Organising Committee

General Chair
Sébastien Lambot (sebastien.lambot@uclouvain.be)
Université catholique de Louvain (UCL, Belgium)

Co-Chairs
Evert Slob (e.c.slob@tudelft.nl)
Delft university of Technology (TUDelft, The Netherlands)
Antonis Giannopoulos (a.giannopoulos@ed.ac.uk)
The University of Edinburgh (UoE, UK)
Christophe Craeye (christophe.craeye@uclouvain.be)
Université catholique de Louvain (UCL, Belgium)
Frédéric André (frederic.andre@uclouvain.be)
Université catholique de Louvain (UCL, Belgium)
Lara Pajewski (lara.pajewski@uniroma3.it)
Roma Tre University (Italy) - EU Cost Action TU1208

Local Organising Committee
Carine Demeyer (carine.demeyer@uclouvain.be)
Financial Chair
Laurence Mertens (laurence.mertens@uclouvain.be)
Technical Program Chair
Albéric De Coster (alberic.decoster@uclouvain.be)
Social Event Chair
Nicolas Mourmeaux (nicolas.mourmeaux@uclouvain.be)
Delegate Chair
Foreword

It is our great pleasure to present the Proceedings of the 15th International Conference on Ground Penetrating Radar (GPR 2014), held in Brussels, Belgium, from June 30 to July 4, 2014. The International Conference on Ground Penetrating Radar is a longstanding traditional event making the premier forum of research and applications in the field of GPR. GPR 2014, the 15th in the series that has been held biannually since 1986, has brought together high-standard scientists, engineers, industrial delegates and end-users working in all GPR areas, ranging from fundamental electromagnetics to the so various fields of application. Topics covered include novel developments of GPR systems and antennas, advanced data processing algorithms for improved subsurface imaging, radar data modeling approaches and inversion strategies for quantitative reconstruction of soil and material properties, and finally, data interpretation in a range of fields, including geology and sedimentology, glaciology, environmental and agricultural engineering (e.g., hydrological monitoring, digital soil mapping, forestry), civil and military engineering (e.g., utility detection, monitoring of transport infrastructures, nondestructive testing, landmine detection), archeology and cultural heritage, and planetary exploration, among others. GPR 2014 is in particular co-organized with EU-COST (European Cooperation in Science and Technology) via the Cost Action TU1208 “Civil Engineering Applications of Ground Penetrating Radar”.

These conference proceedings contain 202 contributing, 4-6-page papers, from 33 countries worldwide. The contributions for GPR 2014 have been selected by the Editors based on the reviews of single page abstracts and full-length manuscripts conducted by the international scientific review panel (45 reviewers). These papers were judged on scientific quality and originality, the value for the GPR community, the themes of the conference and the absence of commercialism. The papers were revised once by the authors following the scientific panel comments to make them complying with the conference standard and formatting. Although the GPR 2014 Organizers and Editors believe that all papers presented have technical merit, complete accuracy and technical validity cannot be assured. The GPR 2014 Organizers and Editors accept neither responsibility nor liability for misprints or misinterpretations that may be contained in these proceedings.

We are warmly grateful to all the reviewer specialists that accepted to review the papers of this conference. Their constructive comments and corrections were essential for the success and quality of this event. In particular, we thank Peter Annan, Steve Arcone, Andrea Benedetto, Norbert Blindow, John Bradford, Amelia Rubio Bretones, Charlie Bristow, Nigel Cassidy, Ilaria Catapano, Chi-Chih Chen, Lorenzo Crocco, David Daniels, Xavier Dérobert, Nectaria Diamanti, Colette Grégoire, Susan Hubbard, Khan Zaib Jadoon, Harry Jol, François Jonard, Anja Klotzsche, Steven Koppenjan, Lanbo Liu, François Lavoué, Guido Manacorda, Xavier Neyt, Frédéric Nguyen, Raffaele Persico, Elena Pettinelli, Cristina Ponti, Fayçal Rejiba, Albane Saintenoy, Motoyuki Sato, Francesco Soldovieri, Mercedes Solla, Anh Phuong Tran, Jan van der Kruk, Marc van Meirvenne, Craig Warren, Xiong-Yao Xie, and Richard Yelf.

The conference has received generous sponsorship from 17 organizations, namely: Geoscanners, IDS, GSSI, Radar Systems, Geotech, Roadscanners, 3D-Radar, Allied Associates, Geomatrix Earth Science LTD, Utsi Electronics, Transient Technologies, Mala, Sensors & Softwares, Radarteam Sweden, Rohde&Schwarz, the European GPR Association, and the Université catholique de Louvain, as well has the technical support from the Université catholique de Louvain and FNRS, Delft University of Technology, the University of Edinburgh, Roma Tre University, the EU Cost Action TU1208 “Civil Engineering Applications of Ground Penetrating Radar”, and IEEE GRSS. We are grateful to all these supports to ensure a successful conference.

Sébastien Lambot, Antonis Giannopoulos, Lara Pajewski, Frédéric André, Evert Slob, and Christophe Craeye

Editors
Conference Exhibitors

GEOSCANNSERS
IDS
GSSI
RADAAR Systems, Inc.
GEOTECH
UTSI ELECTRONICS
allied Associates
ROADSCANNERS
3D-RADAR
Sensors & Software
TRANSIENT TECHNOLOGIES
MALA
EUROPEAN GPR ASSOCIATION
ROHDE & SCHWARZ
radar team

Financial sponsorships

COST
UCL
General Topics and Sessions

- Archaeology
- Environment and Agriculture
- Geological applications
- Geotechnical applications
- Ice and Permafrost
- Infrastructure and tunnels
- Radar data modelling and inversion
- Radar data processing and analysis
- Radar image processing
- Radar systems and antenna design
- Road inspection
- Rock Fractures
- Security applications
- Stratigraphy
- Space applications

Technical co-sponsorships
Table of Content

Archaeology

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lieven Verdonck, Ernie Haerink and Bruno Overlaet</td>
<td>2</td>
</tr>
<tr>
<td>GPR survey to explore social stratification in a pre-Islamic burial area at Mielsha, Sharjah (United Arab Emirates)</td>
<td>8</td>
</tr>
<tr>
<td>Diego Arosio, Stefano Munda and Luigi Zanzi</td>
<td>13</td>
</tr>
<tr>
<td>A case study where dual-polarization was essential for correct interpretation of GPR results</td>
<td>18</td>
</tr>
<tr>
<td>Pier Matteo Barone and C. Ferrara: You can’t make an omelette without breaking some eggs: in which way can non-destructive and destructive techniques coexist?</td>
<td>25</td>
</tr>
<tr>
<td>Loredana Matera, Marcello Cinimale, Raffaele Persico, Maria Teresa Giannotta, Valentino Desantis and Arcangelo Alessio</td>
<td>31</td>
</tr>
<tr>
<td>Application of a reconfigurable stepped frequency system to cultural heritage prospecting</td>
<td>36</td>
</tr>
<tr>
<td>M. Sato, H. Liu, T. Komagino and K. Takahashi</td>
<td>40</td>
</tr>
<tr>
<td>Archaeological survey by GPR for recovery from 3.11 Great Earthquake and Tsunami in East Japan</td>
<td>45</td>
</tr>
<tr>
<td>V. Pérez-Gracia, S. Santos-Assunção, O. Caselles, J. Clapés and J.A. Canas</td>
<td>50</td>
</tr>
<tr>
<td>Study of wood beams in buildings with ground penetrating radar</td>
<td>54</td>
</tr>
<tr>
<td>Timothy Saey, Philippe De Smelt and Marc Van Meervenne</td>
<td>59</td>
</tr>
<tr>
<td>Integrating GPR and EMI to three-dimensionally reconstruct a WWI training trench at Stonehenge</td>
<td>66</td>
</tr>
<tr>
<td>Luciana Orlando, G. De Donno, B. Renzi</td>
<td>71</td>
</tr>
<tr>
<td>Intensity of scattering for the lithotype characterization of an excavated pre-Trojan wall structure</td>
<td>75</td>
</tr>
<tr>
<td>Robert Evans, Richard Morrow and James Nash</td>
<td>83</td>
</tr>
<tr>
<td>The Use of Ground Penetrating Radar to Investigate a Churchyard Burial Plot</td>
<td>87</td>
</tr>
<tr>
<td>Selma Kadioglu, Yusuf Kagan KADIOGLU, Kyimet DENIZ and Ali Akin AKYOL</td>
<td>92</td>
</tr>
<tr>
<td>Ground Penetrating Radar and Micro Raman Spectroscopy in Kecisova Mosque Caishah-Algiers (Algeria)</td>
<td>97</td>
</tr>
<tr>
<td>Christine Bunting, Nick Branch, Steve Robinson and Penny Jones</td>
<td>103</td>
</tr>
<tr>
<td>Ground penetrating radar as a tool to improve heritage management of wet lands</td>
<td>108</td>
</tr>
<tr>
<td>Yossi Salomon, Lawrence Conyers, Harry Jol and Michal Arzy</td>
<td>113</td>
</tr>
<tr>
<td>Early Second Millennium Settlement Landscape in the Nami Region, Israel revealed by GPR investigations</td>
<td>117</td>
</tr>
<tr>
<td>Ana Valls Ayuno, Francisco Garcia Garcia, Manuel Ramirez Blanco and Jaime Linares Millán</td>
<td>124</td>
</tr>
<tr>
<td>Correlation between GPR data and historical documentation for assessing the pavement constructive phases of Los Silos of Burjassot, 16th century (Valencia, Spain)</td>
<td>129</td>
</tr>
<tr>
<td>Selma KADIOGLU, Yusuf Kagan KADIOGLU and Ali Akin AKYOL</td>
<td>135</td>
</tr>
<tr>
<td>Imaging the Hittite Cemetery Site with 3D Half Bird’s Eye View of GPR Data Set in Sapinova Ancient City of the Hittite Empire (Corum-Turkey)</td>
<td>140</td>
</tr>
<tr>
<td>Cesar Bonato, Pamela Elchiiri, B. Psiuk, E.D. Lopez and A. Dushkevychyky</td>
<td>144</td>
</tr>
<tr>
<td>Ground Penetrating Radar’s performance against different types of surfaces. Case Study of the ‘Casino of Officers’, City of Buenos Aires, Argentina</td>
<td>149</td>
</tr>
<tr>
<td>Raffaele Persico, Gianluca Gennarelli, Francesco Soldovieri</td>
<td>155</td>
</tr>
<tr>
<td>GPR prospecting on circular surfaces: preliminary results</td>
<td>160</td>
</tr>
<tr>
<td>A. Saintenoy, F. Rejiba, E. Léger, S. Borde, C. Maines</td>
<td>166</td>
</tr>
<tr>
<td>Ground Penetrating Radar prospectation at the charterhouse of Bourgfontaine</td>
<td>171</td>
</tr>
<tr>
<td>E. Çelik: Searching the clue of the 7000 years history with GPR traces</td>
<td>176</td>
</tr>
<tr>
<td>E. Çelik, T. Özdemir, A.A. Ak yol</td>
<td>181</td>
</tr>
<tr>
<td>Golyazi / Apollonia - Bithynia GPR, magnetic and archaeometric study</td>
<td>186</td>
</tr>
<tr>
<td>Sonia Santos-Assunção, Vega Pérez-Gracia, Ramón González, Oriol Caselles, Jaume Clapés, Víctor Salinas</td>
<td>191</td>
</tr>
<tr>
<td>Geophysical exploration of columns in historical heritage buildings</td>
<td>196</td>
</tr>
<tr>
<td>Aleksander Limisiewicz, Adam Szykiewicz, Magdalena Udryska</td>
<td>201</td>
</tr>
<tr>
<td>GPR survey in urban planning. Recognition of the former cemetery in area of the current park</td>
<td>206</td>
</tr>
<tr>
<td>Leucci G., de Giorgi L.</td>
<td>211</td>
</tr>
<tr>
<td>Cetotheridae, Mysticete Whale, fragment of mandibular rame detection using GPR method</td>
<td>216</td>
</tr>
<tr>
<td>G. Leucci</td>
<td>221</td>
</tr>
<tr>
<td>3D high resolution GPR applied for evaluating the hypogeum structure conservation state in urban area</td>
<td>226</td>
</tr>
<tr>
<td>Carolyn Woodley, Stewart Taylor, Sue Marshall and Sean Fagan</td>
<td>231</td>
</tr>
<tr>
<td>GPR, Aboriginal Cultural Heritage and Community Capacity Strengthening</td>
<td>236</td>
</tr>
</tbody>
</table>

Environment and Agriculture

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emmanuel Leger, Albane Saintenoy and Yves Coquet</td>
<td>244</td>
</tr>
<tr>
<td>Estimating saturated hydraulic conductivity from ground-based GPR monitoring Poirchett infiltration in sandy soil</td>
<td>250</td>
</tr>
<tr>
<td>D. Comite, A. Galli, C. Ferrara, S.E. Lauro, E. Mattei, G. Vannaroni and E. Pettinelli</td>
<td>255</td>
</tr>
<tr>
<td>Numerical and Experimental Surveys on the GPR Early-Time Signal Features for the Evaluation of Shallow-Soil Permeitvity</td>
<td>260</td>
</tr>
<tr>
<td>Shiiping Zhu, Chunlin Huang, Yi Su, and Min Lu</td>
<td>265</td>
</tr>
<tr>
<td>Tree Roots Detection based on Circular Survey using GPR</td>
<td>270</td>
</tr>
<tr>
<td>Xu Qiao, Feng Yang and Xianlei Xu</td>
<td>275</td>
</tr>
<tr>
<td>The Prediction Method of Soil Moisture Content Based on Multiple Regression and RBF Neural Network</td>
<td>280</td>
</tr>
<tr>
<td>J.-B. Got, P. André, L. Mertens, C. Bielders and S. Lambot</td>
<td>285</td>
</tr>
<tr>
<td>Soil piping: networks characterization using ground-penetrating radar</td>
<td>290</td>
</tr>
<tr>
<td>Jing Li, Zhaofa Zeng, Lingna Chen and Fengshan Liu</td>
<td>295</td>
</tr>
<tr>
<td>Estimation of mixed soil hydraulic and dielectric parameters by impedance inversion of GPR data</td>
<td>300</td>
</tr>
<tr>
<td>Lei Fu, Sixin Liu and Lanbo Liu</td>
<td>305</td>
</tr>
<tr>
<td>Internal Structure Characterization of Living Tree Trunk Cross Section Using GPR Numerical Examples and Field Data Analysis</td>
<td>310</td>
</tr>
<tr>
<td>S.A. Grant, S.A. Arcone, and G.E. Boitnott</td>
<td>315</td>
</tr>
<tr>
<td>Maxwell-Wagner-Sillars, Adsorbed Water, and Free-Water Dielectric Relaxations within a Hydrated Arid-Zone Calcic Soil</td>
<td>320</td>
</tr>
<tr>
<td>Rongyi Qian, Jian Li, Lanbo Liu, Zhao Zhao</td>
<td>325</td>
</tr>
<tr>
<td>Internal Structure of Sand Dunes in the Badain Jaran Desert Revealed by GPR and Its Implications to Inter-Dune Lake Hydrology</td>
<td>330</td>
</tr>
<tr>
<td>A layered vegetation model for GPR full wave inversion</td>
<td>340</td>
</tr>
<tr>
<td>Jens Tornicke, Göran Hamann</td>
<td>345</td>
</tr>
<tr>
<td>Deriving hydrological parameters from VRP data: accounting for uncertainties in inverted velocities and petrophysical models</td>
<td>350</td>
</tr>
</tbody>
</table>
Geological Applications

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anna Lejzerowicz, Krzysztof Czurylowicz, Sebastian Kowalczyk and Anna Wysocka</td>
<td>Ground Penetrating Radar and sedimentological investigations of quartz-glaucite sands in Lubartów area (south-east Poland)</td>
<td>239</td>
</tr>
<tr>
<td>Sean Morrison, Harry Jol and Walter Loope</td>
<td>Radar Analysis of the Grand Island Tombolo, MI, USA: A Case Study for Coastal Landscapes</td>
<td>245</td>
</tr>
<tr>
<td>Tanja Tillmann</td>
<td>Landscape development of Amrum's west coast (Southern North Sea): GPR and sedimentology</td>
<td>250</td>
</tr>
<tr>
<td>Tanja Tillmann</td>
<td>Why is barrier spit's accretion not a simple process? Insights from GPR-surveys of Northern Amrum (North Sea/German Bight)</td>
<td>262</td>
</tr>
<tr>
<td>Alwi Husein, Sungkono, Arif Wijaya and Sofian Hadi</td>
<td>Subsurface monitoring of P79 - P52 LUSI Embankment using GPR Method to Locate Subsidence and Possible Failure</td>
<td>268</td>
</tr>
<tr>
<td>Cerca Mariano, Carréon-Freyre Dora, Aranda-Gómez Jorge and Luis Rocha</td>
<td>GPR profiles for characterizing subsidence deformation in lake sediments within a maar crater</td>
<td>274</td>
</tr>
<tr>
<td>Sarah Kruse</td>
<td>Three-dimensional GPR Imaging of Complex Structures in Covered Karst Terrain</td>
<td>279</td>
</tr>
<tr>
<td>L.L. Fedorova, K.O. Sokolov, D.V. Savvin (presented by Kulyandin G.A.)</td>
<td>GPR modeling of placer deposits geological profiles of permafrost zone</td>
<td>297</td>
</tr>
<tr>
<td>L.L. Fedorova, K.O. Sokolov, D.V. Savvin (presented by Kulyandin G.A.)</td>
<td>Analysis of signal amplitude dispersion to detect structural permafrost heterogeneities by ground penetrating radar</td>
<td>301</td>
</tr>
</tbody>
</table>

Geotechnical Applications

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Zhang, J.C. Li, Z.H. Wu, R.F.Zhong and W.J. Zhao</td>
<td>Application of Ground Penetrating Radar to active faults along Yushu Strike-Slip Faults Zone, Qinghai, China</td>
<td>311</td>
</tr>
<tr>
<td>K.T.S. Karunannayake, P.B.R. Disananyake and L.W. Galagedara</td>
<td>Ground Penetrating Radar Wave Behavior under Different Corrosion Levels of Concrete</td>
<td>317</td>
</tr>
<tr>
<td>Zeynep Ogretmen and Ayol Seren</td>
<td>Investigating Fracture-Crack Systems with Geophysical Methods in Baybar Kiralı Traverse</td>
<td>324</td>
</tr>
<tr>
<td>Jianping Wang, Harun Cetinkaya and Alexander Yarovoy</td>
<td>On Polar Sampling of GPR for Tunneling Boring Machine</td>
<td>331</td>
</tr>
<tr>
<td>Chuanghuan Ma, Qing Zhao, Xinghao Chang, Limin Ran and Lambo Liu</td>
<td>Field test of Directional Borehole Radar in hydrocarbon production well</td>
<td>335</td>
</tr>
<tr>
<td>Cui Du, Feng Yang, Xinjun Xu, Xianlei Xu and Meng Peng</td>
<td>Coal mine geological hazardous body detection using surface ground penetrating radar velocity tomography</td>
<td>340</td>
</tr>
<tr>
<td>Mesbah U. Ahmed, Rafiqul A. Tarefder and Arup K. Maji</td>
<td>Variation of FWD Module Due to Incorporation of GPR Predicted Layer Thicknesses</td>
<td>346</td>
</tr>
</tbody>
</table>

Ice and Permafrost

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emanuella Forte, Matteo Dossi, Roberto Renato Colucci and Mauro Colle Fontana</td>
<td>4-D quantitative GPR analyses to study the summer mass balance of a glacier: a case history</td>
<td>353</td>
</tr>
<tr>
<td>Cosciotti B., F. Di Paolo, Lauro S.E., Vannaroni G., Bella F., Pettinelli E. and Mattei F.</td>
<td>Electromagnetic characterization of saline mixture for shallow radar exploration</td>
<td>358</td>
</tr>
<tr>
<td>Di Paolo F., Cosciotti B., Lauro S.E., Mattei E., Pettinelli E. and Vannaroni G.1</td>
<td>Thermal and electromagnetic models for radar sounding of the Galilean satellite icy crests</td>
<td>363</td>
</tr>
</tbody>
</table>

Infrastructures and Tunnels

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Csaba Ékes, Boriszlav Neduczak, and Peter Takacs</td>
<td>Pipe Penetrating Radar Inspection of Large Diameter Underground Pipes</td>
<td>369</td>
</tr>
</tbody>
</table>
15th International Conference on Ground Penetrating Radar - GPR 2014

J. Hugenschmidt, A. Fischer, L. Schiavi

Punching failure of car park ceilings – An analysis using GPR

Lech Kryszynski, Jacek Studyla

Efficiency of 3D imaging in GPR diagnostics of joints and vertical construction contacts

Investigation of Soil Contamination by Iron Pipe Corrosion and its Influence on GPR Detection

Isil Saricicek and Asyl Seren

Imaging of the deteriorations and concrete quality of the tunnels (Zigina, Torul) with ground penetrating radar

D. Tran, V. Parafarou, H. Ceinkaya, J. Wang, A. Yanovoy

Full-wave Analysis of GPR-signal in Tunnel Boring Machine Environment, A Temporal and Spectral GPR Study

M.R. Ardekanian, P. Druey, S. Lambert, A. De Coster, N. Neyt

Recovering the structure of a layered soil, including layer thickness and dielectric permittivity, using the interfaces and objects backscatter detected in GPR B-scans

Shikan Deng

Investigation of karst cavities under the railway basement by GPR: Application to artificially trenched sections of the Yichang-Wanzhou Railway

Xiongyao Xie, Rongjie Yan, Hui Qin, Hai Liu

Study on Radiogram Characteristic of the Backfill Grouting Quality Evaluation of a Shield Tunnel Using GPR

Xiongyao Xie, Hui Qin, Rongjie Yao

Highway Shield Tunnel Inspection using Integrated GPR Equipment

S. Fontul, E. Fortunato, F. De Chiara

Evaluation of ballast fouling using GPR

H. Liu, C.N. Koyama, K. Takahashi and M. Sato

High-resolution imaging of damaged wooden structures for building inspection by polarimetric radar

Csaba Ékes, Peter Takacs and Borislav Neduca

Condition Assessment of Critical Infrastructure with GPR

Kunwei Feng, Yonghui Zhao, Jiansheng Wu and Shuangcheng Ge

Cross-correlation Attribute Analysis of GPR data for Tunnel Engineering

P C Jha, V R Balasubramaniam, N Sandeep, B Butchi Babu and Y V Sivaram

Application of GPR in assessing the stability of oil pipeline

V. Kapustin, A. Khemlinskiy and V. Monahov (presented by Maxim Shirobokov)

Advanced GPR Software for Operational Railway Roadbed Studies

Aleksandar Ristic, Miro Govedarica, Milan Vrutusni, Dusan Petrovacki

Application of GPR for creating underground structure model of specific areas of interest

J. Hugenschmidt, F. Wenk and E. Brühlwiler

GPR chloride inspection of a RC bridge deck slab followed by an examination of the results

Amir M. Alani and Kevin Banks

Application of ground penetrating radar in the Medway Tunnel - Inspection of structural joints

Vincent Utsi

Detection of Fibre Optic cables using GPR

Chi-Chih Chen

Study of Electromagnetic Wave Excitation and Propagation in Underground Continuous Coal Mining Environments

Radar Data Modeling and Inversion

Emerson Almeida, Jorge Porsani, Ilaria Catapano, Gianluca Gennarelli and Francesco Soldovieri

GPR data analysis enhanced by microwave tomography for forensic archaeology

Laurence Mertens, Anh Phuong Tran and Sébastien Lambert

Determination of the stability of a pulse GPR system and quantification of the drift effect on soil material characterization by full-wave inversion

Francis Watson and WRB. Lionheart

SVD analysis of GPR full-waveform inversion

Albéric De Coster, A.P. Tran and S. Lambert

Impact of the antenna offset and the number of frequencies on layered media reconstruction using full-wave inversion in near-field conditions

Nicolas Mournaux, A. P. Tran and S. Lambert

Soil permittivity and conductivity characterization by full-wave inversion of near-field GPR data

Xin-xin Qu, Si-xin Liu, Fei Wang

A new ray tracing technique for crosshole radar traveltime tomography based on multistencils fast marching method and the steepest descend method

Victor Yavna, Alexey Hopersky, Alexey Nadolinsky and Zelimkhan Khakiev

Algorithm for solving the inverse problem of GPR

A. Benedetto, F. Tosti, L. Pajewski, F. D’Amico, W. Kusayanagi

FDTD Simulation of the GPR Signal for Effective Inspection of Pavement Damages

Anh Phuong Tran and Sébastien Lambert

Intrinsic modeling of antenna array in near-field conditions

Evert Slob, Jürg Hunziker, Jan Thorbecke and Kees Wapenaar

Creating virtual vertical radar profiles from surface reflection Ground Penetrating Radar data

N. Diamanti, A.P. Annan, J.D Redman

Impact of Gradational Electrical Properties on GPR Detection of Interfaces

J. Hunziker, J. Thorbecke and E. Slob

Modeling of GPR data in a stack of VTI-layers with an analytical code

Zhaofa Zeng, Jing Li, Qi Lu, Kun Wang Xuan Feng, Shugao Xia and Fengshan Liu

The Inversion GPR signal by Compressing Sensing and Its application

C. Bourlier, C. Le Bastard and N. Pinel

Full wave PILE method for the electromagnetic scattering from random rough layers

A. Klotzsche, J. van der Kruk, H. Vereecken and J. Bradford

Characterization of Low-Velocity Waveguides in Crosshole GPR Data using Amplitude Analysis and Full-Waveform Inversion

Lorenzo Crocco, Lorenzo Di Donato and Gino Sorbello

New Tomographic Imaging Strategies for GPR Surveys

Cristina Ponti, Lara Pajewski, Giuseppe Schettini

Simulation of scattering by cylindrical targets hidden behind a layer

Radar Data Processing and Analysis
15th International Conference on Ground Penetrating Radar - GPR 2014

Jiaping Xiao and Lanbo Liu
Signal Fusion Using Extrapolation with Deterministic Deconvolution on Multi-Frequency Qinghai-Tibet Railway GPR Data for Permafrost Subgrade Detection
568

Kulyandin G.A., Omyelenenko A.V. and Omyelenenko P.A.
Methods of GPR Angular Scanning
572

Xiaoting Xiao, Amine Ihamoumen, Gérardine Villain and Xavier Dérobert
Parametric study on processing GPR signals to get a dispersion curve
576

Lanbo Liu, Chenguang Ma, John W. Lane, Jr. and Peter Joesten
Borehole Radar Interferometry Revisited
582

Audrey Van der Wielen, L. Courard and F. Nguyen
Detection of near-field, low permittivity layers with Ground Penetrating Radar: analytical estimation of the reflection coefficient
587

Ralph Feld and Evert Slob
Sampling aspects of interferometry
593

Fei Wang, Sixin Liu, Xinxin Qu
Ray-based Crosshole Radar Traveltime Tomography using MSFM Method
599

Emil Teschman, Florence Sagnard, Vincent Baltazar and Jean-Philippe Tarel (presented by Xavier Dérobert)
Assessment of statistical-based clutter reduction techniques on ground-coupled GPR data for the detection of buried objects and cracks in soils
605

Radar Image Processing

Davide Comite, A. Galli, I. Catapano, F. Solodovieri and E. Pettinelli
An Improved Tomographic Approach for Accurate Target Reconstruction from GPR Numerical Data
612

Li Yi, Motoyuki Sato and Kazunori Takahashi
Optimization of Data Sampling and Image Reconstruction by GPR
616

Marco Salucci, Paolo Rocca, Giacomo Oliveri and Andrea Massa
An Innovative Frequency Hopping Multi-Zoom Inversion Strategy for GPR Subsurface Imaging
620

Niklas Allroggen, Loes van Schaik and Jens Ttronie
Time-lapse 3D GPR imaging of brilliant blue infiltration experiments
625

Linlin Lei, Sixin Liu, Lei Fu, Xu Meng and Junjun Wu
Examples of Pre-stack Reverse-time Migration Applied to Ground Penetrating Radar Synthetic Data
630

Xiaojii Song, Yi Su Yutao, Zhu Chunlin and Huang Min Lu
Improving Holographic Radar Imaging Resolution via Deconvolution
634

Haewon Jung and Kangwook Kim
DPS Implementation of Rapid Imaging of Data Obtained from UWB Radar for Use in a Pavement Inspection GPR System
638

Yue Ye, Xuan Feng, Cai Liu, Qi Li, Ning Hu, Quanxi Ren, Ensheihai Nilot, Zhixin You, Wenjing Liang, Yuantao Fang
Radar Polaritymetry Analysis Applied to Fully Polarimetric Ground Penetrating Radar
643

Centeno-Salés Féliz, Carrohne-Freyre Dora, Flores-Garcia Walter, Gutiérrez-Calderón Raúl
Multiresolution analysis based on Mallat pyramidal algorithm applied to GPR data
648

Chunhun Huang, Tao Liu, Min Lu, and Yi Su
Holographic Subsurface Imaging for Medical Detection
652

A. Popov, I. Prokopovich, V. Kopelikin, D. Edemskij
Spectral Theory of Microwave Holographic Image Formation
656

Lele Qu, Zhihe Liu, and Yangpeng Sun
Diffraction Tomographic Imaging Algorithm for Airborne Ground Penetrating Radar
660

Dmitry Sakhanov, Kseniia Zavyalova
Three-dimensional non-contact subsurface radiotomography through a non-planar interface between the media
664

Quanwei Dai, Bin Zhang, Xiaoao Yin
Rotated Staggered Grid Simulation and Migration Imaging for GPR
669

Feng Yang, Xue Qiao, Xianlii Xu
Prediction Method of Underground Pipeline Based on Hyperbolic Asymptote of GPR Image
675

Andrew Strange, John Malos and Jonathon Raslon
Time Dewarping to Reduce Nonlinear Sampling Effects of GPR
680

Qi Lu, Cai Liu and Xuan Feng
Signal Enhancement of GPR Data Based on Empirical Mode Decomposition
684

Wallace Wai-Lok Lai
Spectral shift and absorption of GPR signals in a wetted sand column
688

Raffaele Solimene, Angela Dell'Aversano and Giovanni Leone (presented by Raffaele Persico)
Rebar Detection: Comparing MUSIC and COMPRESSED Approaches
693

S.R. Pennock, O.M. Abdul-Latif, C.J.H. Jenks
Improved GPR Image Focusing with Repetitive Normalised Superimposition Techniques
697

Neil Linfoot
Rapid processing of GPR time slices for data visualisation during field acquisition
703

Radar Systems and Antenna Design

Bryan Reeves
Noise Modulated GPR: Second Generation Technology
709

A.P. Annan, N. Diamanti, J.D. Redman
GPR Emissions and Regulatory Limits
715

Xiaojii Liu, Shihua Li, Bu Zhao, Feng Zhang, Jun Li, and Guangyou Fang, Xiangbin Cui, Bo Su
A High-resolution Polar Ice Penetrating Radar and Experiments in the 28th Chinese National Antarctic Research Expedition
720

Xiongyao Xie, Hui Qin and Rongjie Yao
Signal Fusion Using Extrapolation with Deterministic Deconvolution on Multi-Frequency Qinghai-Tibet Railway GPR Data for Permafrost Subgrade Detection
724

G. Casassa, J.L. Rodriguez and N. Blindow
Airborne GPR on high Andean glaciers - first results from 6000 m altitude
729

Patrick Klenk, Viktoria Keicher, Stefan Jaumann and Kurt Roth
Current limits for high precision GPR measurements
735

Ajit K. K. and Amitabh Bhattacharya
Improved Ultra-wide Bandwidth Bow-tie Antenna with Metamaterial Lens for GPR Applications
740

Guido Manacorda, Mario Minati, Alessandro Simi, Rodolfo Guidi, Simone Lelli, Daniele Vuca, Devis Dei, Daniele Mecatti, Howard F. Scott, Martin Morey, Markus Hamers and Thomas Schauerte
A bore-head GPR for Horizontal Directional Drilling (HDD) equipment
746
Improvement of a coreless method to calculate the average dielectric value of the whole asphalt layer of a road pavement

Rani Hamrouche and Timo Saarenketo

Development of a Novel GPR for Roadbed Disease Inspection

Xianlei Xu, Suiping Peng, Yunhai Xia and Feng Yang

Design and Tests of a Borehole Radar for Oil Well Prospecting

Wenyong Liang and Xuan Feng (presented by E. Nilot)

Full-polarimetric GPR system for underground targets measurement

Enhedehiil Nilot, Xuan Feng, Cai Liu, Qi Lu, Wenjing Liang, Yue Yu, Qianci Ren, Song Cao, Zhixin You, Yuntao Fang and Yin Zho

Low frequency through wall radar-detector

Yunhai Xia, Feng Yang, Xu Qiao and Xianlei Xu

Ground penetrating radar system applied in the underground concealed object detection The new ground penetrating radar system applied in the road disease detection

Waheyu Hendra Gunawan, Yono Hadi Pramono

Ultra Wide-Band Antenna with Low Cost for Radar Application

V. Monahov, A. Dudnik, V. Ponomoz (presented by Mr Shirobokov)

Small-diameter directional borehole radar system with 3D sensing capability

Vanilki Paraforou, Dinh Tran, Diego Caratelli

A Novel Low-Profile SWB Unidirectional Supershaped Antenna for Advanced Ground Penetrating Radar Applications

A. Zhuravlev, S. Ivashov, V. Razuiev, I. Vaniliev, A. Bugaev

Automated Data Acquisition System for Holographic Subsurface Radar

M. Bionarchi-Astier, A. Saintenoy, V. Ciarletti

Development of an Agile beam Georadar prototype for the Investigation of planetary Environment (AGILE)

F. Benedetto, A. Benedetto, A. Tedeschi

A Mobile Android Application for Road and Pavement Inspection by GPR Data Processing

J.-M. Simonin, V. Balhazart , P. Hornych, X. Dérobert, E. Thibaut, J. Sala, V. Utsi

Case study of detection of artificial defects in an experimental pavement structure using 3D GPR systems

J. Hogenschmidt, Anja Herlyn

Damages in pavements caused by previous excavation work?

Zelimkhan Khakiev, Alexander Kruglikov, Victor Yavna, Georgy Lazorenko

Investigation of long term moisture changes in roadbeds using GPR

Rodriguez-Abad, I. Martinez-Sala, R. Mené, J. Klysz, G.

Water penetrability in hardened concrete by GPR

Fabio Tosti, Saba Adabi, Lara pajewski, Giuseppe Schertini, Andrea Benedetto

Large-scale analysis of dielectric and mechanical properties of pavement using GPR and LFWD

Ch. Trela, Th. Kind, M. Schubert, M. Günther

Detection of Weak Scatterers in Reinforced Concrete Structures

S.R. Pennock, C.H.J. Jenks

Road Surface and Pavement Condition Assessment by High Frequency GPR Diffraction

Wayne B. Muller

Self-correcting pavement layer depth estimates using 3D multi-offset Ground Penetrating Radar (GPR)

Caitlin Thea Johnson and Robert Evans

non-destructive assessment of the rate of hydration and strength gain in concrete

Rani Hamrouche and Timo Saarenketo

Improve ment of a coreless method to calculate the average dielectric value of the whole asphalt layer of a road pavement

Thomas Kind, Christiane Trela, Marcus Schubert and Jens Wöstemann

Aggregates Scattering of GPR Waves in Concrete

Francisco M. Fernandes and Jorge Pais

Assessment of moisture in road pavements

M. Solla, M. Varela-Gonzalez, J. Martinez-Sánchez and P. Arias

GPR for Road Inspection: Georeferencing and Efficient Approach to Data Processing and Visualization

Injun Song, Albert Larkin and Jeffrey Gagnon

Monitoring Hot Mix Asphalt Pavement Density Changes Using Ground Penetrating Radar at the FAA's National Airport Pavement Test Facility

Waheed Uddin

An overview of GPR applications for evaluation of pavement thickness and cracking

Satinex Liu, Xinghao Chang and Limin Ran

Analysis of Fractures Detectability by Borehole Radar

Xinjian Tang, Weizhong Ren, Tao Sun and Renjun Hou

Application of sparse representation of ground penetrating radar data in a study of extracting rock fracture signature

Rock Fractures

Analysis of Fractures Detectability by Borehole Radar

Xinjian Tang, Weizhong Ren, Tao Sun and Renjun Hou

Application of sparse representation of ground penetrating radar data in a study of extracting rock fracture signature
Security applications

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ding Ya-lei, Song Lei, Yang Wei-hao and Li Hai-peng (presented by Xie Xiongyao)</td>
<td>Permittivity and EM wave filed of the stochastic broken rock and its applications</td>
<td>942</td>
</tr>
<tr>
<td>Maurizio Ercoli, Cristina Pauselli, Emanuele Forte, Roberto Volpe, Costanzo Federico</td>
<td>"2D-3D GPR as an efficient tool for palaeontology: a successful case history across the Castrovillari fault (southern Apennines, Italy)"</td>
<td>948</td>
</tr>
<tr>
<td>Maurizio Ercoli, Cristina Pauselli, Emanuele Forte, Roberto Volpe, Costanzo Federico</td>
<td>"2D-3D GPR as an efficient tool for palaeontology: a successful case history across the Castrovillari fault (southern Apennines, Italy)"</td>
<td>948</td>
</tr>
<tr>
<td>Ilaria Catapano, Francesco Soldovieri and Maria A. González-Huici</td>
<td>Microwave tomography enhanced Forward Looking GPR: a feasibility analysis</td>
<td>965</td>
</tr>
<tr>
<td>Luigi Nuzzo, Giovanni Alli, Rodolfo Guidi, Nicola Cortesi, Antonio Sarri and Guido Manacorda</td>
<td>A new densely-sampled Ground Penetrating Radar array for landmine detection</td>
<td>970</td>
</tr>
<tr>
<td>Larry G. Stolarczyk, Igor Y. Bausov, Joseph T. Duncan and Steve K. Koppenjan</td>
<td>Occupational Black Lung Disease and Methane Ignition Suppression by Seam Boundary Detection Technology</td>
<td>976</td>
</tr>
<tr>
<td>Jeremy Pile, Adam Switzer, Hong Tat Lee and Sheena Harpal Kaur</td>
<td>Examination of ice filled fish crates using High-Frequency Ground Penetrating Radar (HFGPR) – contraband detection.</td>
<td>984</td>
</tr>
<tr>
<td>Fawzy Abujarad</td>
<td>Independent factor analysis for clutter reduction in GPR data for landmine detection</td>
<td>990</td>
</tr>
<tr>
<td>V. Monahov, N. Semykin, V.Ponomozov (presented by Mr Shirobokov)</td>
<td>Integrated Multi-Channel Unit for Humanitarian Mine-Cleaning Operations</td>
<td>994</td>
</tr>
</tbody>
</table>

Stratigraphy

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Franche, Jan and Tatum, Dominic</td>
<td>Regional Variability of Ground Penetrating Radar Response – a Case Study from the Dune Fields of the United Arab Emirates (UAE)</td>
<td>999</td>
</tr>
<tr>
<td>M. Van Meirvenne, E. Van De Vijver, L. Vandenhaute & P. Seatunjes</td>
<td>Investigating soil pollution with the aid of EMI and GPR measurements</td>
<td>1007</td>
</tr>
<tr>
<td>Sebastian Kowalczyk, Dominik Lukusiaik and Komotja Zukowska</td>
<td>Ground penetrating radar survey in the central and eastern part of the Calowanie Fen, Central Poland</td>
<td>1012</td>
</tr>
<tr>
<td>C. Gouramanis, A.D. Switzer, C. Bristow, K. Jankaew, D.T. Pham, C. Rubin, Y.S. Lee</td>
<td>Thin-bed Ground-Penetrating Radar analysis of preserved modern and palaeotsunami deposits from Phra Thong Island, Thailand</td>
<td>1018</td>
</tr>
</tbody>
</table>

Space applications

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.V. Kopekin, V.D. Kuznetsov, P.A. Morozov, A.V. Popov, A.I. Berkut and S.V. Merkulov</td>
<td>GPR Inspection of the Chelyabinsk Meteorite Impact Site at the Chebarkul Lake Bottom</td>
<td>1025</td>
</tr>
<tr>
<td>Sergey Ivashev, Vladimir Razevig, Igor Vuiliev, Vladislav Shitikov, Timothy Bechtel and Lorenzo Capineri</td>
<td>Diagnostics of Thermal Insulation and Heat Protection Coating of Space Ships and Rockets by Holographic Subsurface Radar</td>
<td>1014</td>
</tr>
<tr>
<td>Yan Su, Chunhui Li, Guangyou Fang, Jianqiang Feng, Shuqiao Xing, Shun Dai, Yuan Xiao, Lei Zheng, Bin Zhou, Yicai Ji and Yunze Gao</td>
<td>The preliminary results of lunar penetrating radar on board the Chinese Chang’e-3 rover</td>
<td>1018</td>
</tr>
<tr>
<td>Takao Kobayashi, Seung Ryoeol Lee, Atsushi Kumamoto, Takayuki Ono</td>
<td>GPR Observation of the Moon from Orbit: Kaguya Lunar Radar Sounder</td>
<td>1023</td>
</tr>
<tr>
<td>Shun Dai, Yan Su, Yuan Xian, Jian Qing Feng, Shu Guo Xing</td>
<td>Lunar Regolith Structure Model and Echo Simulation for Lunar Penetrating Radar</td>
<td>1028</td>
</tr>
<tr>
<td>E. Mattei, S.E. Lauro, L. Colantuono, A. Baliva, L. Marinangeli, B. Cosciotti, S. Di Paolo, G. Vannaroni, E. Pettinelli</td>
<td>Electromagnetic parameters measurements of clay soils for Mars radar sounding</td>
<td>1032</td>
</tr>
<tr>
<td>Qiang Hou, He Ping Pan,Qiming Zeng, Jian Jiao</td>
<td>Atmospheric Effects on Ground-Based SAR Interferometric Measurements and Their Mitigation</td>
<td>1036</td>
</tr>
</tbody>
</table>