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Abstract— The concept of partially minimum phase systems
is introduced and used with reference to the class of nonlinear
systems exhibiting a linear output. It turns out that input-output
feedback linearization with stability of the internal dynamics
can be pursued via the use of a dummy output with respect
to which the system is minimum-phase. The design strategy
is extended to multirate sampled-data control and a working
example illustrates the performances.

Index Terms— Feedback linearization; Nonlinear output
feedback; Sampled-data control

I. INTRODUCTION

A huge number of control strategies is about assigning a
target dynamic to a given system. Basically, the concerned
design techniques require the inversion of some intrinsic
dynamics of the plant that might filter the required behavior
([1], [2], [3], [4], [5], [6]). In the linear case, this corresponds
to designing a feedback that assigns part of the eigenvalues
coincident with the zeros of the system so making the
corresponding dynamics unobservable. In the nonlinear case,
similar considerations can be made via the inversion under
feedback of the so-called zero-dynamics [7]. It results that
the so-defined control will ensure stability in closed loop if
and only if the zero-dynamics are asymptotically stable.

Though, the linear case suggests that stability in closed
loop can be still pursued under state feedback via partial
dynamic cancellation. As a matter of fact, one might design
a feedback so to cancel only the stable zeros while leaving
the remaining ones unchanged so performing a filtering
action that should not compromise the required closed-loop
behavior. Based on this idea, we consider non minimum
phase nonlinear single-input single-output (SISO) systems
that are controllable in first approximation and settle the
problem in the context of Input-Output linearization. In
that case, because the zero-dynamics are unstable, classical
techniques cannot be implemented to solve the problem
with stability. Based on the notion of partially minimum
phase systems, the design we propose proceeds in two
steps: considering the linear tangent model (LTM) of the
original system, we first define a dummy output based on a
suitable factorization of the numerator of its transfer function
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so that the corresponding linearized system is minimum-
phase; then, we perform classical input-output linearization
of the locally minimum-phase nonlinear system with the
aforementioned dummy output. Finally, we show that when
applying the resulting feedback to the original system, input-
output linearization still holds with respect to the actual
output while guaranteeing stability of the internal dynamics.

The proposed methodology is then applied to the sampled-
data context; namely, measures of the output (say the state)
are available only at some time instants and the control is
piecewise constant over the sampling period. In this context,
the problem under study is even more crucial because of the
further zero-dynamics intrinsically induced by sampling that
are generally unstable [8]. As a consequence, the minimum-
phase property of a given nonlinear continuous-time system
is not preserved by its sampled-data equivalent ([9], [10],
[11], [12]). To overcome those issues, several solutions were
proposed based on different sampling procedures ([10], [13],
[14], [15], [16], [17]). Among these, the first one was based
on multirate sampling in which the control signal is sampled-
faster (say r times) than the measured variables. Accord-
ingly, this sampling procedure introduces further degrees of
freedom and prevents from the appearance of the unstable
sampling zero dynamics while preserving the continuous-
time relative degree ([9], [18]). As an alternative, in [13], [16]
the authors exploited sampling via generalized hold function
(GHF) in order to arbitrarily assign the zero-dynamics of
the corresponding sampled-data equivalent system. Though,
the relative degree is still not preserved in this case and the
GHF method can be seen as a particular case of multirate
sampling.

The paper is organized as follows: The problem is settled
in Section II and motivated in Section III; the main result is
in Section IV and extended to the sampled-data context in
Section V. A simulated example is in Section VI. Section
VII concludes the paper.

Notation and definitions: All the functions and vec-
tor fields defining the dynamics are assumed smooth and
complete over the respective definition spaces. MU (resp.
MI

U ) denotes the space of measurable and locally bounded
functions u : R → U (u : I → U , I ⊂ R) with U ⊆ R.
Uδ ⊆ MU denotes the set of piecewise constant functions
over time intervals of fixed length δ ∈]0,T ∗[; i.e. Uδ =
{u ∈ MU s.t. u(t) = uk,∀t ∈ [kδ ,(k + 1)δ [;k ≥ 0}. Given
a vector field f , L f denotes the Lie derivative operator,
L f = ∑

n
i=1 fi(·) ∂

∂xi
. eL f x denotes the associated Lie series

operator, eL f x := x+∑i≥1
Li

f x
i! . A function R(x,δ ) =O(δ p) is



said to be of order δ p (p≥ 1) if whenever it is defined it can
be written as R(x,δ ) = δ p−1R̃(x,δ ) and there exist function
θ ∈K∞ and δ ∗ > 0 s. t. ∀δ ≤ δ ∗, |R̃(x,δ )| ≤ θ(δ ).

II. PROBLEM SETTLEMENT

We consider nonlinear feedback linearizable input-affine
dynamics with linear output map of the form

ẋ = f (x)+g(x)u, x ∈ Rn,u ∈ R,y ∈ R
y =Cx

(1)

verifying the following assumptions: (1) has relative degree
r ≤ n and is partially minimum phase1; the Linear Tangent
Model (LTM) at the origin

A =
∂ f
∂x

∣∣∣
0
=

(
0 Ir−1
−a

)
, B = g(0) =

(
0
1

)
C =

(
b0 . . . bm 0

)
(2)

is controllable. a = (a0 . . . an−1) is a row vector containing
the coefficients of the associated characteristic polynomial.
As a consequence, (2) rewrites

ẋ =Ax+Bu, y =Cx (3)

and has relative degree r̂ coinciding, at least locally, with r.
Remark 2.1: If (A,B,C) is not in the canonical control-

lable form (2), one preliminarily applies to (1) the linear
transformation

ξ = T x, T =
(
γ> (γA)> . . .(γAn−1)>

)>
with γ =

(
0 1

)(
B AB . . .An−1B

)−1 so transforming the
system into the required form.

In this setting, one looks for a continuous-time feedback
that ensures input-output linearization of (1) while guarantee-
ing stability of the internal dynamics. This will be achieved
via partial dynamics cancellation. Then, the strategy will
be extended to the sampled-data context through multirate
sampled-data feedback.

III. PARTIAL ZERO-DYNAMICS CANCELLATION

Let us start discussing how partial cancellation of the zero
dynamics can be used to assign the dynamics under feedback.
For, let (3) be the LTM at the origin of (1). Since (A,B) is
controllable, the transfer function of the system is provided
by

W (s) =C(sI−A)−1B =
N(s)
D(s)

with N(s) = b0+b1s+ · · ·+bmsm and D(s) = a0+a1s+ · · ·+
an−1sn−1 + sn and relative degree r̂ = n−m.

Given any factorization of the numerator N(s) =
N1(s)N2(s) and fixed D(s), the dummy output yi =Cix with
Ci = (bi

0 . . .b
i
mi

0) corresponds to the transfer function having

Ni(s) := bi
0 +bi

1s+ · · ·+bi
mi

smi

1Consider a nonminimum phase nonlinear system (1) with LTM model
at the origin (3) whose zeros are the roots of a not Hurwitz polynomial
N(s); we say that it is partially minimum phase there exists a factorization
of N(s) = N1(s)N2(s) so that N2(s) is Hurwitz.

(i = 1,2) as numerator and relative degree ri = n−mi (i =
1,2). Accordingly, the outputs y, y1 and y2 are related by

y(t) = N1(d)y2(t), y(t) = N2(d)y1(t)

so getting for j 6= i and d = d
dt

y(t) = b j
0yi +b j

1
d
dt

yi + · · ·+b j
m j

dm j

dtm j
yi.

Remark 3.1: The feedback

ui = Fix+ v, Fi =−
CiAri

CiAri−1B
, i = 1,2

transforms (3) into a system with closed-loop transfer func-
tion given by

W Fi(s) =C(sI−A−BFi)
−1B

=
N j(s)

sr
i

=
b0 +b j

1s+ ..+b j
m j s

m j

sri
, j 6= i.

Remark 3.2: It is a matter of computations to verify
that the feedback u = Fix coincides with the one de-
duced from the Ackermann formula assigning the poles of
the system to the roots of p∗i (s) = sriNi(s). As a conse-
quence, it rewrites ui = Fix with Fi = −γ p∗i (A) and γ =(
0 1

)(
B AB . . . An−1B

)−1.
The feedback u = Fix + v places ri eigenvalues of the

system coincident with the zeros of Ni(s) and the remaining
ones to 0 so that stabilization in closed loop can be achieved
via a further feedback v if and only if Ni(s) is Hurwitz. The
previous argument is the core idea of assigning the dynamics
of the system via feedback through cancellation of the stable
zeros only. Accordingly, if N(s) is not Hurwitz (i.e. N j(s)
has positive real part zeros) the closed-loop system will still
have non stable zeros that will play an important role in
filtering actions but that will not affect closed-loop stability.
Concluding, given any controllable linear system one can
pursue stabilization in closed loop via partial zeros cancela-
tion: starting from a suitable factorization of the polynomial
defining the zeros, this is achieved via the definition a dummy
output with respect to which the system is minimum phase.

IV. CONTINUOUS-TIME FEEDBACK LINEARIZATION OF
PARTIALLY MINIMUM PHASE SYSTEMS

In what follows, we show how the idea developed in
the linear context can be settled in the one of feedback
linearization of nonlinear dynamics of the form (1) that are
not minimum phase in first approximation.

Lemma 4.1: Consider the nonlinear system (1) and sup-
pose that its LTM at the origin is controllable in the form
(2) and non minimum phase with relative degree r. Denote
by N(s) = b0+b1s+ . . .bn−rsn−r the not Hurwitz polynomial
identifying the zeros of the LTM of (1) at the origin. Consider
the maximal factorization of N(s) = N1(s)N2(s)

Ni(s) = bi
0 +bi

1s+ . . .bi
n−ri

sn−ri , i = 1,2 (4)

such that N2(s) is a Hurwitz polynomial of degree n− r2.
Then, the system

ẋ = f (x)+g(x)u, y2 =C2x. (5)



C2 =
(
b2

0 b2
1 . . . b2

n−r2
0
)

has relative degree r2 and is
locally minimum-phase.

Proof: By computing the linear approximation at the
origin of (5), one gets that the matrices (A,B,C2) are in
the form (2) so that the entries of C2 are the coefficients
of N2(s) that is the numerator of the corresponding transfer
function. By construction, N2(s) is a Hurwitz polynomial of
degree n− r2. It follows that, in a nearby of the origin, the
relative degree of (5) is r2. Furthermore, since the linear
approximation of the zero-dynamics of (5) coincides with
the zero-dynamics of its LTM model at the origin, one gets
that (5) is minimum-phase.

Lemma 4.2: Consider the nonlinear system (5) and intro-
duce the normal-form associated to h2(x) =C2x(

ζ

η

)
= φ(x) =

(
h2(x) . . . Lr2−1

f h2(x) φ>2 (x)
)>

(6)

with φ2(x) such that Lgφ2(x) = 0 so that

ζ̇ = Âζ + B̂(b(ζ ,η)+a(ζ ,η)u) (7a)
η̇ = q(ζ ,η) (7b)

y2 =
(
1 0

)
ζ . (7c)

Then, the feedback

u =
1

a(ζ ,η)
(v−a(ζ ,η)) (8)

solves the Input-Output Linearization problem with stable
zero-dynamics.

Proof: The proof is straightforward from construction
of y2 in Lemma 4.1.

Remark 4.1: We recall that, in the original coordinates,
the feedback (8) rewrites as

u = γ(x,v) :=
v−Lr2

f h2(x)

LgLr2−1
f h2(x)

. (9)

Remark 4.2: By invoking the arguments in Section III, the
original output y =Cx rewrites as y = N1(d)y2.

Theorem 4.1: Consider the nonlinear system (1) and sup-
pose that its LTM at the origin is controllable in the form
(2) and non minimum phase with relative degree r. Define
the dummy output yi = hi(x) = Cix (i = 1,2) as in Lemma
4.1 and the state transformation (6) that puts the system into
the form

ζ̇ = Âζ + B̂(b(ζ ,η)+a(ζ ,η)u) (10a)
η̇ = q(ζ ,η) (10b)
y = N1(d)y2. (10c)

Then, the feedback (8) solves the input-output linearization
problem with stability of the internal dynamics.

Proof: From Lemmas 4.1 and 4.2, by expliciting y =
N1(d)y2 and exploiting (6) one gets

y = b1
0y2 +b1

1ẏ2 + · · ·+b1
r2−ry

(r2−r)
2 =

(
C1 0

)
ζ

so that in closed loop (1) rewrites as

ζ̇ = Âζ + B̂v (11a)
η̇ = q(ζ ,η) (11b)

y =
(
C1 0

)
ζ (11c)

that exhibits a linear input-output behavior. Moreover, by
construction, y2 ≡ 0 implies y ≡ 0 so that the restriction
of the trajectories of (11) onto the manifold identified by
y ≡ 0 is described by the dynamics η̇ = q(0,η) that has
a locally asymptotically stable equilibrium by construction.
Accordingly, when setting v = Fζ so that σ(Â + B̂F) ⊂
C−, the closed-loop system has an asymptotically stable
equilibrium at the origin.

The previous result shows that even if a nonlinear system
is non-minimum phase, a suitable partition of the output can
be performed on its LTM at the origin so that feedback
linearization of the input-output behavior can be pursued
while preserving stability of the internal dynamics.

Remark 4.3: It is a matter of computations to verify
that the LTM model of the closed-loop system (11) has
transfer function W (s)= N1(s)

sr2 . Accordingly, one can interpret
the nonlinear feedback (8) as the counterpart of the linear
feedback presented in Section III; roughly speaking, when
applying (8) to the original plant (1), one is inverting only the
stable component of the zero-dynamics associated to y. As
a consequence, as y→ 0, the trajectories of the closed-loop
system are constrained onto the stable manifold associated
to the dummy output y2 =C2x where they evolve according
to η̇ = q(0,η).

V. FEEDBACK LINEARIZATION OF PARTIALLY MINIMUM
PHASE SYSTEMS UNDER SAMPLING

We now address the problem of preserving input-output
linearization of (1) with stability under sampling by suitably
exploiting the result in Theorem 4.1. As recalled in the
introduction, the problem cannot be solved via standard
(also known as single-rate) sampling procedures. In fact,
considering u(t) ∈ Uδ and y(t) = y(kδ ) for t ∈ [kδ ,(k +
1)δ [ (δ the sampling period), the dynamics of (1) at the
sampling instants is described by the single-rate sampled-
data equivalent model

xk+1 = Fδ (xk,uk), yk =h(xk) (12)

with xk := x(kδ ), yk := y(kδ ), uk := u(kδ ), h(x) = Cx and
Fδ (xk,uk) = eδ (L f +ukLg)x

∣∣
xk

. It is a matter of computations
to verify that

yk+1 = h(xk)+
r

∑
i=1

δ i

i!
Li

f h(x)
∣∣
xk
+

δ r

r!
ukLgLr

f h(x)
∣∣
xk
+O(δ r+1)

so that
∂yk+1

∂uk
=

δ r

r!
LgLr

f h(x)
∣∣
xk
+O(δ r+1) 6= 0.

Thus, the relative degree of the sampled-data equivalent
model of (1) is always falling to rd = 1, despite the
continuous-time one. As a consequence, whenever r > 1,



the sampling process induces a further zero-dynamics of
dimension r−1 (i.e., the so-called sampling zero dynamics,
[9]) that is in general unstable for r > 1. As a consequence,
feedback linearization via single-rate sampling cannot be
achieved while guaranteeing internal stability.

Multirate sampling enables us to preserve the relative
degree and to avoid the appearance of the unstable sam-
pling zero dynamics. Accordingly, one sets u(t) = ui

k for
t ∈ [(k+ i− 1)δ ,(k+ i)δ [ for i = 1, . . . ,r and y(t) = yk for
t ∈ [kδ ,(k+ 1)δ [ so that the multirate equivalent model of
order r2 of (1) gets the form

xk+1 =F δ̄
m (xk,u1

k , . . . ,u
r2
k ) (13)

where δ̄ = δ

r2
and

F δ̄
m (xk,u1

k , . . . ,u
r2
k ) =eδ̄ (L f +u1

kLg) . . .eδ̄ (L f +u
r2
k Lg)x

∣∣
xk
=

F δ̄
m (·,ur2

k )◦ · · · ◦F δ̄ (xk,u1
k).

In the sequel, we show how multirate feedback can be suit-
ably employed with the arguments in Theorem 4.1 to achieve
input-output linearization of (1) at the sampling instant
t = kδ (k ≥ 0) with stability regardless the minimum-phase
property. Accordingly, we first design a multirate feedback
uk = γ(δ̄ ,xk,vk) (u= col(u1, . . . ,ur2) and v= col(v1, . . . ,vr2 ))
so to ensure input/output linearization of the v-y2 behavior of
(5), at the sampling instants. This is achieved by considering
the sampled-data dynamics (13) with augmented dummy
output Y2k = H2(xk) composed of y2 =C2x and its first r2−1
derivatives; namely, we consider

xk+1 =F δ̄
m (xk,u1

k , . . . ,u
r2
k ), Y2k = H2(xk) (14)

with δ̄ = δ

r2
and output vector

H2(x) =
(

h2(x) L f h2(x) . . . Lr2−1
f h2(x)

)>
that has by construction a vector relative degree rδ =
(1, . . . ,1).

In this Section we refer to ([19], [18]) where these
concepts are introduced and similar manipulations detailed
with analog motivations.

At first, we compute the feedback uk = γ(δ̄ ,xk,vk) so that
to reproduce, at the sampling instants t = kδ , the trajectories
of the dummy output of (5) and of its first r2−1 derivatives in
closed loop under the continuous-time linearizing feedback
(9). The existence of the sampled-data control is stated in
the following result.

Lemma 5.1: Consider the nonlinear system (5) under the
hypotheses of Lemma 4.2 with multirate equivalent model
of order r2 provided by (14). Then, there exists a unique
solution

uδ̄ = γ(δ̄ ,x,v) = (γ1(δ̄ ,x,v) . . . γ
r2(δ̄ ,x,v))> (15)

to the input-output Matching (I-OM) equality

H2(F δ̄
m (xk,γ

1(δ̄ ,xk,vk), . . . ,γ
r2(δ̄ ,xk,vk)) =

er2δ̄ (L f +γ(·,v)Lg)H2(x)
∣∣
xk

(16)

for any xk = x(kδ ) and v(t) = v(kδ ) := vk, vk = (vk, . . . ,vk).
Such a solution is in the form of a series expansion in powers
of δ̄ around the continuous-time γ(x,v) in (9); i.e., for i =
1, . . . ,r2

γ
i(δ̄ ,x,v) = γ(x,v)+ ∑

j≥1

δ̄

( j+1)!
γ

i
j(x,v). (17)

As a consequence, the feedback uδ
k = γ(δ̄ ,xk,vk) ensures

Input-Output linearization of (14) with stability of the inter-
nal dynamics.

Proof: First, we rewrite (16) as a formal series equality
in the unknown uδ̄ ; i.e.,(

δ̄ r2Sδ̄
1 (x,u

δ̄ ) . . . δ̄Sδ̄
1 (x,u

δ̄ )
)>

(18)

with, for i = 1, . . . ,r2,

δ̄
iSδ

i (x,u
δ̄ ) =eδ̄ (L f +u1Lg) . . .eδ̄ (L f +u1Lg)Li−1

f h2(x)

− er2δ̄ (L f +γ(·,v)Lg)Li−1
f h2(x).

Thus one looks for u = γ(δ ,x,v) satisfying

Sδ̄ (x,uδ̄ ) =
(

Sδ̄
1 (x,u

δ̄ ) . . . Sδ̄
1 (x,u

δ̄ )
)>

= 0 (19)

where each term rewrites as Sδ
i (x,u

δ̄ ) = ∑s≥0 δ sSi j(x,uδ̄ )
with

Si0(x,uδ̄ ) =
(

∆ juδ̄ − rr2−i+1
2 γ(x,v)

)
LgLr2−1

f h2(x) (20)

and ∆ j
j! = ( jr2− j+1−( j−1)r2− j+1

j!
( j−1)r2− j+1−( j−2)r2− j+1

j! . . . 1
j! ).

It results that uδ = γ(δ ,x,v) = (γ(x,v), . . . ,γ(x,v))> solves
(19) as δ → 0. More precisely, as δ → 0, one gets the
equation

Sδ̄→0(x,uδ̄ ) =
(

∆uδ̄ −Dγ(x,v)
)

LgLr2−1
f h2(x)

with ∆ = (∆>1 , . . .∆
>
r2
)> and D = diag(rr2

2 , . . . ,r2). Furthe-
more, the Jacobian of Sδ̄ with respect to uδ̄ is

∇uδ̄ Sδ̄ (x,(γ(x,v), . . . ,γ(x,v))>)
∣∣
δ̄→0 = ∆ LgLr2−1

f h2(x)

is full rank by definition of the continuous-time relative
degree r2 and because ∆ is invertible (see [10] for details)
so concluding, from the Implicit Function Theorem, the
existence of δ ∈]0,T ∗[ so that (16) admits a unique solution
of the form (17) around the continuous-time solution γ(x,v).
Stability of the zero-dynamics is ensured by multirate sam-
pling as proven in [10].

The feedback control is in the form of a series expansion
in powers of δ̄ . Thus, iterative procedures can be carried out
by substituting (17) into (16) and equating the terms with the
same powers of δ̄ (see [19] where the explicit expression for
the first terms are given). Unfortunately, only approximate
solutions γ [p](δ̄ ,x,v) can be implemented in practice through
truncations of the series (17)) at finite order p in δ̄ ; namely,
setting γ [p](δ̄ ,x,v) = (γ1[p](δ̄ ,x,v), . . . ,γr2[p](δ̄ ,x,v), one gets
for i = 1, . . . ,r2

γ
i[p](δ̄ ,x,v) = γ(x,v)+

p

∑
j=1

δ̄

( j+1)!
γ

i
j(x,v). (21)



When p = 0, one recovers the sample-and-hold (or emu-
lated) solution γ i[0](δ̄ ,xk,vk) = γ(x(kδ ),v(kδ )). Preservation
of performances under approximate solutions has been dis-
cussed in [20] by showing that, although global asymptotic
stability is lost, input-to-state stability (ISS) and practical
global asymptotic stability can be deduced in closed loop
even throughout the inter sampling instants.

Similarly to the continuous-time case, the next result
shows that applying the feedback (15) to (1) ensures input-
output linearization of the input-output behavior at any
sampling instant t = kδ (k ≥ 0) while preserving stability
of the internal dynamics.

Theorem 5.1: Consider the nonlinear system (1) under the
hypotheses of Theorem 4.1 with multirate equivalent model
of order r2 provided by

xk+1 =F δ̄
m (xk,u1

k , . . . ,u
r2
k ), yk =

(
C1 0

)
H2(xk) (22)

and let the feedback (15) be the unique solution to the
I-OM equality (16). Then the feedback uδ

k = γ(δ̄ ,xk,vk)
ensures Input-Output linearization of (22) with stability of
the internal dynamics.

Proof: We first note that yk rewrites as a linear combi-
nation of Y2. As a consequence, because the v-Y2k behavior is
linear under (15), the vk-yk is linear by construction. More-
over, we observe that Y2 ≡ 0 implies yk ≡ 0 by definition.
Thus, by construction of (15), as yk → 0, the closed-loop
trajectories of (22) are forced onto the zero-manifold defined
by Y2 ≡ 0 over which they are asymptotically stable.

Remark 5.1: Denote by zc
i the zeros of the non Hurwitz

polynomial N1(s) in Lemma 4.1. When considering the LTM
model of (22) in closed loop under (15), one gets that, as δ̄→
0, the closed-loop linearized system has exactly r2− r zeros
asymptotically approaching to the origin as eδ̄ zc

i (namely, as
δ̄ → 0, zδ

i → eδ̄ zc
i , i = 1, . . . ,r2). Accordingly, by applying

this result in the linear case, one gets that the feedback (15)
is the one that assigns n−r2 poles coincident with the stable
zeros, without affecting the unstable ones.

Remark 5.2: Along the lines of the continuous-time case,
when controlling (22) via the multirate feedback (15) one is
constraining the trajectories of the closed-loop system onto
the stable part of the zero-manifold identified by the non-
minimum phase output.

Remark 5.3: A purely digital single-rate feedback might
be computed over (12) by settling Lemma 4.1 to this context.
Assuming, for simplicity, that (1) is locally minimum-phase,
one might define a partition of the original output yk =Cxk
based on the numerator Nδ (z) of transfer function of its
LTM at the origin. Accordingly, one might deduce yδ

2 =Cδ
2 xk

with respect to which the original dynamics has no sampling
zero dynamics and the y = N(q)yδ

2 where q denotes the shift
operator and N(q) is the polynomial defining the sampling
zeros of the LTM. Though, an exact partition of the original
output is hard to be found and only approximate solutions
can be found based on the concept of limiting sampling zeros
([8], [16])

VI. THE TORA EXAMPLE

An academic working example is proposed on the basis
of the TORA system described in [21] (Section 4.4.1, model
(4.4.2)). In this context, we consider the fictitious output

y = (
2
ε
(ε2−1) 0 1− ε

2 1− ε
2)x

with respect to which the system is non-minimum phase and
has relative degree r = 1. By applying first the coordinates
transformation in Remark 2.1 and following the lines of
Section IV, we define the partition N1(s) = s−1 and N2(s) =
s2 +2s+1 so that, in the original coordinates, we define the
dummy

y2 = (0 − 2
ε
(ε2−1) 1− ε

2 0)x

with respect to which the system is minimum-phase in first
approximation and has relative degree r2 = 2. Accordingly,
by applying Theorem 4.1, the feedback (8) with

LgL f h2(x) =
ε2−1

ε2 cos2(x3)−1

L2
f h2(x) =

2x2(ε
2−1)
ε

−2x4 cos(x3)(ε
2−1)+

+
ε cos(x3)(ε2−1)(x1− ε sin(x3)(x2

4 +1))
ε2 cos(x3)2−1

and v = −k1h2(x)− k2L f h2(x) achieves local asymptotic
stabilization in closed loop for k1,k2 > 0.

To solve the problem under sampling, the multirate feed-
back γ [1](δ ,x,v) in (21) is computed with first corrective
terms

γ
1
1 (x,v) =

1
3

γ̇(x,v), γ
2
1 (x,v) =

5
3

γ̇(x,v)

and γ̇(x,v) = (L f + γ(x,v)Lg)γ(x,v).
Figures 1 and 2 depict simulations of the aforementioned

situations under the continuous-time feedback (8) and the
approximate sampled-data one (21) with p = 1 and for
different values of the sampling period. The sample and
hold solution is reported as well in a comparative sense.
In particular, setting by η = (η1, η2, η3)

>, we denote the
internal dynamics corresponding to the simulated situations.
It is clear from Figure 1 that the continuous-time feedback
computed via partial dynamic inversion yields feedback
linearization while ensuring asymptotic stability in cosed-
loop. Concerning sampled-data control, we note that, as δ

increases, the emulated based solution fails in stabilizing
(and linearizing the input-output behavior) in closed loop
while the presented multirate strategy yields more than
acceptable performances even in that case.

VII. CONCLUSIONS

The notion of partially minimum-phase systems is used
to get feedback input-output linearization while preserving
stability. The proposed approach is introduced in continuous
time and extended to the sampled-data context through
multirate to overcome the well-known pathologies induced
by the sampling zero dynamics. The extension to systems



Fig. 1. δ = 0.5 s.

exhibiting a nonlinear output mapping is the objective of
further investigations.
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