Towards a Fully Non-blocking Share-everything PDES Platform

Mauro Ianni, Romolo Marotta, Alessandro Pellegrini, Francesco Quaglia
DIAG—Sapienza Universita di Roma
{mianni,marotta,pellegrini,quaglia’} @dis.uniromal.it

Abstract—Shared-memory multi-core platforms are chang-
ing the nature of Parallel Discrete Event Simulation (PDES)
because of the possibility to fully share the workload of events
to be processed across threads. In this context, one rising
PDES paradigm—referred to as share-everything PDES—is no
longer based on the concept of (temporary) biding of simulation
objects to worker threads. Rather, each worker threads can—
at any time—pick from a fully shared event pool an event to
process which can be destined to whatever simulation object.
While attention has been posed on the design of concurrent
shared pools, allowing non-blocking parallel operations, the
scenario where two (or more) threads pick events destined to
the same simulation object still lacks adequate synchronization
support. In fact, these events are currently sequentialized and
processes in a critical section touching the simulation object
state, thus leading threads to mutually block each other. In this
article we present the design of a share-everything speculative
PDES engine that prevents mutual thread blocks because of
the access to a same object state. In our design, the non-
blocking property is seen as a vertical attribute of the engine
(not only of the event pool). This vertical view demands for
both innovative event-dispatching schemes and, at the same
time, innovative interactions with (and management of) the
fully-shared event pool, which are features that we embed in
our innovative design.

I. INTRODUCTION

Complex and/or large simulation models demand paral-
lelization techniques for making model-execution feasible.
These are built on top of consolidated methodologies. How-
ever, along time, they are also influenced by raising trends
in the hardware of underlying computing platforms.

For the case of discrete event simulation, classical paral-
lelization methodologies are based on dividing a complex
model in multiple simulation objects that interact via cross-
exchange of timestamped events [1]. Also, the implementa-
tion of Parallel Discrete Event Simulation (PDES) platforms
adhering to these methodologies has been historically based
on explicitly assigning groups of simulation objects to
different worker threads. Periodic rebinding of objects to
threads has been actuated in order to keep resource usage
well balanced on the medium/long term (see, e.g., [2], [3])
according to a classical view where the workload is migrated
towards the available computing power.

In recent years, new implementation trends for PDES
platforms have arisen, which have been based on the new
concept of migrating the computing power towards the
workload. This has been possible thanks to the advent

and large diffusion of shared-memory multi-core machines,
which give the possibility to fully-share the state of the
simulation objects—as well as platform level data structures
such as the event pool-across all the concurrent worker
threads operating within the PDES environment.

More in detail, the recent share-everything PDES
paradigm [4], [5] has been based on the concept of a
unique and fully-shared event pool, keeping the unprocessed
events destined to whatever simulation object, from which
any worker thread picks its next event to process. This
allows delivering the computing power to the highest priority
events—those with lower timestamps that are currently kept
within the shared event pool—along the whole lifetime of
the simulation. This is important since it can favor the
prompt advancement of the model execution independently
of whether conservative or speculative event-processing is
adopted. Such a capability is exactly originated by the fact
that a thread is not bound to any specific simulation object,
rather it can switch between different objects on a per-event
basis.

The downside of this organization is related to the need for
thread-level coordination mechanisms, which are required
in order to correctly handle the access to the fully shared
set of data structures implementing either the simulation
engine internal logic or the application level one. As for the
engine level, recent results have provided highly concurrent
fully shared-event pools supporting non-blocking operations
[4], [6]. They enable scalability of engine level tasks, in
particular by preventing extraction and insertion operations
from/to the event pool to become a bottleneck.

However, at current date, if two or more threads concur-
rently pick different events destined to the same simulation
object, they incur the risk of blocks and sequentialization.
In fact, the application code is typically designed in order
to have an object representing a sequential entity, on whose
state image a single thread is enabled to work at any given
point in time in order not to impair safety of software actions
because of concurrent conflicting accesses. Also, the block
is usually implemented via spin-locks in order to avoid
operating system thread-reschedule delays caused by kernel-
level blocking synchronization services. As a consequence,
an additional penalty comes out from the energy-waste
generated by the corresponding busy-waiting CPU cycles.

In order to cope with these shortcomings, in this article
we present the design of a share-everything PDES platform

where no thread is ever blocked because of a conflicting
concurrent access to some engine/application data structure.
This result has been achieved by fully revising the CPU-
dispatching rules that are put in place by worker threads,
which are in our proposal no longer based on extracting
the element with the current minimum timestamp from the
fully-shared event pool (as an individual action) and then
on locking the destination object (as a final action for
CPU-dispatching the event). Rather, the pool is accessed in
non-blocking fashion by selecting for processing an event
destined to a simulation object that is currently not active—
not already CPU-dispatched by any other worker thread.
This is discovered exactly while traversing the event pool,
still in non-blocking fashion, thanks to the introduction
of new signaling mechanisms based on metadata that are
used to indicate the state of each object (already CPU-
dispatched or not), which are manipulated in combination
with the access to the record representing an element of the
event pool. These metadata are manipulated atomically in
non-blocking mode via the Compare&Swap (CAS) machine
instruction.

Overall, our proposal for the achievement of a non-
blocking share-everything PDES engine relies on a vertical
approach where the state of the event pool, in combination
with the augmented metadata, does not only keep into
account what events need to occur at a given object. Rather
it also expresses the current state of the object, namely
whether it is already CPU-dispatched or not, and the whole
information is accessed/manipulated in non-blocking mode.

Our current design is towards a fully non-blocking specu-
lative PDES engine, where the actual need for thread block-
ing is only determined by the setup level of speculation. In
our current design we set this level to one for each object—
thus each object is allowed to perform a step ahead in logical
time speculatively—but nothing prevents the possibility to
integrate more complex state restore mechanisms that would
enable speculating along chains of events. This facility can
be seen as orthogonal to the core CPU-dispatching mecha-
nisms of events that we present in this article. In any case,
even though we target speculative event processing, we are
still able to exploit lookahead information in order to detect
wether some event is safe to process and does not require
reversibility support. This allows us to enable simulation
objects to perform as many steps a head as possible in non-
speculative mode before trapping into speculative execution
of some event.

We present experimental results achieved by running our
solution on top of a 32-core HP ProLiant server. As case
study applications, we have run several configurations of
the classical PHOLD benchmark [20] and compared the
performance achievable by our current proposal with the
one delivered by the share-everything PDES engine recently
presented in [6].

The remainder of this article is structured as follows. In

Section II we discuss related work. Section III provides the
description of our non-blocking speculative PDES platform.
Experimental data are presented in Section IV.

II. RELATED WORK

Our proposal is related to the literature approaches that
try to exploit shared-memory multi-core machines in order
to optimize the runtime behavior of PDES engines. A few
results in this area have been targeted at traditional PDES
platform organizations, based on explicit partitioning of the
workloads of simulation objects across the different worker
threads. The works in [7]-[9] address issues related to the
optimization of the message-passing architecture. The solu-
tion in [10] tackles the problem of runtime optimization of
the binding between simulation objects and worker threads.
The recent proposal in [11] copes with the issue of porting
traditional PDES paradigms, such as Time Warp [12], onto
multi-core GPU devices. Compared to all these approaches,
we tackle the different case where simulation objects are
not partitioned across threads. Rather the threads can switch
across different objects in a per-event basis.

Considering that our PDES platform leads multiple
worker threads to share accesses to the same simulation ob-
ject by different threads in non-blocking mode, our proposal
is also related to the one in [13]. Here the authors explore
how to use non-blocking Software Transactional Memory
support in order to manipulate object attributes concurrently.
However, the sharing of attribute accesses is confined to
specific attributes that need to be identified at compile/link
time and need to be explicitly managed via STM APIs. Our
solution is instead fully transparent to the application code.
Also, in our non-blocking engine we do not use techniques
to reconcile conflicting concurrent actions (in a commit or
a rollback). Rather, we avoid at all the conflicts thanks to
the smart CPU-dispatching scheme of events that exploits
non-blocking accesses to the underlying event pool in order
to select the object to be taken in charge by a worker thread.

The work in [14] introduces the concept of cross-state-
events in PDES, which are events that can touch the state
of multiple objects. With this scheme, two or more worker
threads can exhibit shared accesses to a same simulation
objects, since the boundaries of the activities of the threads
are no longer defined on the basis of the partitioning of the
model into disjoint object states. Rather, a cross-state-event
leads such boundary to be broken. However, this solution is
still based on a preliminary binding of objects to threads,
which we avoid in our share-everything solution.

Clearly, our proposal is also related to all the works that
try to exploit non-blocking algorithms in order to optimize
the performance of PDES systems. Most of these approaches
have been tailored to the management of engine level data
structures, such as the event pools [4], [15], [16]. On the
contrary, we include management rules that lead threads to
never block each other even in scenarios of full share of

LPg LPy LP,, LP,,

Simulation state Simulation state Simulation state Simulation state

Event Handlers Event Handlers Event Handlers Event Handlers

Queue
Figure 1. Basic engine organization.
the objects’ states. Also, a few of them—such as [15]—are
oriented to scenarios with workload partitioned across the
worker threads while we cope with fully-shared workload.

III. THE PDES PLATFORM
A. Basics

Our target is a share-everything PDES platform whose
general organization is provided in Figure 1. This organiza-
tion conforms to the archetypal one that has been presented
in [4]. Similarly to the traditional PDES paradigm, the share-
everything paradigm still supports the partitioning of the
simulation model in multiple simulation objects—classically
referred to as Logical Processes (LP)—each one associated
with a unique identifier n € [0, N — 1] and whose state is
kept in a memory region that is disjoint from the regions
keeping the other LPs’ states.

To support parallel execution, the platform runs multiple
worker threads (WTs). Each WT can extract events from a
fully-shared pool. Once picked an event, the corresponding
event handler, namely the one targeting the destination LP,
is CPU-dispatched. A WT extracts from the shared pool an
event that currently stands at higher priority level—e.g., the
unprocessed event with the lowest timestamp. This allows
concentrating the computing power offered by the overall
set of WTs close to the commit horizon of the simulation,
thus reducing the likelihood that some LP can run ahead in
simulation time while others remain back. For the case of
speculative processing, which is the target in our design, this
allows reducing the likelihood of erroneous speculation and
tends to improve the efficiency of the parallel run.

Each LP has its own event handler, although multiple
LPs can be governed by a same event handler routine. This
module is in charge of taking over an event and processing it.
The processing of the event possibly produces state updates
and generates new events that can be in principle destined
to any LP involved in the simulation. These events transit
into the shared-event pool and the delivery of an event to the
correct destination LP is demanded to the simulation engine.
In fact, upon extracting an event from the shared pool, the
WT checks with the metadata that are included in the event
envelope and determines to what LP the event needs to be
routed for processing.

With this organization, the PDES platform is in charge of
two core aspects:

o It needs to generate an evolution of the state of each
LP that is causally consistent, namely no timestamp
inversion must figure out as ever occurring for events
processed at the LP;

o It needs to guarantee correctness of the accesses by
WTs to the overall set of shared data structures repre-
senting the state of the engine and of the LPs.

In our current design we enable an LP to process at
most one event speculatively, while it can process as much
events are available from the shared pool if they are safe—
meaning that their processing will never violate causality. If
an event is processed speculatively, then the WT processing
it needs to eventually determine if it can be committed or
needs to be rolled back. In the latter case, any new event
possibly produced by the event processing phase is simply
discarded, otherwise it is inserted into the shared event pool.
This means that new events produced by the execution of
one event e are kept in a private WT space and flushed to
the globally shared event pool only upon determining the
commitment of e, if any.

The sorting of the events within the shared pool is based
on event timestamps, and each event-envelope also entails
information about the destination LP. Moreover, for what
asserted before in relation to the management of speculative
vs safe processing, all the events kept in the event pool
are schedule-committed, namely they will never need to be
retracted because of a rollback leading to undo speculatively
processe events.

Recent literature proposals in the area of share-everything
PDES rely on non-blocking event pool operations for scala-
bility, but employ blocking accesses to the states of the LPs.
The blocks, typically implemented via spin-locks, are used
to guarantee isolation of the state snapshot manipulations by
the concurrent WTs that need to operate on a same LP. In
our design we aim at avoiding that two or more WTs block
one another because of the need for accessing the same
LP state, and we still relying on non-blocking event pool
operations. In particular, we enable WTs to always work on
disjoint portions the application state, namely different LPs,
while still concentrating their work on the higher priority
events kept by the shared pool. This leads to the avoidance
for blocking phases, with consequent save of CPU-time that
can be devoted to actual event processing job.

To reach this goal, our event pool is coupled with in-
formation related to the current CPU-dispatch of the LPs
among WTs. In other words the pool is associated with
information related to a kind of short-term binding of LPs to
WTs. In more details, we introduce the concept of booking
of LPs by WTs, so that a non-blocking dequeue operation
by some WT that tries to CPU-dispatch an event destined to
some LP does not actually remove the corresponding event-
record item from the shared pool, rather it simply “books”
the target LP, thus putting in place the aforementioned short-
term binding. In our implementation the booking is based

on executing a CAS machine instruction that implements a
non-blocking try-lock operation on a variable associate with
the LP to be booked.

The event records are not removed when the correspond-
ing LP is booked and they are being processed, since as we
shall explain their presence in the event pool is exploited
for detecting the safety of the events themselves. So the
booking of an LP figures out as a logical removal of some
corresponding event, which is not yet finalized into a definite
removal. The latter takes place when event processing is
committed. Consequently the event pool data-structure has
an additional API to effectively remove some item from the
event pool, so as to perform garbage collection of event
records whenever they are no longer needed—since their
processing is related to a definitive committed action.

Another capability offered by our non-blocking event pool
at the core of the fully non-blocking PDES engine is the
one of enabling the monotonic navigation of the pending
event set starting from the minimum—denoted as head.
This capability can be easily implemented on any priority
queue based on linear arrangement of the elements (tree-
based event pools might require O(logn) steps for each
step forward). In our solution we have chosen a lock-free
Calendar Queue [4], [17] that guarantees O(1) complexity
to perform enqueue/dequeue operations in a concurrent
scenario, appropriately integrated with the simulation engine
itself via the aforementioned LP booking mechanism.

The procedure of real node deletion can be easily im-
plemented in O(1), since the caller WT already knows the
“position” of the target node in memory. In fact, a node can
be eventually removed only after the associated LP has been
booked by a WT and the event itself has been processed with
assurance of not violating causality—so it will no longer
serve for additional processing.

To manage recoverabilty of the LPs’ states, which is
needed if speculation leads to violate causality, we rely
on a transparent static binary instrumentation technique of
event handlers. In more detail, we exploit the Hijacker [18]
open-source customizable static binary instrumentation tool,
tailored to the ELF format, which is able (before the final
linking stage of the application-level simulation model) to
alter a program’s execution flow. In particular, according to
some user-specified rules, it identifies any memory writing
instruction and places before it a call to a module which
reads the memory location before its update in order to
generate an instruction able to undo the corresponding effect
according to the proposal in [19].

In speculative PDES the evolution of the simulation
is characterized by the progress of the commit horizon,
commonly referred to as Global Virtual Time (GVT), which
represents a break point along the time axis that divides
events which might be still undone, due to causality vio-
lations, by events which will never been undone, namely
committed events. Since the execution of a simulation event

Start Simulation
l '

GetMinFree Phase 1

unsafe @ safe

ProcessReversible Process
l '

GetMinLP
!

prioritunsafe
inversion safe
Commit
+ continue

End Simulation

Phase 2

Phase 3

Phase 4

Figure 2. diagram of the simulation loop

Algorithm 1 Main loop
1: procedure MAINLOOP()

2 Set<event> newFvents < ()

3 bool safe < FALSE

4 event e,e’ <~ NULL

5: while —~endSimulation do

6: (e, safe) < GETMINFREE()

7: if e = NULL then

8: continue

9: execute:

10: if safe then

11: newFEvents < PROCESS(e)

12: else

13: newFEvents < PROCESSREVERSIBLE(e)
14: do

15: (¢/, safe) + GETMINLP(LP(e))
16: if ¢ # ¢’ then

17: e+ ¢

18: newEvents < ()

19: goto execute

20: while —safe A —endSimulation
21: if endSimulation then

22: break

23: CoMMIT(e, newEvents)

e at simulation time 7T can only generate some event ¢’ with
a timestamp 7" > T, which means that an event can not
affect the past, the GVT can be identified as the smallest
timestamp across all the unprocessed/uncommitted events
in the system. At any time, the commit horizon event can
be considered as a safe (namely, causally consistent) one,
and therefore, if not yet processed, does not require any
reversibility mechanism for its execution. This means that
the corresponding WT can run a non-instrumented version
of the target event handler which installs the updates on the
LP state with no possibility to eventually undo them

B. Platform Architecture

The pseudo-code of the main loop of our simulation en-
gine, which is executed by all WTs, is shown in Algorithm 1.
The loop can be logically divided in four different phases,

as shown in Figure 2. Initially a call to the GetMinFree
procedure is executed in order to retrieve from the shared
event pool an event to process. As the name of the pro-
cedure suggests, in this phase we try to pick an event for
processing destined to some “free” LP—say not currently
CPU-dispatched. Also, the even should have the minimum
possible timestamp, although it might not coincide with the
absolute minimum in the event pool.

The pseudo-code for the GetMinFree procedure is
shown in Algorithm 2. This procedure traverses the event
pool starting from the head. At each step of traversing
of some event, the WT tries to book the corresponding
destination LP. Operatively the WT tries to lock the LP via
a non-blocking CAS machine instruction.

If booking fails it means that some other WT is already
working on the LP. In this case, the WT continues traversing
the event pool for a new try with some subsequent event.
When an event whose corresponding LP can be booked is
found, the event is returned, although it is not definitely
removed from the pool. Moreover, while searching for an
event to take care of, the procedure is able to determine
the safety of such event. In more details, the procedure
keeps track of the LPs met depending on the traversed
events while scanning the pool, which where already found
to be booked, and of the timestamps of the corresponding
events. Considering the possibility of having a lookahead
specification for the simulation model, an event can be
returned as safe for processing if the difference between its
timestamp and the minimum one still recorded into the event
pool (the GVT) is smaller than the lookahead value. If this
is true, it means that no other event will ever be delivered—
because of pending processing activities at any LP—to the
same LP targeted by the event in its past. On the other hand,
concurrent processing of multiple events at a same LP is
prohibited because of the booking mechanism, which leads
to safety of processing—namely WT isolated processing on
a given LP—even in scenarios where an event destined to
the same LP will be successively flushed to the event pool
with a timestamp lower than the currently selected event.
This situation, if materialized, will be resolved via rollback,
as we shall discuss. In any case the check in Line 8 also
covers the scenario where the booked LP corresponds to one
that was previously attempted to book and that has been in
the meanwhile released by some other WT. If this scenario
materializes, the picked event is not safe independently of
the lookahead since there is another event to process at the
sane LP that stands in the past of the picked one.

Once the GetMinFree procedure ends, it returns an
event associated with an LP that is univocally bound to the
WT, together with the indication of whether the event is safe
to process or needs to be processed speculatively. Note again
that the event is still available in the queue. On the other
hand, it can be considered as logically extracted since, until
the WT will keep the lock on the corresponding LP, no other

Algorithm 2 GetMinFree operation

1: procedure GETMINFREE()
: Set S+ NULL
node n < event_pool.min()
time min < n.ts
while (-TRYLOCK(n.lp) do
S.add(n.lp)
n < event_pool.next(n)
if n.ts < min + LOOKAHEAD A —n.p € S then
return (n.event, TRUE)
else
return (n.event, FALSE)

SO0V XR XN AR

——

Algorithm 3 GetMinLp operation

1: procedure GETMINLP(int Ip)
: node n - event_pool.min()
time min < n.ts
while (n.lp # lp) do
n <— event_pool.next(n)
if n.ts < min+ LOOKAHEAD then
return (n.event, TRUE)
else
return (n.event, FALSE)

VXD Nh WY

WT will extract events destined to the same LP. At this point,
according to the safe value returned by the GetMinFree
procedure, two different execution paths are possible: safe
and unsafe.

A safe execution leads the WT to CPU-dispatch the non-
instrumented event handler, which instals the updates on
the LP state in non-reversible mode. Instead, for an unsafe
execution, we dispatch the instrumented version, which
entails undoing capabilities. At the end of the speculative
execution of an event e, in order to preserve causal consis-
tency and schedule-commitment for all the events inserted
into the shared pool, the WT has to wait that the executed
event becomes safe. This check is done via the GetMinLP
procedure, whose pseudo-code is shown in Algorithm 3. The
execution path of the GetMinLP procedure is somehow
similar to the one of the GetMinFree procedure. As the
name suggests, this time we are not looking for a generic
event within the pool, but rather we are trying to discover
what is the minimum timestamp event destined to the very
same LP that was targeted by the event e, in the hope
such an event corresponds to e and has become safe in the
meanwhile.

In this procedure, the head of the pool is retrieved and the
pool is traverse searching for the first event targeted at the
same LP of the event e. Once found, the event is returned
together with its safety condition, this time based only on
the distance from the commit horizon and the lookahead. It
is important to note that, we have no guarantee on which
event is fetched this time, in fact, if the procedure returns an
event different from e it means that a priority inversion has
occurred—event e has been executed out of timestamp order.
In this case, the processed event e is rolled-back executing
undo-code blocks generated by instrumented handlers and

Algorithm 4 Commit operation

1: procedure COMMIT(event e, Set<event> F)
2: Ve' € E: INSERTINEVENTPOOL(e’)

3: DELETE(e)

4: UNLOCK(LP(e))

the loop is restarted with the newly extracted event. If
there is no priority inversion, the GetMinLP procedure
is repeatedly called until the processed event is returned
as safe. When this condition occurs, the event is finalized
towards its commitment by proceeding to the next phase of
the main loop in Algorithm 1.

The pseudo-code of the commit procedure is shown in
Algorithm 4. The commit procedure first places into the
global pool all the newly produced events and successively
eliminates, the just committed event e making the commit
horizon progress to the next event. Once the operations on
the pool are completed, the LP’s lock is released and the
loop is restarted checking each time if the simulation is
completed.

We remark again that all the operations on the event pool
(insertions/traversals/deletions) are implemented in non-
blocking mode according to the solutions presented in [4],
[17], which guarantee scalability of concurrent event pool
manipulation. Clearly, the smart dispatching mechanism we
introduce based on LPs’ booking adds a new dimension in
terms of scalability by avoiding WTs’ blocks for accessing
the LPs’ states in scenarios with full sharing of the LPs and
of their workload.

C. Optimization

1) Reserving Nodes: The GetMinFree operation is
one of the most onerous in our PDES engine. In order to
reduce the number of atomic operations, namely CAS, to be
performed to support the booking mechanism, a node has
been augmented with a reserved field. This is updated by
a classical write once acquired the relative lock on (once
booked) the corresponding LP. This field is not required
for correctness, therefore if an update is lost—given that
it is not performed using atomic operations—no problem
actually arises, since the WT will fined the corresponding LP
already booked even in scenarios of false negatives for node
reserving. On the other hand, if a WT finds a node reserved,
it will not access the lock variable of the corresponding LP
via CAS, thus avoiding the cost of a memory (remote) access
and possibly the cost of the corresponding atomic instruction
performing the access.

IV. EXPERIMENTAL RESULTS

We have integrated our proposal in a new platform release
of our open source share-everything PDES project (!). In this
section we report a performance comparison of this proposal
vs the last release of that same engine as presented in [6]

!Available at https://github.com/HPDCS

which was based on non-blocking event pool operations, but
on blocking access to the LPs’ states.

As test-bed application we used the classical PHOLD
benchmark [20] configured with 1024 LPs. Each LP sched-
ules events for any other LP in the system, with an expo-
nential timestamp increment. As usual for PHOLD, event
processing leads to spending some CPU time, via a busy
loop emulating a given event granularity. In our experiments
we initially set the loop to give rise to events with granularity
of the order of 60 microseconds, which can be considered
as a mid-weight value.

In our PHOLD configuration we included 10 hot spot
LPs, towards which a given percentage of events injected by
the other LPs are routed. This percentage has been varied
from 25% to 100%, passing through 50% an 75%. On the
other hand, when an event is processed at an hot spot, the
newly generated event by the processing stage is destined
to whichever LP. It is known that PDES workloads with
hot spots are difficult to manage since they might provide
unbalance in case of traditional PDES platforms relying in
the binding between LPs and WTs. Also, they are difficult
to manage in share-everything PDES systems where WTs
can block one another because of the need to process events
on a same LP (the hot spot one). We decided to experiment
with this kind of complex workload just to study how our
new approach could overcome such known limitations.

All the tests have be run on a 32-core HP ProLiant
machine running Linux (kernel 3.2) equipped with 64 GB
of RAM. The number of WTs running within the PDES
platform has been varied from 1 to 32, just in order to
perform a scalability study. All the reported data points have
been computed as the average over 10 runs, executed with
different seeds for the pseudo-random generation of event
timestamps.

As a final preliminary note, we set the lookahead of
the PHOLD model to the 10% of the average timestamp
increment of newly generated events. This enabled us to
study the effects of our non-blocking approach in scenarios
where the need to waiting for the safety of speculatively
processed events does not become the major limiting factor
to scalability.

In Figure 3 we show results related to the speedup
observed while varying the number of WTs for the different
configurations of the PHOLD model with hot spots. Speedup
results have been computed over a sequential run of the
same PHOLD model carrie out on a classical calendar-queue
scheduler. The two reported plots in each graph refer to our
new non-blocking share-everything PDES engine (NBSE)
and to the one in [6], which is based on LPs’ states locks
(SLSE) with sequentialization of WTs’ conflicting accesses
to the same LP state. By the plots we see how our NBSE pro-
posal is definitely resilient to performance degradation while
increasing the number of used WTs. In fact, its speedup does
not decrease for larger thread counts except for the scenario

where the hot spots are hit with probability 1.0. In any case,
even for such extremely skewed workload of events, the
decrease of the speedup when moving from 24 to 32 WTs
is minor. Instead, the SLSE configuration shows a worse
scalability, which leads performance to definitely decrease,
especially when considering higher values of the probability
to hit the hot spot LPs with newly generated events. The
peek speedup achieved by NBSE is around 15 for all the
configurations, while for largely skewed accesses SLSE does
not provide more than 10 as the speedup. This is a relevant
achievement of NBSE, showing not only scalability, but
rather the capability to maintain similar scalability levels
independently of the actual pattern of events (more or less
clustered) across the LPs.

To further support the effectiveness of NBSE, we report
results related to a few additional variations of the PHOLD
configuration. In a first variation, we reduce the event
granularity from 60 to 40 microseconds. In principle, these
settings should be favorable to SLSE since the ratio between
the time spent in non-blocking event pool operations and
the one spent processing events is increased. Hence, SLSE
should suffer a bit less from the need for executing sequen-
tialized accesses to the LPs’ states while processing events.
In any case, by the results in Figure 4 we se how NBSE
still remains definitely more performing than SLSE. In fact,
NBSE still guarantees the order of 15 of speedup, while
SLSE does not offer more than 10 of speedup. These data
refer to the cases of medium (0.5) and high (0.75) probability
of event routing towards the host spots.

The additional variation of PHOLD we consider is even
more favorable to SLSE, since it is based on including 32
hot spots (which corresponds to the maximum number of
WTs that are run within the PDES environment), rather
than only 10. With these settings, the workload of events
is less skewed, in terms if its distribution across the LPs,
so that SLSE can find more opportunities of no-conflict
between WTs that need to process events at the same
destination LP. Hence, it should suffer less from lock-based
sequentialization of the accesses to a same LP’s state. The
results for this variation of PHOLD are reported in Figure 5.
Although the data show that SLSE suffers less from reduced
scalability while increasing the number of WTs, the plots
still show how NBSE is superior, especially with higher
likelihood of hitting the spots. In fact, the maximum speedup
achieve with NBSE is of the order of 16, while SLSE does
not provide more that 12.5 speedup. Overall, also for this
more favorable workload to SLSE, NBSE still allows up to
almost 30% better speedup values.

V. CONCLUSIONS AND FUTURE WORK

In this article we have presented a PDES engine, suited
for shared-memory multi-core machines, which is designed
according to the share-everything paradigm. With this ap-
proach, the worker threads fully share the workload of events

that are kept by a unique (fully shared) event pool. The
core problem we addressed has been the one of avoiding
that two or more threads pick from the shared-event pool
events destined to the same simulation object. In fact, these
would require sequentialization of the actions by the threads,
given that each object in a PDES run is an intrinsically
sequential entity. We achieve this goal by still having the
computing power offered by the worker threads concentrated
on higher priority (lower timestamp) events. As a matter of
fact our approach slides towards a fully non-blocking share-
everything PDES engine since we avoid threads blocks at the
simulation object level and also exploit non-blocking event
pool algorithms. This enables our proposal to show excellent
scalability even in scenarios with skewed workloads across
the simulation objects. We included in our PDES engine
design the possibility to process events speculatively. How-
ever, at current data we enable at most one speculative step
forward for each simulation object. This limited speculation
level is the only blocking element within our engine. Our
plan for future work is to remove this limitation, which
would in principle enable a completely non-blocking share-
everything PDES platform fully unleashing non-blocking
management of share-data data—as we currently do—and
fully speculative/non-blocking virtual time synchronization.

REFERENCES

[1] R. M. Fujimoto, “Parallel discrete event simulation,” Com-
munications of the ACM, vol. 33, no. 10, pp. 30-53, 1990.

[2] C. D. Carothers and R. Fujimoto, “Efficient execution of time
warp programs on heterogeneous, NOW platforms,” IEEE
Trans. Parallel Distrib. Syst., vol. 11, no. 3, pp. 299-317,
2000.

[3] S. Peluso, D. Didona, and F. Quaglia, “Supports for transpar-
ent object-migration in PDES systems,” J. Simulation, vol. 6,
no. 4, pp. 279-293, 2012.

[4] R. Marotta, M. Ianni, A. Pellegrini, and F. Quaglia, “A lock-
free o(1) event pool and its application to share-everything
pdes platforms,” in Proceedings of the 20th IEEE/ACM In-
ternational Symposium on Distributed Simulation and Real
Time Applications, ser. DS-RT. IEEE Computer Society,
Sep. 2016, winner of the Best Paper Award.

[5] E. Santini, M. Ianni, A. Pellegrini, and F. Quaglia, “Hardware-
transactional-memory based speculative parallel discrete
event simulation of very fine grain models,” in Proceedings
of the 22nd International Conference on High Performance
Computing, ser. HIPC. IEEE, dec 2015, pp. 145-154.

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

[14]

[15]

[16]

(17]

R. Marotta, M. Ianni, A. Pellegrini, and F. Quaglia, “A
conflict-resilient lock-free calendar queue for scalable share-
everything PDES platforms,” in Proceedings of the 2017 ACM
SIGSIM Conference on Principles of Advanced Discrete Sim-
ulation, SIGSIM-PADS 2017, Singapore, May 24-26, 2017,
2017, pp. 15-26.

B. P. Swenson and G. F. Riley, “A New Approach to Zero-
Copy Message Passing with Reversible Memory Allocation
in Multi-core Architectures.” in PADS, 2012, pp. 44-52.

R. Vitali, A. Pellegrini, and F. Quaglia, “Towards symmet-
ric multi-threaded optimistic simulation kernels,” in 26th
ACM/IEEE/SCS Workshop on Principles of Advanced and
Distributed Simulation, PADS 2012, Zhangjiajie, China, July
15-19, 2012, 2012, pp. 211-220.

J. Wang, D. Jagtap, N. B. Abu-Ghazaleh, and D. Ponomarev,
“Parallel discrete event simulation for multi-core systems:
Analysis and optimization,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 6, pp. 1574-1584, 2014.

R. Vitali, A. Pellegrini, and F. Quaglia, “Load sharing
for optimistic parallel simulations on multi core machines,”
ACM SIGMETRICS Performance Evaluation Review, vol. 40,
no. 3, pp. 2-11, jan 2012. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=2425248.2425250

X. Liu and P. Andelfinger, “Time warp on the GPU: design
and assessment,” in Proceedings of the 2017 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation,
SIGSIM-PADS 2017, Singapore, May 24-26, 2017, 2017, pp.
109-120.

D. R. Jefferson, “Virtual Time,” ACM Transactions on Pro-
gramming Languages and System, vol. 7, no. 3, pp. 404425,
1985.

L.-l. Chen, Y.-s. Lu, Y.-P. Yao, S.-1. Peng, and L.-d. Wu,
“A Well-Balanced Time Warp System on Multi-Core En-
vironments,” in Proceedings of the 2011 IEEE Workshop
on Principles of Advanced and Distributed Simulation, ser.
PADS. IEEE Computer Society, 2011, pp. 1-9.

A. Pellegrini and F. Quaglia, “Transparent multi-core
speculative parallelization of DES models with event
and cross-state dependencies,” in Proceedings of the
2014 ACM/SIGSIM Conference on Principles of Advanced
Discrete Simulation, ser. PADS. ACM Press, 2014, pp.
105-116. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2601381.2601398

J. Hay and P. A. Wilsey, “Experiments with hardware-based
transactional memory in parallel simulation,” in Proceedings
of the 2015 ACM/SIGSIM Conference on Principles of Ad-
vanced Discrete Simulation, ser. PADS. ACM Press, 2015,
pp. 75-86.

S. Gupta and P. A. Wilsey, “Lock-free pending event set
management in Time Warp,” in Proceedings of the 2014
ACM/SIGSIM Conference on Principles of Advanced Discrete
Simulation, ser. PADS. ACM Press, 2014, pp. 15-26.

R. Marotta, M. Ianni, A. Pellegrini, and F. Quaglia, “A
Non-Blocking Priority Queue for the Pending Event Set,” in
Proceedings of the 9th ICST Conference of Simulation Tools
and Techniques, ser. SIMUTools. ICST, 2016.

(18]

[19]

[20]

A. Pellegrini, “Hijacker: Efficient static software instrumen-
tation with applications in high performance computing,” in
Proceedings of the 2013 International Conference on High
Performance Computing and Simulation, ser. HPCS, Helsinki,
Finland, 2013, pp. 650-655.

D. Cingolani, A. Pellegrini, and F. Quaglia, “Transparently
mixing undo logs and software reversibility for state re-
covery in optimistic PDES,” in Proceedings of the 2015
ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation, ser. PADS. ACM Press, 2015.

R. M. Fujimoto, “Performance of Time Warp Under Syn-
thetic Workloads,” in Proceedings of the Multiconference on
Distributed Simulation. Society for Computer Simulation,
1990, pp. 23-28.

Average Event Granularity 40 us

30 ——— T T T T
NBSE A
Average Event Granularity 60 us 25 SLSE @
30 ——— .
NBSE A 20
SLSE @

25

20
10 @
5
10
/ 0 ‘ ‘ ‘
5 12 4 8 16 24 32
/ #Threads
0

12 4 8 16 24 32 Average Event Granularity 40 us

Speedup wrt Serial Execution
>

Speedup wrt Serial Execution

o L& ‘ ‘
5 / 12 4 8 16 24 32
/ \‘ #Threads
o L&, ‘ ‘

12 4 8 16 24 32 Figure 4. Results with PHOLD (variation with event granularity set to 40
#Threads microseconds) - the probability of hitting the spots increases from 0.5 to
0.75 from the top graph to the bottom graph.

#Threads 30 ——— .
S NBSE A
Average Event Granularity 60 us § 25 SLSE @
19}
30 ——— T T T . X
5 NBSE A w20
S o5 SLSE @]
3 g 15
h T
- 20 i 10
[15 'g
(%]
£ /ég\ g s
- 10 n .
3
el
@
@
Q.
%)

Average Event Granularity 60 us

30

NBSE A ‘ ‘ ‘
o5 | SLSE @ Average Event Granularity 60 ps

w
o

NBSE A
SLSE @

20

N
(6]

15

=N

12 4 8 16 24 32

N
o

Speedup wrt Serial Execution

Speedup wrt Serial Execution
o o o

#Threads /
0 L& ‘ ‘ ‘ ‘
Average Event Granularity 60 us 12 4 8 16 24 32
30 ——— . #Threads
NBSE A
25 SLSE_® Average Event Granularity 60 us
30 T T T r r
20 NBSE A
SLSE @

N
[4)]

N
o

L e

12 4 8 16 24 32

/.”"/’.\“
/

Speedup wrt Serial Execution
>

-
o

Speedup wrt Serial Execution
>

5
#Threads /
o L& . ‘ ‘ ‘
Figure 3. Results with PHOLD - hot spots configurations - the probability 12 4 8 16 24 32
of hitting the spot increases from 0.25 to 0.5, 0.75 and 1 from the top graph #Threads

to the bottom graph.
Figure 5. Results with PHOLD (variation with 32 hot spots) - the

probability of hitting the spots increases from 0.5 to 1.0 from the top graph
to the bottom graph.

