]. Reaction wheels are
commonly used for satellite attitude control and they can be mathematically modeled
as internal torques in Euler’s equation of rigid-body motion.

So far, several works considering slew maneuvers with reaction wheels may be
found in the literature, starting from papers dating back to the 1990’s [115, 116]
and continuing to recent years [117, 118]. The introduction of the wheel dynamics
requires taking into account the conservation of the total inertial angular momentum
and the saturation of the wheel velocity and acceleration.
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In this section, the problem described in Sec. 5.2 is modeled with more details
introducing the internal torques of the wheels. The inverse dynamics approach is
exploited and, accordingly, the object of IPSO evolution is the kinematics rather than
the control. As a result, the final boundary constraints are exactly satisfied. However,
the proper modeling of the wheels requires the integration of only a part of the
equation of motion: in this chapter this issue has been tackled involving a fixed-step
integrator.

In this chapter the definitive version of the IPSO has been used, i.e. the one de-
scribed in Chapter 4. Accordingly, the improved B-spline approximation is employed
and adaptive decreasing tolerances are used.

5.8.1 Dynamical model

In a satellite-fixed reference frame S placed at the CM, we define the satellite
angular momentum as HS = ISωS/I , where ωS/I is the angular velocity of the
satellite with respect to the inertial frame I expressed in S. If reaction wheels are
used to accomplish the maneuvers, we can define the total angular momentum
Ht = HS +HW , with HW = IWωW/I (the angular momentum of the wheels)
where ωìW/I is the angular velocity of the wheels with respect to I expressed in S.
The free rigid-body motion of a satellite equipped with reaction wheels is described
by Euler’s equation [119]

Ḣt + ωS/I ×Ht = 0 (5.50)

that can be split into the satellite and wheel contributions:

Ḣ
S + ωS/I ×HS = −ḢW − ωS/I ×HW . (5.51)

The rhs of Eq. (5.51) properly defines the internal torques T int of the system, i.e.

Ḣ
W + ωS/I ×HW = −T int . (5.52)

The motion of the wheels influences the motion of the satellite by 1) changing the
speed of the wheels through an electric motor (1st lhs term in Eq. (5.52)) and 2)
changing the orientation of the wheels with respect to I (2nd lhs term in Eq. (5.52)).
Note that the second term is a gyroscopic term due to the motion of the satellite.

When a body reference system B aligned with the principal inertia axes is chosen
in S such as B = {êx, êy, êz}, the inertia tensor IS is diagonal and the satellite
angular momentum HS is

HS = [ISx ωS/I
x ISy ω

S/I
y ISz ω

S/I
z ]T . (5.53)
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Fig. 5.20: Spacecraft model with reaction wheels.

Moreover, let = {xS , yS , zS} be the orthonormal axes defined in B. Finally, B0 =
{ê0,x, ê0,y, ê0,z} is an inertial reference system coincident with B at t = t0.

Without loss of generality, let us assume that three reaction wheels labeled as W1,
W2 and W3 with the same polar moment of inertia IW are exploited and that they
are aligned with the reference system axes as reported in Fig. 5.20. Accordingly,
denoting with ωW1/I , ωW2/I and ωW3/I the norm of the angular velocities of the
three wheels, we can define the total angular velocity of the wheels as

ωW/I =


ωW1/I

0
0

+


0

ωW2/I

0

+


0
0

ωW3/I

=


ω
W/I
x

ω
W/I
y

ω
W/I
z

 (5.54)

and HW = IWωW/I = IW
(
ωW/S + ωS/I

)
takes the following form:

HW =


IW 0 0
0 IW 0
0 0 IW



ω
W/S
x + ω

S/I
x

ω
W/S
y + ω

S/I
y

ω
W/S
z + ω

S/I
z

 . (5.55)

Simplifying the notation and using W and S to denote W/S and S/I and intro-
ducing Eq. (5.53) and Eq. (5.55) into Eq. (5.51) yields

ISω̇S + ωS × ISωS = (5.56)

−IWω̇W − IWω̇S − ωS × IWωW − ωS × IWωS .
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Rearranging Eq. (5.56) and defining It = IS + IW we obtain

Itω̇S + ωS × ItωS = −IWω̇W − ωS × IWωW . (5.57)

Finally, Eq. (5.57) can be split as

Itω̇S + ωS × ItωS = T̃ int , (5.58a)

IWω̇W + ωS × IWωW = −T̃ int , (5.58b)

where the difference of T̃ int from T int comes from a comparison of Eq. (5.58a) with
Eq.(5.52).

5.8.2 Minimum-time slew maneuver problem

The problem is formulated as a Mayer optimal control problem [25], with per-
formance index J = tf − t0, where t0 = 0. The optimization problem may be
summarized as follows:

Find p(t),ωS(t),ωW(t), tf ∈ R

minimizing

J = tf − t0
subject to, ∀t ∈ [t0, tf ]

dynamic constraints: Itω̇S + ωS × ItωS = T̃ int

IWω̇W + ωS × IWωW = −T̃ int
kinematic constraints: ωS = 4Ψ−1(p)ṗ

ω̇S = 4
(
Ψ̇−1(p) ṗ+ Ψ−1(p) p̈

)
initial conditions: p(t0)− p0 = 0 , ṗ(t0) = 0

ωW(t0) = 0

final conditions: p(tf )− pf = 0 , ṗ(tf ) = 0

state path constraint: σ(t) · σs − cos(αs) ≤ 0

control path constraints:
∥∥∥ḢW(t)

∥∥∥
∞
≤ ḢW

max∥∥∥ωW/S(t)
∥∥∥
∞
≤ ωW

max

(5.59)

The dynamic constraints have been described in Sec. 5.8.1, whereas the kinematic
constraints are the same as in the previous sections. Initial and final conditions are
imposed in order to deal with a rest-to-rest maneuver, and the path constraint is the
keep-out-cone constraint introduced in Sec. 5.2.
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For the proposed problem, the control constraints are imposed as saturation
constraints on the torques and the angular momentum of the reaction wheels. The
torque constraint is linked to the term ḢW and not to T int, consistent with what
was discussed after Eq. (5.52). The angular momentum constraint is applied to
ωW/S , i.e. to the wheels’ angular velocities with respect to to the satellite reference
frame.

5.8.3 IPSO transcription

The IPSO transcription of the problem is similar to the one proposed in Sec. 5.7.
Indeed, the improved IPSO method is applied and the PSO particle is defined as

x = [p̃1, ..., p̃Nu , t̃1, ..., t̃Nu , tf ] ∈ R2NuNP+1. (5.60)

As can be seen, the IPSO is applied only to the satellite kinematics. Actually, the
approach that is described here represents an hybrid application of the IPSO, since
there is a simultaneous application of inverse and direct approaches. The satellite
dynamics is solved via inverse method, whereas the wheels’ dynamics is solved via
direct method, i.e. with numerical integration.

As a consequence, the transcribed optimal control problem is reported in Eq.
(5.61).

Find pN (t) : t→ Y = RNu such thatpN ∈ YB, tf ∈ R

minimizing

J = tf − t0
subject to, ∀t ∈ [t0, tf ]

dynamic constraints: IWω̇W + ωS × IWωW = −T̃ int(pN , ṗN , p̈N )

initial conditions: ωW(t0) = 0

state path constraint: R(pN )T σ(t0) · σs − cosαs ≤ 0,

control path constraints:
∥∥∥ḢW(t)

∥∥∥
∞
≤ ḢW

max∥∥∥ωW/S(t)
∥∥∥
∞
≤ ωW

max

(5.61)

5.8.4 Numerical integration strategy

The problem is solved with the IPSO technique. However, the proposed IPSO-
based algorithm applies only for Eq. (5.58a). In fact, Eq. (5.58b) must be integrated
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in order to evaluate ωW and ω̇W , and consequently HW and ḢW . In this case, a
fixed-step integrator is adopted. In particular, a 3(2) Runge-Kutta integration method
based on the 3rd-order formula with a control given by the 2nd-order formula has
been chosen. The Butcher tableau [120] that has been selected for this work is:

3(2) Butcher tableau

0
1 1

1/2 1/4 1/4

1/6 1/6 2/3
1/2 1/2

Referring to the 2nd- and 3rd-order approximations as y∗∗ and y∗∗∗, respectively, the
criterion to be satisfied by a successful integration at the step n+ 1 is:∥∥y∗∗n+1 − y∗∗∗n+1

∥∥
∞

max (‖yn‖∞ , 1.0) < εr (5.62)

where εr is the user-defined relative tolerance. The integration is carried out in the
following way:

1. We try the numerical integration imposing a guess value of the integration
time step given by tf/(L0 − 1), where L0 is the length of the time mesh used
for the first integration attempt.

2. If the integration satisfies the imposed tolerance εr at every mesh point, then
the process is finished.

3. If the integration violates the imposed tolerance at least at one point, the time
step in reduced, the internal torques are interpolated on the updated time
mesh and the process is repeated from point 2).

The mesh improvement is tried up to Nm times, so that at the nth integration
trial the time mesh is nL0. This procedure allows the use of a simple and effective
integrator which usually requires a low computational effort (see the results section
for details). However, if the 3(2) scheme fails to converge, a variable step Runge
Kutta (4,5) is used (even though it increases the computational time).

The fundamental steps required by the proposed algorithm are reported in Algo-
rithm 3. The convergence criterion is the one reported in Sec. 4.5.3.
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Algorithm 3: IPSO algorithm
1 Initialization of constants, swarm and tolerances;
2 while δJg > εc do
3 update the tolerances;
4 reset J(k)

p,i , J
(k)
g , J

(k)
l,i ;

5 while N (gbest)
viol > 0 and δJg > εc do

6 update w, cl and cg;
7 for j = 1 : NS do
8 interpolate p, ṗ and p̈;
9 compute the sensor rotation;

10 compute of ω and ω̇, and T̃int from Eq. (5.58a);
11 integrate the wheels dynamics, Eq. (5.58b);
12 compute Jki ;
13 update J(k)

p,i , J
(k)
g , J

(k)
l,i ;

14 update N (gbest)
viol

15 end
16 for j = 1 : NS do
17 update the swarm velocity and position;
18 end
19 end
20 end

5.8.5 Constraint violation and performance index

In accordance with Sec. 4.5, the fitness function is selected in the form of an
Exterior Penalty Function. The extended performance index is defined as in Eq.
(5.63), i.e.

JN = tf + πP + C + µNviol + f. (5.63)

However, the control penalty function C must be revised to include the wheels’
constraints. In further details, C is now defined as

C = γ1

3∑
j=1

Nt∑
j=0

hi(tj) + γ1

3∑
j=1

Nt∑
j=0

$i(tj) (5.64)

where γ1 and γ2 are user-defined weights and hi(ti) and $i(ti) are

hi(tj) =

0 if ḢW
i (tj)− ḢW

max < ∆C1

1 otherwise
(5.65)

$i(tj) =

0 if ωW
i (tj)− ωW

max < ∆C2

1 otherwise
(5.66)

being ∆C1 and ∆C2 are constraint tolerances. All the tolerances are implemented
with the refined decreasing law defined in Sec. 4.5.2. The exit condition is the same
as in Eq. (5.48).
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5.8.6 Parameters and problem setting

The IPSO parameters used for the following numerical simulations are summarized
in Table 5.12 and Table 5.13. The former reports the constant parameters, the latter
takes into account the variable parameters, according to what has been described in
the previous sections.

Having set NP = 8 in Table 5.12, the IPSO particle x (define as in Eq. (5.47))
contains 49 optimization variables. The constraint tolerances ∆C1 and ∆C2 in Table
5.13 are applied once the torques and the momenta of the wheels are normalized by
ḢW
max and HW

max = IWωW
max, respectively. With regard to ∆S and ∆M , their initial

value may be chosen in order to help the initial movement of the swarm, as will be
explained later in this section. All results are obtained using a PC with a Intel®
CoreTM i7-2670QM CPU @ 2.20GHz processor and with 6.00 GB of RAM.

For the numerical simulations, the same low Earth-orbit satellite considered in
Sec. 5.6 is taken into account. For the wheels, we assume that ḢW

max = 0.25 Nm,
ωW
max = 4000 rpm and IW = 0.1 kg·m2.

The geometries considered in this section are given in Table 5.14 for scenario
1, 2 and 3. For scenario 3, the two keep-out cones intersect and do not leave any
free angles. As a consequence, the optimal maneuver will lie outside the keep-out
cones.

The three geometries are reported in Fig. 5.21, where the graph is reported in
the inertial reference system B0 in terms of latitude and longitude. In this case the
reference system is chosen as to have the axes of the keep-out cones near the equator
axis (where the latitude is equal to zero) in order to minimize the deformation of the
cones. The sensor axis trajectories have been found using the IPSO. The computed
maneuvers are completely feasible, i.e. they completely satisfy all the constraints in
Eq. 5.61.

Tab. 5.12: IPSO constant parameters

Parameter Value Parameter Value
NS 30 εc 1e-10
NP 8 εr 1e-4
Nδ 1500 γ1 10
K 1000 γ2 100
Nm 50 cp 1.5
D 7 µ 100
L0 500 π 10

Tab. 5.13: IPSO variable parameters.

Parameter Initial Value Final Value
δ 0.05 1
∆C1 0.25 0
∆C2 0.25 0
∆S variable 0
∆M variable 0
w 1.2 0.6
cl 2 0
cg 0 2
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Tab. 5.14: Sun and Moon direction for test scenarios with reaction wheels.

Scenario Sun (in B0) Moon (in B0) Free
Angle

N. Θf type σS,x σS,y σS,z σM,x σM,y σM,z

(deg) (deg)

1 60 roll -0.58 -0.08 -0.81 0.41 -0.13 -0.91 0.52
2 60 roll -0.65 -0.65 -0.40 0.10 -0.29 -0.95 0.84
3 60 roll -0.58 -0.08 -0.81 0.29 -0.09 -0.95 0
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Fig. 5.21: IPSO maneuvers with rection wheels for scenario 1 (a), for scenario 2 (b) and for
scenario 3 (c).

5.8.7 B-spline performance analysis

B-spline curves represent a very useful tool to approximate functions. The number
of control points NP and the degree D of the basis polynomials are the key param-
eters that can be chosen to maximize the performance of optimization algorithm.
Consequently, a performance analysis has been carried out to find the best values to
be used. Varying the value of NP from 7 to 12, different polynomial degrees have
been tried for scenario 1. For a clamped B-Spline, the maximum allowed degree
is D = NP − 1. For each test case, 200 simulations have been run. The average
maneuver times are reported in Fig. 5.22. As it can be seen, the best results are
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Fig. 5.22: Performance analysis for the definition of the B-Spline approximation.

always obtained when D = NP − 1. The minimum maneuver time is achieved when
NP = 8 and NP = 11. Consequently, NP = 8 and D = 7 have been chosen in order
to minimize the computational effort.

5.8.8 Active torque constraint

Detailed results of the IPSO solution for scenario 3 are reported through Fig. 5.23
and 5.24. The former reports the torques provided by the wheels and the related
angular velocity history, while the latter reports the angular velocity history and the
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Fig. 5.23: Wheels torques (a) and angular velocities (b) from IPSO and POCS, scenario 2.
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Fig. 5.24: Satellite angular velocity (a) and attitude (b) from IPSO and POCS, scenario 2.

attitude evolution of the satellite during the maneuver. These results are compared
with a POCS [57] solution obtained with a mesh tolerance εm = 10−10. The
maneuver time of the IPSO solution is 261.8 seconds whereas the POCS maneuver
time is 242 seconds. As can be seen from the comparison, the IPSO is very close to
the POCS solution. For example, looking at Fig. 5.23(a), it may be seen that the
POCS bang-bang solution is well approximated from the IPSO. As a consequence,
both the wheel kinematics in Fig. 5.23(b) and the kinematics of the satellite in Fig.
5.24 are quite the same using IPSO and POCS. The differences are due to the fact
that the kinematics is parametrized with the B-splines using a fixed finite number
of control points while POCS uses a polynomial interpolation based upon a time
mesh which is continuously improved. As a consequence, the IPSO solution is a
near-optimal solution, i.e. a completely feasible solution with a maneuver time very
close to the minimum time found by POCS. Note that the wheel’s angular velocity
in Fig. 5.23(b) and the satellite angular velocity in Fig. 5.24(a) have a different
order of magnitude which is consistent with the difference in the moment of inertia
of wheels and satellite. Moreover, the sign of the angular velocity components for
wheels and satellites are opposite consistently with Eq. (5.57).

As can be seen from the reported results, the torque provided by the wheels
is saturated as a result of the minimum-time planning. On the contrary, initial
conditions imposed in Eq. (5.61) do not lead to the saturation of the wheel’s angular
velocities, which remain well below the saturation limit of 400 rad/s through the
slew maneuver. In Sec. 5.8.9 different initial conditions will be chosen such that the
angular momentum constraint is active during the maneuver.
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With regard to the computational requirements for the obtainment of the solution,
POCS may require long computational times depending on the required accuracy. For
instance, when solving scenario 3 without an initial guess and εm = 10−10, POCS can
require more than 5 million variables and, after more than 1 hour of computation,
the computer was not able to solve the problem due to memory problems. On the
contrary, the IPSO solution can be always found in a small amount of time: with the
aforementioned computer, the computational time for the three presented cases is
on average less than 150 seconds. It must be noted that other implementations are
possible in order to decrease the computational time. For example, computational
improvements may be achieved substituting the Matlab code with C or Fortran code,
using ASICs or FPGAs instead of desktop computer (refer to [121] for more details).
For scenario 1, a completely feasible maneuver is found with fewer than 55 iterations,
on average.

Considering an IPSO solution for scenario 1, the behavior of the convergence index
introduced in Eq. (5.48) is reported in Fig. 5.25. As can be seen, fewer than 600
iterations are required to obtain the desired convergence. A future implementation
in C-code on ASIC or FPGA hardware will be carried out in order to verify if
the computational effort of the proposed algorithm is consistent with the typical
performances of satellite on-board hardware.

Finally, in Fig. 5.26 the IPSO results distribution over 1000 test cases is reported
for the three problems considered. Since IPSO is an heuristic algorithm, it does not
guarantee the same solution for the same initial conditions. However, the solutions
are well distributed around maneuver times which are quite close to the POCS
maneuver times (the maneuver times evaluated with POCS are 225.43 seconds for
scenario 1, 241.98 second for scenario 2 and 388.15 seconds for scenario 3). The
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Fig. 5.26: IPSO results distribution over 1000 simulations for scenarios 1,2,3.

curves used to interpolate the histograms in Fig. 5.26 have been evaluated with
a Generalized Extreme Value distribution defined by the parameters σ (shape), µ
(location) and ζ (shape). For the three studied cases, these parameters get the
following values:

• [σ, µ, ζ] = [−0.1047, 1.0108, 2.3262e2] for scenario 1,

• [σ, µ, ζ] = [0.2559, 5.4685, 2.6796e+ 02] for scenario 2,

• [σ, µ, ζ] = [−0.0789, 4.6751, 4.2296e+ 02] for scenario 3.

It is worth noting that on the one hand scenario 3 cannot be solved using POCS
without an initial guess solution, on the other hand the same problem can be solved
using the IPSO solution as the best guess for the POCS. In this case, the performances
of POCS are improved and the solution may be found in about 200 seconds.
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5.8.9 Active momentum constraint

In the previous section the IPSO approach has been tested and verified with differ-
ent scenarios. The control constraint was active whereas the angular momentum
constraint was inactive.

In this section the optimal control problem statement in Eq.(9.5) is slightly modi-
fied as a nonzero initial value of the wheels’ angular velocity is imposed to reach
the angular momentum saturation during the slew maneuver. Choosing the initial
velocities of the three wheels as

ωW(t0) = [−300, +200, −100]T rad/s, (5.67)

the results of scenario 2 are reported in Fig. 5.27. In Fig. 5.27(a), the torques
provided by the wheels are shown, whereas the wheels’ angular velocities are
reported in Fig. 5.27(b). The angular velocities and the attitude history of the
satellite are reported in Fig. 5.27(c)-(d). Comparing these results with Fig. 5.23,
it can be seen that different initial conditions of the wheels affect the result of the
planning algorithm. For instance, ḢW

x in Fig. 5.23(a) is bang-bang, whereas ḢW
x in

Fig. 5.27(a) is bang-off-bang. In fact, the torque is constrained to go to zero since
the wheel’s velocity saturation has been reached as one can see looking at ωW/S

x in
Fig. 5.27(b). As a consequence, the angular momentum saturation increases the
maneuver time, which is now 341.4 seconds.
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Fig. 5.27: Results with wheels’ angular velocity saturation, scenario 2.
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Fig. 5.28: Sensor axis trajectory with wheels’ angular velocity saturation, scenario 2.

The optical sensor trajectory is shown in Fig. 5.28. As a result of the angular
momentum saturation, the trajectory is slightly different from the one reported in
Fig. 5.21(b).

5.9 Endnotes

In this chapter it has been shown that the Particle Swarm Optimization may
be used for planning near-optimal constrained maneuvers. When the proposed
Inverse-dynamics Particle Swarm Optimization is used, the boundary and the path
constraints are fully satisfied. The direct and inverse dynamics approaches have
been described and the advantages of the latter with respect to the former have
been defined. Accordingly, only the first problem has been solved with the direct
approach, while all the other simulations have been carried out with the inverse
technique (as it will be done for the majority of the following chapters)

Different satellite models have been considered. First, external torques have
been considered, and the planning problem has been solved considering end-point
and path constraints (the keep-out cone constraint). Second, the reaction wheels
dynamics has been included in the optimization problem. In this case, a hybrid
method mixing the inverse-dynamics particle swarm optimization and the numerical
integration has been shown. In both cases, the Inverse Method guarantees near
minimum-time solutions that fully satisfy boundary constraints, path constraints and
control constraints. The presented method always guarantees a feasible solution
with a reduced computational effort with regard to the pseudospectral approach,
even when the latter is not able to find a solution. In fact, using the inverse dynamics
approach and the proper setting of the particle swarm parameters may lead to errors
in the final maneuver time below 1% with respect to a reference pseudospectral
method. Moreover, it was underlined that both the results and the computational
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time do not change considering the different geometries of the keep-out cones
or different characteristics of the maneuver. On the contrary, the calculation of
the solution through an optimization solver such as a pseudospectral optimization
software may require very high computational times. In our tests, the computational
time required by the Inverse Method is up to 1/15 of the time required by the
pseudospectral optimization software without initial guess.

The low computational effort and the satisfaction of all the imposed constraints
make the proposed approach suitable in the perspective of achieving fully au-
tonomous satellites.
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6Inverse-Dynamics Particle
Swarm Optimization applied to
General Bolza Problems*

Abstract
So far, the Inverse-dynamics Particle Swarm Optimization has been successfully
applied to minimum-time problems. The advantages of this technique, formulated
with the differentially flat approach, lie in the global search ability of the optimizer
and the reduction of the independent functions due to the exploitation of the
differential flatness. However, it is known that optimal control problems formulated
with either differential inclusion or differential flatness can lead to nonconvex
problems with undesirable numerical properties. This chapter is intended to show
that, considering difficult problems with nonconvex state constraints and nonconvex
cost functions, the proposed numerical technique can lead to feasible near-optimal
solutions. Minimum-time, minimum-energy and minimum-effort maneuvers are
addressed considering the constrained slew maneuver as a test case.

Nomenclature

x = PSO particle I = Inertia tensor
ω = Body angular velocity t = Time (s)
u = External control J = Performance index
(·)N = Numerical approximation ˙(·) = First time derivative
(̈·) = Second time derivative p = Modified Rodrigues Parameters
NP = Number of approximation coefficients (·)0/f= Initial/final time value
σ = Optical axis σs = Light-source direction
αs = Light-source half-angle (rad) β = Angle between σ and σs (rad)
NP = Number of approximation coefficients NT = Number of discretization points
Ψ = Angular kinematics matrix R = Rotation matrix
(̃·) = Approximation parameter umax = Maximum external control
X = State space U = Control space
Y = Flat output space Θf = Slew angle
E = End-point cost functional F = Running cost functional
b = Boundary constraint function p = Path constraint function

*This chapter is based on Ref. [122].



6.1 Introduction

In Chapter 2 several different ways to set and transcribe an optimal control prob-
lem have been described. Usually, the optimal control theory typically employed in
engineering fields is based upon the state and the control functions. The differential
inclusion is another formulation that allows one to include the differential constraint
inside the optimization problem. Finally, the differential flatness formulation is
based on the identification of a minimum number of independent flat outputs that
can completely describe and solve an optimal control problem.

It has been already said that, for generic Bolza problems with running cost and
terminal cost, the differential flatness formulation may transform an initial convex
cost functional into a nonconvex one. Since the convexity problem plays a crucial
role both for the mathematical treatment of OCPs and for numerical applications
[35], this chapter is intended to study the behavior of the IPSO when different cost
functional are taken into account. The goal of this work is to show that such a
technique can successfully manage complex noncovex problems. However, reporting
only an example of application, this work is far from assuring that the IPSO can
manage all problems within the class of the nonconvex OCPs.

This chapter is organized as follows. First, in Sec. 6.2 the example optimization
problem is recalled. Three different formulations of an OCP are then reported, where
the last one is the employed differential flatness one. In Sec. 6.3 the influence of the
cost function on the convexity of the problem is investigated and the main features
of the proposed numerical approach are described. Finally, results are reported in
Sec. 6.4 and conclusions are given in Sec. 6.5.

6.2 Formulation of the optimization problem

Let us recall what has been stated in Chapter 2. Three different possible ways
to set and solve a Bolza Optimal Control Problem (BOCP) have been described, i.e.
the state-control space formulation, the differential inclusion formulation and the
differential flatness approach.

The problem to be solved is the same described in Sec. 5.2, i.e. the constrained
reorientation maneuver of a satellite. The IPSO technique is used, and consequently
the differential flatness implementation described in Chapter 4 is employed.

It is well-known that the numerical complexity of an optimal control problem is due
not only to the number of unknown parameters but also to the characteristics related
to the chosen parametrization of the problem. In further detail, an optimization
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problem may have a convex cost function with one representation and a nonconvex
cost function with another one. This is what usually happens when the differentially
flat approach is employed.[34, 47]

First of all, let us recall some results described in Chapter 5. It has been shown
that the external control u for the satellite slew maneuver may be written as

u = Iω̇ + ω × Iω. (6.1)

In fact, recalling what has been already stated in Chapter 5, the angular velocity ω
and the angular acceleration ω̇ are functions of the modified Rodrigues parameters
p and their time derivatives, i.e.

ω = 4Ψ−1ṗ, (6.2)

ω̇ = 4
(
Ψ̇−1 ṗ+ Ψ−1 p̈

)
, (6.3)

where

Ψ =
[(

1− pTp
)
I + 2[p̃] + 2ppT

]
, Ψ−1 = ΨT (p)

(1 + pTp)2 , (6.4)

Ψ̇ =
[
−(ṗTp+ pT ṗ)I + 2[˜̇p] + 2(ṗpT + pṗT )

]
, (6.5)

Ψ̇−1 = Ψ̇T

(1 + pTp)2 −
2ΨT

(1 + pTp)3 (ṗTp+ pT ṗ). (6.6)

Let us also recall that the sensor axis σ orientation during the maneuver is given as

σ(t) = R(p)T σ(t0). (6.7)

where R is evaluated with Eq. (5.25). Moreover, the keep-out cone constraint is
defined as

Cs(t) = σ(t) · σs − cos(αs) ≤ 0 ∀t ∈ [t0, tf ], (6.8)

where σs and αs are the axis and the half-angle of the light source.

In the next section, a summary of the three different problem formulations intro-
duced in Chapter 2 will be reported. Moreover, the the three formulation will be
applied to the slew maneuver problem to underline the effect of the complexity of
the transcribed problem.

6.2.1 Problem PSC

Let x(·) be the state function with values x(t) ∈ X ⊂ RNx , where Nx is the
dimension of the state space, and let u(·) be the control function with values
u(t) ∈ U ⊂ RNu , where Nu is the dimension of the control space. Following the
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standard state-control space formulation, a Bolza problem is an optimization problem
usually defined as

minimize

J [x(·),u(·), tf ] = E(x(t0),x(tf ), tf ) +
∫ tf

t0
F (x(t),u(t), t)dt

(6.9)

subject to boundary constraints b and path constraints p

b(x(t0),x(tf ), tf ) = 0, (6.10)

p(x(t),u(t), t) ≤ 0 ∀t ∈ [t0, tf ]. (6.11)

Note that Eq. (6.11) imposes inequality constraints on both state and control. In Eq.
(6.9), E : RNx×RNx×R 7→ R is the terminal cost function, F : RNx×RNu×R 7→ R is
the running cost function and

ẋ(t) = f(x(t),u(t)) a.e. on [t0, tf ]. (6.12)

For the problem described in the previous section, Nx = 6, Nu = 3 and x = [p ;ω].
Eq. (6.12) is specified as [

ṗ

ω̇

]
=
[

0.25 Ψ(p)ω
I−1 (u− ω × Iω)

]
. (6.13)

Boundary constraints are

b1 =
[
p(t0)− p0
ω(t0)

]
=
[
0
0

]
, b2 =

[
p(tf )− pf
ω(tf )

]
=
[
0
0

]
, (6.14)

whereas the path constraints are

p1 = R(p(t))T σ(t0) · σs − cos(αs) ≤ 0 (6.15)

p2 = ‖u(t)‖∞ − umax ≤ 0 ∀t ∈ [t0, tf ]. (6.16)

The L∞-norm is defined as ‖u(t)‖∞ = max{|ui(t)| : i = 1, 2, 3} where ui(t) is the
ith component of the control u(t). Note that b1, b2 and p2 are convex constraints,
whereas p1 is nonconvex.

From the theoretical point of view, when solving a fixed-time problem, the total
number of unknowns is given by the Nx components of the state function plus the
Nu components of the control functions. For a free-time problem, instead, one
more value must be determined corresponding to the total time of application of the
control.
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Employing a pseudospectral approach, the number of optimization parameters
would be (Nx +Nu)NP = 9NP for a fixed-time problem and 9NP + 1 for a free-time
problem. Using a direct dynamics approach, the number of optimization parameters
is reduced to 3NP for a fixed-time problem and 3NP + 1 for a free-time problem.

6.2.2 Problem PDI

In this case, the control u does not appear explicitly in the cost function, i.e. the
optimal control problem is written as

minimize

J [x(·), tf ] = E(x(t0),x(tf ), tf ) +
∫ tf

t0
F (x(t), ẋ(t), t) dt

(6.17)

over all arcs x(·) satisfying the differential inclusion

ẋ(t) ∈ F(x(t)) a.e. on [t0, tf ] (6.18)

where
F(x(t)) = {v ∈ X : v = f(x(t),u(t)), u(t) ∈ U(t)} (6.19)

Boundary and path constraints are imposed as

b(x(t0),x(tf ), tf ) = 0, (6.20)

p(x(t), ẋ(t), t) ≤ 0 ∀t ∈ [t0, tf ]. (6.21)

For the proposed problem, a solution can be obtained by means of the differential
inclusion approach approximating only the state and writing u as a function of the
state, i.e.

u = Iω̇ + ω × Iω. (6.22)

Eq. (6.22) is employed to write the path constraints and the cost function as a
function of the state (see [47] for other examples and details). Boundary constraints
are expressed in the same way as in Eq. (6.14), as well as p1 remaining unchanged.
On the contrary, the path constraint p2 is given by

p2 = |Iω̇ + ω × Iω‖∞ − umax ≤ 0. (6.23)

Note that, while p2 in Eq. (6.16) was a convex constraint, now p2 is nonconvex.
Choosing to approximate all the Nx components of the state function, the total
number of unknowns is equal to NxNP = 6NP when solving a fixed-time problem
whereas, for a free-time problem, it is 6NP + 1.
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6.2.3 Problem PDF

Let y(t) ∈ RNu be the flat output defined as [32]

y = c
(
x,u, u̇, ...,u(α)

)
, y ∈ Y ⊂ RNu , (6.24)

for some α ∈ N. State and the control are written as

x = a
(
y, ẏ, ...,y(β)

)
, u = b

(
y, ẏ, ...,y(β+1)

)
(6.25)

Using the notation introduced in Sec. 2.6, the Bolza problem can be stated as a
function of the flat output as

minimize

J [y(·), tf ] = E(y(t0),y(tf ), tf ) +
∫ tf

t0
F
(
y(t),

{
y(β)(t)

}
, t
)
dt.

(6.26)

Boundary and path constraints are imposed as

b(y(t0),
{
y(β)(t0)

}
,y(tf ),

{
y(β)(tf )

}
, tf ) ≤ 0, (6.27)

p(y(t),
{
y(β+1)(t)

}
, t) ≤ 0. (6.28)

In Chapter 5, it has already been shown that the flat output may be chosen as the
vector p. In fact, from the relationships reported through Eqs. (6.2)-(6.6), the state
can be written as a function of p and ṗ, i.e.

x = a (p, ṗ) =
[
p

ω

]
=
[
I3×3

4Ψ−1

] [
p

ṗ

]
. (6.29)

With regard to the control, it can be easily written as a function of the flat parameter,
i.e.

u = Iω̇ + ω × Iω = b(p(t), ṗ(t), p̈(t)). (6.30)

where the function b(p(t), ṗ(t), p̈(t)) is evaluated by means of Eq. (6.4) and Eq.
(6.6),

b(p(t), ṗ(t), p̈(t)) = 4I
(
Ψ̇−1(p) ṗ+ Ψ−1(p) p̈

)
+ 16

(
Ψ−1(p)ṗ

)
× I

(
Ψ−1(p)ṗ

)
.

(6.31)

148 Chapter 6 Inverse-Dynamics Particle Swarm Optimization applied to General Bolza

Problems



Accordingly, thanks to Eq. (5.33), the boundary constraints are now dependent
only of the MRPs as

b1 =
[
p(t0)− p0
ṗ(t0)

]
=
[
0
0

]
, b2 =

[
p(tf )− pf
ṗ(tf )

]
=
[
0
0

]
, (6.32)

and the path constraints take the following form

p1 = R(p(t))T σ(t0) · σs − cos(αs) ≤ 0, (6.33)

p2 =
∣∣∣∣∣∣4I (Ψ̇−1(p) ṗ+ Ψ−1(p) p̈

)
+ 16

(
Ψ−1(p)ṗ

)
× I

(
Ψ−1(p)ṗ

)∣∣∣∣∣∣
∞
− umax ≤ 0.

(6.34)

This approach leads to the minimum number of unknown parameters without
requiring a numerical integration (3NP for a fixed-time problem, 3NP + 1 for a free
time problem). Note that ṗ and p̈ are not independent functions as they are derived
analytically from p once the specific polynomial approximation is imposed.

The issue often related to this approach is that it can add some difficulties to
the cost function as described in the next section. Let us consider the improved
B-spline approximation defined in Sec. 4.2. Eq. (6.30) can be rewritten after having
performed the numerical transcription as

uN = b(pN (t), ṗN (t), p̈N (t)) = b̃(p̃1, ..., p̃Nu , t̃1, ..., t̃Nu , tf ), (6.35)

where p̃i and t̃i are the parameters defining the basic B-spline approximation and
entering into the generic PSO particle, as defined in Sec. 5.4. As can be seen,
the function b̃ is nonlinear and nonconvex (this is easy to understand as the cross
product in Euler’s equation leads to sinusoidal nonconvex functions). The same
nonconvexity issue would appear when transcribing the example problem defined in
Sec. 2.3 and using the differential flatness formulation.

6.3 Cost function influence on the solution
approaches

Let us analyze three different type of Bolza problem to determine how the tran-
scription can affect the mathematical properties of the cost function. The reader can
refer to Sec. 4.5 for further details.
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Minimum-time maneuvers In this case the Bolza cost functional is expressed as a
Mayer cost functional, i.e.

J = tf (6.36)

As can be seen, this cost functional is not affected by the parameterizations of
the problem presented before. In fact, neither the state or the control affect J .
Consequently, it is expected that the differential flatness formulation is the best
approach to solve the problem.

For the problem accounted for in this chapter, the PMP assures that the optimal
control policy is given by a bang-bang structure [29].

Minimum-effort maneuvers Using the formulation of problem PSC, the cost func-
tional is expressed as

J =
∫ tf

t0

Nu∑
i=1
|ui(t)| dt (6.37)

where ui(t) is the ith component of the vector u(t). For the proposed problem, it
is clear that both the differential inclusion and the differential flatness approaches
modify an original convex problem (in the state-control space) into a nonconvex
one. In fact, u is given by a cross product in the differential inclusion formulation.
Moreover, the non-linear relationships in Eq. (6.2) and Eq. (6.3) must be considered
for the differential flatness formulation. Such nonconvexity problems may increase
the difficulties of finding numerical solutions to the optimization problem when
using collocation-based approaches.[34].

Minimum-energy maneuvers Using the formulation of problem PSC, the cost func-
tional is expressed as

J =
∫ tf

t0

Nu∑
i=1

ui(t)2dt. (6.38)

This example is similar to the previous one. In fact, the same nonconvexity issues are
introduced with the differential inclusion and the differential flatness formulations.

As a result, from the previous discussions it appears that the differential flatness
formulation is advantageous with respect to the reduction of the independent un-
knowns but disadvantageous as it introduces additional nonconvexity issues to the
optimization problem.

Nonconvexity is usually related to the presence of several local minima which
often makes it difficult finding the global optimal solution for a gradient-based
optimizer. However, heuristic techniques used in the last decades may succeed in
finding the global optimum in such scenarios. Accordingly, in the following section
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we will consider the results obtained with the IPSO technique, verifying its ability to
solve nonconvex OCPs.

6.4 Results

Results are obtained using the improved IPSO scheme described in Chapter 4. The
performance index and the penalty functions are defined as in Chapter 5. The IPSO
parameters used for the following numerical simulations are the same reported in
Table 5.12 and Table 5.13. Applying the improved B-Spline approximation to the
three components of the MRPs and introducing the related time mesh, the IPSO
particle is defined as

x = [p̃1, p̃2, p̃3, t̃1, t̃2, t̃3, tf ] ∈ R6NP+1 (6.39)

where tf is the maneuver time which must be taken into account only for minimum-
time maneuvers. Having set NP = 8 in Table 7.2, the optimization variables within
the IPSO particle x in Eq. (7.5) are 49 for a free-time OCP and 48 for a fixed-time
OCP. The keep-out cone constraint tolerances are ∆1,2, whereas the control tolerance
∆3 is equal to zero as this constraint is easily satisfied.

Results have been computed normalizing the external control by τu = umax, the
time by τt = 1/

√
Ix/umax and the angular velocity by τω = τ−1

t .

6.4.1 Validation of the algorithm without cone constraints

First, let us consider a slew maneuver with Θf = 45 deg without path constraints
accomplished by an inertially symmetric satellite. This case has been already consid-
ered in the literature[123] for minimum-time maneuvers. For this simple case the
problem is reduced to a double integrator for the three body axes. The expected and
the obtained results are listed below:

• For a minimum-time maneuver, the optimal control evaluated with the PMP is
bang-bang[25]. The control policy obtained with the IPSO is reported in Fig.
6.1.(a) whereas the angular velocity and the attitude histories are reported
in Fig. 6.2.(a) and Fig. 6.3.(a), respectively. The results represent a nice
approximation of the optimal results as the final time is 1.776 τt with a relative
error equal to 0.0147 with respect to the known optimal time[123]. This error
is consistent with the inverse dynamics technique[1].

• For a minimum-effort maneuver, the optimal control is bang-off-bang[25]. The
control policy obtained with the IPSO imposing a maneuver time of 10 τt is
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Fig. 6.1: Control policy for minimum-time (a), minimum-effort (b) and minimum-energy
(c) maneuvers without cone constraint.
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Fig. 6.2: Angular velocity histories for minimum-time (a), minimum-effort (b) and
minimum-energy (c) maneuvers without cone constraint.
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Fig. 6.3: Attitude histories for minimum-time (a), minimum-effort (b) and minimum-energy
(c) maneuvers without cone constraint.

reported in Fig. 6.1.(b) whereas the angular velocity and the attitude histories
are reported in Fig. 6.2.(b) and Fig. 6.3.(b), respectively. As can be seen, the
control along xB is a bang-off-bang, whereas there is no motion along the
other two axes.

152 Chapter 6 Inverse-Dynamics Particle Swarm Optimization applied to General Bolza

Problems



• For a minimum-energy maneuver, the optimal control is linear[25]. The control
policy obtained with the IPSO imposing a maneuver time of 10 τt is reported in
Fig. 6.1.(c) whereas the angular velocity and the attitude histories are reported
in Fig. 6.2.(c) and Fig. 6.3.(c), respectively. The results are consistent with the
theory, as for the dynamical systems as the one considered here the control is
linear along xB and equal to zero along yB and zB.

6.4.2 Results with cone constraints

Let us consider test case 1 from Sec. 5.6. Results are reported in Fig. 6.4, Fig.
6.5 and Fig. 6.6 for the control policy, the angular velocity and the attitude history,
respectively. For the minimum-effort and minimum-energy cases, the maneuver
time has been fixed to 10 τt. As can be seen, the control policy characteristics are
the same as in the previous case, but now all the three axes are controlled for all
the cost functions. However, it can be noted that for the minimum-time case, the
control is mainly bang-bang, as expected. For the minimum-effort maneuver, the
control is mainly bang-off-bang, with a small non-zero control interval around the
middle of the maneuver introduced to properly avoid the cones. Finally, for the
minimum-energy case, the control policies for the three axes show a quasi-linear
behavior. The angular velocity and the attitude history are consistent with the control
inputs. The trajectories of the optical axis are reported in Fig. 6.7 for the three cost
function. The motion has been projected onto a properly-defined latitude-longitude
plane. The three trajectories are completely feasible as they do not enter the cones,
they satisfy the boundary conditions and show little variations changing the cost
function.

To verify the reliability of the results, the distributions of the results obtained
through 1000 different simulations are reported in Fig. 6.8. As can be seen, for each
of the three problems the optimizer converges to a single solution.

It should be noted that, using a pseudospectral optimizer [57], the obtained results
are: 2.0346 τt for the minimum-time maneuver (the IPSO mean result is 2.1052 τt),
0.01635 τ2

uτt for the minimum-energy maneuver (the IPSO mean result is 0.01628
τ2
uτt), 0.3648 τuτt for the minimum-effort maneuver (the IPSO mean result is 0.3836
τuτt). The better results of the IPSO are obtained for the minimum-energy case
where the expected optimal control is not discontinuous. The average number of
iterations required by the IPSO is 2003 for the minimum-time case, 1420 for the
minimum-energy case and 2180 for the minimum-effort case, leading to similar
computational time for the three maneuvers (55.7 seconds for minimum-time, 53.1
for minimum-energy and 66.4 for minimum-effort maneuvers). The pseudospectral
optimizer generally outperforms the IPSO in terms of cost function. However,
especially with the minimum-effort maneuver, the pseudospectral optimizer must
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Fig. 6.4: Control policy for minimum-time (a), minimum-effort (b) and minimum-energy
(c) maneuvers with cone constraint.
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Fig. 6.5: Angular velocity histories for minimum-time (a), minimum-effort (b) and
minimum-energy (c) maneuvers with cone constraint.
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Fig. 6.6: Attitude histories for minimum-time (a), minimum-effort (b) and minimum-energy
(c) maneuvers with cone constraint.

be used with high values of the mesh tolerance, otherwise the computational effort
can be quite high[1]. The time required by the pseudospectral optimizer depends
on the mesh tolerance and the solver. Using snopt and a mesh tolerance set to 1e-9,
8.9 seconds are needed for the minimum-time maneuver and 95.7 seconds for the
minimum-energy maneuver, on average. With a mesh tolerance equal to 1e-5, 73.3
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Fig. 6.7: Trajectories for minimum-time (a), minimum-effort (b) and minimum-energy (c)
maneuvers with cone constraint.
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Fig. 6.8: Distribution of the IPSO results for minimum-time (a), minimum-effort (b) and
minimum-energy (c) maneuvers with cone constraint.

seconds are required for the minimum-effort maneuver. It is noteworthy that the
IPSO computational times are obtained in Matlab, and a C-conversion would reduce
significantly the reported values. As a result, the IPSO has shown to be a reliable
approach to get near-optimum solutions for the constrained BOCP examples.

6.5 Endnotes

In this chapter, Bolza optimal control problems have been addressed considering a
constrained slew maneuver as a test case. Using the Inverse-dynamics Particle Swarm
Optimization it has been shown that near optimal solutions can be found in the
presence of nonconvexities concerning the cost function and the state constraints.

The major result of this chapter is that the common problem introduced by the dif-
ferential flatness parametrization, that is the nonconvexity issues, is overcome by the
global search ability of the particle swarm optimization. The combined usage of the
differential flatness and the particle swarm algorithm allows a reduction in the num-
ber of unknown parameters and computational effort. No significant convergence
differences have been noted among the solutions for minimum-time, minimum-
energy and minimum-effort maneuvers. For minimum-effort and minimum-energy
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problems, the computed maneuvers are quite similar to (and sometimes better than)
the solutions given by a pseudospectral optimizer. For minimum-time maneuvers
feasible near-optimal solution are found.
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7Particle Swarm Optimization
with Domain Partition and
Control Assignment for
Minimum-Time Maneuvers*

Abstract
The Particle Swarm Optimization is employed to search for minimum-time maneu-
vers assigning a bang-bang control policy and dividing the search space into several
sub-domains. Each sub-domain is defined by the number of switches per axis and
the sign of the bangs. The algorithm searches for the minimum-time maneuver
changing the time instants of the switches and moving from one sub-domain to
another. The basic formulation of the Particle Swarm cannot guarantee a proper
exploration of the search space but this issue is solved introducing the novel Push
In and Push Out features. For general nonlinear problems, the maximum number
of allowed switches is unknown and must be imposed based on some insight on the
problem. Though the imposed bang-bang policy may lead to many local minima,
the proposed approach can recognize the global minimizing solution when end-
point conditions and path constraints are imposed. This formulation overcomes
the limits of other techniques relying on swarm intelligence and mixed-integer
programming where the control structure was obtained mapping intervals of real
optimization variables to integer values. Two different test cases are reported to
validate the method by comparison with other results from the literature.

Nomenclature

t = Time (s) (·)∗ = Optimal quantity
p = Modified Rodrigues Parameters ω = Angular velocity
c = Generic constraint (̃·) = Penalty function weight
C = Generic penalty function x = Particle position
v = Particle velocity X = Dimensionless state
U = Dimensionless control NS = Number of PSO particles
σi = Push-in/out parameters MS = Maximum number of switches
(·)0/f= Initial/final time value mS,j = Number of switches
J = Performance index ND = Number of sub-domains

*This chapter is based on Ref. [124].



NX = Number of state variables NU = Number of control variables
∆(·) = Constraint tolerance R = Push-in/out parameters
DI = Integration domain si,j = Switch time instants
δt = Time interval parameter ri,l, ri,r= random numbers for the i axis

7.1 Introduction

In Chapter 2, different approaches have been presented to formulate OCPs. Until
now, most of the problems have been addressed using an inverse dynamics method
based on a differential flatness formulation.

In Chapter 5, two opposite formulations have been outlined to numerically solve an
optimal control problem. On one hand, one can impose the structure of the control
policy and integrate the dynamics of the system to obtain the resulting kinematics. In
this work, we refer to this procedure as the Direct Dynamics approach. On the other
hand, if the dynamical system is differentially flat, the external control may be put as
an explicit analytical function of some quantities, referred to as flat parameters, and
their time derivatives. Inverse Dynamics approaches have been taken into account
in the previous chapters. In this chapter, we choose to follow a Direct Dynamics
approach imposing a bang-bang external control, where the switching time instants
and the total maneuver time are the optimization variables.

Control-affine dynamical systems will be taken into account. For this class of
problems, when the imposed constraints do not depend on the external control, PMP
holds [29, 26]. Hence, if the dynamics does not show singular arcs, the control
structure is purely bang-bang. However, for general non-linear systems, PMP can
only establish that the control is bang-bang, but it cannot give the analytical solution
of a minimum-time problem. In these cases, also the maximum number of switches
is unknown. Therefore, the problem is to find the number of switches and the correct
sign of the bangs. Boundary conditions and path constraints may be added to the
optimization problem. Among all the feasible maneuvers (i.e. satisfying all the
imposed constraints) we are interested in the minimum-time solution.

The proposed technique is based on PSO. A bang-bang control policy is imposed
and the algorithm must select the proper number of switches for each axis and
the sign of the bangs. The search space may be seen as the collection of several
sub-domains, defined by the number of switches per axis and by the sign of the
bangs. The particles may move among the sub-domains changing the values of
the time instants related to the switches. Some of these sub-domains guarantee a
feasible maneuver and other do not.

158 Chapter 7 Particle Swarm Optimization with Domain Partition and Control Assignment for

Minimum-Time Maneuvers



The method proposed in this chapter may lead to an optimization search space
where many sub-optimal solutions can be detected. Accordingly, the local version
of the PSO is employed to emphasize the exploration ability of the swarm which
consists in comparing the different local minima in order to find the global minimum.
However, the basic displacement model of the PSO is not sufficient to guarantee
a proper exploration of the search space. Consequently, two new features have
been introduced, namely the Push In and the Push Out displacements, helping the
particle ability to change sub-domain affiliation and enhancing the possibility to try
the maximum number of switches combinations. In this way, the PSO displacement
is enforced and the risk to stop at local minimizing solutions is strongly reduced.

The numerical approach in Ref. [108] has inspired the present technique. How-
ever, the present formulation avoids the problems arising when reducing trajectory
optimization problems to mixed-integer nonlinear programming. In fact, in [108]
the control structure was obtained by mapping intervals of certain optimization real
variables to integer values following a given set of rules. This desensitized the fitness
function to even appreciable variations in the optimization variables. Consequently,
a considerable fraction of the initial swarm population initially hovered around non-
optimal regions of the search space, without moving the swarm toward better search
regions and leading to long computational times. On the contrary, the proposed
approach requires a less number of particles and converges in shorter computational
times since there is no mapping between integer and real variables. Moreover, even
very little variations of the optimization variables directly influence the integrated
dynamics so we do not have the previously mentioned desensitization issue.

The algorithm requires to fix the maximum number of switches for each controlled
axis. A good knowledge of the problem is required to set a proper value for this
parameter. However, a solution strategy is proposed to tackle general optimization
problems. Moreover, in [125] it is reported that for minimum-time point-to-point
transfer of a general control-affine nonlinear system of dimension n, it is unlikely that
a solution with more than n− 1 switches satisfies Pontryagin’s minimum principle.
However, the same work reports that there may be exceptions.

Two different test cases will be presented. The first one concerns a minimum-time
maneuver of a robotic arm: this problem is taken from [108, 126], where two
different approaches for the solution have been presented. The second test case
concerns the constrained slew maneuver already taken into account in Chapters
5 and 6. In this case, a detailed study of the characteristics of the search space is
reported to emphasize the difficulty of the problem and to characterize the behavior
of the proposed optimizer.
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This chapter is organized as follows. Section 7.2 presents the hypothesis behind
the assumption of the bang-bang control structure. Section 7.3 describes the imple-
mentation of the particle swarm and the control policy assignment. The partition of
the search space is described in Sec. 7.4 while the constraint handling technique is
outlined in Sec. 7.5. Section 7.6 presents two different test cases for the validation
of the described technique. Finally, concluding remarks are given in Section 7.7.

7.2 Features of minimum-time maneuvers

We have seen, in Sec. 1.4.2, that for a control-affine dynamical system the
minimum-time planning leads to a bang-bang control policy. For the sake of clarity,
a summary of those results are here reported. This chapter deals with control-affine
dynamical systems described by

Ẋ(t) = f (X (t)) +G (X (t))U (t) , (7.1)

where X(t) : t→ RNX is the continuous and piecewise differentiable state function
and U(t) : t → RNU is the piecewise continuous external control function (refer
to [29] for definitions about admissible state and control). NX and NU are the
state and the control dimensions, respectively. The control U(t) is supposed to
lie in an admissible region [Umin,Umax]. Eq. (7.1) may be nonlinear in the state
(through the term F (X(t))) but is affine in the control. The operator G(X(t)) may
be non-linearly dependent on the state and it is expressed by a NX × NU matrix.
Equality boundary conditions and inequality path constraints are imposed as

b(X0, Ẋ0,Xf , Ẋf , t0, tf ) = 0 (7.2)

p(X(t), Ẋ(t), t) ≤ 0 ∀t ∈ [t0, tf ]. (7.3)

Minimum-time maneuvers are considered, for which the performance measure to be
minimized is

J = tf . (7.4)

Mathematical analysis of this class of problems can be found in standard texts on
optimal control theory, for example in [26]. PMP [29] assures that the control must
be extremal, i.e. U = Umin or U = Umax ∀t ∈ [t0, tf ] (assuming singular arcs do not
exist). However, the number and the position of the switches are unknown as well
as the sign of the bangs. The particle swarm optimization is employed to determine
the optimal sequence of switches of the bang-bang control policy.

Accordingly, the local version of the PSO is employed to find the optimal sequence
of switches for two different minimum-time optimal control problems.
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Fig. 7.1: Structure of the control policy assigned to the PSO particle.

7.3 Control structure assignment and search space
partition

The most important input of the proposed algorithm in the maximum allowed
number of switches, MS . In terms of the decision variables, a particle’s position can
be expressed as

x = [sx,1, ..., sx,MS
, sy,1, ..., sy,MS

, sz,1, ..., sz,MS
, tf ] ∈ R3MS+1 , (7.5)

where si,j is the jth switch along the axis i (j = 1, ...,MS , i = x, y, z) and tf is
the maneuver time. The time instant associated to the switch is evaluated as si,jtf .
An example control policy is reported in Fig. 7.1 for the x axis with normalized
time and control and MS = 6. The first bang on the left is imposed to be positive,
which means that the overall sequence of bangs of each particle is the vector
[+1,−1, ..., (−1)MS ] ∈ RMS+1, where the first value is always +1. For instance, in
Fig. 7.1 the sequence of bangs is [+1,−1,+1,−1,+1,−1,+1]. Let DI = [0, 1] be the
(normalized) closed time interval of integration and DE = (−δt, 0)∪(0, 1)∪(1, 1+δt)
be the extended time interval, where δt is a user-defined parameter. By definition,
si,j ∈ DE ∀j = 1, ...,MS , i = x, y, z. Since only the interval DI is considered
for the integration, the switches in (0, 1) are called effective and the switches in
DE − DI are called non-effective. In Fig. 7.1, {sx,1, sx,5, sx,6} are non-effective
switches whereas {sx,2, sx,3, sx,4} are effective switches. Non-effective switches may
affect the integrated dynamics: in fact, having sx,1 ∈ (−δt, 0) and sx,2 ∈ (0, 1) as in
Fig. 7.1 makes the first integrated bang negative and the sequence of effective bangs
is [−1,+1,−1,+1]. The extended time interval DE allows the switches to enter and
exit the integration domain DI changing the control structure of each particle. Let
mS,i ∈ Z, i = x, y, z, be the number of effective switches defined as:
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• mS,i > 0 means that |mS,i| effective switches are considered and the first bang
is positive.

• mS,i < 0 means that |mS,i| effective switches are considered and the first bang
is negative.

With this new definition, |mS,i| ≤ MS for i = x, y, z. Once fixed |mS,x|, |mS,y|
and |mS,z|, eight different combination of signs may be introduced. Accordingly,
imposing that at least one switch per axis must be considered and that the bang in
(−δt, si,1) is fixed to +1, the number of sub-domains is given by ND = (MS − 1)3.
Note that bangs shorter than the user-defined threshold ∆τmin are not taken into
account by the optimizer.

7.4 Migration among sub-domains

Every combination of effective switches for the three axes, together with the
sign of the first bang for each axis, determines a sub-domain where the search
for the optimal maneuver may be accomplished. Let C = {dl, l = 1, ..., ND | dl =
[m(l)

S,x,m
(l)
S,y,m

(l)
S,z], m

(l)
S,i ∈ Z, 1 ≤ |m(l)

S,i| ≤ MS , i = x, y, z} be the collection of all
the sub-domains dl. The algorithm performs two fundamental tasks:

1. Understand if a sub-domain dl is feasible, i.e. if the combination of effective
switches [m(l)

S,x,m
(l)
S,y,m

(l)
S,z] allows to satisfies the end-point conditions and the

path constraints.

2. If dl is feasible, optimize the values of si,j and minimize tf to find the time-
optimal maneuver.

To perform these two tasks, the particles must have the possibility to change
sub-domain in C by changing the number of switches si,j inside and outside the
integrated time domain DI . Accordingly, the ability to thoroughly explore all the
sub-domains must be strengthened to the maximum possible extent. This point
justifies the implementation of the local version of the PSO. However, the velocities
of the local PSO may not be sufficient to make the swarm explore all the feasible
sub-domains since movements of non-effective switches outside DI do not affect
the integrated dynamics. With this regard, a slight modification to the original PSO
has been implemented. First, let ρ, ri,l and ri,r be uniformly distributed numbers in
[0, 1] with i = x, y, z and σ1, σ2 be two user-defined constant parameters. Second, a
variable parameter R(k) is modeled as

R(k) = R0 − (R0 −Rf ) min
(

1, k − 1
K

)
(7.6)
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(a)Push-in

(b)Push-out

Fig. 7.2: Graphical representation of the push-in and push-out features.

After the application of the standard PSO displacement described in Eq. (3.1), two
new operations are applied, the “push-in” and the “push-out” displacement, defined
as follows:

Push-in: With reference to Fig. 7.2a, non-effective switches in (−δt, 0) and
(1, 1 + δt) are forced to move inside the integration domain DI according to
the following laws:

∀s(k+1)
i,j ∈ (−δt, 0) , s

(k+1)
i,j =

s
(k+1)
i,j if ri,l ≤ 1−R(k) ,

s
(k+1)
i,j + σ1ρ if ri,l > 1−R(k) ,

(7.7)

∀s(k+1)
i,j ∈ (1, 1 + δt) , s

(k+1)
i,j =

s
(k+1)
i,j if ri,r ≤ 1−R(k) ,

s
(k+1)
i,j − σ1ρ if ri,r > 1−R(k) .

(7.8)

Push-out: With reference to Fig. 7.2b, effective switches close to the boundary
of DI are forced to move outside the integration time domain. Once defined

si,j = min
j|si,j>0

(si,j) , s̄i,j = max
j|si,j<1

(si,j) , (7.9)

the push-out displacement occurs according to the Eq. (7.10) and Eq. (7.11).

If s(k+1)
i,j < σ2 , s(k+1)

i,j =

 s(k+1)
i,j if ri,l ≤ R(k) ,

−s(k+1)
i,j if ri,l > R(k) .

(7.10)

If s̄ (k+1)
i,j > 1− σ2 , s̄

(k+1)
i,j =

 s̄
(k+1)
i,j if ri,r ≤ R(k) ,

2− s̄ (k+1)
i,j if ri,r > R(k) .

(7.11)
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Another numerical approach for solving minimum-time problem with a pre-
assigned bang-bang control policy is reported in [108]. In that work, PSO has
been proposed with a mixed-integer approach. The number of switches mS,i and
the sign of the first bang Ui(0) were integer values in Z indirectly related to the
variation of some decision variables in R. Supposing φ ∈ R is the decision variable
for mS,i ∈ {1, 2, ...,MS}, it was set mS,i = j if φ ∈ Φj for j ∈ {1, 2, ...,MS}, where
Φj = [aj , bj) are non-intersecting sets with bj = aj+1. Similarly, setting ψ as the
decision variable for Ui(0) and Ui(0) ∈ {−1,+1}, Ui(0) = −1 if ψ ∈ Ψ1 = [−1, 0)
and Ui(0) = +1 if ψ ∈ Ψ2 = [0, 1). As already pointed out by the authors in [108],
the main drawback of this approach is that variations of φ and ψ only lead to varia-
tions of mS,i and Ui(0) when they pass the border of one set going to another set.
In this way, even large variations of φ and ψ may not lead to any variation of mS,i

and Ui(0). Moreover, when Ui(0) switches from -1 to +1, the dynamics related to
the particle drastically changes, creating a great amount of disorder in the swarm
and slowing down the convergence. Differently from [108], the approach proposed
in this work makes the variation of mS,i and Ui(0) depend on the variations of the
switch instants si,j . In this way, every small variation of the decision variables makes
the dynamics change. Accordingly, smooth variations of the integration results are
obtained helping the swarm to converge. The push-in and the push-out features give
the swarm an enhanced ability to explore the SS but the values of σ1 and σ2 must be
small enough so that the particles are only slightly perturbed.

7.5 Constraint handling

Solving minimum-time problems, the performance index associated with the
optimization problem is to be chosen as the maneuver time. The performance index
is selected in the form of an Exterior Penalty Function as described in Sec. 4.5.

First of all, it should be clear that the optimizer integrates the system dynamics
which is consequently discretized over a finite set of points {tk ∈ R | t0 < t1 < ... <

tNT }, where NT + 1 is the number of discretization points. Accordingly, in a Direct
Dynamics problem, initial conditions are automatically satisfied by the integrator.
However, final conditions and path constraints must be considered while planning
the time-optimal maneuver.

An Optimal Control Problem may be affected by equality an inequality constraints.
The constraint functions do ultimately depend on the particle xj and the discretized
time instant tk. From the numerical point of view, it is easier to transform an equality
constraint into an inequality constraint. Consequently, the generic equality constraint
c(xi, tk) = 0 is treated as |c(xi, tk)| < ∆, where ∆ is a user-defined tolerance. In the
same way, the generic inequality constraint c(xi, tk)−α ≤ 0 is relaxed and treated as
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c(xi, tk)−α ≤ ±∆. Hence, all the constraints will be described as c(xi, tk)−α ≤ ±∆,
where α is zero for equality constraints. The penalty function C associated with the
constraint c is thus given as:

Ci(xj , tk) =


0 if ci(xj , tk)− αi ≤ ±∆i ,

|ci(xj , tk)− αi| −∆i

max(∆i, εC) otherwise.
(7.12)

Note the normalization factor of the error is ∆i until it is not zero. In this case, the
convergence tolerance εC is used instead. Supposing to have Nc constraints, the
performance index is thus given by

Jj = tf,j +
NC∑
i=1

NT∑
k=0

c̃iνi,kCi(xj , tk) + ñ Nviol,j , (7.13)

where c̃i and ñi are user-defined constant weights and Nviol,j is the number of
violated constraints of the jth particle. The term νi,k is 1∀ k ∈ {0, ..., NT } if ci is
a path constraint while νi,k is δk,NT if ci a final condition, where δl,m is the usual
Kronecker delta. Note that the normalization of the penalty functions in Eq. (7.12)
is introduced in order to make their order of magnitude quite constant during the
optimization process. In this way, the summation of the penalty functions with tf in
Eq. (7.13) is more consistent, i.e. the relative weights of the different terms remain
quite fixed.

Every constraint Ci is considered with its tolerance ∆i to help the convergence
of the swarm. In this chapter adaptive decreasing tolerances are considered and the
strategy described in Sec. 4.5.2 is employed. Note that the exit criterion for the
optimizer is that all the imposed tolerances for the final conditions are lower than εC .
Only for the path constraints, ∆(k̄+1)

(·) is set equal to zero when its value is smaller
than 10εC . In this way, path constraints are completely satisfied before the exit
condition.

7.6 Test cases

Two examples to validate the proposed technique are reported. Comparisons
with other results in literature are given in order to verify the exactness of the
obtained solutions. All the simulations have been carried out on a personal computer
with an Intel®processor CoreTM i7-2670QM CPU @2.20GHz and with 6.00 GB of
RAM. A Runge-Kutta integration scheme of order 4-5 is employed for the numerical
integration, with relative and absolute tolerance referred to as εr and εa, respectively.
Note that the number of discretization points NT is chosen by the variable step size
integrator in order to satisfy the integration tolerances εr and εa. All the constant

7.6 Test cases 165



Tab. 7.2: Optimizer constant parameters.

Parameter Value Parameter Value
Cp 1.5 c̃i 106

Cl 2 σ1, σ2 0.01
Nγ 1500 δt 0.1
ñ 104 εC 10−8

LR 2 K 1000
w0 1.4 wf 0.6
R0 0.5 Rf 0.25
∆τmin 10−3 γ(1) 0.1
εr 10−13 εa 10−15

parameters of the proposed optimizer are reported in Table 7.2. The only parameters
that will be different in the following examples are the number of particles, NS , and
the values of the initial tolerances for the penalty functions, ∆i, since their values
depend on the examined problem.

The local version of the PSO has been selected for this work. Based upon the
author’ experience, the local paradigm shows superior convergence characteristics
vis-à-vis the global version for the kind of problems addressed in this Chapter.

7.6.1 Minimum-time control of a two-link robotic arm

This problem is taken from [108, 126]. A planar robotic arm with two rigid and
uniform links of mass m and length l is considered. A tip mass M is disposed as
shown in Fig. 7.3. Actuators located at the shoulder and elbow joints provide torques
U1 and U2, respectively. Both the torquers are independently subject to a control
saturation constraint, i.e. |Ui| ≤ 1, i = 1, 2. Considering frictionless joints, the arm
dynamics is given by
Ẋ1

Ẋ2

Ẋ3

Ẋ4

 =


F−1µ4µ5 F−1µ2µ5 0 0
F−1µ3µ5 F−1µ4µ5 0 0

0 0 −1 1
0 0 1 0




X2

1
X2

2
X1

X2

+


µ2 −(µ2 + µ4) 0 0
µ4 −(µ3 + µ4) 0 0
0 0 0 0
0 0 0 0




U1

U2

0
0

 ,
(7.14)

where the dimensionless quantities are defined by µ = M/m , µ1 = µ + 1/2,
µ2 = µ+ 1/3, µ3 = µ+ 4/3, µ4 = µ cosx3, µ5 = µ1 sin x3 and F = 7/36 + 2µ/3 +µ2

5.
As in [108, 126], we consider µ = 1. As it can be seen, Eq. (7.14) is in the
form of an control-affine system as in Eq. (7.1), with NX = 4 and NU = 2.
Consequently, a bang-bang control can be adopted for minimum-time maneuvers.

166 Chapter 7 Particle Swarm Optimization with Domain Partition and Control Assignment for

Minimum-Time Maneuvers



Fig. 7.3: Two-link robotic arm.
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Fig. 7.4: Optimal control for the robotic arm.

Once the control is normalized, the independent variable time t is measured in units
of κt = 1/

√
Umax/ml. Initial and final conditions of the problem are:

X(t0) = [0, 0, 0.5 rad, 0]T , X(tf ) = [0, 0, 0.5 rad, 0.522 rad]T . (7.15)

The performance index is chosen in the form of Eq. (7.13). No path constraints
are taken into account and four penalty functions are requested for the four equality
constraints concerning the final conditions in Eq. (7.15). The initial values of ∆i

related to Xi(tf ), i = 1, ..., 4, have been set equal to 0.3. Results are reported for
MS = {2, 3, 4}; the number of particles NS is 40 for MS = 2, 60 for MS = 3 and 80
for MS = 4. Increasing the maximum number of switches more particles are required

7.6 Test cases 167



0.6 0.8 1 1.2 1.4 1.6
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

X
3
 (rad)

X
4 (

ra
d)

Fig. 7.5: Optimal state space trajectory for the robotic arm.

for the obtainment of the right result since more local minima are distributed in the
search space. Preliminary tests have been carried out to choose appropriate values
for NS . Swarms with a smaller number of particles do not always guarantee the
convergence toward the optimal solution. A discussion about how to chose proper
values for MS is given in Sec. 7.6.3.

For all the studied cases, the algorithm is able to converge toward the optimal
solution, which is given by mS,x = 1 and mS,y = 2. The optimal control in reported
in Fig. 7.4, while the optimal state space trajectory for X3 and X4 is shown in Fig.
7.5. These results are perfectly consistent with those reported in [108, 126]: the
switch for U1 happens at t/tf = 0.5 while the two switches for U2 are located at
t/t∗f = 0.3162 and t/t∗f = 0.8811. The maneuver time is equal to 2.9823 κt.

Note that, when trying to find a feasible maneuver imposing MS = 1, so solution
can be found. It means that, for this problem, we have found that the minimum-time
maneuver corresponds to a maneuver given by the minimum feasible value of MS .

It is worth to see from Table 7.3 that the computational time required by the
proposed algorithm is about 77 seconds when MS = 2, 124 seconds for MS = 3 and
190 seconds for MS = 4. These results are evaluated over 100 different runs of the
optimizer.

Tab. 7.3: Computational effort for the robotic arm problem.

MS = 2 MS = 3 MS = 4
Number of particles, NS 40 60 80
Mean Computational Time (s) 79.81 125.83 190.33
Mean Number of Iterations 2196.10 2284.22 2398.93
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Fig. 7.6: Convergence toward the optimal number of switches for different values of MS .

This problem has been already solved in [108] with the technique that has
been rapidly described toward the end of Sec. 7.4. In that case, 500 particles
where needed. Even though several factors may impact on the computational
time (processor, operative system, programming language and/or environment),
the computational time required in [108] was on the order of several hours. The
different number of required particles and the remarks made in Sec. 7.4 justify the
difference in the computational times. Moreover, the proposed technique converges
to a solution which perfectly coincides with the one reported in [108] obtained with
SNOPT associated with a pseudo-spectral optimization software.

To conclude, it is quite interesting to see how the proposed technique is able to
explore the search space and to converge toward the optimal solution. Even though
Fig. 7.6 refers to three single cases with MS = 2 in (a), MS = 3 in (b) and MS = 4
in (c), some general characteristics of the optimizer behavior may be inferred. The
values of mS,x and mS,y corresponding to the temporary best solution during the
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optimization process are reported and each point corresponds to an update of the
best particle in the swarm. It can be seen that, for every value of MS , the swarm
is able to compare different combinations of switches and, after the search space
has been properly explored, the swarm always recognizes the best maneuver and
converges toward it. With the optimizer parameters reported in Table 7.2 and
consistently with Table 7.3, the number of iterations required for the convergence is
not strongly affected by MS .

7.6.2 Minimum-time constrained slew maneuver

This problem has been already introduced in Sec. 5.2. In this case, the state is
X = [pT ,ωT ]T . Also in this case, Eq. (5.28) and Eq. (5.37) describe a control-affine
dynamical system, , with NX = 6 and NU = 3. After the proper normalization,
|Ui| ≤ 1, i = 1, 2, 3 as in the previous example. Initial and final conditions are:

X(t0) = [0, 0, 0, 0, 0, 0]T , X(tf ) = [0.2679, 0, 0, 0, 0, 0]T . (7.16)

The body-fixed reference frame B = {ê1, ê2, ê3} at time t = t0 is taken as inertial
reference frame and it will be referred to as B0 = {ê0,1, ê0,2, ê0,3}.

ω = ω1ê1 + ω2ê2 + ω3ê3

U = U1ê1 + U2ê2 + U3ê3

All the reported solution are completely feasible with regard to the keep-out cone
constraint. In fact, tolerances for the path constraints are set to zero in the final
iterations of the optimization algorithm.

Before presenting the results, an important analysis concerning the distribution
of the local minima in the search space is in order. When searching for maneuvers
with a bang-bang control, some combinations of switches are feasible and other are
not, as already stated in Sec. 7.4. In this particular case, the number of feasible
maneuvers is extremely high and many local minima may be detected. The proposed
algorithm has been forced to work with a prescribed number of switches, and all
the possible combinations of switches have been tried considering MS = 1, ..., 7. In
this search space, 269 local minima have been found. With regard to the optimal
maneuver time, which is 2.0078 κt =222.4080 seconds, the relative errors of these
local minima span from 0.2% to 30%. Some of these extremal solutions are reported
in Fig. 7.7: the number of switches for the x-body axis is fixed to mS,x = 1 and
mS,x = 3, whilst mS,y and mS,z are considered from -7 to +7. The optimal solution
is given by mS,x = 1, mS,y = −2 and mS,z = 3 and it is specified with a gray circle.
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Fig. 7.7: Local minima in the search space of the slew maneuver problem.

The nearest local minimum is given by the combination mS,x = 1, mS,y = 3 and
mS,z = 2 and leads to a maneuver time of 2.0123 κt =222.9097 seconds. These two
maneuvers are shown in Fig. 7.8. It can be seen that they take advantage of different
nutational components of the motion (the first numerical evidence of time-optimal
reorientation maneuvers with nutational components of the motion is given in [80]).
In Fig. 7.8(a) the maneuver starts moving toward the right while in Fig. 7.8(c) the
maneuver starts moving toward the left. In Fig. 7.8, the subplots (b) and (d) show
the extremal control. By a visual inspection of the two trajectories, a slight symmetry
of the the two maneuvers may be highlighted, which most probably is a consequence
of the quasi-symmetrical geometrical disposition of the keep-out cones.

The time instants associated with the switches of the optimal and sub-optimal
maneuver are reported in Table 7.4 as fractions of the optimal final time t∗f .

Tab. 7.4: Switches obtained for the slew maneuver.

Time instants of the
switches (t∗f )

[mS,x,mS,y,mS,z] = [1,−2, 3]
along ê1 0.5089
along ê2 [0.2039 , 0.7394]
along ê3 [0.0703 , 0.4089 , 0.8419]

[mS,x,mS,y,mS,z] = [1, 3, 2]
along ê1 0.5063
along ê2 [0.1292 , 0.5595 , 0.9233]
along ê3 [0.2590 , 0.7689]
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Fig. 7.8: Optimal (a,b) and sub-optimal (c,d) maneuvers with keep-out cone constraints.
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Fig. 7.9: Minimum time obtained when M̄S switches occur on at least one of the three axes.

It is worth noting that, trying any combination of switches and imposing a max-
imum of 2 switches for all the body axes, no feasible maneuver has been found.
Consequently, also in this problem, we can say that the time-optimal maneuver
coincides with one of the maneuvers with the minimum feasible number of switches.
Moreover, in this particular case, no feasible maneuver exists when only one switch
is considered along ê2 or when 2 switches are considered along ê2 and less than 3
switches are considered along ê3. If we define M̄S as the number of switches to be
guaranteed at least by one of the three axes, then we can see from Fig. 7.9 that the
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maneuver time gets higher increasing the value of M̄S . This result justify the fact
that it is reasonable to search for the optimal maneuver with low values of MS .

The kinematic profile in terms of Modified Rodrigues Parameters and angular
velocities is provided for the optimal maneuver with [mS,x,mS,y,mS,z] = [1,−2, 3]
in Fig. 7.10.

Until now, we have only tried all the possible combinations of switches to find
out the minimum-time maneuver. This procedure requires a lot of time since the
PSO algorithm is called for every combination. The proposed approach avoids this
annoying time-consuming procedure. Setting MS = {3, 4}, we have verified that
the described optimizer is able to converge to the optimal solution. From previous
numerical solutions and from the previous analysis we already know that MS = 3 is
the optimal value, but a generalization of the optimization procedure is considered
in Sec. 7.6.3.

Setting MS = 3 and NS = 70 and having applied the proposed approach 100
times over the described test case, the following remarks are in order:

1. The optimal maneuver [mS,x,mS,y,mS,z] = [1,−2, 3] has been obtained for 71
times and the suboptimal maneuver [mS,x,mS,y,mS,z] = [1, 3, 2] for 29 times.
However, given the fact that the error of the suboptimal maneuver is only of
0.2%, this result is related to the fact that the swarm cannot distinguish the
optimal solution between the two options. Numerical experiments have shown
that this characteristic behavior does not change increasing the number of
particles.

2. The average computational time for convergence toward [mS,x,mS,y,mS,z] =
[1,−2, 3] is 203.69 seconds with 2009.55 PSO iterations, whilst the average

(a)

0 0.5 1 1.5 2

−0.05

0

0.05

0.1

0.15

0.2

0.25

t (κ
t
)

M
R

P

 

 

p
1

p
2

p
3

(b)

0 0.5 1 1.5 2
−0.5

0

0.5

1

t (κ
t
)

ω
  (

κ ω
)

 

 

ω
1

ω
2

ω
3

Fig. 7.10: Optimal kinematics laws with keep-out cone constraints for
[mS,x,mS,y,mS,z] = [1,−2,3].
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Fig. 7.11: Convergence toward the optimal number of switches for different values of MS .

computational time for convergence toward [mS,x,mS,y,mS,z] = [1, 3, 2] is
257.99 seconds with 2513.41 PSO iterations

3. The algorithm is still able to work with higher values of MS; also in these cases
the optimizer can give the optimal or the sub-optimal maneuver. As for the
previous problem in Sec. 7.6.1, Fig. 7.11 reports the evolution of the optimal
number of switches during the optimization process for two cases where the
optimal sequence has been detected. It can be seen that, especially when
MS = 4, the algorithm spends a lot of time comparing different combinations
of switches. With MS = 4, 100 particles have been employed.

The errors on the final conditions for a generic solution are reported in Table 7.5.
Note that the convergence threshold εC reported in Table 7.2 is satisfied for all the
state variables.

Tab. 7.5: Final state values for a sample experiment of the slew maneuver.

State Units Output value Absolute
Variable at t = tf error

p1 - 0.2679 0.4980 · 10−8

p2 - 0 0.6977 · 10−8

p3 - 0 0.6288 · 10−8

ω1 κω 0 0.1314 · 10−8

ω2 κω 0 0.6573 · 10−8

ω3 κω 0 0.3916 · 10−8
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Fig. 7.12: Control policy given by the Pseudo-spectral optimizer.

With regard to the previous point 1., it is interesting to see that the presence of
very close local minima is consistent with the analysis of re-orientation maneuvers
without path constraints performed in [84]. In that case, reproducing the famous
case study of [80], it was pointed out that local minima with different number of
switches may exist leading to very little maneuver time differences (below 1% with
respect to the optimal one).

Note that applying a pseudo-spectral approach with the software GPOPS-II (under
the research activities license, [57]), the sub-optimal solution reported in Fig. 7.12
is obtained, where [mS,x,mS,y,mS,z] = [1,−4, 3]. This maneuver is associated with
a final time of 2.0346 κt = 225.3680 seconds (no appreciable variations have been
appreciated changing the NLP solver or other setting parameters). Our numerical
experiments have verified that the proposed approach and GPOPS-II give the same
solution when no keep-out cone is considered, whilst our approach performs better
when the keep-out cone is considered. A reasonable explanation lies in the different
approximation method used for the control: GPOPS-II approximates the control
(and the state) with Lagrange polynomials over the collocation points, while the
proposed method impose the (already known) optimal bang-bang solution and
properly integrate the dynamics.

7.6.3 Additional remarks

The solution of the two problems in Sec. 7.6.1 and Sec. 7.6.2 are extremely useful
in order to suggest the criteria for using the proposed technique in general minimum-
time problems. It has been underlined that an insight into the optimization problem
is helpful to guess the minimum reasonable value of MS . In the two problems, we
based our guess on the knowledge of previous solutions from the literature. However,
when solving new problems where it’s not easy to guess the proper value of MS ,
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the solving approach may be to start from low values of MS . In Sec. 7.6.2 it has
been underlined that using MS = 1 and MS = 2 no feasible solutions exist and
the minimum-time maneuver is associated with MS = 3. Moreover, solving the
robotic arm problem with MS = 1, no solution has been found, and also here the
minimum-time maneuver has been found with the minimum feasible value of MS

which is 2. Even though there is no theoretical evidence that this is the general rule,
these results suggest that the minimum-time solution is likely to be associated to
low feasible values of MS . If the optimization problem is convex with regard to MS ,
than a good solving strategy is to start from the minimum value of MS and let MS

increase until we get a decrease in the maneuver time.

7.7 Endnotes

In this chapter, a novel approach has been proposed for planning time-optimal
maneuvers imposing a bang-bang external control. The optimizer is based on the
Particle Swarm Optimization and only requires to set the maximum number of
switches allowed for each axis. With the reported examples, it has been shown that
several local minima may exist when using the proposed approach. However, thanks
to the partition of the search space and the introduction of the Push In and the Push
Out features, the optimization algorithm is able to recognize the global minimizing
solution so that the convergence toward the bang-bang optimal maneuver described
by the Pontryagin Maximum Principle is guaranteed.

Two different test cases have been analyzed and solved to validate the optimizer. In
the first example, characterized by four state-space variables and no path constraints,
the convergence toward the optimal solution has been demonstrated with different
values of the maximum number of switches. For the second example, described by six
state-space variables and non-linear path constraints, the optimal solution is reached
in more than 70% of cases over 100 simulations, path constraints are completely
satisfied and errors on the final conditions are lower than 10−8 in normalized units.
Compared to other similar numerical approaches, the computational effort is rather
small and, using a personal computer, a maximum time of few minutes are required
for the convergence. Moreover, the second example has shown that the solution
obtained with the described method can be better than the solutions obtained
with pseudo-spectral optimization algorithms. The proposed optimizer represents a
valuable tool when the optimal control is known to be a bang-bang policy.

176 Chapter 7 Particle Swarm Optimization with Domain Partition and Control Assignment for

Minimum-Time Maneuvers



Part IV
PLANNING OF SPACECRAFT

FORMATION RECONFIGURATIONS





8Minimum-Time Reconfiguration
Maneuvers of Satellite
Formations Using Perturbation
Forces*

Abstract
A novel approach for minimum-time reconfiguration of satellite formations is
described considering the perturbation forces as control variables. Planning ap-
propriate attitude maneuvers for each satellite, the atmospheric drag and of the
solar radiation pressure are properly controlled and the formation is given the
appropriate inputs to achieve the imposed reconfiguration. Limits and advantages
of the presented maneuvers are examined considering Low Earth Orbits, Medium
Earth Orbits and Geostationary Orbits. The Inverse Dynamics Particle Swarm Op-
timization is involved: the integration of the attitude dynamics is avoided, thus
reducing the computational effort, and satisfied attitude constraints at the initial
and final time instants are guaranteed. B-spline curves approximate the attitude
kinematics, variable time mesh-points are introduced and adaptive decreasing
tolerances are considered for the imposed constraints. The evolution of the con-
figuration is simulated with a high-fidelity orbital simulator considering all the
perturbations that can affect the maneuver. Two test cases are taken into account,
one involving a circular formation reconfiguration and the other an along-track
reconfiguration.

Nomenclature

r(t) = Inertial position p(t) = External perturbation
µ = Earth gravitational constant ρ = Relative position
I = ECI coordinate system L = LVLH coordinate system
t = Time ξ = Attitude parameters
(·)0/f = Initial/final time value (·)∗ = Optimal value
(·)c/d = Chief/Deputy referred value xi = Attitude control torque
ω = Body angular velocity NF = Number of formation spacecrafts
X = Orbital states of the formation Y = Attitude states of the formation
U = Attitude controls of the formation MGG = Gravity gradient torque

*This chapter is based on Refs. [8, 127].



æ = Classical orbital elements set R,Kzx= Relative trajectory parameters
cy/zx = Relative ellipse axes ϕzx = Relative plane inclination
J2 = Gravitational parameter t = Time
CD = Drag coefficient m = Satellite mass
% = Atmospheric density α, β = Orientation angles
(̂·) = Unit vector γ = Reflectivity coefficient
S0 = Solar radiation constant γ = Reflectivity coefficient
ζ(t) = Shadow function ∇gJ2 = GG acceleration due to J2

I = Inertia tensor J = Performance index
P = Penalty function Nviol = Number of violated constraints
∆ = Decreasing tolerance ∂min = Minimum inter-distance
(̃·) = Approximation coefficient NT = Discretization points
NS = Number of PSO particles NP = Number of B-spline parameters

8.1 Introduction

This chapter describes a spacecraft formation reconfiguration strategy based
on the coupling between translational and rotational dynamics introduced by the
perturbations. It is demonstrated that modifying the attitude of the satellites, the
effects of the atmospheric drag and of the solar radiation pressure can change in
such a way to give the formation the appropriate inputs to achieve the imposed
reconfiguration. The mission scenario is inspired by that of the JC2Sat Formation
Flying Mission [128].

Satellite formation flying (SFF) is an important research theme of the recent
scientific literature in the astronautical field: missions based on SFF may reduce the
overall costs and benefit from the distribution of the payload. Guidance, navigation
and control of SFF play a fundamental role in guaranteeing the proper inter-linking
and geometrical distribution of the satellites which are needed for the fulfillment of
the mission [129, 130].

The study of SFF is easily modeled as a relative motion problem described by the
linearized Hill-Clohessy-Whiltshire equations [131]. However, great effort has been
spent in developing non-linear models of the relative motion; most of the recent
results may be found in [132].

The planning of reconfiguration maneuvers is usually based on the following as-
sumptions: 1) maneuvers are accomplished by means of an impulsive or continuous
control based on fuel consumption; 2) rotational dynamics is not modeled. Analyti-
cal solution may be found only for simplified problems, as in [133], hence numerical
techniques are usually employed to find optimal solutions: the Multiple-Shooting
method is applied in [134], a Pseudospectral technique is involved in [135] whilst
a Mixed-Integer Linear Programming is presented in [136]. Heuristic methods are
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also usually applied: the Particle Swarm Optimization is used in [137], the Brain
Storm Optimization is exploited in [138] and a Genetic Algorithm are adopted in
[139].

Only few works take the attitude dynamics into account when reconfiguring
a satellite formation. For instance, in [140] attitude maneuvers are required to
properly orient the body-fixed thrusters, while in [141] several attitude constraints
are imposed for deep space missions. However, none of these works consider the
coupling between the translational and the rotational dynamics introduced by the
perturbations.

In order to guide and control a SFF, small forces are generally required and
perturbations may be used to accomplish the satellites operations. This possibility
has been already investigated as far as the maintenance issue is concerned. The
differential drag has been firstly taken into account for the formation-keeping in
[142] with a simple feedback control law. A great number of works have than
been produced considering the problem of the rendezvous between two or more
satellites; some interesting results may be found in [143, 144] where the J2 effect is
taken into account and in [145, 146] where an adaptive Lyapunov control strategy
is presented. For very low Earth orbits, also the lift force may be considered
[147]. The problem of the formation maintenance using differential drag has been
recently represented in [147, 148, 149]. Only in [150], however, the problem of
the reconfiguration is taken into account. Also the solar radiation pressure has been
considered for station-keeping problems [151] or formation mainteinance problems
[152, 153]. Some reconfiguration maneuvers have been presented in [154, 155].
Finally, an interesting application of the geomagnetic Lorentz force for formation
reconfiguration maneuvers has been reported in [156].

As previous works have already investigated the formation maintenance problem,
this work does instead focus on the opportunity to perform reconfiguration maneu-
vers by means of perturbation forces. In particular, modifying the attitude of the
satellites, the effects of the atmospheric drag and of the solar radiation pressure
change; controlling these perturbation forces, the appropriate inputs are given to
the maneuverable satellites to achieve the desired relative configuration. Limits and
possibilities offered by using the drag perturbation and the solar radiation pressure
perturbation (individually or combined, depending on the altitude) will be analyzed
considering Low Earth Orbits (LEO), Medium Earth Orbits (MEO) and Geostationary
Orbits (GEO). Minimum-time reconfiguration maneuvers are investigated: since
perturbation forces have a small intensity compared to the gravitational field forces,
the minimum-time planning guarantees to exploit the effect of the perturbation
forces at the maximum extent and to obtain reasonable maneuver times. Several
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constraints are imposed, such as the final configuration, the collision avoidance and
the maximum available torque for the attitude maneuvers.

The IPSO is employed, as it is a fast and validated optimization method suitable for
the proposed problem where the integration of the full non-linear orbital dynamics
is already a heavy time-consuming process. In fact, reliable results may be obtained
only considering both the SFF orbital dynamics (through an high fidelity orbital
simulator) and the attitude dynamics in order to properly model the intensity and
the direction of the perturbation forces during the maneuver. Differently from
other commonly used numerical approaches, the IPSO requires a reduced number
of optimization parameters thus making it possible to deal with very complex
optimization problems. As proved in the previous chapters, the IPSO generally
requires small computational efforts since the integration of the attitude dynamics is
avoided. Furthermore, satisfied boundary conditions for the attitude are guaranteed,
thus reducing the complexity of the performance index. B-spline curves are used
to model the attitude kinematics of the satellites: an innovative way for modeling
the attitude profiles of the satellites is introduced, considering control points with
variable attitude parameters and time mesh-points. Moreover, a novel strategy for
adaptive decreasing tolerances has been adopted.

The main objective of this chapter is to show the limits and possibilities offered by
the proposed maneuver approach by means of:

1. Theoretical investigations: starting from simple mathematical models ( Hill-
Clohessy-Wiltshire (HCW) equations and Gauss’ Variational Equations (GVE)),
the relative motion variations induced by the drag and the solar radiation
pressure will be investigated to understand how they affect the proposed
trajectories.

2. Numerical simulations: accurate numerical experiments will prove the effec-
tiveness of the theoretical insights.

It is noteworthy that in this chapter the IPSO method is utilized to solve a very hard
problem which requires an efficient work-station in order to obtain the solution in a
reasonable time, in contrast to the applications reported from Chapter 5 to Chapter 6,
where the IPSO has been presented as an advantageous method for possible on-board
implementation of an autonomous path planning. In fact, the goal of this chapter
is to demonstrate the feasibility of the proposed maneuver approach, verifying the
theoretical insights through a validated numerical optimization technique.

This chapter is organized as follows. Section 8.2 presents a description of the
relative motion problem considering non-linearities, external control and orbital
perturbation. Section 8.3 introduces some reference trajectories described by linear
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Fig. 8.1: ECI coordinate system I and LVLH coordinate system L .

relative motion models. Section 8.4 describes the perturbation-based approach
to accomplish formation reconfiguration maneuvers. Section 8.5 describes the
implementation of the IPSO strategy applied to the presented problem. Section 8.6
presents the numerical results obtained with some interesting test cases. Finally,
concluding remarks are given in Section 8.7.

8.2 Satellite formation reconfiguration

Let us suppose to have a SFF with NF satellites identified with the subscript
i ∈ {1, 2, ..., NF}. We introduce a Earth Centered Inertial (ECI) coordinate system
I as reported in Fig. 8.1. Considering the Keplerian term and Npert environmental
perturbations pj,i acting on the ith satellite, the equation of motion in I is

r̈i = − µ
r3
i

ri +
Npert∑
j=1

pj,i (8.1)

where µ = 3.986 · 105 km3/s2 is the Earth gravitational constant. The terms pj,i
in Eq. (8.1) will be described in details in Sec. 8.4: the number of perturbation
terms Npert depends on the accuracy associated to the numerical model. The relative
motion dynamics is obtained describing the motion of the ith deputy satellite with
respect to the motion of the chief satellite, here denoted by the subscript c. Note
that the chief satellite position may be empty, which means that there is actually no
satellite in rc. In such case, the chief position may be identified as the barycenter
of the formation. With reference to fig. 8.1, we define the relative position vector
ρi = ri − rc = [xi, yi, zi]T . The relative motion dynamics is described in the Local-
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Vertical, Local-Horizontal (LVLH) coordinate system L centered in the chief satellite
position identified by rc.

In this chapter, the non-linear dynamics of every satellite will be taken into
account for the numerical integration. The non-linear equations of relative motion
may be expressed in L [132], but this representation does not reduce the numerical
complexity of the problem when considering a perturbed reference orbit: in fact both
the relative states of the deputies and the inertial state of the chief must be integrated.
Accordingly, the numerical integration is performed on the inertial states and the
relative formulation is only used for the a posteriori description of the formation.

Let us now suppose that, at a defined initial time instant t0 = 0, the formation is
disposed such that it satisfy some geometrical constraints related to the position and
velocity initial conditions and that we want to reconfigure this formation. Conse-
quently, we must impose precise final conditions to be satisfied after an appropriate
maneuver completed at the time instant t = tf . The purpose of this work is to ex-
plore the possibility to accomplish a formation reconfiguration maneuver by means
of the atmospheric drag perturbation pD and the solar radiation pressure perturba-
tion pSRP . Both these two forces vary as a function of the attitude, which may be
represented by the vector ξ in R3 or R4 depending on the chosen representation
[114]. Hence, the perturbation forces are the inputs leading to the reconfiguration,
but the attitude maneuver are the tool through which the reconfiguration maneuver
is made possible. Since perturbation forces have a small intensity compared to the
gravitational field forces, minimum-time reconfiguration maneuvers are searched for
to exploit the effect of the perturbation forces at the maximum extent and to obtain
reasonable maneuver times.

The minimum-time optimization problem is summarized as follows: find the mini-
mum maneuver time t∗f such that, ∀i = 1, 2, ..., NF , an optimal attitude kinematic
law ξ∗i (t) and the associated attitude control torque u∗i (t) = [u∗i,1(t), u∗i,2(t), u∗i,3(t)]T

are found which properly set the intensity and/or the direction of the perturbation
forces thus leading from the initial to the final formation configuration. The con-
figuration constraints do actually impose constraints on the values of position and
velocities of all the satellites in the formation, for t = t0 and t = t∗f .

First, the following quantities and relationships are defined:

• X = [x1,x2, . . . ,xNF ] ∈ R6NF where xi = [ri, ṙi], ri ∈ R3 is the inertial
positions and ṙi ∈ R3 is the inertial velocity of each satellite, expressed in I.

• Y = [y1,y2, . . . ,yNF ] ∈ R6NF where yi = [ξi,ωi], ξi ∈ R3 is the attitude
parameterization (given by roll, pitch and yaw) and ωi ∈ R3 the body angular
velocity, expressed in B.
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• U = [u1,u2, . . . ,uNF ] ∈ R3NF where ui ∈ R3 is the vector of the external
torque for controlling the attitude of each satellite.

• b defines the initial conditions such that b : R6NF × R6NF → RNb .

• e defines the final conditions such that e : R6NF × R6NF → RNe .

• p defines the path constraints such that p : R6NF × R6NF × R3NF × R→ RNp .

The values of Nb, Ne, Np ∈ R depend on the problem.

Denoting the jth constraint at the beginning of the maneuver as bj , the jth con-
straint at the end of the maneuver as ej , the jth control constraint as cj and the jth

path constraint as pj , the mathematical formulation of the optimization problem is
expressed as:

Find X(t),Y (t),U(t), tf ∈ R

minimizing

J = tf − t0
subject to, ∀t ∈ [t0, tf ]

orbital dynamics: r̈i =
ng∑
j=1

ng∑
k=1

φj,k(ri) + p�,⊕(ri) + p$,⊕(ri)

+ pD(ri, ξi, t) + pSRP (ri, ξi, t)

attitude dynamics: ξ̇i = Ξ(ξi)ωi
ω̇i = I−1(ui +MGG(ri, ξi)− ωi × Iωi)

initial conditions: b(X(t0),Y (t0)) = 0

final conditions: e(X(tf ),Y (tf )) = 0

path constraints: p(X,Y ,U , t) ≤ 0

(8.2)

Initial and final conditions determine the satellite configuration at the beginning
and at the end of the maneuver. Inside the path constraints, the collision avoidance
(satellites inter-distance are always greater than a user-defined threshold) and the
feasibility of the attitude control (always less than the maximum available torque)
are taken into account.

The orbital dynamics takes into account the gravitational harmonics φi,j up to
degree and order ng = 20 (values consistent with what reported in [157]), the third
body perturbation of the Sun and the Moon, p�,⊕ and p$,⊕, the drag pD and the
solar radiation pressure pSRP perturbations are taken into account. The attitude
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dynamics is controlled by u and the perturbative effect of the gravity gradient (GG)
torque MGG(r, ξ) is modeled.

The attitude re-orientation problem has been stated as an inverse dynamics sub-
problem inside the generic problem in Eq. (8.2). In fact the angular velocities of the
satellites and the torques required for the attitude maneuvers are obtained as a func-
tion of the attitude histories. Major details are given in Sec. 8.5.1. Note that when
considering the atmospheric drag and the solar radiation pressure perturbations, the
attitude and the orbital dynamics are coupled. The control constraint is required in
order to deal with feasible control laws. The path constraint imposes a minimum
safety inter-distance ∂min among all the satellites during the entire maneuver in
order to ensure the collision avoidance.

8.3 Reference relative trajectories

In this work, circular and near circular orbits will be taken into account. Let us
consider the chief satellite (subscripted with c) centered at the origin of the rotating
Euler–Hill frame L = {XL ,Y L ,ZL } as in Fig. 8.1. Some reference trajectories
of the deputy satellite (subscripted with d and identified by the position vector
ρd = [xd, yd, zd]) are defined in L by means of the linear model described by the
HCW equations [131],

ẍd − 2ncẏd − 3n2
cxd = 0 ,

ÿd + 2ncẋd = 0 ,

z̈d + n2
czd = 0 ,

(8.3)

where nc = (µ/a3
c)1/2, the mean motion, is supposed to be constant. For a close

relative trajectory, we impose the energy matching condition [132] given by δa =
ad − ac = 0. Let us define the Relative Orbit Elements (ROE) [158],

δα =



δa

δλ

δex

δey

δix

δiy


=



a−1
c (ad − ac)

ud − uc + (Ωd − Ωc) cos(ic)
ed cos(ωd)− ec cos(ωc)
ed sin(ωd)− ec sin(ωc)

id − ic
(Ωd − Ωc) sin(ic)


, (8.4)
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Fig. 8.2: Reference relative trajectories.

where æ = [a, e, i,Ω, ω,M ] are the classical orbital elements and u = M + ω.
Accordingly, the trajectory generating from (8.3) can be expressed as

xd(t) = −acδe cos (nct− ϕ) ,

yd(t) = acδλ+ 2acδe sin (nct− ϕ) ,

zd(t) = acδi sin (nct− θ) ,

(8.5)

where
δe = (δe2

x + δe2
y)1/2,

δi = (δi2x + δi2y)1/2,

ϕ = tan−1(δey/δex),

θ = tan−1(δiy/δix).

(8.6)

Eq. (8.5) is used to define the geometrical constraints of the initial and final
configurations. Note that Eq. (8.5) is the same as Eq. (4) in [8], here reported for
the sake of completness

xd(t) = −acδe cos (nct− δω) ,

yd(t) = ac (δω + δM + cos iδΩ) + 2acδe sin (nct− δω) ,

zd(t) = ac (−δΩ sin ic cosnct+ δi sinnct) ,

(8.7)

which was written as a function of the differential orbital elements

δæ = [δa, δe, δi, δΩ, δω, δM ] (8.8)

and was valid for ec = 0 or ec → 0 and δωc → 0 (the sign of δω in Eq. (4) of Ref. [8]
is − instead of +, and δa is zero). With reference to Fig. 8.2, the following three
formations are defined:

1. Along-Track Formation (ATF): the satellites are on the same orbit with small
differences in anomaly. Consequently, only δλ 6= 0, while all the other ROE are
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Fig. 8.3: Dimension and inclination of the relative motion ellipse.

zero. Defining y0 = a0δλ, the formation is then described by [x(t), y(t), z(t)] =
[0, y0, 0].

2. General Circular Formation (GCF): the relative trajectory lies on a plane and is
circular with radius R, centered in the position of the chief satellite.

3. Projected Circular Formation (PCF): the relative trajectory lies on a plane, is
elliptical and the yz projection is a circle, centered in the position of the chief
satellite and with radius R.

Close relative trajectories can be represented in Cartesian coordinates in L as

xd(t) = 0.5R sin (nct+ α0) = acδe sin (nct+ α0) ,

yd(t) = y0 +R cos (nct+ α0) = acδλ+ 2acδe cos (nct+ α0) ,

zd(t) = 0.5KzxR sin (nct+ α0) = acδi sin (nct+ α0) ,

(8.9)

where R is related to the dimension of the formation ellipse and α0 is the initial
phase angle. Comparing Eq. (8.5) and Eq. (8.9), given that sin(α) = − cos(α+ π/2)
and cos(α) = sin(α+ π/2) ∀α ∈ R, the following equalities have been established,

−ϕ = α0 + π

2 , θ = −α0. (8.10)

GCF, PCF and ATF are then obtained as the following special case:

• GCF: Kzx =
√

3 (centered in the origin of L if y0 = 0).

• PCF: Kzx = 2 (centered in the origin of L if y0 = 0).

• ATF: R = 0 and y0 6= 0.
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In the general case, the xy-projection of Eq. (8.5) and (8.9) is a 2 : 1 ellipse centered
at (0, y0) (see Fig. 8.8 for clarity). With reference to Fig. 8.3, the ellipse axes cy and
czx are

cy = 2R , czx = R
√
K2
zx + 1 (8.11)

and the inclination of the relative motion plane is

ϕzx = tan−1Kzx. (8.12)

The mathematical models for close relative motion given in Eqs. (8.5), (8.7), (8.9)
are linear approximations valid when no perturbations are considered. Actually,
more accurate models exist, as the one described in [159] where the ROE formalism
in employed to introduce the J2 gravitational contribution and the differential drag.
However, employing such models, the simple and intuitive closed form solutions
presented so far to define the PCF, GCF and ATF configurations cannot be easily
recognized.

When introducing non-linearities, we can only impose such reference orbits at the
t = t0. As described in [132], initial conditions on δa may be modified to take into
account the along-track drift introduced by the J2, which represents one of the most
significant non-keplerian effects.

8.4 Perturbations as control inputs

In this paragraph, the opportunity to perform perturbation-based maneuvers is
introduced. First, in Sec. 8.4.1, the mathematical description of the drag and solar
radiation perturbations is given. Second, in Sec. 8.4.2, a preliminary feasibility
analysis about the opportunity to use perturbations as control inputs is performed.
Then, in Sec. 8.4.3, the general features of perturbation-based maneuvers are
highlighted, while in Sec. 8.4.4 the characteristics of minimum-time maneuvers with
in-plane forces are described.

8.4.1 Perturbations introduced by natural forces

The orbital dynamics of the satellites are modeled as in [8]. From the analysis
reported in [160], the lift/drag ratio is related to the thermal accommodation
coefficient and attains a maximum value of 0.05 when a diffuse re-emission model
is employed with complete accommodation. In more recent studies, as in [161],
an accommodation coefficient close to 1 is recommended for circular orbit below
500 km. As a consequence, in this work it is assumed that the lift component of the
atmospheric force is negligible with respect to drag.
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Fig. 8.4: Satellite dimensions, surfaces and orientation angles.

With reference to Fig. 8.4, where the body reference frame B = {xB, yB, zB} is
shown, the drag perturbation pD is given by [162]

pD = pD(r, ξ, t) = −%(r, t)CD
2m

∑
j:αj<π

2

(
Sj cosαj(ξ)

)
v2v̂ (8.13)

where CD is the drag coefficient, m is the mass of the satellite and

αj(ξ) = cos−1 (ŝj(ξ) · v̂) . (8.14)

The unit vectors ŝj(ξ) and v̂ represent the normal to each jth surface Sj of the
satellite and the normalized velocity of the satellite, respectively. The density % in Eq.
(8.13) is provided by the Jacchia-Roberts model [157], which is a good compromise
between precision and implementation complexity. In fact, uncertainties in the
density estimation still remain also in more sophisticated models [163] thus not
justifying the implementation of more complicated algorithms in this work. The
acceleration components due to a non-fixed atmosphere are neglected since they
would not significantly affect the results.

Similarly to the case of Eq. (8.14), the angle βj in Fig. 8.4 that each surface makes
with the solar radiation flux direction r̂sat,� is given by

βj(ξ) = cos−1
(
ŝj(ξ) · r̂sat,�

)
(8.15)
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where r̂sat,� is a unit vector directed from the satellite to the Sun. Considering an
ideal reflecting surface, the SRP perturbation pSRP is modeled as [162]

pSRP = pSRP (r, ξ, t) = 2ζ(t)γ S0
mc

‖r⊕,�‖
‖r⊕,� − r‖

∑
j:βj<π

2

(
Sj cos2(βj) ŝj

)
(8.16)

where γ is the reflectivity coefficient, S0 = 1352.098 kg/s2, c = 2.988 · 105 km/s. The
shadow function ζ(t) is equal to 1 when the satellite is outside the Earth shadow
cone, equal to 0 when it is inside and equal to 0.5 in penumbra. As reported in [162],
the solar radiation pressure contribution is not as strong as the drag contribution
below altitudes of about 800 km.

Differential accelerations are defined as vectorial differences between perturbation
accelerations acting on two distinct spacecrafts in the formation. Hence, DD accel-
eration aDD and differential solar radiation pressure (DSRP) acceleration aDSRP
acting on the i-th satellite with respect to the j-th satellite are

a
(i,j)
DD = pD(ri, ξi, t)− pD(rj , ξj , t),

a
(i,j)
DSRP = pSRP (ri, ξi, t)− pSRP (rj , ξj , t),

(8.17)

where i, j ∈ {1, ..., NF}, i 6= j. Perturbation accelerations may be used as control
inputs for the SFF reconfiguration illustrated by the well known GVE (see [162,
164] for detailed discussion of GVE). We will express the GVE for circular orbits
and express the perturbation as p = [pn, pt, ph] where pn is the in-plane component
perpendicular to the orbit, pt is the in-plane component tangential to the orbit and
ph is the out-of-plane component. As a consequence, the classical orbital elements
satisfies the following differential equations:

dΩ
dt

= r sin θ
h sin i ph,

di

dt
= r cos θ

h
ph,

dω

dt
= 1
ev

(
2 sin ν pt +

(
2e+ r

a
cos ν

)
pn

)
− r sin θ cos i

h sin i ph,

da

dt
= 2a2v

µ
pt,

de

dt
= 1
v

(
2
(
e+ cos ν

)
pt −

(
r

a
sin ν

)
pn

)
,

dM

dt
= n− b

eav

(
2 sin ν

(
1 + e2r

p

)
pt +

(
r

a
cos ν

)
pn

)
,

(8.18)

where θ = ω + ν. Actually, it should be noted that Eq. (8.18) become singular
when considering e = 0 or i = 0. In such cases, GVE may be rewritten considering
equinoctial orbital elements. However, Eq. (8.18) gives the proper information to
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understand what can be obtained using as control input the natural perturbation
forces. Looking at Eq. (8.13), it can be seen that the drag force is directed along −v̂
which may be confused with −YL for very small eccentricities. As a consequence,
the drag force may only be used to modify a, e, ω and M . With the hypothesis of
negligible lift, the drag force is a dissipative force and, looking at Eq. (8.4) and
(8.5), only the in-plane x and y components may be controlled (i.e., δa, δλ, δex and
δey). Conversely, the SRP has both in-plane and out-of-plane effects, as stated in
Eq. (8.16), giving the possibility to vary all the orbital parameters. However, the
intensity of the force depends on the angle β(ξ). In this case, a key role is played by
the orientation of the chief orbital plane, as it can vary the intensity of the in-plane
and out-of-plane components of the SRP depending on the position of the Sun in
I . In fact, for an equatorial orbit the maximum value of the SRP is attained when
β = 23◦ 27′, i.e. when the force is in the Ecliptic plane, thus having the in-plane
component much bigger than the out-of-plane component. Conversely, in a polar
orbit the maximum attainable magnitudes of in-plane and out-of-plane components
are switched.

8.4.2 Preliminary feasibility study of perturbation-based
maneuvers

The proposed maneuvering approach is based on the distinction between absolute
perturbations and differential perturbations. The former are those forces that are
common to all the spacecrafts in the formation and only depend on satellite position
and environment (e.g. gravitational harmonics) whereas the latter are forces that
can be modified with regard to magnitude and/or direction. Absolute perturbations
can make unstable the PCF, GCF and ATF configurations or impact on the guidance
while performing a maneuver. For instance, the J2 perturbation sensibly modifies
the cross-track relative motion and the along-track separation if the inclinations of
the orbits are different, as shown in [159]. Atmospheric drag and solar radiation
pressure are differential perturbations that can be used to perform reconfiguration
maneuvers only if they can counteract the other orbital perturbations affecting the
formation.

An interesting graph comparing the magnitudes of all the perturbation for all the
relevant orbital regimes is reported in [157]. In LEO, the most relevant perturbation
is the one due to the J2. A preliminary analysis of the intensity of the gravity gradient
acceleration ∇gJ2 due to J2 can be obtained using the linear approximation valid
for near-circular orbits reported in [132],

∇gJ2 = κΛρd (8.19)
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where

Λ =


1− 3s2

ics
2
θc

s2
ics2θc s2icsθc
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(8.20)

In Eq. (8.20), θc is the true anomaly of the chief spacecraft and J2 = 1.082× 10−3.
An upper bound of the magnitude of ∇gJ2 can be obtained employing the property
(valid for every general or induced norm [165])

‖Λρd‖ ≤ ‖Λ‖‖ρd‖. (8.21)

Considering ‖ρd‖ = 1 km and using the 2-norm to evaluate ‖Λ‖, the maximum
magnitude of the J2 gradient acceleration can be found considering θc ∈ [0, 2π] for
each inclination, i.e.

max(‖∇gJ2‖) = max
‖ρd‖=1 km

(‖∇gJ2(ic, rc)‖) = κ(rc) max
θc∈[0,2π]

‖Λ(ic, θc)‖2 . (8.22)

A preliminary estimation of DD experienced by the formation can be obtained
consideringCD = 2.2 andm = 100 kg for both the spacecrafts, same orbital velocities
(in magnitude and direction) and minimum/maximum values of the atmospheric
density from the Harris-Priester model, %(min)

HP and %(max)
HP , shown in Table 8.2 (same

density for both the spacecrafts). With these hypotheses, an upper bound of the DD
magnitude can be estimated as

‖aDD‖ = %HP CD
2m v2∆S, (8.23)

Tab. 8.2: Reference density values from the Harris-Priester model (from [162]).

Altitude Minimum density, %(min)
HP Maximum density, %(max)

HP

(km) (kg/m3) (kg/m3)
200 2.557× 10−10 3.162× 10−10

300 1.708× 10−11 3.526× 10−11

400 2.249× 10−12 7.492× 10−12

500 3.916× 10−13 2.042× 10−12

600 8.070× 10−14 6.390× 10−13

700 2.043× 10−14 2.185× 10−13

800 7.069× 10−15 8.059× 10−14
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Fig. 8.5: Comparison between J2 gravity gradient acceleration (‖ρd‖ = 1 km) and DD.

where ∆S is the difference between maximum and minimum exposed areas. More-
over, maximum and minimum values of ‖aDD‖ as a function of %HP are

max(‖aDD‖) = ‖aDD(%(max)
HP )‖ , min(‖aDD‖) = ‖aDD(%(min)

HP )‖. (8.24)

In Fig. 8.5, a comparison of the magnitudes of J2 gradient acceleration and DD
perturbations is shown. The orbital inclinations ic and the exposed area ∆S have
been considered as parameters. As can be seen, the graph suggests that up to 400-
500 km the magnitude of the DD perturbation is bigger or similar to the magnitude of
∇gJ2 (up to ‖ρd‖ = 1 km). Therefore, it is expected that reconfiguration maneuvers
can be accomplished in low LEOs. At higher LEOs, the differential drag is less than
∇gJ2 , suggesting that reconfiguration maneuvers cannot be performed unless very
large (and unreliable) exposed areas are considered. The opportunity to perform DD-
based reconfiguration maneuvers increases with high vales of ∆S (i.e., no maneuvers
can be accomplished with near-spherical satellites). Considering the exposed areas
of the satellite model in Fig. 8.4, maneuvers can be reasonably performed up to
400-500 km.

Similar analysis can be performed in MEO and GEO, where other perturbations
such as the J22 and the third body perturbation (from Sun and Moon) must be
considered. However, such preliminary analyses can only give an approximated order
of magnitude for the required exposed area, since the necessary model simplifications
can affect the results. For example, the intensity of the J2 perturbation varies with
the latitude, and the in-plane and out-of-plane contributions can have helpful or
disturbing effects in different points of the orbit. As a consequence, for some orbital
regimes reconfiguration maneuvers might be accomplished even if the average DD
magnitude is lower than the average magnitude of the J2 gradient acceleration.
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The proposed numerical approach is then a useful instrument when a more reliable
feasibility analysis is required to estimate the opportunity to perform perturbation-
based reconfigurations.

8.4.3 Insights on perturbation-based maneuvers

For close relative trajectories described by Eq. (8.9), a relationship between
trajectory parameters R,Kzx and ROE can be found as

R = 2acδe , Kzx = zd
xd

= δi

δe
. (8.25)

Variations of R influence all the components of the deputy motion but do not change
the plane of the relative motion, i.e. the ratio zd/xd or ϕzx in Fig. 8.3. From Eq.
(8.25), a variation of R can be induced by a variation of ac (also ad must change to
preserve the energy matching condition) or a variation of δe. The inclination of the
relative motion plane is dictated by the value of Kzx. However, Kzx also influences
the dimension of the relative trajectory as it modifies the ellipse axis czx as stated in
Eq. (8.11), stretching the trajectory along the ZL direction. As a consequence, both
R and Kzx can affect, in different ways, the dimension of the relative ellipse. As a
result of the GVE [164], out-of-plane forces can only modify i and Ω, in-plane forces
can modify a, e and M while ω can change with a force with any direction. Since
the ROE set is a combination of the orbital elements, effects of perturbations on the
relative motion change depending on the direction of the perturbation forces.

With reference to Fig. 8.6, and considering out-of-plane forces, the following
maneuvers can be accomplished:

• The dimension of the relative motion ellipse can be increased, as shown in Fig.
8.6(a), applying out-of-plane forces to the deputies. In this way, the trajectory
geometry is modified as only one axis is affected (see Eq. (8.11)).

• The inclinations of the deputy satellites can be modified, increasing or de-
creasing the term aδi in the zd component of Eq. (8.5). Affecting the term δi,
this maneuver modifies Kzx (and ϕzx) as can be seen from Eq. (8.25) and as
shown in Fig. 8.6(a).

In contrast to the previous case, using only along-track forces, the following maneu-
vers can be accomplished:

• The dimension of the relative motion ellipse may be increased with in-plane
forces directed along Y L and applied to all the satellites, as shown in Fig.
8.6(b). In this way ac is increased, as well as the semi-major axes of the deputy
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Fig. 8.6: Increasing the relative ellipse dimension with in-plane and out-of-plane forces.

satellites, enlarging the dimension of the relative motion ellipse. However, as
opposed to the previous point, this maneuver does not modify the geometry of
the relative ellipse, as both the ellipse axes are modified by the same amount
(see Eq. (8.11)).

• Variations of the relative motion plane inclination can be obtained with in-
plane forces. In fact, a variation of the angle ϕzx is obtained when the orbital
parameter e (dictating the form of the absolute orbit) is changed. Such a
maneuver affects δe and Kzx as stated in Eq. (8.25).

With regard to drag (only in-plane component) and solar radiation pressure (both
in-plane and out-of-plane components), a summary of the maneuvering opportunities
given by these perturbations is given below:

• As a consequence of the previous points, the drag force cannot increase R with
constant Kzx since it is an in-plane force directed along −Y L , opposite to
the velocity direction. However, it may change the inclination of the relative
motion plane, as shown in Fig. 8.7(a). All the formation satellites will decrease
their value of the semi-major axis because of the dissipative effect of the drag.
As stated in Sec. 8.4.1, the out-of-plane lift component is neglected.

• The SRP force might be used to increase the dimension of the relative motion
ellipse, as an out-of-plane component can be obtained depending on the orbit
geometry. Consequently, maneuvers as in Fig. 8.7(b) can be addressed with
the SRP. Taking advantage of the in-plane and out-of-plane components of

196 Chapter 8 Minimum-Time Reconfiguration Maneuvers of Satellite Formations Using

Perturbation Forces



 

𝑖 

Earth 
Out of scale 

Z 

X 

Drag force 

𝜑𝑧𝑥(𝑡0) 

(a)

 

𝑖 
𝜑𝑧𝑥(𝑡0) 

Earth 

Out of scale 

Z 

X 

SRP force 

(b)

Fig. 8.7: Effects of drag and solar radiation pressure on the relative ellipse.

SRP, both R and Kzx can be properly controlled. In the results section, the
SRP will be used to change Kzx and R modifying both the dimension and the
inclination of relative trajectory. If the maneuver is properly planned, the final
value of δe can be set to be equal to the initial value in order to modify R
keeping Kzx constant. With the SRP, it is not expected to denote a semi-major
axis decrease as in the case of the drag-induced maneuver.

8.4.4 Properties of minimum-time in-plane maneuvers

Let us consider maneuvers based on in-plane forces. Reconfiguration from PCF
to GCF, or vice-versa, are considered. With reference to Fig. 8.8, let zd,max remain
fixed during the reconfiguration maneuver, i.e.

max(zd,PCF )=max(zd,GCF ). (8.26)

This hypothesis is almost true for short-time maneuvers lasting about one orbit, and
its validity will be verified by the reported simulations. The maximum z displacement
for the PCF and GCF cases is given by

max(zd,PCF ) = max(RPCF sin(nct+ α0)) = RPCF , (8.27)

max(zd,GCF ) = max
(√3

2 RGCF sin(nct+ α0)
)

=
√

3
2 RGCF . (8.28)
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Fig. 8.8: Projection of PCF and GCF with same value of zd,max.

Hence, considering a GCF to PCF, Eq. (8.26) leads to

RPCF (tf )=
√

3
2 RGCF (t0)≈0.866RGCF (t0). (8.29)

Conversely, for the opposite PCF to GCF maneuver,

RGCF (tf )= 2√
3
RPCF (t0)≈1.155RPCF (t0). (8.30)

It is noteworthy that for the GCF to PCF maneuver the dimensions of the 2:1 ellipse
in the xy plane have to be reduced. In the opposite case, the dimensions of the same
ellipse must be increased.

8.5 Problem statement: IPSO strategy

In this section the optimal problem is transcribed. Some fundamental details are
given to appreciate how the IPSO can be used and implemented. In Sec. 8.5.1
the IPSO is proposed to solve the attitude reorientation subproblem. In Sec. 8.5.2
whereas some technical details concerning the numerical implementation are given
in Sec. 8.5.3.

198 Chapter 8 Minimum-Time Reconfiguration Maneuvers of Satellite Formations Using

Perturbation Forces



8.5.1 IPSO for formation reconfiguration

The proposed technique is based on the IPSO. Knowing that the angular velocity
may be expressed as a function of the attitude reprentation [114], i.e. ω = g(ξ, ξ̇, ξ̈),
then in the body reference frame B the torques are related to the kinematic by the
Euler equation:

ΣM ext = Iω̇ + ω × Iω = f(ξ, ξ̇, ξ̈) . (8.31)

Once the attitude history is known along with its time derivatives, both the
required torques and the angular velocity can be expressed in closed form. The most
important consequences of the inverse approach are that: 1) the integration of the
attitude dynamics is avoided, and 2) that the initial and final condition of the attitude
kinematics may be imposed a priori. The proposed IPSO-based algorithm applies for
the fully non-linear dynamics of the SFF. The improved IPSO technique is employed.
In order to simplify the problem and the notation we will assume the attitude to have
only 1 Degree of Freedom (DOF), i.e. ξi(t) ∈ R. In the following, when 2 or 3 DOF
will be needed, it will be explicitly reported. The proposed algorithm is based on the
following steps: 1) every particle is associated to NF attitude kinematic trajectories
ξi(t), i = 1, 2, ..., NF , defined in the time span {0, tf}; 2) pD(ξ) and pSRP (ξ) are
evaluated and the dynamics is integrated; 3) the final configuration is evaluated
and compared with the required one; 4) the IPSO searches for the optimal solution
which minimizes the maneuver time satisfying all the constraints reported in Eq.
(8.2).

8.5.2 Overview of the optimization strategy

The whole optimization process is depicted in the block diagram shown in Fig.
8.9. The attitude reorientation problem has been stated as an inverse dynamics
sub-problem inside the generic problem in Eq. (8.2).
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Fig. 8.9: Block diagram of IPSO applied to formation reconfiguration.
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Using the improved B-spline approximation, we define the optimization parame-
ters in the IPSO particles as

X = [ξ̃T1 , τ̃T1 , ..., ξ̃
T
NF , τ̃

T
NF , tf ]T ∈ R2NFNP+1, (8.32)

where vectors ξ̃
T
i and τ̃Ti contains the optimization parameters (NP for each vector)

defining the B-spline curve for the attitude maneuvers of the satellites. As usually,
once the attitude history is known along with its time derivatives, both the required
torques and the angular velocity can be expressed in closed form. The most important
consequences of the inverse approach are that: 1) the integration of the attitude
dynamics is avoided, and 2) that the initial and final condition of the attitude
kinematics may be imposed a priori. The attitude reorientation subproblem is
reported in Fig. 8.9 by means of the first three blocks.

The attitude histories of the formation satellites are used to evaluate the drag
acceleration, pD(ξ), and the SRP acceleration, pSRP (ξ), and the orbital dynamics
are integrated. Once accomplished the integration task, the imposed constraints may
be calculated. Finally, the formation configuration achieved after the maneuver is
evaluated and compared with the required one. As depicted in Fig. 8.9, the IPSO
searches for the optimal solution which minimizes the maneuver time satisfying all
the imposed constraints reported in Sec. 8.2.

Note that the GG torque may be taken into account after the dynamics integration.
In fact, we can evaluate the required control torque u as

u = Iω̇ + ω × Iω −MGG(ξ, r) . (8.33)

The performance index, the penalty functions and the descreasing tolerance
technique are imposed following the criterions reported in Chapter 4. In Eq. (8.2) all
the initial conditions are automatically satisfied, as well as the final conditions. In fact
initial conditions on X are imposed by the numerical integration, whilst the initial
and final conditions concerning the attitude in Y are imposed via the IPSO technique.
As a consequence, all the attitude constraints are naturally satisfied thus simplifying
the overall constraint handling strategy. Hence, only final conditions on X and
the state/control path constraints must be taken into account in the optimization
process and properly modelled in the performance index. The performance index J
is designed as

J = J0 + P + µNviol , (8.34)

where the term P takes into account all the penalty functions associated to the
constraints described in Sec. 8.2 and the last term is related to number of violated
constraints. The term J0 is designed in slightly different ways depending if the
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maneuver is performed with the drag or the SRP. In the former case, J0 = tf . With
the drag, no out-of-plane force is detected and the results are expected to confirm
the speculations of Sec. 8.4.4 with regard to the value of R(tf ). On the other hand,
with the SRP the out-of-plane component can perturb the final result, influencing
the value of the trajectory radius R. To choose a specific strategy consistent with
the minimum-time maneuver we are searching for, J0 = tf + κ|R(tf )−R∗f |, where
R∗f assumes the values outlined in Sec. 8.4.4. Without the term in R, different
maneuvers may be found with different values of R(tf ), hence the proposed strategy
allows to identify a unique maneuver. The same term may be used for another
kind of maneuver, i.e. for imposing other values of the final radius of the relative
trajectory. For instance, a GCF to GCF imposing R(tf ) > R(t0) will be presented with
this regard. Obviouslly, intermediate cases can be searched for with combinations of
the two strategies, which means that the SRP may be used to obtain slight variation
of both Kzx and R.

With regard to P, this term is given as the summation of the penalty functions
associated to the boundary and path constraints to be satisfied. In further details,

P = C + P + E1 + E2 (8.35)

The terms C and P are the control penalty function and the inter-link penalty function,
respectively associated to the control constraint c1 and the path constraint p1 of Eq.
(8.2). They must be evaluated for all the NT time instants ti ∈ {t0 = 0, t1, ..., tNT =
tf} where the numerical integration has been accomplished (see Sec. 8.5.3). The
term C is defined as

C = c̃
NF∑
j=1

3∑
k=1

Nt∑
i=0

ξjk(ti) (8.36)

where c̃ is a user-defined constant and ξjk(ti) takes the following form:

ξjk(ti) =

0 if
|uj,k(ti)|
umax

− 1 < ∆(k)
c

1 otherwise
(8.37)

where uj,k is the value of the attitude control of the jth along kth body-axis. The
tolerance ∆(k)

c decreases during the simulation as it will be explained in 4.5.2.
Similarly, P is defined as

P = p̃
NF−1∑
j=1

NF∑
k=j+1

NT∑
i=0

ηjk(ti) (8.38)

8.5 Problem statement: IPSO strategy 201



where ηjk(ti) is:

ηjk(ti) =

0 if ∂jk = ‖rj(ti)− rk(ti)‖ > (1−∆(k)
p )∂min

1 otherwise
(8.39)

The terms E1 and E2 associated to the final condition e1 and e2 of Eq.(8.2) might
be defined as a function of the error between the state at the end of the integration
and the desired state. However, it may be verified that even small errors in position
and velocity at the final time may lead to considerable deviations after only one
orbital period. In this sense, a more robust definition of E1 and E2 is required.
Similarly to what has been done in [52], the idea is to compare the ideal relative
state [ρ∗T , ρ̇∗T ]T given by the imposed final configuration with the relative state
[ρT , ρ̇T ]T generating from the final conditions of the integration. The comparison
is carried out considering one orbit propagation and the linearized dynamics of Eq.
(8.3). As a consequence, considering ti ∈ [tf , tf + T ] with T = 2π

√
a3/µ, we define:

E1 = ẽ1

NF∑
j=1

NT∑
i=0

ψj(ti) E2 = ẽ2

NF∑
j=1

NT∑
i=0

ζj(ti) (8.40)

ψj(ti) =


0 if

∥∥∥∥∥ρj(ti)R̄
−
ρ∗j (ti)
R

∥∥∥∥∥ < ∆(k)
r

1 otherwise
(8.41)

ζj(ti) =


0 if

∥∥∥∥∥ ρ̇j(ti)n̄R̄
−
ρ̇∗j (ti)
nR

∥∥∥∥∥ < ∆(k)
v

1 otherwise
(8.42)

In Eq. (8.41) and (8.42) the quantities R̄ and n̄ are the average radius and mean
motion of the obtained trajectory. Through the propagated orbit, the SFF parameters
can be obtained and compared to the initial formation parameters. Note that J = tf

when all the constraints are satisfied.

8.5.3 Implementation and orbital integration

The first dynamic constraint in Eq. (8.2) represents the center of mass dynamics
which considers the most dominant perturbations. In addition to the drag and the
solar radiation pressure perturbations, the gravitational harmonics up to degree
and order 20 (values consistent with what reported in [157]) and the third body
perturbation of the Sun and the Moon have been taken into account. The orbital
integration of the satellites is carried out using a Gauss-Jackson scheme [166]. As
shown in [157, 167], this method is faster than standard Runge-Kutta schemes
and guarantees great numerical accuracy. Moreover, the Gauss-Jackson scheme is a
fixed step-size integrator which allows a simple implementation of the input attitude
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Fig. 8.10: Parallel computing associated to the PSO technique.

kinematics history inside the differential equation to be integrated. Note that the
integration time instants must be equally spaced.

Even if the Gauss-Jackson integration scheme can help improving the performances
of the integration, the computational effort is quite high because the integration
requires the time-consuming evaluation of all the aforementioned perturbations. In
order to make the numerical computation more efficient, the Parallel Computing
utility available in Matlab® has been used. Accordingly, we make the swarm evolve
dividing the particles among different processes where the individual bests may be
updated. Conversely, the global and the local bests are computed only when all the
particles of the current iteration have been evaluated.

The IPSO method is utilized here to solve a very hard problem which requires an
efficient work-station in order to obtain the solution in reasonable time, in contrast
to the prevoiously reported applications where the IPSO has been presented as an
advantageous method for possible on-board implementation of an autonomous path
planning.

8.6 Numerical Results

In this section some test cases are solved with the proposed technique. Such
results extend the findings reported in [8], as more precise results are shown for
difficult reconfiguration maneuvers. All the simulations have been carried out on a
personal computer with an Intel®processor CoreTM i7-2670QM CPU @2.20GHz
and with 6.00 GB of RAM.

8.6.1 Parameters and problem setting

A SFF with NF = 4 satellites is considered. Four different maneuvers are taken
into account:
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1. Modify a Projected Circular Formation into a General Circular Formation.

2. Modify a General Circular Formation into a Projected Circular Formation.

3. Increase the radius of a close relative formation.

4. Increase the interdistance of an Along-track formation.

From the previous discussions, it should be clear that case 3. can only be attempted
using the SRP perturbation.

All the IPSO parameters have been chosen accordingly to Ref. [8], with the
exception of some parameters that have been slightly modified (in particular, the
maximum number of iterations has been increased to reach higher accuracies and
the local model has been employed instead of the unified model). The swarm is set
to have NS = 30 particles and the B-splines of degree 5 are defined with NP = 10
points. Weights and tolerances of the cost functions are defined as in Ref. [8].

With regard to the LEO case, results will be reported considering a single-axis
maneuver since we have only one degree of freedom as the drag force always points
in the opposite direction of the satellites velocity vector. However, instead of a yaw
maneuver around zB as in [8], here the maneuver is around yB since the moment of
inertia around this axis is lower than the one around zB. The result of the maneuver
is not affected as the area exposed to the drag varies in a similar manner as in [8],
but the control effort is reduced and a smaller value of the maximum torque can be
chosen (see Table 8.3). When dealing with the solar radiation pressure in MEO and
GEO, a two-axes maneuver around yB and zB is considered, as a rotation around
xB is useless in order to vary the exposed area. With NF = 4 and NP = 10 and
referring to Eq. (8.32), the number of optimization variables is 81 of the one-axis
maneuver and 121 for the two-axes maneuver.

All the relevant physical and geometrical properties of the four satellites are shown
in Fig. 8.4 and in Table 8.3. The inertia tensor referred to the Body reference frame
B of Fig. 8.4 is evaluated supposing a uniformly distributed mass over the central
body and the solar panels.

Tab. 8.3: Satellites parameters.

Parameter Value Parameter Value
mbody (kg) 90 Ix,B (kg·m2) 1.28e3
mpanel(kg) 40 Iy,B (kg·m2) 6.41e1
CD 2.2 Iz,B (kg·m2) 1.23e3
γ 1.5 Mmax (Nm) 1e-3
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Tab. 8.4: Initial conditions for the PCF-GCF maneuver.

rL (t0) ṙL (t0)

xd (km) yd (km) zd (km) ẋd (km/s) ẏd (km/s) żd (km/s)

PCF to GCF maneuver
SAT 1 0 0 0 0 0 0
SAT 2 0 1 0 0.5nc 0 nc
SAT 3 0.433 -0.500 0.866 -0.25nc -0.866nc -0.5nc
SAT 4 -0.433 -0.500 -0.866 -0.25nc 0.866nc -0.5nc

GCF to PCF maneuver
SAT 1 0 0 0 0 0 0
SAT 2 0 1 0 0.5nc 0 0.866nc
SAT 3 0.433 -0.500 0.750 -0.25nc -0.866nc -0.433nc
SAT 4 -0.433 -0.500 -0.750 -0.25nc 0.866nc -0.433nc

Results will be reported considering near-equatorial circular orbits in LEO and
GEO and inclined circular orbits in MEO (the chief orbital parameters will be detailed
in the following subsections). The initial condition for the PCF to GCF and GCF to
PCF cases are reported in Table 8.4 expressed in L (velocities are a function of the
mean motion, varying among LEO, MEO and GEO). PCF and GCF are considered
with a central satellite (SAT1) and three follower satellites: SAT2 is aligned along
the inertial velocity direction of the chief and SAT3 and SAT4 are equally spaced
in the circular trajectory. The simulation epoch begins at the date January 2000,
00:00 a.m. UTC. For the LEO case, the initial and final attitudes are chosen with
xB aligned with yL and yB normal to the orbital plane. For the MEO and GEO
cases, instead, xB is aligned with the Sun-satellite direction and yB is normal to the
orbital plane. The attitude maneuvers in the LEO scenario are referred to the LVLH
reference system L , while in the MEO and GEO scenarios they are referred to the
ECI system I. In both cases, given the geometrical and structural symmetry of the
satellite model, rotations are limited between -90 and +90 degree per axis.

The Gauss-Jackson integration [166] is carried out with a 60-seconds step and
relative and absolute tolerances equal to 10−13 and 10−15, respectively. Introducing
ε = 10−10, the IPSO stops according to the following convergence criterion reported
in Sec. 4.5.3. A maximum number of 3000 iterations has been imposed in order to
reasonably limit the required computational time.

8.6.2 Case 1: PCF-GCF reconfiguration in LEO

The chief orbital parameters are reported in Table 8.5. In [8], it has been shown
that the higher LEOs do not allow to obtain good results when considering PCF to
GCF maneuvers.
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Tab. 8.5: Chief orbital parameters in LEO.

Parameter Value Parameter Value
a (km) 6778 ω (deg) 0
e 0 i (deg) 1
Ω (deg) 10 M (deg) 0
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Fig. 8.11: GCF to PCF maneuver in the LVLH Coordinate System L , in LEO.

First of all, let us look at Table 8.6 to understand the performances achievable
with the drag perturbation. As can be seen, both the PCF to GCF and the GCF
to PCF maneuvers may be accomplished with very good results. In both cases
the time required for the maneuver is between one and one and a half orbits.
The inclination of the relative orbit plane have been changed with great accuracy.
Moreover, accordingly to the theoretical prediction stated in Sec. 8.4.4, the final
GCF radius is 1.154 instead of 1.155 and the final PCF radius 0.866, as expected.

Tab. 8.6: Maneuver performances achievable in LEO with drag.

Kzx(t0) R(t0) Kzx(tf ) tf
R(tf )
R(t0)

(-) (km) (-) (orbits) (-)
all deputies SAT2 SAT3 SAT4 all deputies

PCF to GCF 2.000 1.000 1.731 1.735 1.735 1.292 1.154
GCF to PCF 1.732 1.000 2.005 1.995 1.994 1.496 0.866
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Fig. 8.12: GCF to PCF maneuver in the LVLH Coordinate System L , xy projection in LEO.

This means that the maneuver time can be considered sufficiently short such that
the hypothesis in Sec. 8.4.4 hold.

To get a greater insight into the proposed maneuver, we report some explanatory
figures concerning the GCF to PCF maneuver (similar results are obtained vice-versa).
In Fig. 8.11, the maneuver trajectory is shown in the L frame. The stars represent
the initial positions of the satellites, while the circles are the final positions. The
dashed lines are the optimal trajectories followed by the satellites and the solid lines
represent one orbit propagation after the end of the maneuver. The trajectory is
modified starting from a GCF (which is the outer trajectory) and arriving to a PCF
(which is the inner trajectory) and the extremal values along the z direction are the
kept constant (which also means that the radius of the GCF is quite the same as the
semi-major axis of the finale relative ellipse given by the PCF). The angular distances
among the satellites are not modified in a relevant way.
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Fig. 8.13: Rotation angles (a) and exposed areas (b) for GCF to PCF maneuver, in LEO.
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Fig. 8.14: History of the z-axis torque for the GCF to PCF maneuver, in LEO.

Fig. 8.12 reports the xy projection (in L ) of the maneuver proposed in Fig. 8.11.
The three follower satellites start the transfer trajectory from the outside ellipse and
finish their maneuver when they arrive on the inner ellipse. Note that, according to
Eq. (8.9), the xy projection is always an ellipse with a y:x ratio equal to 2:1.

The rotation angles of the satellites about their y-axis are reported on the left in
Fig. 8.13(a) while the adjacent right figure, Fig. 8.13(b), plots the resulting exposed
area history. Given the symmetry of the considered satellite model, symmetrical
reorientation attitude maneuvers are possible leading to the same reconfiguration
results. Moreover, it should be noted that such attitude maneuvers are consistent
with the maximum torque constraint, as can be seen from Fig. 8.14 where the
normalized torques are reported. Therefore, it is numerically verified that the
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Fig. 8.15: Drag perturbation history for the GCF to PCF maneuver, in LEO.
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Fig. 8.16: ROE history for the GCF to PCF maneuver, in LEO (ROE components have been
translated to zoom all the deputies’ behavior).

disturbance effect of the GG torque does not affect the results, validating the results
in this work and in [8].

One very interesting result reported in Fig. 8.13 is that the rotation, as well the
exposed area, is likely to take only two values, i.e. the maximum exposed area or
the minimum exposed area. This is particularly consistent with a minimum-time
maneuver: if we were looking to the linearized model of relative motion with the
HCW equations, it can be easily seen that reconfiguration maneuvers require a bang-
bang control. Accordingly, the fact that the exposed area, which is proportional to the
drag force, is mainly either minimum or maximum, suggests the near-optimality of
the proposed solution. As a consequence of these attitude maneuvers, the drag force
experienced by the satellites is reported in Fig. 8.15, where the force components
are referred to I . It can be seen that the order of magnitude of the drag force as
well of the differential drag force is 10−8 km/s2.
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Tab. 8.7: Chief orbital parameters in MEO.

Parameter Value Parameter Value
a (km) 26378 ω (deg) 0
e 0 i (deg) 60
{Ω1,Ω2} (deg) {280, 10} M (deg) 0

Finally, it is noteworthy, looking at the ROE reported in Fig.8.16, the drag force
only affects the in-plane elements, that is δa, δλ, δex and δey which is consistent with
the GVE and the fact that the drag is in the direction of the velocity. The elements
δix and δiy show periodic variations due to the other conservative perturbations. It
is noteworthy that δa and δλ converges to a zero final vale, which is consistent with
the expected results (see Eq. (8.5)).

8.6.3 Case 2: PCF-GCF reconfiguration in MEO

The chief orbital parameters for the MEO cases are reported in Table 8.7. The chief
inclination has been set to 60 deg (value consistent with real MEO missions such as
the GNSS constellations) to get the opportunity to obtain in-plane and out-of-plane
components of the SRP with similar magnitudes. With this regard, two different
values of ascending node have been chosen. With Ω1, the line of nodes of the chief
orbital plane is aligned to the Earth-Sun direction, hence the maximum component
of the SRP is in plane. On the contrary, with Ω2 the line of nodes is normal to the
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Fig. 8.17: PCF to GCF maneuver in the L Reference System in MEO with Ω1.
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Fig. 8.18: PCF to GCF maneuver in the L Reference System, xy projection in MEO with Ω1.

Earth-Sun direction and consequently the out-of-plane component of the SRP is
comparable with the in-plane one.

A PCF to GCF maneuver performed with Ω1 is depicted in Fig. 8.17 and Fig. 8.18.
In this case we are moving from the inner relative trajectory to the outer one and the
figures allow the reader to appreciate the ability to perform the maneuver with the
SRP. From Fig. 8.17 it can be see that the maximum and minimum values along zL
remain quite constant satisfying the constraint imposed in the performance index.

Results reported in Table 8.8 for Ω1 and Ω2 show that in both the cases a good
reconfiguration maneuvers may be achieved. The Kzx coefficients change achieving
nice approximations of the expected values. The final radius is quite close to the one
expected when using only the in-plane forces. Moreover, the time required for the
cases with Ω1 is greater than the time required when using Ω2. This is consistent with

Tab. 8.8: Maneuver performances achievable with SRP in MEO.

Kzx(t0) R(t0) Kzx(tf ) tf
R(tf )
R(t0)

(-) (km) (-) (orbits) (-)
all deputies SAT2 SAT3 SAT4 all deputies

i = 60 deg, line of nodes along Earth-Sun direction

PCF to GCF 2.000 1.000 1.723 1.749 1.745 1.400 1.146
GCF to PCF 1.732 1.000 2.003 2.001 2.002 1.211 0.872

i = 60 deg, line of nodes normal to Earth-Sun direction

PCF to GCF 2.000 1.000 1.753 1.733 1.732 1.015 1.138
GCF to PCF 1.732 1.000 1.999 2.000 2.000 1.008 0.874
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Fig. 8.19: SRP perturbation history for the PCF to GCF case in MEO with Ω1.

the fact that when the line of nodes is aligned with the Earth-Sun direction, the SRP
goes to zero when the satellites are in the Earth shadow, as can be seen in Fig. 8.19.
From this figure, moreover, the magnitude of the SRP can be detected and compared
to the drag intensity reported in Fig. 8.15. Even though the SRP magnitude is less
than the one provided by the drag the maneuver can be accomplished since the
gravitational field intensity in MEO is less than in LEO.

The out-of-plane effect of the SRP on the reconfiguration maneuver can be seen
in Fig. 8.20, where all the six parameters are modified. It is noteworthy that the
variations in δix and δiy are no more periodical as they were in Fig. 8.16 where their
histories where induced by the conservative perturbations only. However, also in this
case δa and δλ converges to a zero final value, which is consistent with the expected
results.

Finally, the same characteristics described in LEO with regards to the rotation
angles and the exposed area are detected in MEO. Also in this case the rotation
angles histories are such that the exposed area tends to have minimum or maximal
values, thus representing a nice approximation of a bang-bang solution. For brevity,
the torques required for the attitude maneuvers are not reported. However, the
necessary torques in MEO are always lower than the ones obtained in LEO since the
forces ruling the spacecrafts dynamics are very weak, the maneuver time is longer
than in LEO and no fast attitude maneuvers are required.

For investigation purposes, a test has been run using a chief orbit with i = 90
degree and Ω2. In this case, the in-plane component of the SRP is so small that the
optimizer cannot find a feasible reconfiguration maneuver.
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Fig. 8.20: ROE history for the PCF to GCF maneuver, in MEO with Ω1 (ROE components
have been translated to zoom all the deputies’ behavior).
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Fig. 8.21: Rotation angles (a) and exposed areas (b) for PCF to GCF maneuver, in MEO
with Ω1.
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8.6.4 Case 3: PCF-GCF reconfiguration in GEO

The chief orbital parameters are reported in Table 8.9, whereas the performances
obtained in GEO are reported in Table 8.10. In this case, a GCF to GCF maneuver
imposing an increased final radius of 1.2 km has been performed. For all the reported
cases, approximately one orbit is sufficient for the maneuver. It is noteworthy that, as
in the MEO case, the final radius of the two trajectories after the maneuver is slightly
different from the expected one due to the presence of in-plane and out-of-plane
components.

Detailed results and figures are not reported for the PCF to GCF maneuvers as
they are quite similiar to those already reported for the cases in LEO and MEO.
However, the GCF to GCF maneuver is reported through Fig. 8.22 and Fig. 8.23.
As described in Sec. 8.4.4, this maneuver can be accomplished since the SRP
perturbation has an out-of-plane component that can be used to increase the radius

Tab. 8.9: Chief orbital parameters in GEO.

Parameter Value Parameter Value
a (km) 42168 ω (deg) 0
e 0 i (deg) 1
Ω (deg) 10 M (deg) 0
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Fig. 8.22: GCF to GCF maneuver in the L Reference System, in GEO with R∗
f = 2.
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Tab. 8.10: Maneuver performances achievable with SRP in GEO.

Kzx(t0) R(t0) Kzx(tf ) tf
R(tf )
R(t0)

(-) (km) (-) (orbits) (-)
all deputies SAT2 SAT3 SAT4 all deputies

PCF-GCF maneuvers

PCF to GCF 2.000 1.000 1.728 1.729 1.716 0.960 1.139
GCF to PCF 1.732 1.000 1.963 1.979 1.984 0.936 0.862

GCF to GCF maneuver imposing R∗f = 1.2 km

GCF to GCF 1.732 1.000 1.712 1.714 1.710 1.048 1.194
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Fig. 8.23: GCF to GCF maneuver in the L Reference System, xy projection, in GEO with
R∗
f =2.

of the relative trajectory. By means of the reported figures, the reader can appreciate
the performances achieved with the proposed maneuver. The satisfaction of the end-
point constraints is achieved and errors on the values of Kzx and Rf are small. Such
errors might be due to the IPSO difficulty in reaching the optimal maneuver or might
be due to the simultaneous effects of the in-plane and out-of-plane components of
the SRP. Nonetheless, errors are so small that in the worst case only a small amount
of external control would be needed to achieve the final desired state.

8.6.5 Case 4: ATF reconfiguration

In this case the maneuver consists in changing the inter-distance between suc-
cessive ATF satellites starting from an initial value of ∂ = 1 km and arriving at
a final value of ∂ = 1.5 km. The initial conditions of the simulations have been
reported in Table 8.11. At the beginning, the satellite are disposed along the yL

axis according to the vector [−1.5,−0.5, 0.5, 1.5]. At the end of the maneuver, the
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Tab. 8.11: Initial conditions for the ATF reconfiguration.

rL (t0) ṙL (t0)

x [km] y [km] z [km] ẋ [km/s] ẏ [km/s] ż [km/s]
SAT 1 0 - 1.5 0 0 0 0

SAT 2 0 - 0.5 0 0 0 0

SAT 3 0 +0.5 0 0 0 0

SAT 4 0 +1.5 0 0 0 0
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Fig. 8.24: ATF reconfiguration maneuver in the LVLH Coordinate System L , in LEO and
GEO.

satellites must be along the yL axis according to the vector [−2.25,−0.75, 0.75, 2.25]
with zero relative velocity. The geometrical center of the formation is empty, but
we can associate to this position a reference orbit described by the initial conditions
reported in Table 8.9. Results are reported in Table 8.12, where the position and
velocity errors are the average errors evaluated over one orbit propagation after the
end of the maneuver. In contrast to the previous test case, this maneuver may be
accomplished for various altitudes taken into account with satisfactory precisions.
In fact, the relative error with respect to the final imposed position is always less
than 1% and the final velocities are below 1 cm/s. Clearly, the velocity errors are
smaller in magnitude for higher altitude trajectories as a result of the orbital angular
velocities of MEO and GEO being lower than the LEO angular velocities. However,
the precision of the maneuver is quite the same comparing the different altitudes.

It is worth noting that the drag and the solar radiation pressure perturbations
lead to different reconfiguration trajectories. In Fig. 8.24(a) the LEO case at 400
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Tab. 8.12: ATF reconfiguration (inter-distance from 1 km to 1.5 km).

Reference Position Relative Velocity Maneuver
Orbit error position error Time

(m) error (·) (cm/s) (orbits)
SAT1 2.38 0.21% 0.40

4.81
LEO SAT2 1.81 0.48% 0.31
H = 400 km SAT3 1.07 0.29% 0.14

SAT4 5.05 0.45% 0.84
SAT1 1.54 0.14% 0.24

9.71
LEO SAT2 2.22 0.59% 0.40
H = 600 km SAT3 0.73 0.20% 0.11

SAT4 3.04 0.27% 0.49
SAT1 0.90 0.21% 0.11

13.77
LEO SAT2 1.60 0.43% 0.24
H = 800 km SAT3 0.32 0.09% 0.04

SAT4 2.60 0.23% 0.40
SAT1 4.04 0.36% 0.09

1.58
MEO SAT2 3.51 0.94% 0.10
H = 20000 km SAT3 2.67 0.71% 0.04

SAT4 7.04 0.63% 0.15
SAT1 2.13 0.19% 0.02

1.87
GEO SAT2 3.14 0.84% 0.03
H = 35800 km SAT3 3.42 0.91% 0.07

SAT4 2.79 0.25% 0.01

km is reported, while in Fig. 8.24(b) the GEO case is shown. As it can be seen, the
trajectories are quite different: with the drag, the re-orientation maneuver is closer to
the yL axis than in the case when using the solar radiation pressure perturbation.

8.7 Endnotes

In this chapter a novel approach has been proposed for the planning of attitude ma-
neuver allowing the reconfiguration of satellite formation by mean of the drag/solar
radiation forces. The planner takes into account all the most dominant perturbation
forces which can affect the maneuver. It has been shown that the intensity and/or
the direction of the drag/solar pressure perturbation forces may be changed with
simple attitude maneuvers, thus leading to a feasible reconfiguration satisfying all
the imposed formation constraints.

A major result is reported, that is we are able to obtain any orientation of the
relative motion plane by modifying the intensity of the drag and the solar radiation
pressure effects with attitude maneuvers. The results obtained computing the
maneuver from the projected circular formation to the general circular formation,
and vice-versa, confirm this finding.
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In low Earth orbit, the drag can only affect the in-plane Relative Orbital Elements,
making them vary accordingly to the expected results and thus verifying the validity
of the model. With added improvements to the model, as well as refinements to the
planning algorithm based on the inverse dynamics particle swarm optimization, we
achieve closer to theoretical time optimal bang-bang solutions. The presence of the
gravity gradient torque does not affect the possibility to perform the maneuvers.The
passive reconfiguration using perturbing forces in low Earth and geostationary orbits
does not allow one to increase the major and minor axes of the formation ellipse.

The differences in the nature of the reconfiguration maneuvers using drag for low
altitude orbits and solar radiation pressure for high altitude orbits is charactezied.
All the Relative Orbit Elements vary in the presence of the solar radiation pressure
as a consequence of the maneuver.

The initial and final attitude of all the satellites are imposed a-priori using an
inverse dynamic approach with respect to the attitude dynamics. The results are
satisfactory for all the considered cases: circular formations may be reconfigured
in about one orbital period and along track formations are reconfigured with final
position and velocity errors less than 10 m and 1 cm/s, respectively. The planner
gives the possibility to underline the feasibility of the maneuver and to find out a
near time-optimal guide.

The reported results demonstrate the feasibility of the proposed approach and
suggest further research to obtain the optimal design of missions utilizing the
advantages from perturbation-based reconfiguration maneuvers. In fact, given the
great precision that can be achieved, the proposed maneuvers may be used both as a
default reconfiguration strategy and as a backup system in the case of a failure in
another control subsystem.
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9Near-Optimal Maneuvers for
Satellite Formations with
Inverse Dynamics Approach
and Differential Evolution

Abstract
This chapter presents an open-loop planner for near time-optimal maneuvers per-
formed by satellite formations during proximity operations. The optimal control
technique is based on the inverse dynamics approach and the Differential Evolution.
The linearized dynamical model including the J2 perturbation is taken into account.
The Differential Evolution algorithm with Local Neighborhood is employed, where
the risk to stop at local minima is reduced. The solution is computationally efficient
but is sub-optimal since the polynomial approximation of the kinematics cannot
guarantee a bang-bang control policy. Results are reported to evaluate the per-
formances of the technique and a Monte Carlo simulation has been run to prove
the efficiency of the planner over a variety of different scenarios. Moreover, the
Chebyshev and the B-spline approximations are compared to establish that the
latter approach guarantees better results than the former in terms of maneuver
time and computational effort.

Nomenclature

r = Inertial position (km) ρ = Relative position vector (km)
u = External acceleration (km/s2) f = Perturbation acceleration (km/s2)
µ = Gravitational constant (km3/s2) ω = Angular velocity (rad/s)
m̄, n̄ = Gravitational coefficients J2 = Zonal gravitational harmonic
Fl, Fg= DE scale factor (·)N = Numerical approximation
w = Differential Evolution weight λ = DE scale factor
NP = Approximation parameters number CR = DE cross-over rate
j, G, i= Indices X = DE individual
J = Performance index L = Local Mutation Vector
G = Global Mutation Vector V = DE Mutant Vector
U = DE trial vector I = ECI coordinate system
L = LVLH coordinate system ψ = Covector
(·)(c,d)= Chief/deputy quantity (·)(0/f)= Initial/final time value
(·)∗ = Optimal quantity x = State



H = Pontryagin Hamiltonian function C = Chebyshev approximation
Tk = Chebyshev polynomial B = B-spline approximation
Ni,j = B-spline basis functions K = B-spline knot vector
τ = Independent variable a, b = Approximation coefficients vectors
Nviol = Number of violations Nmax= DE maximum iterations
K(·) = Dimensional coefficients umax = Maximum available control
RL = Local neighborhood radius S = Size of the DE population

9.1 Introduction

To analyze the SFF dynamics several analytical models have been proposed, from
the easiest set of equations given by the Hill-Clohessy-Whiltshire (HCW) model [131],
to very accurate models including orbital perturbation or nonzero eccentricities
[132]. Moreover, different sets of elements may be used to parametrize the equations,
the most important being Cartesian coordinates, as in [131], differential orbital
elements [132] and relative orbital elements [158]. In this chapter the linear relative
motion model developed by Schweighart and Sedwick (SS) and including the J2

perturbation is employed [168, 169].

This chapter deals with planning time-optimal maneuvers for proximity operations.
The optimal control theory may be applied to the HCW and the SS equations. In
both cases, the Pontryagin Maximum Principle described in Sec. 1.4.2 can give some
information about the form of the optimal control, but the analytical solution for the
optimal control and trajectory histories cannot be easily obtained. When one of the
planning goal is the computational efficiency of the algorithms, sub-optimal, feasible
trajectories may be accepted as solutions of guidance problems. Even though the
computational complexity of an optimal problems is primarily associated with the
problem parametrization (see for instance the analysis in Ref. [121] with respect
to pseudospectral approaches), heuristics algorithms have been often employed to
reach solutions offering nice compromises between optimality and computational
cost.

Several works may be found in literature where heuristic approaches have been
employed for planning trajectories in the frame of relative motion operations. For
instance, the PSO has been used in [8, 170], the Evolutionary Computation (EC)
has been exploited in [171] and a Genetic Algorithm (GA) has been used in [172,
173].

In this application, the Differential Evolution (DE) algorithm [174] is used and
the inverse dynamics approach for differentially flat systems is employed. As a
consequence, the object of the optimization will be the parameters describing the
trajectories of the satellites, while velocities, accelerations and control histories will
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be obtained with easy derivative operations using the kinematic and dynamical
constraints of the reference equations of motion.

In the previous chapters of this thesis, the PSO technique has been applied to
solve the NLP problem. Based on some recent analysis and comparisons between DE
and PSO reported in literature [175, 176, 177], DE seems to outperform PSO. As
a consequence, DE will be employed in this work, and a comparison analysis with
PSO will be performed to validate the results. The DE algorithm has many features
in common with the Genetic Algorithms (GAs). However, while GAs solutions are
generally coded using the binary alphabet (for instance, see [172]) and must be
carefully handled to deal with real-valued optimization parameters [178], DE is
explicitly designed to solve optimization problems in the set of the real number
[179] as well as PSO. It is noteworthy that the comparison between DE and PSO is
performed considering a particular test case, as a general assessment stating that
the DE can always outperform the PSO would contradict the No free lunch theorem
in Ref. [180].

With regard to previous studies concerning minimum-time maneuvers for proxim-
ity operations, some results may be found in [181, 182, 183]. Often, minimum-time
maneuvers are searched for when dealing with low thrust maneuvers, as in the cases
where the differential drag force is involved [8, 184, 185].

Another goal of this investigation is to accomplish a comparison analysis between
two global approximation approaches, the first based on Chebyshev polynomails and
the second based on B-splines curves. Methods based on Chebyshev polynomials
[186, 187] represent an effective approach to find near minimax approximation
[188, 189], and for this reason they are widely used in many numerical analysis.
The strongest advantage of Chebyshev polynomials is that the norm of the basis
functions for the interpolation is always less or equal to one, thus giving a smooth
and well-behaved function. On the other hand, B-spline curves often give very
good results using minimal number of support functions, as already described in
Sec. 4.2. The comparison with Chebyshev polynomials is performed to assess what
interpolation method is more useful for the examined test cases.

This chapter is organized as follows. Sec. 9.2 describes the dynamical model
considered for the optimization problem and presents some results obtained from
the application of the optimal control theory to the proposed problem. In Sec. 9.3
the inverse dynamics approach is described, whereas Sec. 9.4 gives the fundamental
details to understand the characteristics of the DE algorithm. Sec. 9.5 deals with the
description of the details concerning the implementation of the proposed optimizer.
Numerical results and discussions related to the efficiency of the proposed technique
are reported in Sec. 9.6. Finally, concluding remarks are given in Section 9.7.
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9.2 Optimal control problem statement

Let us recall some preliminary concepts concerning spacecraft formation flying
which have been already introduced in Chapter 8. Accordingly, with reference to Fig.
8.1, let us suppose to have a formation with two satellites in close relative motion,
the chief (c) and the deputy (d). In the Earth Centered Inertial (ECI) coordinate
system I = {XI , YI , ZI}, the satellite dynamics in the presence of an external
acceleration u, provided by engines, and a perturbation acceleration f , depending
on environmental forces, is

r̈ = − µ
r3r + u+ f , (9.1)

where µ = 3.986 · 105 km3/s2 is the Earth gravitational constant, r is the position
vector of the satellite and r its magnitude. Let ρd = rd − rc = [xd, yd, zd]T be
the distance between the chief and the deputy. The relative motion equations are
referred to the rotating Local-Vertical, Local-Horizontal (LVLH) reference frame
L = {XL, YL, ZL} shown in Fig. 8.1, where XL points from the center of the Earth
to the origin of L, ZL is perpendicular to the orbital plane and YL completes a
right-hand Cartesian coordinate system.

Considering the chief satellite on a circular orbit (which implies ω =
√
µ/r3

c ),
including the J2 gravitational effect in f and imposing uc = 0, the relative motion
is described by the Schweighart and Sedwick (SS) model [168, 169],

ẍd − 2m̄ẏd − (4m̄2 − n̄2)xd = ux ,

ÿd + 2m̄ẋd = uy ,

z̈d + (2m̄2 − n̄2)zd = uz ,

(9.2)

where m̄ = ω
√

1 + kJ2 , n̄ = ω
√

1− kJ2 and kJ2 = 3J2R
2
e

8r2
c

(
1 + 3 cos(2ic)

)
.

Let x = [x1, x2, x3, x4, x5, x6]T = [ρTx , ρ̇Tx ]T ∈ RNx be the state and u =
[ux, uy, uz]T ∈ RNu be the control. Clearly, Nx = 6 and Nu = 3. Eq. (9.2) may be
written in state-space form as

ẋ = Ax+ Bu (9.3)
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where the matrices A and B are

A =


03×3 I3×3

α 0 0
0 0 0
0 0 −γ

0 β 0
−β 0 0
0 0 0

 , B =


03×3

1 0 0
0 1 0
0 0 1

,

 (9.4)

and the constants α, β and γ may be easily obtained from Eq. (9.2). Let ρ0 and
ρ̇0 be the deputy relative position and velocity at t = t0 = 0 and ρf and ρ̇f be the
desired final relative state t = tf . Moreover, the reconfiguration maneuver must be
accomplished in the shortest final time t∗f . The time-optimal problem considered in
this work can be summarized as follows:

Find {x,u, tf}∗

minimizing J = tf − t0
subject to, ∀t ∈ [t0, tf ],

dynamic constraints : ẋ = Ax+ Bu,

boundary conditions : x(t0) = x0, x(tf ) = xf ,

control constraint : ‖u(t)‖∞ − umax ≤ 0.

(9.5)

Following the notation in [29], a necessary condition for the optimality of u∗(t) is
provided by the Pontryagin’s Maximum Principle (PMP). Therefore, let the Pontrya-
gin’s Hamiltonian be

H(x(t),u(t),ψ(t), t) = ψT (t)[Ax(t) + Bu(t)] , (9.6)

where ψ(t) = [ψρ, ψρ̇] ∈ RNx is the costate vector (ψρ and ψρ̇ have the same
dimensions of ρ and ρ̇, respectively). According to PMP and normalizing the
control so that ‖u‖∞ ∈ [0, 1] ( which means that in order to normalize the control
components dividing by umax), the components of u∗ are found to be

u∗ = sign(ψ∗ρ̇). (9.7)

Eq. (9.7) tells us that the optimal external input for the SS dynamical models is
a bang-bang control policy. However, even though the evolution of the costate is
known to be

ψ(t) = ΦT (t0, t)ψ(t0), (9.8)

where Φ(t, t0) is the state transition matrix for A (see [25] or Appendix C in [190]),
there is no analytical way to determine the costate initial conditions ψ(t0) necessary
to solve for Eq. (9.8) and properly defining ψρ̇ in Eq. (9.7). Therefore, it is necessary
to proceed with numerical methods to evaluate u∗. In this work, near-optimal
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numerical solutions are provided using a DF formulation of the proposed OCP. With
respect to other approaches, the proposed method relies on the minimum number of
optimization parameters thus reducing the required computational effort.

9.3 Inverse-dynamics parametrization

The numerical solution of an optimal control problem is based on the assump-
tion that the original problem, defined over some specified function set (e.g., the
continuous and differentiable functions set for the state, or the Lebesgue integrable
functions for the control), may be converted into a non-linear programming (NLP)
problem involving a finite number of parameters [11, 45]. An inverse-dynamics OCP
formulation can be employed if the external control can be written as a function of
the state. In this case, the state x is expressed with a polynomial approximation xN

and a NLP technique searches for the optimal values of the NP coefficients of each
state component (for a total of NxNP optimization parameters). On the contrary,
standard direct-dynamics approaches (e.g, [100]) are based on the integration of
an approximated control uN and the NLP technique searches for the optimal values
of the NP coefficients of each control component (for a total of NuNP optimiza-
tion parameters). Collocation and pseudospectral methods approximate both state
and control, having a total number of (Nx +Nu)NP optimization parameters. The
inverse dynamics approach overcomes some direct dynamics issues such as low
computational speeds and integration numerical errors and has a reduced number of
optimization parameters with respect to collocation and pseudospectral methods.

In this paper, the DF formulation is employed, which can be seen as a sub-class
of the inverse-dynamics approach. In cases where Nx > Nu (as the one introduced
in Sec. 9.2), the DF formulation is based on the so-called flat output y(t) with
the same dimension of the control u(t) (see Ref. [32, 191]). Accordingly, the
number of optimization parameters in the transcribed NLP problem is NuNP . Let
ẋ(t) = f(x(t),u(t)) be an autonomous dynamical system and y(t) ∈ RNu be the flat
output. If such a flat output exists, then state and control can be written as

x = a
(
y, ẏ, ...,y(β)

)
, u = b

(
y, ẏ, ...,y(β+1)

)
, (9.9)

where the value of β ∈ N depends on the problem. For the problem outlined in Sec.
9.2, let y = ρ. Hence, β = 1 and the full state x is obtained via time-differentiation
of ρ whereas u = b (ρ, ρ̇, ρ̈ ) as can be seen from Eqs. (9.2),(9.3),(9.4). The
problem of Sec. 9.2 may be rewritten as a function of the flat output as
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Find {ρ, tf}∗

minimizing J = tf − t0
subject to, ∀t ∈ [t0, tf ],

boundary conditions : ρ(t0) = ρ0, ρ(tf ) = ρf ,

ρ̇(t0) = ρ̇0, ρ̇(tf ) = ρ̇f ,

control constraint : ‖b (ρ, ρ̇, ρ̈ ) ‖∞ − umax ≤ 0.

(9.10)

As can be seen, the dynamics constraint is no longer reported as it is a-priori
satisfied with the proposed problem formulation. To further simplify the problem,
the flat output approximation can be chosen to satisfy boundary constraints a-priori.
This is an easy operation as the boundary constraints satisfaction is related to a
clever choice of the approximating polynomial coefficients (see Sec. 9.5 for de-
tails). Defining DB as the set of approximating function xN satisfying the boundary
constraints, the OCP formulation is

Find {ρN , tf}∗ such thatρN ∈ DB

minimizing J = tf − t0
subject to, ∀t ∈ [t0, tf ],

control constraint : ‖b
(
ρN , ρ̇N , ρ̈N

)
‖∞ − umax ≤ 0.

(9.11)

Hence, the advantages of the DF formulation are:

1. The minimum number of optimization parameters is employed.

2. The control policy is obtained in an analytical closed form avoiding the inte-
gration of dynamics equations.

3. The initial and final conditions are automatically respected since they are
imposed a priori in the polynomial approximation of ρ.

9.4 Differential evolution algorithm

In this paper the Differential Evolution (DE) has been implemented taking ad-
vantage of different features reported in literature. As in the author’s previous
works dealing with PSO, the DE algorithm has been implemented in order to find
a compromise between exploitation and exploration of the search space. The DE
is a stochastic, population-based algorithm introduced in 1995 by K. Price and R.
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Storn [174] to solve optimization problems over continuous spaces. The size of the
population S is fixed and the members of the population are candidate solutions
called individuals, represented by vectors Xi,G which components are the decision
variables of the problem,

Xi,G = [x1
i,G x

2
i,G . . . x

m
i,G] . (9.12)

In Eq. (9.12), the ith individual at the generation G is considered, while m is
the number of decision variables. At the beginning of the DE algorithm (G = 0),
components of Xi,0 are randomly generated within a user-defined interval with
lower and upper bound given as xL and xH , i.e.

xL ≤ xji,0 ≤ x
H , i ∈ [1, ...,S], j ∈ [1, ...,m]. (9.13)

Each individual is associated to a scalar index value Ji,G evaluated through the
performance index J which takes into account the goal of the optimization and the
constraints (see Sec. 9.5.3). The algorithm is aimed at making the individuals evolve
towards the global optimum corresponding to the minimum of the performance
index. The optimization algorithm is based on a continuous perturbation of the pop-
ulation: old individuals are substituted by new trial individuals generated through
the mutation and cross-over operators to explore new regions of the Feasible Search
Space (FSS) which is the set of all the feasible solutions.

Several strategies for mutation, cross-over and selection have been produced
[179], as in [192] where variable coefficients for the mutation vector have been
presented. In this paper, to reduce the risk to stop at local minima, DE with Local
Neighborhood is employed [193]. This technique resembles the PSO local strategy
which has been used in [1, 2, 122]. The algorithm initialization is based on a
uniform random distribution of the individuals within the FSS. For each target vector
Xi,G, a mutant vector V i,G is produced as a linear combination of two inputs, Li,G
and Gi,G.

For each member of the population, a neighborhood of radius RL is defined as
Ni = {Xj,G | i − RL ≤ j ≤ i + RL}. Then, for each vector Xi,G a local mutation
operator is applied, in order to obtain a Local Mutation vector Li,G

Li,G = Xi,G + λ(X l,G −Xi,G) + Fl(Xr1,G −Xr2,G) , (9.14)

where λ and Fl are the scale factors for the local mutation, X l,G is the individual
with the best performance index in Ni, r1 and r2 are random integers different from
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i such that Xr1,G and Xr2,G are in Ni. Similarly, the Global Mutation vector Gi,G is
created as

Gi,G = Xi,G + λ(Xg,G −Xi,G) + Fg(Xr3,G −Xr4,G) , (9.15)

where Fg is the scale factor for the global mutation, Xg,G is the individual with
the best performance index in the entire population, Xr3,G and Xr4,G are chosen
randomly in the entire population at the step G such that r3 and r4 are different
from i. In this work, the coefficient λ is not fixed, but it linearly decreases during the
search of the optimal solution, by exploiting the idea introduced in [192]. In this
way, the DE exploitation ability inside the final convergence sub-set of the search
space is enhanced. Finally, the mutant vector V i,G, is evaluated combining Li,G and
Gi,G as

V i,G = wGi,G + (1− w)Li,G . (9.16)

To emphasize the DE exploration ability at the beginning of the optimization process
and improve the exploitation characteristic when the population is close to converge,
the parameter w combining local and global mutation linearly increases during the
evolution as

w = wmin + (wmax − wmin) G

Gmax
. (9.17)

In Eq. (9.17), Gmax is the number of user-defined steps to pass from the minimum
value, wmin, to the maximum one, wmax. After the mutation, the trial vectors
U i,G = [u1

i,G u
2
i,G . . . u

m
i,G] are generated by applying the cross-over operator between

the target vector Xi,G and the corresponding mutant vector V i,G. The binomial
cross-over is expressed as

uji,G =

v
j
i,G, if Rj ≤ CR or j = jrand ,

xji,G, otherwise ,
(9.18)

where, Rj is a randomly picked number within the interval (0, 1), the Cross-over
Rate CR ∈ [0, 1) is a user-defined constant and jrand is a randomly chosen integer
in [1,m]. The condition j = jrand ensures that U i,G and Xi,G differ by at least
one parameter. In this paper the components of the trial vector U i,G, are forced
to remain within the interval defined in Eq. (9.13), so if the cross-over provides
uji,G ≤ xL or uji,G ≤ xH then uji,G is randomly regenerated in the interval of Eq.
(9.13).

The new individual Xi,G+1 is thus evaluated comparing U i,G and Xi,G as follows:

Xi,G+1 =

U i,G, if JUi,G ≤ JXi,G ,

Xi,G, otherwise .
(9.19)
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To clarify, the trial vector is chosen as new individual if its performance index, JUi,G ,
is less or equal to the index value of corresponding target vector, JXi,G . The DE
algorithm runs until a user-defined convergence criterion is satisfied (a maximum
number of iteration is also imposed in case the convergence criterion cannot be
satisfied).

9.5 Implementation details

The problem taken into account in this chapter is solved with a differential flatness
approach. The flat output is identified with the displacement of the satellites, ρ, as ρ̇
and ρ̈ may be obtained evaluating the derivatives of the approximating polynomials
for ρ. In this case, only the three components of ρ will directly enter into the
optimization process, thus reducing the number of optimization variables to Nu.
The advantages of the DF approach have been presented in Sec. 2.6. The DE-
based numerical method has the same fundamental characteristics of the PSO-based
optimizer described in Chapter 4.

The trajectory of the chaser can be obtained using different interpolating functions.
Once a polynomial approximation for ρ is chosen, its first and second time derivatives
may be easily obtained. The most important issue is what kind of polynomial
approximation one can choose as this choice can strongly affect the results of the
optimization. In this work two different interpolating functions are considered:
Chebyshev polynomials and B-spline curves.

In this section a brief description of the Chebyshev polynomials and the B-spline
curves is provided in Sec. 9.5.1 and Sec. 9.5.2, respectively. Additional details
concerning the composition of DE individuals, the definition of the performance
index and the convergence criterion are provided in Sec. 9.5.3.

The usage of the Chebyshev polynomials is suggested since they are particu-
larly suitable for minimax problems [188, 189], i.e. when the approximation of a
mathematical function f(x), x ∈ [a, b], is given by solving

min
(

max
a≤x≤b

∣∣f(x)− p(x)
∣∣) , (9.20)

where p(x) is the approximation polynomial. On the other side, the B-spline have
been proved to work particularly efficiently for inverse dynamics problems related
to attitude problems, as we have shown in the previous chapters.
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Fig. 9.1: Chebyshev polynomials (a) and example of Chebyshev curve (b) with NP = 8.

9.5.1 Chebyshev approximation

Chebyshev polynomials of first kind represent a series of orthogonal polynomials
defined over the interval −1 ≤ τ ≤ 1. Accordingly, the one-to-one mapping

τ = 2 t− t0
tf − t0

− 1 (9.21)

from the original time domain [t0, tf ] to the Chebyshev domain [τ0, τf ] = [−1, 1]
is employed. The zeroth and the first order Chebyshev polynomial are defined as
T0(τ) = 1 and T1(τ) = τ , respectively, where the subscripts 0 and 1 are the degrees
of the polynomials. Higher degree polynomials are then obtained with the recursive
relationship [187]

Ti+1(τ) = 2 τTi(τ)− Ti−1(τ) . (9.22)

In Fig. 9.1(a) the Chebyshev polynomials from degree 0 to degree 3 are illustrated.
It can be observed that the range of the Chebyshev polynomials is equal to their
domain, i.e. −1 ≤ Ti(τ) ≤ 1 ∀i.

First and second derivatives of the Chebyshev polynomials can be easily evaluated
with the following recursive relationships:

T ′i+1(τ) = dTi+1(τ)
dτ

= 2τT ′i (τ) + 2Ti(τ)− T ′i−1(τ) (9.23)

T ′′i+1(τ) = d2Ti+1(τ)
dτ2 = iT ′i (τ) +

T ′′i−1(τ)
i− 2 (9.24)

9.5 Implementation details 229



where ( · )′ is the derivative with respect to τ . The Chebyshev approximation C for
the ith component of the relative displacement ρi is given as a Chebyshev series
truncated at NP polynomials and defined upon τ(t) as

ρi(τ) = C(τ ;a) =
NP−1∑
i=0

aiTi(τ) , (9.25)

where a is the coefficients vector for the polynomial combination and it is given by

a = [a0, a1, ..., aNP−1]T . (9.26)

The first and the second time derivatives of ρi are given as

ρ̇i = Ċ(τ ;a) = ∆τ

NP−1∑
i=1

aiT
′
i (τ) , ρ̈i = C̈(τ ;a) = ∆2

τ

NP−1∑
i=2

aiT
′′
i (τ) . (9.27)

Note that ˙( · ) is the derivative with respect to t: the parameter ∆τ = dτ/dt takes
into account the change of domain and, given Eq. (9.21), is evaluated as

∆τ = dτ

dt
= 2
tf − t0

. (9.28)

The Chebyshev coefficients represent the optimization variables. The inverse
dynamics approach require to fix some optimization coefficients to satisfy all the
boundary conditions. In our case, referring to Eq. (9.5), position and velocity are
constrained at t0 and tf . Accordingly, for every axis 4 conditions must be imposed
by fixing 4 coefficients (the coefficients to be fixed may be freely chosen among all
the optimization variables). For the generic maneuver axis, the coefficients a0, a1,
a2 and a3 are obtained as

a0 = xf + x0
2 −

NP−1∑
i=2,4,...

ai ,

a1 = xf − x0
2 −

NP−1∑
i=3,5,...

ai ,

a2 = ẋf − ẋ0
8 −

NP−1∑
i=4,6,...

(
i

2

)2
ai ,

a3 = ẋf + ẋ0 − xf + x0
16 −

NP−1∑
i=5,7,...

(
i− 2

2

)
ai .

(9.29)

In Fig. 9.1(b) a curve obtained with a Chebyshev series is shown using NP = 8 and
tf = 10 time units. The values of the first 4 coefficients have been chosen in order to
set C(−1;a) = 10, C(1;a) = 0, Ċ(−1;a) = 0 and Ċ(1;a) = 3.5 ∆τ .
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Fig. 9.2: Basis functions Ni,D(a) and example of clamped B-spline curve (b) with
NP = D = 8.

9.5.2 B-splines approximation

The description of the B-spline approximation is carried out in Sec. 4.2. In this
chapter, a comparison between the basic and the improved models is carried out.

In Fig. 9.2(a) the basis functions Ni,D are shown having set NP = D + 1 = 8.
A basic B-spline curve is reported in Fig. 9.2(b) for tf = 10 time units; as for Fig.
9.1(b), the coefficients have been chosen in order to set B(0;a) = 10, B(1;a) = 0,
Ḃ(0;a) = 0 and Ḃ(1;a) = 3.5 ∆λ. Through explanations may be found in [76, 77,
78].

9.5.3 Optimizer setup

A generic DE individual is defined as

X = [ax,ay,az, tf ] , (9.30)

where the vector aj = [aj,0, ..., aj,Np−1] is defined as in Eq. (9.26) and contains NP

interpolation parameters for the axis j that can be used as Chebyshev coefficients or
as y coordinate of the B-spline control points. When using the improved B-spline
approximation, the vectors bj , j = x, y, z must be added to the DE individuals.
Note that the number of optimization parameters changes considering planar of
three-dimensional maneuvers. Let us also repeat that not all the NP coefficients
in aj are optimization parameters since certain coefficients are enforced to satisfy
the boundary conditions. For the numerical simulations reported in the sequel,
the trajectories given by the Chebyshev polynomials and the B-splines curves are
discretized over Nt points, which means that time interval [t0, tf ] is split into Nt

instants.
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A performance index J is associated to each individual to evaluate the quality
of the obtained maneuver. As for the previous chapters, also in this case the
performance index is given by an exterior penalty function method (see Sec. 1.3.2).
Accordingly, J is calculated as

J = α̃tf + β̃
3∑
j=1

Nt∑
k=0

ηj,k(aj , tk) + ñNviol , (9.31)

where α̃, β̃ and ñ are user-defined constant and tf is the time required to complete
the maneuver. The second term is the control penalty function, and it penalises the
solutions for which the control exceeds the allowed maximum value umax. Therefore,
ηj,k(aj , tk) is given by

ηj,k(aj , tk) =


0 if

|uj,k(aj , tk)|
umax

≤ 1 ,
|uj,k(aj , tk)|

umax
− 1 otherwise .

(9.32)

Note that the terms uj,k are the discretized values obtained from Eq. (9.2). Finally,
Nviol represents the number of violated constraints, and it awards individuals which
violates less constraints than other.

Denoting with tbestf,i the maneuver time associated to the best solution at generation
i, the iterations stop when the standard deviation of the lasts ten best maneuver
times is less than the user-defined tolerance ε, that is:√√√√√√

10∑
i=1

(
tbestf,i − t̄bestf

)2

10 ≤ ε . (9.33)

9.6 Numerical results

In this section the performances of proposed techniques are evaluated by means
of several example cases. In all the numerical experiments, maneuvers between a
controlled deputy and a non-cooperative chief spacecraft are taken into account. The
orbital parameters of the chief satellite are reported in Table 9.2. Non-dimensional
units are used; consequently, distances are divided by Kx, that is the initial relative
position between both satellites, and the control is divided by Ku = umax. The
maneuver time is normalized by Kt =

√
Kx/umax, and finally velocities are divided

by Kv = Kx/Kt. The maximum value of the thrust has been set to umax = 5 · 10−4

m/s2.
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Tab. 9.2: Orbital parameters of the chief satellite.

Parameter Value
a 7000 km
e 0
i 45 deg
Ω 0
ω 0

The DE parameters used in the numerical simulations are reported in Tables 9.3
and 9.4, where the former shows the constant parameters and the latter provides the
parameters that linearly change during the optimization process. The scale factors
for the local and the global mutations have the same values, i.e. Fl = Fg = F . The
choice of these parameters has been carried out after having run several simulations
and having compared the results. The parameters of the performance index in Eq.
(9.31) are α̃ = β̃ = 1 while ñ = 100.

With regard to the parameters concerning the definition of the interpolation, the
number of control points and the degree of the basis polynomials have been chosen
after some preliminary analysis. For the Chebyshev interpolation, the motion is
approximated using Np = 8 polynomials going from degree zero to degree seven. In
order to respect the initial and final conditions, the coefficients aj,0, aj,1, aj,2, aj,3
are given by Eq. (9.29). For the B-spline, Np = 8 control points are used, with
Basis functions of seven th degree. In this case, the a-priori computed parameters
are aj,0, aj,1, aj,Np−2, aj,Np−1, according to Eq. (4.20). In both cases, the free
optimization parameters of the DE individual in Eq. (9.30) are 3(Np − 4) + 1, i.e.
the free interpolation coefficients plus the final time (for the improved B-spline
approximation the optimization parameters are 6(Np − 2)− 2, since the values of
bi,j , i = x, y, z, j = 2, ...,Np must be considered). The trajectories are discretized
over Nt = 200 points.

The proposed guidance algorithm is verified through several simulation campaigns.
First, an analysis for a thorough comparison between the Chebyshev and the B-spline

Tab. 9.3: Differential evolution constant parameters.

Parameter Value
S 50
CR 0.75
F 0.8
RL 3
Nmax 10,000
xL -5
xH -5
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Tab. 9.4: Differential evolution variable parameters.

Parameter Initial Value Final Value
(1st step) (2500th step)

λ 0.9 0.1
w 0 1

approximation methods is performed in Sec. 9.6.1. Autonomous docking maneuvers
will be taken into account to accomplish this task. Second, a comparison of the
proposed DE-based optimizer with an analogous PSO-based optimizer is performed in
Sec. 9.6.2. Lastly, Sec. 9.6.3 deals with some reconfiguration maneuvers considering
reference trajectories given in the SS dynamical model.

9.6.1 Performance analysis

This first test case is intended to compare the Chebyshev and the B-spline approxi-
mation methods in order to understand what kind of performances they achieve and
consequently choose for the best approach. For this case, the planar motion only is
considered, i.e. the motion along ZL is not controlled.

To perform the proposed comparison, a Monte Carlo simulation based on 10, 000
test cases has been run. Docking maneuvers are taken into account. The deputy
must reach the chief, which is at the center of the LVLH reference frame, starting
from initial conditions that have been randomly generated and uniformly distributed
between a minimum and maximum distances of 0.1 km and 2 km, respectively. All
the initial velocities along the x axis have been initialized in the range [10−2, 10−5]
km/s. With regard to the velocities along the y axis, all the imposed initial conditions
satisfy the no along-track shift condition [132],

ẏ(t0) = −βx(t0) (9.34)

which is valid in the SS model where β = 2m̄. Imposing β = 2ω, initial conditions
representing quasi-equilibrium states can be set, since the optimization process is
carried out considering the J2-perturbed model. In this way, the ability of the external
control to compensate for little initial drifts due to imperfect initial conditions is
investigated. Moreover, the 10,000 simulation have been equally distributed inside
four circular crowns given by the following initial distances: r ∈ (0.1, 0.5] km,
r ∈ (0.5, 1.0] km, r ∈ (1.0, 1.5] km and r ∈ (1.5, 2.0) km. The introduction of these
circular crowns will help evaluating the performances of the algorithm varying the
initial distance of the deputy. In Fig. 9.3 the comparison between the performances
of the two approximation approaches is reported. The reported curves have been
obtained fitting with a second order polynomial the Monte Carlo results. In Fig.
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Fig. 9.3: Comparison of Chebyshev and B-spline approximations performances.

9.3.(a) the required number of iterations is shown for a value of ε in Eq. (9.33) equal
to 10−10. It can be seen that using the Chebyshev polynomials a greater number of
iterations is required with respect to the B-spline approximation, and the difference
between the two methods increases as the initial distance of the deputy increases.
The number of iterations required by the B-spline approximation increases very
slowly whereas the Chebyshev approximation shows a parabolic behavior with a
positive second derivative. Moreover, looking at Fig. 9.3.(b) where the maneuver
times associated with the optimized trajectories is reported, it can be noted that the
B-spline approximation always guarantees lower maneuver times with respect to
the Chebyshev approximation. The curves reported in Fig. 9.3 have been obtained
by discarding the test cases where the maximum number of allowed iterations has
been reached (196 cases for the Chebyshev polynomials and only 2 cases and the
B-spline). In addition Fig 9.4 shows the distributions in the number of iterations
required to reach the sub-optimal solution both with Chebyshev approximation (Fig
9.4.(a)) and B-splines approximation (Fig. 9.4.(b)). First of all it can be noted that
the two distributions are not normal distributions, but in both cases Fig. 9.4 provides
a log-normal distribution,which means that the occurrances are not distribuited
symmetrically in relation to their means. The parameters which describe the log-
normal distribution are log-scale,µL and log-scale, σL, by which it is possible to
obtain mean and variance with the folowing relations:

µ = eµL+
σ2
L
2 (9.35)

σ2 = e2µL+σ2
L(eσ2

L − 1) (9.36)

By replacing the parameters of both Chebyshev and B-spline distributions in (9.35)
and (9.36), it is possible to obtain their arithmetic means and arithmetic standard
deviation for B-spline which are µBS = 1.73 · 103 and σBS = 2.59 · 102 respectively,
while for Chebyshev approximation µCheb = 2.16 · 103 and σCheb = 4.01 · 102
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respectively. Summarizing, it can be note that the number of iterations required
to reach sub-optimal solution with B-splines, are, on average, lower compared to
Chebyshev, and, in addition, even their dispersion in relation to the average is the
lowest.

The reason why the B-splines approximation outperforms the Chebyshev approx-
imation is the better ability of the former to catch the ideal bang-bang solution
given in Sec. 9.2 with respect to the latter. Fig. 9.5 reports the control histories
associated to a maneuver with initial conditions equal to [x(0), y(0), ẋ(0), ẏ(0)] =
[−1, 1, 0, −2ω] for both the approximation methods. The B-spline maneuver
requires 3988 seconds while the Chebyshev maneuvers requires 4113 seconds. It
can be noted that the B-spline approximation (Fig. 9.5.(b)) is able to catch a good
approximation of the bang-bang behavior both for the x and the y axis. In this case,
the sequences of bangs [+1,−1,+1] for the x axis and [+1,−1 + 1,−1] for the y axis
seem to be optimal. The Chebyshev approximation (Fig. 9.5.(a)) cannot provide
a good approximation for ux, while uy is quite the same as the one obtained with
the B-spline. The trajectories obtained with the two control policies are shown in
Fig. 9.6. It is noteworthy that the B-spline trajectory brings the deputy satellite
toward greater values in positive direction of the x axis. In this way, the difference
between the absolute velocity of deputy and chief satellites induced by the Keplerian
gravity effect is maximized, which is consistent with the achieved minimum-time
maneuver.

To study in more detail the differences between the B-spline and the Chebyshev
approximation schemes, let us consider the results reported in Table 9.5 and Table
9.6. Here, the performances of the proposed algorithm are evaluated considering
different values for the convergence threshold ε. The parameter Nε is the number of
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Fig. 9.4: Chebyshev (a) and B-splines (b) iterations number with log-normal interpolation.
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Fig. 9.5: Control policy obtained with Chebyshev (a) and B-spline (b).
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iterations required to satisfy the tolerance ε. The relative difference ∆tf is evaluated
as

∆tf,ε =
tf,ε − t∗f
t∗f

(9.37)

where tf,ε is the maneuver time associated with the tolerance ε and t∗f is the maneuver
time associated with ε = 10−10. Comparing the results in the two tables, notes are:

1. As already pointed out in Fig. 9.3, the number of iterations using the B-
spline approximation is always fewer than the one required by the Chebyshev
approximation.
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Tab. 9.5: Results of Monte Carlo simulation with the Chebyshev approximation.

ε = 10−6 ε = 10−7 ε = 10−8 ε = 10−9 ε = 10−10

r ∈ (0.1, 0.5] km

Mean(Nε) 1.39·103 1.54·103 1.71·103 1.89·103 2.14·103

Std(Nε) 2.03·102 2.44·102 3.69·102 4.62·102 8.66·102

Mean(∆tf,ε) 3.95·10−3 3.83·10−3 2.88·10−3 1.45·10−3 0.00
Std(∆tf,ε) 7.53·10−2 7.53·10−2 6.97·10−2 3.08·10−2 0.00
Max∆tf,ε 3.11 3.11 3.11 1.38 0.00

r ∈ (0.5, 1.0] km

Mean(Nε) 1.47·103 1.65·103 1.83·103 2.05·103 2.38·103

Std(Nε) 2.62·102 3.17·102 4.29·102 6.86·102 1.23·103

Mean(∆tf,ε) 2.32·10−2 2.28·10−2 2.11·10−2 1.50·10−2 0.00
Std(∆tf,ε) 2.10·10−1 2.10·10−1 2.05·10−1 1.71·10−1 0.00
Max(∆tf,ε) 3.66 3.66 3.66 3.66 0.00

r ∈ (1.0, 1.5] km

Mean(Nε) 1.57·103 1.76·103 1.99·103 2.26·103 2.67·103

Std(Nε) 3.69·102 5.43·102 7.62·102 1.09·103 1.62·103

Mean(∆tf,ε) 8.74·10−2 7.46·10−2 5.28·10−2 2.94·10−2 0.00
Std(∆tf,ε) 5.49·10−1 5.01·10−1 3.93·10−1 2.55·10−1 0.00
Max(∆tf,ε) 9.85 9.85 7.19 4.85 0.00

r ∈ (1.5, 2.0) km

Mean(Nε) 1.68·103 1.93·103 2.21·103 2.56·103 3.09·103

Std(Nε) 5.49·102 8.37·102 1.17·103 1.56·103 2.09·103

Mean(∆tf,ε) 1.88·10−1 1.64·10−1 1.17·10−1 7.14·10−2 0.00
Std(∆tf,ε) 7.89·10−1 7.29·10−1 5.81·10−1 4.48·10−1 0.00
Max(∆tf,ε) 9.05 9.01 6.39 6.39 0.00

2. The mean and the maximum values of ∆tf,ε for the B-spline are much lower
than for Chebyshev. This means that the B-spline approximation can converge
suddenly to the optimal maneuver, while the Chebyshev approximation can
get stalled over local minima and reach the best solution only increasing the
number of iterations. Moreover, the result shown for the max value of ∆tf,ε
when r ∈ (0.5, 1.0] km in Table 9.5 indicates that the Chebyshev approximation
risks to converge toward high maneuver time, which is confirmed by Fig. 9.3.

3. As a result of points 1. and 2., low values of the threshold ε may be used
with the B-spline approximation when a good, feasible maneuver is searched
reducing the computational time at most.

[

To conclude the comparison between the two approximation methods, consider
the results reported in Tables 9.7, 9.8, 9.9. Here the mean number and the standard
deviation of iterations and the maneuver time errors are reported for the first feasible
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Tab. 9.6: Results of Monte Carlo simulation with the B-spline approximation.

ε = 10−6 ε = 10−7 ε = 10−8 ε = 10−9 ε = 10−10

r ∈ (0.1, 0.5] km

Mean(Nε) 1.08·103 1.23·103 1.39·103 1.54·103 1.69·103

Std(Nε) 1.25·102 1.50·102 1.83·102 2.22·102 2.66·102

Mean(∆tf,ε) 1.96·10−5 9.31·10−6 5.37·10−6 2.89·10−6 0.00
Std (∆tf,ε) 9.03·10−5 7.61·10−5 6.92·10−5 6.54·10−5 0.00
Max(∆tf,ε) 3.01·10−3 3.01·10−3 3.01·10−3 3.01·10−3 0.00

r ∈ (0.5, 1.0] km

Mean(Nε) 1.12·103 1.28·103 1.41·103 1.57·103 1.74·103

Std(Nε) 1.32·102 1.63·102 1.92·102 2.41·102 3.54·102

Mean(∆tf,ε) 3.38·10−5 2.00·10−5 1.37·10−5 8.31·10−6 0.00
Std (∆tf,ε) 2.49·10−4 2.36·10−4 2.25·10−4 2.11·10−4 0.00
Max(∆tf,ε) 1.01·10−2 9.91·10−3 9.91·10−3 9.49·10−3 0.00

r ∈ (1.0, 1.5] km

Mean(Nε) 1.13·103 1.28·103 1.43·103 1.58·103 1.74·103

Std(Nε) 1.36·102 1.63·102 2.02·102 2.38·102 3.24·102

Mean(∆tf,ε) 4.96·10−5 3.15·10−5 1.87·10−5 1.30·10−5 0.00
Std (∆tf,ε) 4.32·10−4 4.02·10−4 3.77·10−4 3.63·10−4 0.00
Max(∆tf,ε) 1.73·10−2 1.72·10−2 1.72·10−2 1.67·10−2 0.00

r ∈ (1.5, 2.0) km

Mean(Nε) 1.17·103 1.32·103 1.47·103 1.62·103 1.79·103

Std(Nε) 1.67·102 1.94·102 2.22·102 3.26·102 4.70·102

Mean(∆tf,ε) 9.41·10−4 9.06·10−4 8.79·10−4 5.31·10−4 0.00
Std (∆tf,ε) 1.87·10−2 1.85·10−2 1.84·10−2 1.63·10−2 0.00
Max(∆tf,ε) 7.49·10−1 7.49·10−1 7.49·10−1 7.49·10−1 0.00

Tab. 9.7: Feasibility analysis from the Monte Carlo results, mean values.

Circular Chebyshev approximation
crown Mean(NF ) Mean(∆tf,F ) Max(∆tf,F )
(km) (-) (-) (-)
r ∈ (0.1, 0.5] 95.50 23.48 97.73
r ∈ (0.5, 1.0] 218.20 12.41 96.72
r ∈ (1.0, 1.5] 395.05 8.00 73.97
r ∈ (1.5, 2.0) 676.18 6.15 57.21

maneuver, i.e. the first maneuver that satisfies all the imposed constraints. The
feasible maneuver is reached after NF iterations, and the relative maneuver time
difference ∆tf,F is evaluated as in Eq. (9.37). Note that, since these results are
related to the very first part of the optimization algorithm, the standard deviation
values reported in Table 9.9 are quite high. Nonetheless, the B-spline values are
lower than the Chebyshev ones, showing that also in this case the former is more
stable and reliable than the latter. Note also that, for both approximation schemes,
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!t]
Tab. 9.8: Feasibility analysis from the Monte Carlo results, mean values.

Circular B-spline approximation
crown Mean(NF ) Mean(∆tf,F ) Max(∆tf,F )
(km) (-) (-) (-)
r ∈ (0.1, 0.5] 11.32 8.83 39.7
r ∈ (0.5, 1.0] 54.97 5.51 24.35
r ∈ (1.0, 1.5] 105.40 3.97 20.68
r ∈ (1.5, 2.0) 165.13 3.14 20.48

Tab. 9.9: Feasibility analysis from the Monte Carlo results, standard deviations.

Circular Chebyshev approximation B-spline approximation
crown Std(NF ) Std(∆tf,F ) Std (NF ) Std (∆tf,F )
(km) (-) (-) (-) (-)
r ∈ (0.1, 0.5] 38.33 12.32 18.91 5.09
r ∈ (0.5, 1.0] 1.53·102 9.81 50.38 4.22
r ∈ (1.0, 1.5] 5.49·102 8.02 81.52 3.93
r ∈ (1.5, 2.0) 1.05·103 7.10 1.31·102 2.82

the feasible maneuver gets closer to the optimal one when the initial distance of the
deputy increases.

As described in Sec. 9.5.2, full advantage of the B-spline approximation is obtained
when also the time is approximated as a B-spline. In this case, the graph of the
function is approximated, thus having the opportunity to model the curve both along
the vertical and horizontal directions [2, 3]. Let us refer to this approach as improved
B-spline approximation, in contrast with the previous basic B-spline approximation.
When using the improved B-spline approximation, the optimal control obtained
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Fig. 9.7: Control policy (a) and trajectory (b) with the improved B-spline approximation.
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Fig. 9.8: Control policy (a) and trajectory (b) with POCS.

for the previous example of Fig. 9.5, 9.6 is reported in Fig. 9.7. The maneuver
time associated with the improved solution is 3930 seconds, which is lower than
the 3988 seconds of the basic B-spline solution. Looking at Fig. 9.7.(a), it can
be seen that the B-spline is now able to catch a very good approximation of the
bang bang solution, even though the trajectory shown in Fig. 9.7.(b) is quite the
same than the one obtained with the basic approximation scheme. The efficiency
of the improved B-spline approximation may be appreciated looking at the results
given by the software GPOPS II [57] (used under research license). As can be seen,
the improved B-spline control is a precise approximation of the bang-bang control.
Moreover, the GPOPS II and the improved B-spline trajectory overlap quite perfectly.
However, the strong disadvantage related to the improved B-spline approximation is
that the computational effort and the number of iterations considerably grow up. For
example, this test case required 7226 steps, whereas the same case with the basic
B-spline approximation required only 2689 iterations. Moreover, the evaluation of
the curve is more time-consuming with respect to the basic B-spline approximation.
Accordingly, the basic B-spline approximation is generally suggested when searching
for a good compromise between optimality and computational cost.

As a result of the reported tables and figures, the B-spline approximation outper-
forms the Chebyshev approximation and will be used for the following result section.
The basic B-spline approximation will be employed to reduce the computational cost
of the planning algorithm.

9.6.2 Comparison with the particle swarm optimization

To assess the performances of the proposed DE-based optimization algorithm,
a comparison with a PSO-based optimizer is reported. The PSO-based planning
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Tab. 9.10: Comparison between the DE and the PSO performances.

Test DE PSO
Case x(t0) y(t0) ẋ(t0) ẏ(t0) N tf N tf

(km) (km) (km/s) (km/s) (-) (103 s) (-) (103 s)
1 −1.00 +1.00 0.00 +2.16 ·10−2 2689 4.02 3139 3.94
2 −0.16 −0.52 +9.03 ·10−5 +3.45 ·10−4 1725 1.57 1531 1.59
3 −0.72 +0.35 +4.86 ·10−4 +1.55 ·10−3 1780 2.79 1142 2.88
4 +0.36 +0.13 −3.03 ·10−5 −7.85 ·10−4 2687 1.89 1651 1.93
5 −0.25 +1.27 +9.37 ·10−5 +5.37 ·10−4 1755 3.21 5369 3.39
6 −1.09 +0.54 +6.97 ·10−3 +2.34 ·10−3 1951 6.30 1514 11.21
7 −1.61 +0.34 −4.88 ·10−4 +3.47 ·10−3 2700 4.67 4297 4.89
8 +1.15 −0.01 −9.30 ·10−3 −2.47 ·10−3 10000 5.25 3465 9.92
9 −0.07 −1.58 −4.81 ·10−4 +1.45 ·10−4 2264 2.57 3708 2.56
10 +1.20 −1.12 −3.13 ·10−4 −2.59 ·10−3 1746 3.93 2140 3.95

algorithm is exactly the same as the one described in the previous paragraphs, but
PSO is used instead of DE for the trajectory optimization. The unified approach with
local and global best is employed and 50 particles are involved. The goal of this
section is to compare the DE results with those obtained with PSO in order to check
that they are in agreement with the literature (in [175, 176, 177] it is stated that
DE generally outperforms PSO). However, it is well-known that recognizing the best
algorithm between two heuristic approaches is not an easy task (see the discussion
about the No Free Launch theorem in [67]). Accordingly, our purpose will mainly
be to check the consistency of the DE results.

The results of the comparison are reported in Table 9.10 for 10 test cases taken
from the previous Monte Carlo analysis. As can be seen, DE generally outperforms
PSO, but the authors believe that such results strongly depend on the parameters
governing the behavior of the two algorithms. The maneuver time given by PSO
is lower than the DE one only for test cases 1 and 9, while the number of required
iterations does not allow to say which algorithm behaves the best. For instance, it
can be seen that for the test case 8 DE provides a better solution than PSO, but the
required iterations are 10,000, which is the maximum number of allowed iterations.
As previously mentioned, the results in Table 9.10 can be used to get the confidence
that the DE has good convergence properties in terms of precision and computational
cost.

9.6.3 Reconfiguration

Closed-form solutions of the linear relative motion equations with u = 0 and
no perturbing forces (i.e. using the HCW equations) are reported in [132]: to
obtain closed (or periodic) relative trajectories, the initial condition in Eq. (9.34)
must be imposed. Similar trajectories may be obtained from the SS model. As
shown in literature [132], three characteristic types of closed relative trajectories can
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be derived: Along-Track Formation (ATF), General Circular Formation (GCF) and
Projected Circular Formation (PCF). In these cases, the general satellite trajectory
can be written in magnitude-phase form as

xd(t) = 1
2R sin (n̄t+ α0) ,

yd(t) = ρy,0 +R cos (n̄t+ α0) ,

zd(t) = κzx
2 R sin (n̄t+ α0) ,

(9.38)

where R dictates the dimension the trajectory, α0 is the initial phase angle and ρy,0
is the center of the close trajectory along the y axis. For the PCF, κzx = 2, for the
GCF κzx =

√
3 whereas for the ATF R = 0 and ρy,0 6= 0. Eq. (9.38) applies for the

SS model (with ω instead of n̄ they are valid for the HCW model).

In this section, the proposed planner has been used to minimize the time of a
reconfiguration maneuver between two spacecrafts in formation. The following
maneuvers will be taken into account:

1. ATF to ATF, starting from -0.4 km and arriving at -1 km.

2. GCF to PCF, starting from a GCF with R = 1 km and arriving to a PCF with
R = 2 km. The GCF initial phase angle is 125 degree and ρy,0 = 0.

3. GCF to ATF, starting from a GCF with R = 1 km and ρy,0 = 0 and arriving to
an ATF with ρy,0 = −0.3 km. The GCF initial phase angle is 90 degree.

When dealing with a final condition given by a GCF or a PCF, an important
difference with the cases faced in Sec. 9.6.1 and 9.6.2 is introduced. In fact, in these
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Fig. 9.9: Control policy (a) and trajectory (b) for the ATF to ATF maneuver.
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Fig. 9.10: Control policy (a) and trajectory (b) for the GCF to PCF maneuver.
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Fig. 9.11: Control policy (a) and trajectory (b) for the GCF to ATF maneuver.

cases the final condition does not corresponds to a point but to an infinite set of points
satisfying Eq. (9.38) and parametrized by the initial phase angle α0. Accordingly,
the minimum time tf depends on α0 , and the DE individual in Eq. (9.30) must
be modified to consider α0. Hence, using the basic B-spline approximation, the DE
individual is

X = [ax,ay,az, α0, tf ] . (9.39)

The results obtained with the proposed DE-based planner using the basic B-spline
approximation are reported in Fig. 9.9, 9.10 and 9.11. The maneuver times required
for the ATF to ATF, GCF to PCF and GCF to ATF maneuvers are 1995 seconds, 3941
seconds and 3374 seconds, respectively. All the characteristics already pointed
out in the previous sections apply to these cases. It is noteworthy that, for all
the three reported maneuvers, at least one component of the external control is
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quite completely extremal. For the ATF to ATF maneuver, ux is constantly equal
to +1 while uy basically switches from −1 to +1 (note that, when the maneuver
is performed in the opposite direction, i.e. going from -1 to -0.4 along the y axis,
ux and uy are exactly the same with opposite sign, so ux = −1 ∀t and uy basically
switches from +1 to −1). For the GCF to PCF maneuver, uz switches from −1 to +1.
Analogously, for the GCF to ATF maneuver, uz is equal to +1 for almost the entire
duration of the maneuver, showing a little negative bang at the end. The presence of
extremal controls is a good index of the quasi-optimality of the reported results, as
this fact agrees with the theoretical analysis described in Sec. 9.2.

9.7 Endnotes

A novel algorithm for planning near time-optimal maneuvers has been proposed.
The planner is based on the Differential Evolution algorithm and implements an in-
verse dynamics approach. Accordingly, the optimization variables are the parameters
which describe the kinematic history of the deputy satellite. A comparison between
the B-spline and the Chebyshev approximation methods has been performed, and
the numerical results show that the former outperforms the latter. A Monte Carlo
analysis has been carried out to demonstrate the stability and the efficiency of the
proposed planner when using the B-spline approximation. Near time-optimal ma-
neuvers are planned requiring less than two thousands iteration, on average, and a
good approximation of a bang-bang control policy is attained. An improved B-spline
approximation scheme has also been tested, demonstrating that the optimality of
the trajectory may be improved at the cost of higher computational efforts. More-
over, the numerical results of the proposed planner have been compared with those
obtained using a Particle Swarm optimizer. Results from Differential Evolution and
from Particle Swarm are consistent with each other and, generally, the Differential
Evolution outperforms the Particle Swarm.

As a conclusion, the proposed planner based on Differential Evolution and using
B-spline to approximate the deputy trajectories may be successfully used to obtain
feasible maneuvers while representing a respectable compromise between optimality
and computational effort.
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Conclusion

The thesis has focused on planning optimal maneuvers using metaheuristic methods.
The Particle Swarm Optimization has been mainly used, but the Differential Evolution
has been introduced in the final chapter to compare the performances of different
metaheuristic algorithms.

The main contribution of this work has been the development of the Inverse-
dynamics Particle Swarm Optimization, which is an optimal control algorithm based
on a differential flatness implementation and the particle swarm intelligence to solve
the nonlinear parameter optimization problem. The test cases reported in the thesis,
concerning attitude maneuvers and satellite formation reconfiguration maneuvers,
have demonstrated that the proposed algorithm may be successfully used to plan
near-optimal maneuvers. For attitude maneuvers, the algorithm requires a very
low computational effort. On the other hand, for satellite formation reconfigu-
ration maneuvers, the algorithm has been used to demonstrate the feasibility of
perturbation-based maneuvers, and the completely nonlinear spacecraft dynamics
have been considered. Accordingly, a higher computational effort is required with
respect to the planning of attitude maneuvers. In the thesis it has been shown that
nonconvexity issues related to the differential flatness implementation may be easily
overcome by using the particle swarm optimizer.

The particle swarm intelligence has been also employed to cope with direct
dynamics formulations of optimal control problems. When the necessary optimality
conditions are imposed a-priori, an extremal control (usually known as bang-bang
policy) is searched for. Hence, the particle swarm may be used to find the optimal
sequence of bangs and switches to plan minimum-time maneuvers.

To conclude, optimal control problems can be successfully solved by means of
swarm intelligence. Several approaches may be used to find the optimal control
policy. Depending on the characteristics of the problem and the required accuracy of
the solution, inverse or direct dynamics approaches may be used. The results shown
in this thesis pave the way to new numerical approaches that can be employed as
alternative methods to estalished collocation and pseudospectral algorithms.
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