
The Ultimate Share-Everything PDES System
Mauro Ianni

Sapienza, University of Rome

Lockless S.r.l.

mianni@diag.uniroma1.it

ianni@lockless.it

Romolo Marotta

Sapienza, University of Rome

Lockless S.r.l.

marotta@diag.uniroma1.it

marotta@lockless.it

Davide Cingolani

Sapienza, University of Rome

Lockless S.r.l.

cingolani@diag.uniroma1.it

cingolani@lockless.it

Alessandro Pellegrini

Sapienza, University of Rome

Lockless S.r.l.

pellegrini@diag.uniroma1.it

pellegrini@lockless.it

Francesco Quaglia

University of Rome “Tor Vergata”

Lockless S.r.l.

francesco.quaglia@uniroma2.it

quaglia@lockless.it

ABSTRACT
The share-everything PDES (Parallel Discrete Event Simulation)

paradigm is based on fully sharing the possibility to process any

individual event across concurrent threads, rather than binding

Logical Processes (LPs) and their events to threads. It allows concen-

trating, at any time, the computing power—the CPU-cores on board

of a shared-memory machine—towards the unprocessed events

that stand closest to the current commit horizon of the simulation

run. This fruitfully biases the delivery of the computing power

towards the hot portion of the model execution trajectory. In this

article we present an innovative share-everything PDES system

that provides (1) fully non-blocking coordination of the threads

when accessing shared data structures and (2) fully speculative

processing capabilities—Time Warp style processing—of the events.

As we show via an experimental study, our proposal can cope with

hard workloads where both classical Time Warp systems—based on

LPs to threads binding—and previous share-everything proposals—

not able to exploit fully speculative processing of the events—tend

to fail in delivering adequate performance.

KEYWORDS
Discrete Event Simulation; PDES; Pending Event Set; Lock-free

Synchronization; Speculative Simulation; Shared Memory; Share

Everything

ACM Reference Format:
Mauro Ianni, Romolo Marotta, Davide Cingolani, Alessandro Pellegrini,

and Francesco Quaglia. 2018. The Ultimate Share-Everything PDES System.

In SIGSIM-PADS ’18: SIGSIM Principles of Advanced Discrete Simulation CD-
ROM, May 23–25, 2018, Rome, Italy. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3200921.3200931

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGSIM-PADS ’18 , May 23–25, 2018, Rome, Italy
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5092-1/18/05. . . $15.00

https://doi.org/10.1145/3200921.3200931

1 INTRODUCTION
Parallel Discrete Event Simulation (PDES) [7] is a powerful method-

ology, which provides the support for simulating huge/large and

complex discrete-event systems. PDES has been conceived in order

to enable the exploitation of (massively) parallel computing sys-

tems. This is achieved by partitioning the simulation model into

simulation objects (also known as Logical Processes - LPs) which

are enabled to process simulation events concurrently.

Along its life, this methodology has been integrated with tech-

niques and solutions aimed at continuously improving its capa-

bility to fruitfully exploit computing resources, with the ultimate

objective of improving performance and scalability. However, until

recently, the most of the literature techniques were based on recog-

nizing an individual simulation object as the work unit within the

optimization process. Consequently, optimizations of PDES have

been essentially based on optimizing the run time dynamics of

PDES systems under the common way of thinking that simulation

events are not fully representative as individuals in the optimiza-

tion process. Rather, aggregates of events have been seen as the

weight to be assigned to a simulation object in order to determine

how to manage it in the simulation run. As an example, an object

targeted by sets of CPU-demanding events is typically considered

as a heavy-weight object, a factor that has been considered as rele-

vant to bind that object to a specific thread—or CPU-core—in order

to enable balanced advancement of the logical time across all the

objects (see, e.g., [3]).

In more recent times, the advent of multi-core shared-memory

machines has generated a new way of devising optimizations of

PDES. This is based on the idea that all threads—so all CPU-cores—

running the PDES platform can fully share finer grain work units,

namely individual events possibly bound to different simulation

objects. This is the share-everything PDES paradigm conceived in

[15]. It has the intrinsic advantage of enabling the delivery of the

overall used computing power to the events that are—at any time—

the closest ones to the current commit horizon of the simulation. In

fact, this paradigm imposes no limitation onwhat simulation objects

can be dispatched for execution by a thread along the simulation

execution timeline—a limitation that is instead typical of common

PDES systems based on partitioning the objects across worker

threads. Such a new approach is simple in principle, in fact it is

based on the concept of a fully-shared event pool containing the

https://doi.org/10.1145/3200921.3200931
https://doi.org/10.1145/3200921.3200931

events destined to whichever simulation object, from which all the

threads extract the higher priority events (those with timestamps

closer to the current commit horizon) for processing, and into which

the same threads put newly generated events.

On the other hand, fully sharing the workload of events across

all threads poses hard problems in terms of managing the comput-

ing power in a truly scalable and effective way. In fact, a share-

everything PDES engine capable of exploiting such computing

power should guarantee that:

A) threads do not block each other while accessing shared data

structures, namely the event pool and also the actual states

of the simulation objects—otherwise thread synchronization

would become a bottleneck;

B) threads do not wait for each other because of potential causal-

ity constraints between the simulation events (so the objects)

they are currently running—otherwise virtual-time synchro-

nization would become a major factor preventing hardware

parallelism exploitation.

Overall, an ideal share-everything PDES platform should guar-

antee scalability along the following two dimensions in a com-

bined manner: 1) wall-clock-time coordination across threads and

2) virtual-time coordination across simulation objects, ultimately

managed by threads. While point 1) has recently been tackled by

a few works [12, 16]—they provided non-blocking algorithms for

managing the fully shared event pool and share-everything-suited

event-dispatching rules that avoid collisions across threads in the

access to the state of the simulation objects—a holistic design cop-

ing with both the above points in a combined manner is still lacking.

Such a design is the objective of this article, where we present a

share-everything PDES system that entails speculative execution

capabilities of the simulation objects—guaranteeing scalability of

virtual-time coordination—and fully non-blocking wall-clock-time

coordination across threads.

Technically, our work provides solutions for a set of problems in-

trinsically related to the construction of speculative share-everything

PDES systems, which were not tackled by the literature. They are:

• the definition of non-blocking algorithms for managing a

fully-shared pending-event set that contains both schedule-

committed events (those produced by the execution of other

events that have been detected to be safe and causally con-

sistent) and non-committed ones (those that are the result of

speculative, not yet committed, processing actions), which

might need to be (logically) canceled;

• the definition of non-blocking algorithms for dispatching

the events to be processed across threads in such a way that

threads never collide on a same simulation object and causal

consistency is detected on-the-fly—also exploiting lookahead

information—leading to the possibility to optimize the way

events are actually processed (in terms of configuration of

event-undo support). Consequently, our PDES system pro-

vides solutions for combining on a fine-grain basis (event by

event), conservative and speculative processing techniques.

As a matter of fact, our share-everything PDES system can cope

with hard-workload scenarios where there are (sudden) skews in

the distribution of the events across simulation objects along vir-

tual time. These skews possibly create relatively short bursts of

events to be processed at a subset of the objects, while other objects

have no (or few) events to be processed along that same virtual

time window. In these scenarios traditional PDES-oriented load

balancing approaches, based on medium-term binding between

objects and threads, have scarce capability to react to the sudden

unbalance that may materialize, which can lead to an increase of

the likelihood of wasted computation in case of speculative pro-

cessing. The share-everything paradigm that we adopt considers

events as fully-shared workload units, thus being able to concen-

trate the computing power, say threads, on any burst of events that

materializes among subsets of objects—any thread can in fact take

care of processing whatever event in these bursts, thus contributing

to promptly advance the currently hot portions of the simulation

model. Furthermore, the speculative processing capabilities we in-

clude in our PDES system enable threads to process these bursts

with no blocking phase along virtual time, as instead it occurs in

previous share-everything proposals like [12].

On the downside, the price our share-everything PDES system

pays stands in the impossibility to exploit large or extreme scale

clusters of distributed memory resources, which can instead be

exploited by traditional non-shared memory bound PDES engines

[2]. However, the perspective of our design is strengthened by the

always rising trend towards larger numbers CPU-cores on a same

shared-memory chipset, motivated by the already reached power

wall affecting the growth of the computing speed of individual

CPU-cores. On the other hand, future PDES architectures could

be envisaged where on each individual shared-memory machine

an instance of our share-everything PDES platform could be run,

and the instances could, in their turn, be clustered via additional

coordination mechanisms on a distributed memory platform.

Our share-everything PDES system has been released as open

source
1
and we also report experimental data for an assessment

of our proposal in comparison with traditional PDES and previous

share-everything solutions not entailing speculative capabilities.

The remainder of this article is structured as follows. In Section

2 related work is discussed. Section 3 presents the design of our

ultimate share-everything PDES system. Experimental results are

reported in Section 4.

2 RELATEDWORK
Our proposal is along the path of building PDES systems that are op-

timized for execution on shared-memory machines. This topic has

been addressed in the literature by several works and in compliance

with various objectives. In [22, 24–26] the authors provide solu-

tions for reorganizing traditional-style PDES systems, making them

more suited for shared-memory platforms. Few solutions optimize

the architecture of the communication facilities across the threads.

Other solutions take advantage of the possibility for any thread to

promptly access the state of any simulation object and of its event

queue when a re-bind between objects and threads is needed—for

load balancing—depending on the objects’ current weight in the

computation. In some case, interference from external workload is

also considered in the re-bind. Our solution is completely different

from these proposals since it is not based on traditional partitioning

1
Source code available at https://github.com/HPDCS/USE
Artifact available at https://doi.org/10.5281/zenodo.1196287

of the workload (say the objects) across the threads, and on peri-

odic re-evaluation of partitions. Rather, we consider any individual

event as a work unit that can be dispatched along any thread in the

PDES system.

The works in [5, 17, 18] exploit shared memory for enriching the

PDES programming model in order to provide support for sharing

information across simulation objects. This objective is achieved

by means of transactional memory, software instrumentation or

operating system facilities. However, these proposals are still bound

to the traditional PDES paradigm. In fact, they have been integrated

into environments that still rely on object (namely workload) parti-

tioning across threads, rather than fine-grain sharing of individual

work units—single events—like in our approach.

Clearly, the solution we provide also stands along the path of

building environments where threads coordinate in the access

to the fully-shared event pool—or more generally to shared data

structures—in a highly scalable manner. The topic of providing

event-pool data structures enabling concurrent accesses has been

addressed in [1], which proposes an approach based on fine-grain

locking of a sub-portion of the data structure upon performing an

operation. However, the intrinsic scalability limitations of locking

still lead this proposal to be not suited for large levels of parallelism,

as also shown in [19]. Rather, in our ultimate share-everything

PDES system we base concurrent accesses to shared data structures

on non-blocking algorithms, which have been shown to be much

more prone to scalability.

As for non-blocking management of sets by concurrent threads,

various proposals exist, such as lock-free linked lists [10], skip-

lists [20] and Calendar Queues [15, 16]. A few of these proposals,

like [15, 16], have been exploited as building blocks in the share-

everything PDES paradigm. However, the outcoming solutions do

not fit scenarios where two or more threads pick from the shared-

event pool events destined to a same simulation object. In these

scenarios, threads still block each other because of a critical section

implementing the processing stage of the events at the destination

object, which limits scalability especially with workloads entailing

event bursts at subsets of objects. This problem has been tackled

in [12], where non-blocking event-pool management is combined

with CPU-dispatching rules that avoid collisions of multiple threads

on the state of a same simulation object. However, differently from

our proposal, none of these solutions guarantees non-blocking

coordination in virtual time. In fact, they are all based on a kind of

wait-until-validated paradigm, which does not allowmultiple events

to be processed speculatively on a same object as in Time-Warp style

[13]—in fact, just one event can be processed speculatively at each

object, and is then committed (namely validated) or rolled back

depending on blocking virtual-time synchronization conditions,

before any other event at that same object can be CPU-dispatched.

In our solution, we enable Time-Warp style speculation, while still

keeping all the advantages from non-blocking thread coordination

in the access to shared data structures along wall-clock time.

Non-blocking operations on event pools have also been studied

in [9], which presents a variation of the Ladder Queue where the

elements are at any time bound to the correct bucket, which is an

unordered list. The extraction from an unordered bucket returns the

first available element, which does not necessarily correspond to

the one with the minimum timestamp. This proposal is intrinsically

tailored for PDES systems relying on speculative processing, where

unordered extractions leading to causal inconsistencies within the

simulation model trajectory are reversed (in terms of their effects

on the simulation model trajectory) via rollback mechanisms. In

our proposal we guarantee the ordering of the events in the shared

pool, which allows us to put in place the smart combination of

conservative (say safe) and speculative processing at the level of

each individual event—also thanks to the explicit exploitation of the

lookahead in the simulation model—thus enabling the optimization

of the rollback support, an aspect that is not considered in [9]. Also,

in this work the non-blocking data structure is essentially used as a

CPU-dispatching support allowing threads to pick the next event of

some object concurrently with other threads. However, differently

from our present proposal, binding mechanisms between sets of

objects and sets of threads are still considered, thus making the

approach not fully compliant with the share-everything paradigm.

The recent proposal in [11] explores the idea of managing concur-

rent accesses to a shared pool by relying on Hardware Transactional

Memory (HTM) support. Insertions and extractions are performed

as HTM-based transactions, hence in non-blocking mode. How-

ever, the level of scalability of this approach is limited by the level

of parallelism in the underlying HTM-equipped machine, which

nowadays is relatively small. Also, HTM-based transactions can

abort for several reasons, not necessarily related to conflicting con-

current accesses to a same portion of the data structure. As an

example, they can abort because of conflicting accesses to the same

cache line by multiple CPU-cores, which might be adverse to PDES

models with, e.g., very large event pools. Our proposal does not

require special hardware support, thus fully eliminating the sec-

ondary effects caused by, e.g., HTM limitations on the abort rate of

the operations.

3 THE PDES SYSTEM
As in classical PDES, our system supports models that are par-

titioned in simulation objects whose execution is carried out by

Logical Processes (LPs). LPs are sequential entities and a specific LP

is CPU-dispatched when a Worker Thread (WT), triggers the exe-

cution of the handler of an event destined to it. A share-everything

arrangement of the PDES platform leads to a scenario where: (i) an

LP can be CPU-dispatched by whichever WT at any point of the

simulation execution; (ii) all the events are maintained by a unique

pool fully shared across all the WTs.

In our design, the system has two main data structures:

(A) a set of LP Control Blocks (LPCBs), which are used to keep

metadata representing the system-level view of the advance-

ment of the LP in simulation time—this is a concept disjoint

from the actual application level state of the simulation ob-

ject encapsulated by the LP;

(B) a set of events—either already processed, or to be processed,

or logically canceled—maintained into the aforementioned

fully-shared unique pool which we refer to as Scheduling
Queue (SQ).

At first approximation, the main execution loop carried out by

all the WTs consists in: i) fetching some event to be processed

from the SQ; ii) performing a rollback of the target LP, if required;

iii) executing the event; iv) updating the LPCB; v) inserting newly

generated events into the SQ.

As for point i), the fetch operation is contextual to the try-lock of

the target LP. Hence, noWTwill ever fetch an event bound to an LP

that is currently locked by some otherWT. Overall, no mutual block

among WTs will ever occur in the attempt to access the same LP,

since the WT that will experience a failure of its try-lock operation

will simply go ahead scanning the event pool in order to take an

event destined to some other LP. This also guarantees isolation of

WTs’ accesses to a given LPCB and to the corresponding simulation

object state, in both forward and rollback mode.

Concerning the other operations accessing the SQ within the

main loop, as we will discuss, they are all carried out in a non-

blocking fashion—including secondary updates on individual nodes’

data in order to correctly represent their state (e.g. logically can-

celled because of a rollback) within the speculative processing

scheme, as discussed in the following.

3.1 Architectural Details
3.1.1 LP Control Blocks. Each LPCB is formed by a set of vari-

ables which hold metadata needed by the simulation engine to

detect any relevant runtime condition related to the LP, including

its involvement in causality errors. Noteworthy, among others, the

LPCB keeps a pointer named bound to the last processed event,

whose timestamp represents therefore the Local Virtual Time (LVT)

of the simulation object associated with the LP. The actual buffer

keeping the event pointed by bound still stands in the SQ, so that

event processing leads to no actual removal from that queue. Un-

linkage from this queue will occur when we detect that the event is

either definitively causally consistent—it is a committed event—or

it should not appear along the execution—it is an event generated

by a rolled back one. Discriminating whether the event has been

processed, or it is in a different state with respect to the state of the

target LP and of all the other LPs, will take place via a proper state

machine coded into the event-buffer metadata. The state diagram

for this state machine will be discussed shortly.

The LPCB also maintains a non-negative integer named epoch
which keeps track of the total number of rollback operations the LP

has experienced. This information essentially tells in what incar-

nation the LP is currently executing along its forward path, given

that a rollback leads to a new incarnation—a new LP life after the

causality error.

Moreover, each LPCB keeps metadata to retrieve what we call the

local_queue of the simulation object, which is used to maintain

the history of processed events at that LP. Those that are rolled

back are not included in this queue. Also, local_queue is built in
our system as a view of event-buffers associated with the LP which

are anyhow kept within the SQ. In other words, local_queue is

built by relying on cross event-buffers’ linkage standing aside of

their linkage into the SQ. The reason for having such a view, rather

than only relying on the global view of events in the SQ, stands

in the management of both state reconstruction—which in our

system is based on checkpointing and coasting forward—and CPU-

dispatching of the next-to-be-processed event of the LP. Finally, the

LPCB keeps the lock actually used to support try-lock operations

when WTs try to take on the job of working on the LP.

3.1.2 Events Representation. In our PDES system, an event is a

simple memory buffer—the event-buffer—exchanged between two

LPs, or sent from some LP to itself. The actual exchange takes place

through insertion and extraction operations to/from the SQ. Each

event originates on one LP, called sender, and targets another LP,

called receiver, which could be the same event’s source LP.

Each event-buffer is made up by (a) metadata—used by the PDES

system for treating the event—and by (b) the actual payload con-

voying the information to be delivered to the event-handler for

application level processing. In this section we focus our attention

on metadata, given that our system is application agnostic, and can

support generic simulation models.

An event-buffer associated with the event e keeps the following
metadata:

• the id of the LP which generates and sends the event, and the

id of the LP which must receive and execute it, respectively

hold by sender and receiver fields;
• the timestamp ts at which the event must occur along sim-

ulation time;

• a field epoch, which maintains the epoch of the receiver LP

at the time when it processed the event;

• a pointer parent to the event p, whose execution has gener-

ated e;
• a field parentEpoch, which represents sender LP’s epoch

when p has been processed, namely the incarnation number

of the sender LP at the generation time of e;
• a variable state used to represent the current state of the

event within a finite-state machine, which drives the event

management logic at the level of the PDES system.

Since our system entails speculative execution capabilities, pos-

sible violations of timestamp order might occur, and rollback op-

erations are required in order to restore the correct execution tra-

jectory of an LP (a timeline), as well as to undo the production of

new events along the incorrect trajectory. In general, an event ex-

periences several life stages. We define as committed the simulation

trajectory of an LP that is observable at the end of a concurrent

execution entailing no timestamp order violation. Every event that

is visible within that simulation trajectory, is defined as committed
or safe. On the contrary, events could be retracted, meaning that

they cannot longer exist in any time-line.

In our system an event being processed flushes newly produced

events to the SQ before the execution phase is over. Therefore,

the unprocessed (or being-processed) event with the minimum

timestamp is a safe event that corresponds to the commit horizon,

namely the Global Virtual Time (GVT) of the speculative run.

Given that, thanks to the try-lock mechanism, two events des-

tined to the same LP cannot be concurrently processed by WTs,

we can exploit the lookahead (LA) of the simulation model to com-

pute safety of whatever event to be processed (or being processed)

according to the following expression:

is_sa f e(e) = (e .ts ∈ [GVT ,GVT + LA) ∧

� e ′ : e .lp = e ′.lp ∧ e ′.ts < e .ts) (1)

If an event e is not safe—meaning that Equation 1 does not currently

hold for it—and gets speculatively processed, its execution might

be undone because of the arrival of a straggler destined to the same

LP. However, in such a scenario, the event e could be still valid,
meaning that it is requested to appear as executed along some

timeline of the destination LP. On the other hand, if the event was

generated by some other event that is undone, the former becomes

invalid. In fact, it should no way appear in the correct timeline of the

destination LP—in classical Time Warp these are events canceled

by their corresponding anti-events.

Such as for the safety, our system detects if a particular event e
has become invalid at a given point in wall-clock time by exploiting

event-buffer metadata. In particular, an event e is currently valid

if and only if (i) its parent p is currently valid as well and (ii) the

execution of p that generated e has not been undone. Exploiting

event metadata, the definition of validity can be formalized by the

following recursive function:

is_valid(e) =


true, if e .type = INIT

(e .parentEpoch = e .parent.epoch)∧

is_valid(e .parent)], otherwise

(2)

The above formalization is based on having the validity of an

event always depending on the validity of its parent. The unique

exception is the INIT event —used to just setup the simulation

initial state, including the states of the LPs— which is safe (hence

valid) by construction.

To check whether an event e has been re-executed or not, we

harness the parentEpoch information kept by the event-buffer,

which is compared to the epoch of its parent p. As said before,

e .parentEpoch and p.epoch have been set with the epoch of the

sender LP at the time the event p has been executed. Since the

LPs’ epochs are updated after a rollback takes place, if an event

is re-processed, its epoch number will be updated with the new

LP’s epoch. As soon p.epoch is not equal to—more precisely greater

than—e .epoch, it means that the parent is living within a new and

different timeline, to which the child event e does no longer belong.
Consequently, if e .parentEpoch = p.epoch we can infer that the

event p has not been re-executed, and therefore still stands on the

original timeline that generated e .
In our share-everything PDES system we do not immediately

unlink events from the SQ when they become invalid. This is be-

cause we manage the queue via non-blocking algorithms. As a

consequence, a node in the queue—namely, an event-buffer—might

be required to still stand into the queue to facilitate the execution

of non-blocking queue traversals by WTs. In fact, they can use

that node as a link between others, even though the corresponding

event appears to be as no longer relevant for the execution of any

LPs’ timeline. Also, temporarily keeping invalid event-buffers into

the SQ is a way to asynchronously notify the other WTs currently

traversing the SQ that something has changed along the timeline

of some LP—since invalid event-buffers expose updated metadata—

which may in its turn drive the actions by these same WTs. In other

words, each single node in the SQ is associated with a state ma-

chine that helps supporting a fine grain coordination across WTs,

implemented according to the non-blocking paradigm.

Figure 1 shows the actual state machine within which each event-

buffer lives. How state transitions occur based in the pseudo-code

executed by WTs will be discussed in Section 3.2, while in this

section, we illustrate the “meaning” of each state. A newly produced

CLN

ASDF

FTCH EXE

ANTI

COM

ANN

UNLINKED

Figure 1: State diagram for the event’s life-cycle.

event, just inserted into the SQ, is born with a clean state (CLN)
representing that no operation has been performed yet on the event-

buffer—except its insertion, clearly with the correct metadata such

as the epoch of the sender LP. Note however that, starting from the

wall-clock-time instant the event appears to be incorporated into

the queue, anyWT can be already traversing it, possibly updating its

state. When aWT finds an event-buffer e marked with the CLN state
in the SQ, it logically extracts (fetches) e , by marking it as FTCH—we
recall that for this to occur, theWTmust have observed the presence

of the event-buffer, and must have successfully executed the try-

lock on the target LP. In fact, two different WTs cannot take on the

job of concurrently processing a same event destined to a given LP,

which would require special features in the programming model

(and in its runtime) that are aside of the work we are presenting.

Marking an event-buffer as FTCH leads to notify that the event is

currently in charge to some WT.

It is possible that, when the WT successfully try-locks the LP

associated with an event-buffer in the CLN state, this event has

already become invalid, since the execution of its parent might have

been undone or invalidated. When a WT observes this condition

while traversing the SQ, it makes the event transit to the logical ANTI
state, whose name evokes the anti-event concept—meaning that it

simply does no longer belong to the simulation trajectory, along

any timeline. All the state transitions are implemented atomically in

our software, given that they can be carried out by concurrent WTs.

For potentially conflicting (mutually excluding) transitions—such

as CLN→ FTCH and CLN→ ANTI—we rely on the Compare-and-Swap

(CAS) machine instruction. For non-conflicting ones, we simply use

atomic memory writes—such as test-and-set—abstracted by the SET
statement in the pseudo-code. Therefore, the transition to ANTI
excludes the possibility for a WT to successfully transit the node

to FTCH. It is clear that an event still complying with the validity

rules expressed by Equation 2, might really be no longer valid. It is

only a matter of time for the WTs to detect that such information

related to validity is reflected into the state of the parent event.

On the other hand, speculative processing is already known to

accept the risk of processing something that seems to be consistent,

in terms of timestamp ordering, but which is actually no longer

consistent given that something is happening concurrently along

model execution.

An event successfully marked as FTCH is returned to the main

loop of theWT,where it will be processed, as we shall describe. Here,

the event transits to the “execution” state, say EXC, meaning that

the event-handler actually took it for performing the corresponding

LP state manipulations.

Overall, the ANTI state, still reachable from the EXC state, is used
to discriminate that the PDES system knows that the event does no

longer belong to any valid LP timeline, either if it has been already

fetched and executed by some thread—thus it passed through EXC—
or if it is found to be invalid prior being fetched. The ANTI state is

reached via a transition from EXC when a rollback occurs related to

the passage of the event to the invalid state. Therefore, it will not

need to be re-processed after the rollback. The PDES system can

detect that a rollback needs to be executed when aWT traverses the

SQ comparing the metadata of the LP and those kept by the event-

buffer (such as the current LVT of the LP and the event timestamp,

or its parent’s state). These checks are anyhow executed without

the need for locking the target LP. If the event marked as ANTI is
found to stand in the future—or on a new timeline after a rollback

of the target LP—the event is simply transited to the ANN state, an
absorbing state leading to the unlink of the event from the SQ.

Similarly, when an event ends its life-cycle and appears along

the correct LP timeline, it is logically marked as COM (commit state).

Clearly, an event transits to COM after being processed if it is found to
be a safe one. In this case it is also unlinked from the SQ. Although

unlinked from the SQ, an event-buffer in the COM state will be

garbage collected (reused) successively, as we shall discuss, since

some child could still refer to it for validity assessment according

to Equation 2. Another motivation for retaining the event is its

usefulness for state reconstruction purposes in a rollback phase, as

we will also discuss.

As a final note, an event can persist in the EXC state across

multiple executions, caused by rollbacks, up to the point in time

when its safety is assessed, or it becomes invalid.

3.1.3 Scheduling Queue. The Scheduling Queue (SQ) used in

our share-everything PDES system is a conflict-resilient lock-free

priority queue that sorts event-buffers (across all the LPs) on the

basis of their timestamps. In particular, it is a Calendar Queue sup-

porting non-blocking operations. We borrow its implementation

from [16], reshuffling it in order to meet the needs of our innovative

share-everything PDES system. At a logical level, such a queue can

be abstracted as a generic non-blocking ordered linked list like

the one proposed by Harris [10]—although being much more effi-

cient thanks to its multi-bucket organization leading to amortized

constant-time access. Relying on this abstraction allows us to hide

the complexity of non-blocking Calendar Queue operations, which

are not the focus of this article—jointly enabling us to focus on how

we exploit non-blocking capabilities of such priority queue in our

PDES system.

In our reshuffle, the priority queue has an Enqeue API and

two other primitives: GetMin, which retrieves a pointer to the

event with the smallest timestamp which is still linked to the queue,

and GetNext, which retrieves the pointer to the event which im-

mediately follows—along virtual time—the one identified by its

input argument. Thanks to this support we can build a cross-layer

optimized Fetch operation that returns in a non-blocking mode

a to-be-processed event associated with some LP not currently

locked by any WT (see Section 3.2.2 for the details). Further, the

SQ supports an Unlink API which is used to disconnect a generic

event from the SQ—those that transit to the ANN or COM state—still

in non-blocking fashion.

Before returning an event e , a WT executing a Fetch executes a

try-lock operation on the target LP. If this operation fails, the WT

slides to the subsequent event in the queue—the one successive to

e . This is done thanks to the exploitation of the above mentioned

get services in the queue API. This sliding scheme is iterated up

to the point where a try-lock on the LP targeted by some event,

encountered along the queue, executes successfully.

According to the event’s state diagram in Figure 1, fetched (or

already processed) events are not unlinked from the SQ. In fact,

an event could be re-executed due to a rollback. Hence, it must be

visible in future queue explorations by concurrent WTs in order to

be properly handled. Moreover, our event validity definition (see

Equation 2) implies that parent metadata could be accessed while

assessing the state of its children. Therefore, the actual garbage col-

lection of the event-buffer—leading to its reuse—is also determined

by the relation between the GVT value and the timestamp of child

events, as we shall discuss. On the other hand, the logical removal of

the node in the COM state associated with the minimum timestamp

value from the SQ via the Unlink API is enough to move forward—

beyond that node—the pointer to the new minimum timestamp

element into the queue. As said, this is because in our PDES system

the removal of that COM event, which was previously processed,

already led to incorporate into the SQ all its children, if any.

3.2 Worker-Thread Algorithm
3.2.1 Main loop. The pseudocode of the main loop carried out

by any WT is shown in Algorithm 1. Initially a call to the Fetch

procedure is executed to retrieve from the SQ an event to be han-

dled (processed or undone/retracted), which is destined to an LP

not currently in charge of anotherWT—namely, locked by the caller

WT. The Fetch procedure returns to the caller WT a pointer to the

event to be handled, and the indication of whether the event is safe

(computed according to Equation 1) or at least valid. The Fetch pro-

cedure also returns the minimum timestamp of the non-committed

event standing into the SQ, namely the current GVT value. Further,

according to state transitions, such procedure may lead events des-

tined to whatever LP to transit from CLN to ANTI while traversing
the SQ. This is based on validity checks as expressed by Equation 2.

Regardless the retrieved event’s current state, the thread checks if

its timestamp is smaller than the LP’s LVT, namely the time reached

by the LP executing the event pointed by its bound variable in the

LPCB. In the positive case a Rollback is triggered in order to bring

back the LP’s state to the timestamp of the last event preceding the

retrieved straggler event and belonging to the current timeline. At

the end of the Rollback procedure the simulation state is compliant

with respect to the execution of the currently retrieved event. If

this event was already marked as EXC, it simply persists into this

state. Otherwise, it will transit from FTCH to EXC.
Before the execution of the event, a MakeUndoable operation

is called, which implements whatever policy for making the current

state transition undoable (namely, rollbackable). In our implemen-

tation we opted for a traditional periodic checkpointing approach.

Based on the selected policy, if the log is taken, the log-node is

linked to the corresponding event (the one pointed to by bound),
for correct alignment of the data structures. We note that the safety

information associated with the event retrieved via Fetch can be

Algorithm 1 Simulation Loop

1: procedure SimulationLoop()
2: <evt , sa f e,valid,дvt>← Fetch()

3: curLP ← evt .receiver
4: if evt , null then
5: if evt .ts < curLP .bound.ts then
6: Rollback(curLP , evt .ts)

7: if ¬valid then
8: SET(evt .state← ANTI)
9: else
10: MakeUndoable(curLP ,evt ,sa f e)
11: LinkToLPQueue(curLP .bound, evt)
12: evt .epoch← curLP .epoch
13: newEvts ← Execute(evt)
14: Flush()

15: curLP .bound← evt
16: SET(evt .state, EXC)

17: Unlock(curLP .lock)
18: if sa f e = TRUE then
19: Unlink(evt)

20: GVTOperations(дvt)

exploited for optimizing the management of the undo support. In

our case, it could lead to take a checkpoint and to rejuvenate the

checkpoint period if the event will never be undone—this will en-

able reducing coasting forward overhead by inserting a log exactly

on the currently committed event of the LP. On the other hand,

if reverse computing approaches were employed (see [4, 6]), the

safety information would simply tell that there will be no need

to generate data/metadata for reversing the event execution. The

relation among the different data structures we used to manage

each individual LP is schematized in Figure 2. By the scheme we

see how the event queue of the LP—namely local_queue—is in-
corporated into the SQ—which is global to all the LPs. Thus, the LP

local queue represents a sort of view on such global queue achieved

via a parallel linked list. The processed event is linked to the per-LP

view of the SQ via LinkToLPQueue, so as to make it immediately

available for any purpose, including coasting forward if requested.

The real event-processing phase starts by updating the event

epoch with the LP current one, in order to represent its current

incarnation within the LP current timeline. Then, the event is ex-

ecuted by invoking the application-level event-handler provided

by the simulation model. New events possibly produced along the

event-handler execution are stored in a local buffer, in order to

Flush them to the SQ at the end of the current event execution. At

this point, to complete event processing, the event state is atomi-

cally set to EXC and the LP bound is updated in order to point to

the current event.

The order of those operations is fundamental to guarantee cor-

rectness. In fact, newly produced events are flushed into the SQ

before their parent’s processing is finalized, otherwise we would

violate the definition of GVT we rely on. So, it is important to post-

pone the update of the current bound and of the state of the event

after the flush operation.

Figure 2: Data structures of LP state, SQ and events, and rel-
ative relationships.

Clearly, once updated the event state, the WT releases the lock

on the target LP, thus enabling concurrent WTs to eventually take

care of whatever event destined to the same LP, as in the spirit

of the share-everything paradigm. Finally, if the Fetch procedure

indicates that the event is a safe one, the final logical transition

to the COM state is directly executed by the in-charge WT, which

unlinks the event from the SQ.

At the end of the main loop, despite what happened before,

some housekeeping tasks are performed, which take place via the

GVTOperations procedure. Specifically, this procedure is used to

reclaim memory associated with no longer useful event-buffers, as

well as checkpoints. Aswewill clarifywhile explaining the structure

of the Fetch procedure, event-buffers are initially unlinked from the

SQ when they will no longer need to be handled, which means they

are committed or have been annihilated, transiting respectively

in COM and ANN states. On the other hand, the event-buffers in

the COM state still remain into the per-LP local_queue, while the
event-buffers in the ANN state are inserted (upon their unlink from

the SQ) into per-WT retirement queues. All these event-buffers

can be actually reused (hence reclaimed by the memory system)

only after the GVT value oversteps the maximum timestamp of

any child possibly generated by their execution. This is because

validity of an event-buffer in our system is based on referring the

state of a parent event-buffer according to Equation 2. To easily

keep track of such condition at runtime, each event-buffer is also

filled with a timestamp field which exactly keeps such a maximum

child-timestamp. While executing the GVTOperations procedure,

the WT deallocates all the event-buffers from its list of ANN nodes
which satisfy such condition. The same occurs for the nodes in the

local_queue of the LP that the WT is currently in charge of.

3.2.2 The Fetch Procedure. The Fetch procedure, whose pseu-

docode is shown in Algorithm 2, has two objectives: (i) returning an

event to be processed by theWTmain loop; (ii) unlinking no-longer

needed events from the SQ and hence from the per-LP views of this

queue. This procedure uses two local variables дvt and jmpLP . The
former keeps the timestamp of the minimum event still linked to

the SQ, the latter keeps the set of LPs targeted by “skipped” events—

the events that have been traversed by the WT without actually

locking the target LP.

Algorithm 2 Fetch procedure

F1: procedure Fetch()
F2: evt ← GetMin()

F3: дvt ← evt .ts
F4: jmpLPs ← {}
F5: while evt , null do
F6: LP ← evt .receiver
F7: evtState ← evt .state
F8: saf e ← is_saf e (evt ,дvt ,jmpLP)
F9: in_past ← evt .ts ≤ LP .bound.ts
F10: valid ← is_valid (evt)
F11: if TryCleanAndSkip(evt ,jmpLPs ,
F12: LP ,saf e ,in_past , valid) then
F13: if TryLock(LP .lock) then
F14: curr ← GetLocalNextAndValid(evt)
F15: if curr , evt then
F16: valid ← true
F17: saf e ← is_saf e (curr ,дvt ,jmpLP)
F18: in_past ← evt .ts ≤ LP .bound.ts
F19: if ¬valid then
F20: if in_past then
F21: return ⟨evt, saf e, дvt ⟩
F22: SET(evt .state← ANTI)

F23: evtState ← CAS(evt .state, CLN, FTCH)
F24: switch(evtState)
F25: case CLN:
F26: return ⟨evt, saf e, valid, дvt ⟩
F27: case EXC:
F28: if ¬in_past
F29: return ⟨evt, saf e, valid, дvt ⟩
F30: else if ¬saf e
F31: jmpLPs ← jmpLPs ∪ {LP }
F32: break
F33: ReleaseLock(LP .lock)
F34: else
F35: jmpLP ← jmpLP ∪ {LP }
F36: evt ← GetNext(evt)

First, the Fetch procedure retrieves the current minimum from

the SQ by invoking GetMin and storing its timestamp into дvt .
Also, it initializes jmpLP as an empty set. Then, for each traversed

event evt a safety check is performed—so we check if evt .ts ∈
[дvt ,дvt + LA) and LP < jmpLP , where LP is the receiver of evt
(this is the implementation of the check on the safety condition

expresses in Equation 1). Moreover, we check if evt is in the past

of the LP timeline by comparing the timestamps associated with

evt and the LP bound. Then, TryCleanAndSkip is executed. This
is a non-blocking procedure aimed at unlinking from the SQ events

that have expired their lifetime (they are into an absorbing state,

namely COM or ANTI) or telling whether the current event has to

be processed by returning a boolean value set to true. The latter

case is associated with any event, which is not in absorbing states,

and requires the target LP to execute it and/or to rollback the LP
state. All these checks are carried out by the TryCleanAndSkip

procedure relying on the metadata we included in our event-buffers

and in the LPCBs. If TryCleanAndSkip returns true, then the

WT try-locks the target LP. If this fails, then the WT skips to the

subsequent event into the SQ, by relying on the GetNext API. This

Algorithm 3 TryCleanAndSkip procedure

C1: procedure TryCleanAndSkip(evt ,jmpLPs ,LP ,
C2: sa f e ,in_past , valid)
C3: tryLock ← true
C4: if valid then
C5: if in_past then
C6: if sa f e ∧ evtState = EXC then
C7: Unlink(evt)
C8: else
C9: jmpLPs ← jmpLPs ∪ {LP}

C10: tryLock ← f alse

C11: else
C12: if evtState = CLN then
C13: evtState ← CAS(evt .state, CLN, ANTI)

C14: if evtState = ANTI then
C15: Unlink(evt)
C16: tryLock ← f alse

C17: return tryLock

Algorithm 4 GetLocalNextAndValid procedure

G1: procedure GetLocalNextAndValid(curr)
G2: LP ← curr .receiver
G3: lNext ← GetLocalNext(LP .bound)
G4: while lNext , null ∧ ¬is_valid(lNext) do
G5: SET(evt .state← ANTI)
G6: Unlink(evt)
G7: lNext ← GetLocalNext(LP .bound)

G8: if lNext , null ∧ lNext .ts < evt .ts then
G9: return lNext
G10: return curr

pattern is iterated up to the point where the WT successfully locks

a target LP, or the tail of the SQ is reached—GetNext returns null.
While traversing the SQ, the jmpLP variable is populated, keeping

track of all the LPs for which the WT observed something to be

present into the SQ, until some target LP is locked. This set is used

to compute the safety of an event.

When some target LP is successfully locked, evt is checked again
to determine whether it is in the past of the LP. This is because in the

wall-clock-time interval between the first check on evt performed

by TryCleanAndSkip and the current processing phase, some

other WT may have changed the actual bound of the target LP.

Then WT invokes GetLocalNextAndValid (Algorithm 4), that

returns an event lNext which is either the first valid event following
the bound of LP into its local view of the SQ—the local_queue—
or the event just fetched from the SQ. We need this procedure to

check whether some event that is subsequent to the bound into

local_queue has a timestamp lower than the one just fetched from

the SQ, which represents a critical scenario to cope with. Such a

scenario is illustrated via an example shown in Figure 3. Suppose

that WTA holds a lock on an LPX because it is processing an event

e . If another thread B tries to acquire the lock on X for processing

an event f such that e precedes f (e → f), it will fail and continue

to analyze the next event д. This event is such that e → f → д and

Wall-clock

time

Thread A Thread B

1: Check Event A on LP 1
2: Trylock on LP 1
3: Success Check Event A on LP 1
4: Process Event A Trylock on LP 1
5: . Fail
6: . Check Event B on LP 1
7: . Trylock on LP 1
8: . Fail
9: Release lock on LP 1 Check Event C on LP 1
10: Trylock on LP 1
11: Success
12: Process Event C

Figure 3: The scenario tackled by GetLocalNextAndValid.

targets X , so B will try to acquire again the lock on that LP. If in

the meanwhile A has released the lock on X , B takes the lock and

starts processing д. Supposing that e , f and д are all valid events,

B executes д moving forward the bound of LP X . If f has a CLN
state, executing д is not problematic since some WT eventually

retrieves f and executes it after triggering a rollback as if it were

a straggler event. Conversely, if f has an EXC state, no WT will

ever execute such event again since it appears to be in the past of

the current trajectory. This situation is prevented to occur exactly

by the presence of GetLocalNextAndValid, that searches for an

event (f) with higher priority than the currently fetched one (д)
from the SQ.

Then, if the GetLocalNextAndValid procedure returns a differ-

ent element with respect to the one originally identified, the relative

validity information is updated. Thus, the first performed check is

about the event validity—note that this check is carried out outside

the locking region of the target LP. Since in the TryCleanAndSkip

procedure invalid and CLN events are correctly marked (as ANTI)
and unlinked, here we can assume that if we met an invalid event-

buffer, it is not a newly inserted one. In this case we have to perform

a rollback if and only if it is in the past of the current incarnation

(epoch) of LP , otherwise we atomically set its state to ANTI, in order

to notify that the event no more needs to be processed.

Otherwise, if the event was observed to be valid, WT tries to

atomically apply the state transition CLN→FTCH with the CAS in-

struction. Of course, if it has been concurrently marked as ANTI by

another WT that has seen the event as invalid, the CAS will fail.

After reading the actual state value of the event as a result of the

CAS instruction2, a switch case on it is carried out, implementing

the events’ finite-state machine discussed in Section 3.1.2. If the

state is CLN, we know that the event has never been fetched and

executed, thus, it is directly returned to the main loop. As discussed,

it is up to the main loop to check if it is a straggler or not and trigger

a rollback if required. The second case is the one where we have an

EXC state, meaning that the event has been executed at least once.

It follows that, it can be re-executed if and only if it is beyond the

LP bound, meaning that it is in the future of the actual incarnation

of the LP trajectory, namely the LP timeline. This is an event that

has been rolled back and is still valid in the current (refreshed after

the rollback) timeline. If the event is committable, namely if it is

2
As in most common implementations, we assume that CAS returns the original value

of the targeted memory location independently of whether its update fails.

safe, we can unlink it from the global queue, otherwise we can skip

the event by adding the LP to the jmpLP set, releasing the lock and

retrieving another event.

Once the switch case has been executed, we can release the lock

on the target LP, since here the event state can only be set to ANTI or
EXC. In any case, the event unlink, that transits the event to the COM
or ANN state, will be performed by any WT in TryCleanAndSkip,

thus completing the event life-cycle.

4 EXPERIMENTAL ASSESSMENT
In this section we present performance results for a comparison

of our Ultimate Share-Everything PDES system—which we refer

to as USE—and the last generation Share-Everything solution pre-

sented in [12]—which we refer to as SE. The latter does not entail

Time-Warp style processing of the events since, for each LP, at most

one event is executed speculatively, and is eventually committed

or aborted before any other event for the same LP can be CPU-

dispatched. Its unique event pool—fully shared across WTs—only

keeps so called schedule-committed events, which all need to ap-

pear along the LP timeline, thus not requiring the non-blocking

management of any state machine for determining their actual

role (across multiple ones) along model execution (e.g. if they

need to be retracted because of the rollback of the parent). In

other words, SE is blocking in virtual-time synchronization, while

USE is fully non-blocking in both wall-clock-time thread coordina-

tion, and virtual-time LP synchronization, also thanks to its more

sophisticated—and still non-blocking—logic for the management of

the fully-shared event-pool data structure. For completeness of the

analysis, we also include another competitor, which is the ROOT-
Sim last generation traditional-PDES environment [23] not based

on the share-everything paradigm—it adopts partitioning of the LPs

across threads, with dynamic rebind for load-balancing purposes.

It anyhow entails optimizations in its internal organization suited

for shared-memory machines [24].

All the tests have been run on a 32-core HP ProLiant machine

equipped with four 2GHz AMD Opteron 6128 processors and 64

GB of RAM. Each processor has 8 physical cores that share a 12MB

L3 cache (6 MB per each 4-cores set), and each CPU-core has a

512KB private L2 cache. The machine is equipped with 64 GB of

RAM—organized in 8 NUMA nodes—and we used Linux (kernel

3.2) as operating system.

The number of WTs running within all the used PDES systems

we are comparing has been varied from 1 to 32 in order to perform

a scalability study. All the reported data points have been computed

as the average over 10 runs, executed with different seeds for the

pseudo-random generation of event timestamps.

4.1 Results with PHOLD
As first test-bed application we used the classical PHOLD bench-

mark [8] configured with 1024 LPs. Each LP schedules events for

any other LP in the system, with an exponential timestamp incre-

ment. As usual for PHOLD, event processing leads to spending some

CPU-time via a busy loop emulating a given event granularity. In

our experiments we set the loop to give rise to events with granular-

ity of the order of 60 or 120 microseconds, thus spanning between

fine-to-mid values leading to a representative setting for testing

 0

 5

 10

 15

 20

 25

 0 4 8 12 16 20 24 28 32

S
p
e
e
d
u
p

Threads

event granularity: 60 us

USE ROOT-Sim SE

 0

 5

 10

 15

 20

 25

 0 4 8 12 16 20 24 28 32

S
p
e
e
d
u
p

Threads

event granularity: 120 us

USE ROOT-Sim SE

Figure 4: PHOLD speeup results - no hot-spot.

parallel processing platforms—larger grain events might mask plat-

form level costs for parallelization/coordination/rollback-support

independently of the used PDES paradigm, share-everything vs

traditional.

In one PHOLD configuration we included 10 hot-spot LPs, to-

wards which 50% of the events injected by the other LPs are routed.

It is known that PDES workloads with hot-spots are difficult to

manage since they might provide unbalance in case of traditional

PDES platforms relying in the binding between LPs and WTs—

load-balancing, as in ROOT-Sim, can anyhow mitigate this problem.

Also, they are difficult to manage in share-everything PDES systems

where WTs can block one another because of the need to process

events at a same LP (the hot-spot one) and the need for waiting the

advancement of the spots before being able to advance the other LPs

because of blocking (non-Time Warp style) virtual-time synchro-

nization, as it may happen in SE. We decided to experiment with

this kind of complex workload just to study how our new approach

could overcome such known limitations. In any case, for fairness,

we also report data with the PHOLD model configured with no hot-

spots, thus naturally leading to a more balanced advancement of

virtual time (per wall-clock-time unit) across the LPs, independently

of the underlying execution platform among the ones we compare.

Finally, in this study we focus on a zero-lookahead scenario.

In Figure 4 we report data related to the configuration with no

hot-spot. By the plots we see that SE suffers from performance

degradation with respect to USE. In fact, USE allows achieving

a maximum speedup—over sequential execution—which is about

34% (resp 18%) better than the one provide by SE for event gran-

ularity set to 60 (resp. 120) microseconds. Such a maximum value

 0

 5

 10

 15

 20

 25

 0 4 8 12 16 20 24 28 32

S
p
e
e
d
u
p

Threads

event granularity: 60 us

USE ROOT-Sim SE

 0

 5

 10

 15

 20

 25

 0 4 8 12 16 20 24 28 32

S
p
e
e
d
u
p

Threads

event granularity: 120 us

USE ROOT-Sim SE

Figure 5: PHOLD speedup results - hot-spot.

is achieved for 32 WTs, where USE allows for better exploitation

of parallelism, via speculative processing, with respect to SE. We

would to note that even if the speculation support in USE is much

more lightweight than in traditional speculative PDES, simpler

approaches that support a limited level of speculation (e.g., one

event for SE) can be more efficient in particular scenarios with a

reduced computational power (up to 16 cores) and fine-grain events

(60 microseconds); this is why in Figure 4 we note a slightly over-

come of SE’s performance with respect to USE. In any case, both SE

and USE perform better than traditional speculative PDES, namely

ROOT-Sim, since they avoid a lot of operations that the traditional

engine needs to carry out. As an example, in our USE proposal,

the cancellation of events that are no longer valid does not require

any anti-event—since it is embedded within the non-blocking event

state-machine management in the form of a simple event-buffer

state transition. Also, no output queues are generated and traversed

for managing rollbacks, since all the work is supported at the level

of the SQ where the “positive” copy of the events is posted—still

thanks to event-buffers state machines.

When moving to the hot-spot case—whose speedup data are

provided in Figure 5—the potential of USE becomes definitely more

evident. SE shows performance worse than USE, just because of the

impossibility to provide scalable virtual-time synchronization (with

no speculation) when hot-spot LPs tend to slow down the advance-

ment of the commit horizon of the simulation. For this workload,

USE can provide performance up to 64% (resp. 105%) better than

SE for event granularity set to 60 (resp. 120) microseconds. This

is a hard-workload scenario which ROOT-Sim cannot cope with

in effective manner, even though it implements load-balancing. In

 0

 0.2

 0.4

 0.6

 0.8

 1

USE ROOT-Sim

E
f
f
i
c
i
e
n
c
y

Threads:

event granularity: 60 us

2 4 8 16 24 32

 0

 0.2

 0.4

 0.6

 0.8

 1

USE ROOT-Sim

E
f
f
i
c
i
e
n
c
y

Threads:

event granularity: 120 us

2 4 8 16 24 32

Figure 6: PHOLD efficiency - no hot-spot.

 0

 0.2

 0.4

 0.6

 0.8

 1

USE ROOT-Sim

E
f
f
i
c
i
e
n
c
y

Threads:

event granularity: 60 us

2 4 8 16 24 32

 0

 0.2

 0.4

 0.6

 0.8

 1

USE ROOT-Sim

E
f
f
i
c
i
e
n
c
y

Threads:

event granularity: 120 us

2 4 8 16 24 32

Figure 7: PHOLD efficiency - hot-spot.

fact, with very few spots—10 in our case—long term planning in the

distribution of the workload does not capture sudden unbalance,

which becomes extremely adverse to performance especially when

the number of WTs oversteps the number of hot-spot LPs. On the

contrary, USE allows to concentrate the overall computing power

towards all the events that are close to the current commit horizon,

regardless of their distribution with respect to the hot-spots (or

other LPs). As a result, the system gains much more effective paral-

lel execution, with much less likelihood of rollback operations. This

phenomenon is evidenced by the efficiency data
3
in Figure 7, where

we show that even for this hard workload, USE achieves almost

100% of efficiency, as opposed to ROOT-Sim, which only achieves

the order of 40% or less. In Figure 6 ROOT-Sim performs better in

the configuration with no hot-spots where it reaches much higher

values of efficiency around 70%, though still significantly lower than

USE. This shows the effectiveness of delivering the computational

power to the highest priority events.

4.2 Results with TCAR
As the second test-bed application, we used a variant of the Terrain-

Covering Ant Robots (TCAR) model presented in [14]. In this model,

multiple robots (say agents) are located into a region (the terrain)

in order to explore it. TCAR simulations are usually exploited to

determine tradeoffs between the number of employed robots, and

the latency for exploring the target region, e.g., for rescue pur-

poses. Factors such as the speed of movement (depending on, e.g.,

environmental conditions or obstacles) can be also considered.

In our implementation of TCAR, the terrain to be explored is

represented as an undirected graph, therefore a robot is able to

move from one space region to another in both directions. This

mapping is created by imposing a specific grid on the space regions.

The robots are then required to visit the entire space (i.e., cover

the whole graph) by visiting each cell (i.e., graph node) once or

3
We recall that the efficiency of a speculative PDES run is the ratio between the number

of committed events, and the total number of processed events, namely committed

plus rolled back.

 0

 1

 2

 3

 4

 5

 6

 0 4 8 12 16 20 24 28 32

S
p
e
e
d
u
p

Threads

USE ROOT-Sim SE

Figure 8: Speedup results for TCAR.

multiple times. Differently from the original model in [14], we have

used hexagonal cells—each one modeled by an LP—rather than

squared ones. This allows for a better representation of the robots’

mobility featuring real world scenarios since real ant robots (e.g., as

physically realized in [21]) have the ability to steer to any direction.

The TCAR model relies on a node-counting algorithm, where

each cell is assigned a counter that gets incremented whenever any

robot visits it. So, the counter tracks the number of pheromones
left by ants, to notify other ones of their transit. Whenever a robot

reaches a cell, it increments the counter and determines its new

destination. Destination choice is a very important factor to effi-

ciently cover the whole region, and to support this choice the trail

counter is used. In particular, a greedy approach is used such that,

when a robot is in a particular cell, it targets the neighbor with the

minimum trail count. A random choice takes place if multiple cells

have the same (minimum) trail count.

The original TCAR model adopts a pull approach for gather-

ing trail counters from adjacent cells. To provide an optimized

implementation for PDES, achieved by reducing the volume of in-

teractions (events) across the LPs, we adopted a push approach,

relying on a notification event which is used to inform all neigh-

bors of the newly updated trail counter whenever a robot enters

a cell. Then, each LP modeling a cell stores in its own simulation

state the neighbors’ trail-counters values, making them available

to compute the destination when simulating the transit of a robot.

In the used TCAR configuration, we included the evaluation of a

new state value for the cell whenever a robot enters it, so as to

mimic the evolution of a given phenomenon within the cells. This

computation has been based on a linear combination of exponential

functions (like it occurs for example when evaluating fading on

wireless communication systems due to environmental conditions).

We configured TCAR with 1024 cells, with 15% of the cells initially

set to be occupied by one robot.

In Figure 8 we show speedup results with the TCAR model. An

important aspect for this application is that it shows significantly

finer grain events—of the order of a few microseconds—compared

to the used configurations of PHOLD. This stresses the execution of

the different tested engines along another dimension, with respect

to what done with PHOLD. In such a scenario, the overhead for

parallelization that is paid by a traditional engine like ROOT-Sim,

including its lower efficiency compared to USE, leads to very limited

speedup. The same is true for SE, given its impossibility to carry

out Time-Warp style speculative processing and the consequent

active waiting, namely spinning behind a lock, for causality re-

alignment, that increases contention on the underlying memory

subsystem. Instead, USE allows achieving speedup that increases

up to 16 threads. It then flattens, indicating somehow that more

threads do not longer pay-off for performance reduction. We note

that USE reaches its maximum speedup beyond a number of thread

resources much less than ROOT-Sim indicating its superior ability

to exploit actualmodel parallelism evenwhen scaling up the amount

of resources to more limited extents.

5 CONCLUSIONS
In this article we have presented an innovative design of a share-

everything PDES system. It allows exploiting CPU-cores on board

of shared-memory machines for carrying out the execution of sim-

ulation models while guaranteeing: (1) non-blocking coordination

of threads in the access to shared data structures and (2) fully

speculative—Time Warp-style—processing of the events. No previ-

ous literature proposal in the share-everything class shows these

two features in combination. Compared to classical Time-Warp

PDES—based on binding of LPs to threads—our proposal allows

speculative processing of any individual event along whichever

thread. Such a fine grain—event based—sharing scheme allows con-

centrating the computing power towards unprocessed events that

are at any time the closest ones to the commit horizon of the simu-

lation. The advantage is the reduction of the incidence of rollbacks,

that together with the high effectiveness of platform level non-

blocking algorithms for sharing information across threads leads to

extreme runtime effectiveness even under hard workload scenarios,

as we have shown via an experimental study.

REFERENCES
[1] R. Ayani. LR-Algorithm: concurrent operations on priority queues.

In Proceedings of the 2nd IEEE Symposium on Parallel and Distributed
Processing, SPDP, pages 22–25, Dallas, TX, USA, 1990. IEEE Computer

Society.

[2] P. D. Barnes, C. D. Carothers, D. R. Jefferson, and J. M. LaPre. Warp

speed: executing timewarp on 1,966,080 cores. In Proceedings of the 2013
ACM SIGSIM conference on Principles of advanced discrete simulation -
SIGSIM-PADS ’13, pages 327–336, 2013.

[3] C. D. Carothers and R. M. Fujimoto. Efficient execution of Time Warp

programs on heterogeneous, NOW platforms. IEEE Transactions on
Parallel and Distributed Systems, 11(3):299–317, 2000.

[4] C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto. Efficient optimistic

parallel simulations using reverse computation. ACM Transactions on
Modeling and Computer Simulation, 9(3):224–253, 1999.

[5] L.-l. Chen, Y.-s. Lu, Y.-P. Yao, S.-l. Peng, and L.-d. Wu. A well-balanced

Time Warp system on multi-core environments. In Proceedings of the
2011 IEEE Workshop on Principles of Advanced and Distributed Simula-
tion, PADS, pages 1–9. IEEE Computer Society, 2011.

[6] D. Cingolani, A. Pellegrini, and F. Quaglia. Transparently mixing undo

logs and software reversibility for state recovery in optimistic PDES.

ACM Trans. Model. Comput. Simul., 27(2):11:1–11:26, 2017.
[7] R. M. Fujimoto. Parallel discrete event simulation. Communications of

the ACM, 33(10):30–53, 1990.

[8] R. M. Fujimoto. Performance of Time Warp under synthetic workloads.

In Proceedings of the Multiconf. on Distributed Simulation, pages 23–28.
1990.

[9] S. Gupta and P. A. Wilsey. Lock-free pending event set management

in time warp. In Proceedings of the 2014 ACM SIGSIM Conference on
Principles of advanced discrete simulation, PADS, pages 15–26. 2014.

[10] T. L. Harris. A pragmatic implementation of non-blocking linked-

lists. In Proceedings of the 15th International Conference on Dis-
tributed Computing, volume 2180 of DISC, pages 300–314. Springer
Berlin/Heidelberg, 2001.

[11] J. Hay and P. A. Wilsey. Experiments with hardware-based trans-

actional memory in parallel simulation. In Proceedings of the 2015
ACM/SIGSIM Conference on Principles of Advanced Discrete Simulation,
pages 75–86, 2015.

[12] M. Ianni, R. Marotta, A. Pellegrini, and F. Quaglia. Towards a fully

non-blocking share-everything PDES platform. In Proceedings of the
21st IEEE Internat Symp. on Distributed Simulation and Real Time Appli-
cations, pages 25–32, 2017.

[13] D. R. Jefferson. Virtual time. ACM Trans. on Programming Languages
and Systems, 7(3):404–425, 1985.

[14] S. Koenig and Y. Liu. Terrain coverage with ant robots: a simulation

study. In Proceedings of the fifth international Conference on Autonomous
agents, AGENTS, pages 600–607. ACM, 2001.

[15] R. Marotta, M. Ianni, A. Pellegrini, and F. Quaglia. A lock-free o(1)

event pool and its application to share-everything PDES platforms.

In Proceedings of the 20th IEEE/ACM International Symposium on Dis-
tributed Simulation and Real Time Applications. 2016.

[16] R. Marotta, M. Ianni, A. Pellegrini, and F. Quaglia. A conflict-resilient

lock-free calendar queue for scalable share-everything PDES platforms.

In Proceedings of the 2017 ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation, pages 15–26, 2017.

[17] A. Pellegrini, S. Peluso, F. Quaglia, and R. Vitali. Transparent spec-

ulative parallelization of discrete event simulation applications us-

ing global variables. International Journal of Parallel Programming,
44(6):1200–1247, 2016.

[18] A. Pellegrini and F. Quaglia. Transparent multi-core speculative par-

allelization of DES models with event and cross-state dependencies.

In Proceedings of the 2014 ACM/SIGSIM Conference on Principles of Ad-
vanced Discrete Simulation, pages 105–116. 2014.

[19] R. Rönngren and R. Ayani. A comparative study of parallel and se-

quential priority queue algorithms. ACM Transactions on Modeling and
Computer Simulation, 7(2):157–209, 1997.

[20] H. Sundell and P. Tsigas. Fast and lock-free concurrent priority queues

for multi-thread systems. J. Parallel Distrib. Comput., 65(5):609–627,
2005.

[21] J. Svennebring and S. Koenig. Building Terrain-Covering Ant Robots:

A Feasibility Study. Autonomous Robots, 16(3):313–332, 2004.
[22] B. P. Swenson and G. F. Riley. A New Approach to Zero-Copy Message

Passing with Reversible Memory Allocation in Multi-core Architec-

tures. In Proceedings of the 2012 ACM/IEEE/SCS 26th Workshop on
Principles of Advanced and Distributed Simulation, pages 44–52, 2012.

[23] The High Performance and Dependable Computing Systems Re-

search Group (HPDCS). ROOT-Sim: The ROme OpTimistic Simulator.

https://github.com/HPDCS/ROOT-Sim, 2012.

[24] R. Vitali, A. Pellegrini, and F. Quaglia. Towards symmetric multi-

threaded optimistic simulation kernels. In Proceedings of the 26th
Workshop on Principles of Advanced and Distributed Simulation, PADS,
pages 211–220. IEEE Computer Society, jul 2012.

[25] J. Wang, N. B. Abu-Ghazaleh, and D. V. Ponomarev. AIR: application-

level interference resilience for PDES on multicore systems. ACM
Trans. Model. Comput. Simul., 25(3):19:1–19:25, 2015.

[26] J. Wang, D. Jagtap, N. B. Abu-Ghazaleh, and D. Ponomarev. Parallel

discrete event simulation for multi-core systems: Analysis and

optimization. IEEE Trans. Parallel Distrib. Syst., 25(6):1574–1584, 2014.

	Abstract
	1 Introduction
	2 Related Work
	3 The PDES System
	3.1 Architectural Details
	3.2 Worker-Thread Algorithm

	4 Experimental Assessment
	4.1 Results with PHOLD
	4.2 Results with TCAR

	5 Conclusions
	References

