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Abstract  

Human dendritic cells (DCs) show remarkably phenotypic changes when matured in presence 

of helminth-derived products. These modifications frequently elicited a polarization towards 

Th2 cells and regulatory T cells thus contributing to immunological tolerance against these 

pathogens. In this study, the interaction between DCs and larvae of the zoonotic anisakid 

nematode Anisakis pegreffii was investigated. A. pegreffii larvae were collected from fish 

hosts and monocyte derived DCs were co-cultured in the presence of the live larvae (L) or its 

crude extracts (CE). 

In both experimental conditions A. pegreffii impacted DC viability, hampered DC maturation 

by reducing the expression of molecules involved in antigen presentation and migration (i.e. 

HLA-DR, CD86, CD83 and CCR7), increased the phagosomal ROS levels and modulated the 

phosphorylation of ERK1,2 pathway.  

These biological changes were accompanied by the impairment of DCs to activate a T cell 

mediated IFN. Interestingly, live larvae appeared to differently modulate DC secretion of 

cytokines and chemokines as compared to CE. 
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These results demonstrate, for the first time, the immunomodulatory role of A. pegreffii on 

DCs biology and functions. In addition, they suggest a dynamic contribution of DCs to the 

induction and maintenance of the inflammatory response against A. pegreffii. 

 

Key words: Anisakis pegreffii, anisakid, dendritic cells, host-parasite interaction, inflammatory 

response, T cell subsets 

 

1.  INTRODUCTION 

Anisakiasis is a zoonotic human disease provoked by the accidental ingestion of larvae of anisakid 

nematode belonging to the genus Anisakis, infecting edible parts of fish or squid, which are 

consumed raw and/or undercooked. These anisakid nematodes are heteroxenous parasites 

involving marine mammals (mainly cetaceans) as definitive hosts, while crustaceans (krill), fish and 

squid act as intermediate/paratenic hosts in their life cycles.1 Nine species have so far been detected 

genetically as belonging to the genus Anisakis.1-3 Among these, A. simplex (sensu stricto) and A. 

pegreffii are shown to play a zoonotic role in humans. 2,4-9 A. pegreffii infection can provoke gastric 

(GA), intestinal (IA) and gastro-allergic anisakiasis (GAA).2,6-11  

The pathological outcomes within the gastrointestinal tract during an infection by Anisakis spp. 

larvae are the combined result of the direct invasive capacity of the larva, the antigens released 

during its invasion and the interaction with the host’s immune response.12 The larvae release 

proteolytic enzymes in order to invade the gastrointestinal mucosa. These antigenic proteins have 

been isolated and characterised as excretory/secretory antigens.13 After 2-4 weeks from ingestion of 

the infected fish, the larva dies and its debris cause a persistent inflammation or a chronic ulceration 

in the gastrointestinal mucosa.14 Th2 cytokines production and the resulting mastocytosis, IgE 

response and eosinophilia, characterise local inflammatory lesions produced by Anisakis spp. larvae.  
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Sometimes the infection can also generate mild or strong allergic symptoms such as urticaria-angio-

oedema to anaphylaxis. Indeed, specific A. pegreffii-IgE response has been found in the serum of 

sensitized patients,10 accompanied by a predominant Th2-type response to the parasite.13 Results 

from murine models have confirmed that a predominant Th2 immune responses are induced by 

infestation with the live larvae,12 while a mixed Th1/Th2 polarization is observed when the parasite 

crude extracts are used as immunogen.15 

Generally, the immune response to helminth is triggered by damage to the epithelial cells with 

secretion of alarmins (TSLP, IL-33 and IL-25) and activation of antigen presenting cells such as 

Dendritic Cells (DCs), Innate Lymphoid Cells 2 (ILC2) and macrophages. This drives an overall 

activation and amplification of Th2 cell differentiation, subsequent class switching of B cells (IgA, IgE 

and IgG) and a promotion the migration of Th2 cells back to the site of infection.16-17 Thus, the 

activation and the modulation of the human immune response are strictly dependent on the 

functions of APCs engaged by the helminth pathogens.  

DCs, by sensing the tissue damage and migrating to lymph nodes, play a crucial role in the 

coordination of both natural and adaptive immunity and are key regulators of the adaptive immunity 

driving the polarization of naïve T cells towards Th subsets.18-19 It has been shown that the helminth 

molecular repertoire impacts DC phenotype and functions.20 Furthermore, several evidences suggest 

that helminths exert immunomodulatory effects on their hosts influencing the polarization of T cells 

through the modulation of DCs.21-22 

The aim of this work was to investigate the mechanisms by which A. pegreffii influences the human 

immune response through the modulation of DCs. DC viability, phenotype and function were studied 

upon exposure to the alive larvae as well as to their crude extracts (CE). The immunomodulatory 

effects exerted by A. pegreffii on DCs could be a biological mechanism contributing to host immune 

evasion by the parasite and could contribute to the chronic inflammatory response evoked by this 

zoonotic parasite. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

2. MATERIALS AND METHODS 

2.1 Parasites 

Live Anisakis sp. larvae were removed from the viscera and body cavity of the fish host (anchovy, 

Engraulis encrasicolus and European hake, Merluccius merluccius) caught from the Adriatic Sea (off 

S. Benedetto del Tronto coast). After their removal from the fish host, they were first washed in 4% 

acetic acid (Carlo Erba, Cornaredo, Italy) and then in phosphate-buffered saline (PBS, Sigma, St Louis, 

MO). A batch of these larvae was then transferred to the in vitro culture (see below), whereas 

another one was used for the CE preparation. The larvae used for in vitro culture, after their removal 

from the culture, were stored at -20°C, for their identification to the species level.  

 

2.2. Molecular identification of Anisakis sp. Larvae 

A subsample (N= 50) of those Anisakis spp. larvae used for in vitro culture and by CE preparation, 

was identified to the species level by means of genetic/molecular markers. For this purpose, a multi-

locus approach based sequences analysis of mitochondrial (mtDNA cox2) (629 bp) and nuclear 

(elongation factor EF1 α-1 of nDNA) (409 bp) genes was performed.3,23 The genomic DNA was 

extracted using the Quick-gDNA MiniPrep (column format) by Zymo Research from 2 mg of 

homogenized tissue from each single nematode following the manufacturer’s protocol.  

The mitochondrial cytochrome c oxidase subunit II (cox2) gene was amplified using the primers 211F 

(5'-TTTTCTAGTTATATAGATTGRTTYAT-3') and 210R (5'-CACCAACTCTTAAAATTA TC-3'). Polymerase 

chain reaction (PCR) was carried out according to the procedures as previously described.3 The 

sequences obtained at the mtDNA cox2 for those larval specimens analyzed in the present study 

were compared with those already obtained for the same gene in the species A. pegreffii and with 

respect to those from other Anisakis spp. previously sequenced.2-3 
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The elongation factor (EF1 α−1 nDNA) nuclear gene was amplified using the primers EF-F (5’-

TCCTCAAGCGTTGTTATCTGTT-3′) and EF-R (5′-AGTTTTGCCACTAGCGGTTCC-3′) and employing 

experimental conditions, as previously described.23 The sequences obtained at the EF1 α−1 nDNA for 

the larval specimens analyzed in the present study were compared with those already obtained for 

the same gene in the species A. pegreffii and A. simplex (s. s.), under the accession numbers 

KT825684 and KT825685, respectively.  

The genomic DNA obtained from those samples are stored at the research laboratory of S. Mattiucci, 

Department of Public Health and Infectious Diseases (Section of Parasitology) - ‘Sapienza University 

of Rome’. 

 

2.3 Preparation of A. pegreffii L3 Crude Extracts (CE) 

Crude Extracts (CE) of A. pegreffii larvae were prepared as follows: each larval part was rinsed in 

physiological saline, then homogenised with PBS 10X and proteinase inhibitors in a mortar; the 

homogenate was then centrifuged at 14,000 rpm for 30 min at 4ºC; finally, the supernatant was 

retained. Protein concentration from CE was determined using the Quick Start Bradford Protein 

Assay (Bio Rad, Berkeley, CA) with Bovine Serum Albumin as a standard control. 

 

2.4 DC generation  

DCs were produced as previously described.24 Briefly, peripheral blood mononuclear cells (PBMCs) 

were isolated by Ficoll-Hypaque gradient (1,077 g/mL; Pharmacia LKB, Upsala, Sweden) from buffy 

coats of healthy donors obtained by the Transfusion Center, Policlinico Umberto I – “Sapienza” 

University of Rome (Ethics Committee - Protocol nr. 4212). Monocytes (Mo, CD14+) were purified 

from PBMCs by CD14 MicroBeads (Miltenyi Biotech, Paris, France) and cultured in RPMI 1640 
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(Hyclone, South Logan, Utah) with 10% heat-inactivated FCS (Hyclone). GM-CSF (50 ng/mL; R&D 

Systems, Oxon, UK) and 2,000 units/mL of rhIL-4 (R&D System) were added at day 0 and 2 for 

differentiation in immature DCs (iDCs). On day 5, iDCs were collected and matured for 24 hours with 

cytokine cocktail (rhIL-1,  rhIL6, TNF (10 ng/mL each; R&D) and PGE2 (1mg/mL; R&D). On day 6, 

iDCs were considered mature (mDCs). For all the experiments, the CE of A. pegreffii (40 

g/mL/106cells) were added to the Mo at day 0 and day 2 of differentiation, for a total of 80 g/mL 

throughout the culture, while the live larvae L3 were added to the cells at day 0 until the end of the 

culture (7 larvae/6x105cells/mL). In parallel, live larvae L3 were seeded in culture medium in absence 

of DCs (7 larvae/mL) following the same DC culture procedure (addition of IL4 and GM-CSF cytokines 

at day 0 and 2 and addition of maturative stimuli at the end of the culture). The number of larvae 

added to the culture was chosen to assure the presence in the culture of 80 g of secreted proteins 

[average yield of secreted proteins/larva of 20 g; viability of the larva (evaluated as motility) at the 

end of culture resulted ≥ 4/7].  

 

2.5 DC phenotype 

Cell phenotype staining was performed using the following panel of mouse monoclonal antibodies 

(MoAbs) directly conjugated with fluorescein isothiocyanate (FITC) or phycoerythrin (PE): IgG1 or 

IgG2b FITC and IgG1 or IgG2b PE, as isotype controls, anti-HLA-DR FITC, anti-CD86 FITC, anti-CCR7 FITC, 

anti-CD83 PE, anti-CD14 PE, and anti-CD40 PE all purchased from eBioscence (San Diego, CA, USA). 

On day 6, iDCs and mDCs were suspended in PBS without Ca2+ and Mg2+ (Hyclone) (2x105 cells/100 

mL/sample) and incubated with the monoclonal antibodies according to manufacturer’s instructions. 

At least 1x104 events were evaluated using a FACSCanto flow cytometer (Becton Dickinson, San 

Diego, CA) running FACSDiva acquisition and analysis software (Becton Dickinson).  
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 2.6 DC Apoptosis 

Apoptosis of DCs was evaluated using the FITC Annexin V Apoptosis Detection Kit I (Becton 

Dickinson) according to the manufacturer’s instructions. Briefly, 105 DCs were resuspended in 100l 

of Binding Buffer 1X with 5L of FITC Annexin V and 5L Propidium Iodide (PI) for 15 minutes at 

Room Temperature (RT). After incubation, 400L of Binding Buffer were added to the cells that were 

than analysed using a FACSCanto flow cytometer (Becton Dickinson) running FACSDiva acquisition 

and analysis software (Becton Dickinson). Data were reported as percentage of live cells. 

 

2.7 Immunoblotting (WB) 

On day 6, differently treated DCs (106cells/sample) were centrifuged, resuspended in 50-100 L of 

PBS without Ca2+ and Mg2+ (Hyclone) and lysed by freeze and thaw. Cellular lysates were subjected 

to 10% SDS-PAGE and the resolved proteins were transferred electrophoretically to nitrocellulose 

transfer membrane (Whartman, Dassel, Germany). After blocking with PBS + 5% BSA for 16 to 18 h 

at 4°C, membranes were incubated with the mouse MoAb anti-pERK1,2 (1:1,000; Cell Signaling 

Technologies, Boston, MA, USA), anti-p50/105 (1:1,000, Cell Signaling Technologies) and anti-a-

Tubulin (1:1,000; Santa Cruz Biothecnology, Dallas Texas, USA) for 16-18 hours, overnight. 

Membranes were than treated with peroxidase-conjugated goat anti-mouse IgG (1:20,000, H+L; 

Jackson ImmunoResearch Laboratories, Pennsylvania, USA) for 1 h at room temperature. The protein 

bands were detected with enhanced chemioluminescence reagents (Merck Millipore, Darmstadt, 

Germany) following the manufacturer’s instructions. 
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2.8 DC Phagosomal ROS measurement 

Phagosomal ROS of DCs were measured as previously described.25 Briefly, DCs were pulsed with 3 

µm microbeads (Polysciences Inc) coupled with Dihydrorhodamine 123 (DHR123; ROS sensitive, Life 

Technologies, Carlsbad, CA, USA) and FluoProbes 647 (ROS insensitive, Interchim, Montlucon, San 

Diego, USA) for 15 minutes at 37°C. After extensively washing with cold PBS, DCs were incubated at 

37°C for 15 minutes and analysed by FACS (FACSCanto, Becton Dickinson), using a FL1 (DHR123)/FL4 

(FluoProbes 647) gate selective for cells that had phagocytosed 1 latex bead.   

The ratio between Mean Fluorescence Intensity of DHR123 (FL1) and FP647 (FL4) of iDCs control 

group was set as 100% of relative ROS production. The ROS measurement for the other DC samples 

were obtained by comparing the ratio of DHR123/FP647 for each DCs sample with the ratio of 

control DCs expressed AS 100%. Supplementary Figure 1 depicts the gating strategy, normalization 

of the MFI and the results of a representative donor. 

 

2.9 Intracellular cytokine staining of autologous CD4+ T cells 

On day 6, differently treated DCs were collected and plated in 75x104 cells/sample in 200 L of 

complete RPMI 1640 medium in 96 well plates (Corning Incorporated, New York, USA). Autologous 

CD4+CD45RA+ purified T cells (Miltenyi) were added to DC cultures at 1:2 ratio. After 4 days of co-

culture, cells were stimulated with PMA (25 ng/mL) (Sigma) and Ionomycin (250 ng/mL) (Sigma) and 

were incubated with Brefeldin A (10 mg/mL, Sigma) for 16 to 18 hours at 37°C and 5%CO2. T cells 

were collected, fixed, and permeabilized with Saponin (Sigma) solution at 0,5%. Intracellular staining 

was performed using the following MoAbs: FITC-conjugate anti-IFN (Biolegend, San Diego, CA), 

APC-conjugate anti-IL17A (eBioscience), PE-conjugate IL10 (BD pharmingen, San Diego, CA) and 

PerCP/Cy5.5-conjugate anti-IL4 (Biolegend). Stained cells were analysed by FACSCanto flow 

cytometer (Becton Dickinson) running FACSDiva data acquisition and analysis software (Becton 
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Dickinson). Supplementary Figure 2 depicts the gating strategy and the analysis of the IFNγ T cell 

response for each experimental condition of a representative donor. 

 

2.10 DC cytokine and chemokine measurements 

At the end of the culture, DCs were harvested and plated 106 cells/mL in 48 well plates (Corning 

Incorporated). PMA (25 ng/mL) (Sigma) and Ionomycin (250 ng/mL) (Sigma) were added to the cells 

for 48 hours at 37°C and 5%CO2. Culture supernatants were than collected and analysed using the 

ProcartaPlex Human Inflammation Panel (20 Plex) (eBioscence). Samples were measured by BioPlex 

Magpix Multiplex Reader (Bio-Rad, Hercules, CA, USA) and data analysis was performed using 

Bioplex Manager MP software (Bio-Rad). Raw data were then analysed and plotted in percentage as 

previously shown.21 PMA/Ionomycin treated iDCs or mDCs were considered as control samples and 

the obtained values were set as 100%. The value of the secreted cytokine of each experimental DC 

group (DCs+CE, DCs+L) was compared to the corresponding DC control group. Such procedure was 

adopted to analyse three independent experiments conducted employing DC cultures obtained from 

three healthy donors. The average and the standard deviation of the percentage value obtained for 

each DC experimental group among the three cultures was calculated and plotted as histogram. 

 

2.11 Statistical Analysis 

Descriptive statistics (average and standard deviation) were used to describe various groups of data. 

ANOVA test was used to analyze statistical differences between three groups. Student’s paired t-test 

was used to compare two groups. Significance level was p0.05. 
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3. RESULTS 

3.1 Molecular identification of Anisakis spp. larvae  

The subsample (N= 50) of Anisakis L3 larvae used in the present study, was assigned to the species A. 

pegreffii on the basis of the sequences analysis of the mitochondrial and nuclear gene loci studied. 

mtDNA cox2 sequences obtained from the larval nematodes used for the antigen preparations 

showed 99% or 100% similarity with sequences previously deposited in GenBank for A. pegreffii.3 In 

addition, phylogenetic analysis inferred from MP (Figure 1), showed that the sequences obtained at 

the mtDNA cox2 gene from those Anisakis spp. larvae clustered in a well supported clade also 

including the sequence of A. pegreffii for that gene, previously obtained and deposited in GenBank. 

The clade represented by A. pegreffii was also distinct from the other phylogenetic lineages 

represented by the other Anisakis spp. (Figure 1). Some sequences of mtDNA cox2 among those 

obtained were deposited in GenBank under the accession numbers: KY418057-KY418062. 

Finally, according to the diagnostic positions found at the 409 bp in length of the EF1 α−1 nDNA 

region - i.e. 186, showing a T in A. pegreffii, and the position 286, showing a C in A. pegreffii23 larval 

specimens were assigned to the species A. pegreffii (Figure 2). Some sequences of EF1 α−1 nDNA 

were deposited in GenBank under the accession numbers: KY703438 - KY703443. 

 

3.2 Live larvae of A. pegreffii affect DC survival and phenotype and modulate Erk1,2 pathway  

During infection, A. pegreffii larvae penetrate the mucosa and migrate into the tissue. To evaluate 

whether during this stage the molecular repertoire released by the larvae can affect differentiation 

and function of DCs, CD14+ monocytes from healthy donors (4) were co-cultured with parasite larvae 

(7 larvae/well) and differentiated in DCs (iDCs+L). The larvae were maintained in culture also after 

the addition of maturing stimuli to DCs (mDC+L). 
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The cell viability was initially evaluated detecting the incorporation of Propidium Iodide and the 

positivity to the staining with Annexin V (Figure 3A). Results were plotted as percentage of live cells, 

using iDCs and mDCs as controls (results of a representative donor among the four analysed are 

reported in Supplementary Figure 3B). The larvae of A. pegreffii induced the apoptosis of a high 

amount of DCs compared to controls, significantly reducing the percentage of live DCs both before 

and after maturation (iDCs vs iDC+L, 92%8% vs 40%25%, p<0.01; mDCs vs mDC+L, 95%2% vs 

55%12%, p<0.01). At the end of the culture, A. pegreffii larvae in co-culture with DCs showed still 

motility (≥ 4/7), similarly to the larvae seeded in the well in absence of DCs (data not shown). 

The phenotype of iDCs+L and mDCs+L was then analyzed by monitoring the expression of HLA-DR, 

CD86 and CD40 costimulatory molecules, the differentiation marker CD83, the chemokine receptor 

CCR7 and the monocyte marker CD14. (A representative analysis is shown in Supplementary Figure 

3B). iDCs+L expressed significantly lower levels of HLA-DR and higher levels of CD86 and CCR7 

compared to iDCs. After maturation, mDC+L displayed a significant down-regulation of the HLA-DR 

and CCR7 compared to mDCs (Figure 3B). CD83 marker was strongly down-regulated in mDCs+L 

compared to control DCs, albeit this decrease was not statistically significant (MFI of mDCs vs 

mDCs+L, 448 vs 188, p=0.06). CD14 was negative in all samples and no differences in the CD40 

expression was observed (data not shown). 

DCs were also analyzed for the intracellular signalling triggered by the exposure to the live parasite. 

In particular, the activation of NF-B (p50) and ERK1,2 pathways were evaluated by western blotting 

(Figure 3C). Results demonstrated that in immature DCs, activation of the NF-B pathway and 

phosphorylation of ERK1, 2 kinase were similar in the absence or in the presence of the live parasite. 

After DC maturation, a strong decrease of the ERK1,2 signal was observed in mDCs+L compared to 

control, while the activation of NF-B pathway remained unaltered. 
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3.3 CE of A. pegreffii induces apoptosis of DCs and modulates DC phenotype 

To determine whether CE derived from L3s of A. pegreffii per se could affect the survival and the 

phenotype of DCs, the cells were also differentiated and maturated in presence of the CE (iDCs+CE 

and mDCs+CE, respectively) and analysed by flow cytometry as shown for a representative donor 

among nine in Supplementary Figure 2. 

As described for the larvae, the presence of the CE in the culture medium significantly decreased the 

percentage of live cells compared to controls (iDCs vs iDC+CE, 90%10% vs 60%10%, p<0.05; mDCs 

vs mDC+CE, 85%10% vs 63%8%, p<0.05) (Figure 4A). In addition, the CE strongly affected DC 

phenotype (Figure 4B). iDC+CE expressed lower levels of HLA-DR and CD86 compared to iDCs, while 

no difference was observed in the other DC markers. After maturation, HLA-DR, CD86, CD83 and 

CCR7 molecules remained lower than mDCs, while CD14 and CD40 molecules were not modified 

(data not shown). 

The analysis of NFB and ERK1,2 pathways showed that the exposure of iDCs to A. pegreffii CE 

induced a slight increase of both signalling pathways as compared to control iDCs. Conversely, the 

maturation process strongly reduced the phosphorylation of ERK1,2 in mDCs+CE, while the NFB 

signalling was similar in both mDCs+CE and mDCs (Figure 4C). 

 

3.4 Phagosomal ROS level in DCs are increased following exposure to A. pegreffii 

We then investigated whether the antigen presenting machinery of DCs was altered by DCs-A. 

pegreffi interaction by evaluating the phagosomal Radical Oxigen Species (ROS) levels in DCs. The 

radical cargo in the phagosomal compartment is crucial to regulate antigen cross-presentation, a 

unique ability of DCs that allows antigen cross-priming.26 
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Phagosomal ROS levels were measured by flow cytometry in DCs exposed to both live larvae and CE, 

before and after DC maturation (Figure 5). ROS production in both iDCs and mDCs appeared to be 

significantly modulated by the exposure to CE or live larvae (p<0.001). In the presence of A.pegreffii, 

both the live larvae and CE, the phagosomal ROS of iDCs were significantly increased compared to 

control iDCs (p<0.001). 

Following maturation, again phagosomal ROS levels were strongly upregulated in the presence of 

both parasite larvae and crude extracts formulations than control DCs (p<0.001). These results show 

that the exposure to parasite modulates phagosomal ROS accumulation in DCs, making these cells 

more similar to macrophages. 

 

3.5 Chemokine/Cytokine pattern released by DCs is differently modulated by A. pegreffii live larvae 

and CE  

DCs release different type of cytokines and chemokines according to the type of the stimulus in the 

microenvironment.27 At the end of the culture, differently treated DCs were stimulated with PMA 

and Ionomycin for 48 hours and the supernatants were analysed for the presence of inflammatory 

mediators. DC cultures from three distinct healthy donors were analysed. The results were plotted 

setting the values of the control DC samples (iDCs and mDCs) as 100% (Figure 6). In the presence of 

the live larva (DCs+L), DC production of CXCL10, CCL4 chemokines and sICAM were significantly 

downregulated, independently of the maturation stage. The exposure of DCs to CE induced a mild 

and not significant reduction of the CXCL10, CCL4 and sICAM. Interestingly, CCL3 chemokine was 

strongly upregulated in both DCs+L (immature and mature, p<0.001 and p<0.05, respectively) and 

significantly increased in mDCs+CE (p<0.01).  
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The pro-inflammatory cytokines IL6, and in particular IL1 were strongly up-regulated. IL6 increased 

significantly in immature DCs exposed to both live larvae and CE (p<0.01); in mDCs the IL6 response 

was still high, but more heterogeneous among donors. IL1 secretion was enhanced particularly by 

the exposure of DCs to the live larva (iDCs+L: p<0.05; mDCs+L: <p<0.001), while the presence of CE 

induced a slight although significant IL1 .05).  

A.pegreffii impacted DCs for the production of T cell polarizing cytokines. The immunosuppressive 

cytokine IL10 was consistently reduced in the presence of live larva (iDCs+L and mDCs+L: p<0.001). 

Following exposure of DCs to CE, a trend in IL10 reduction was observed in iDCs+CE, while a slight 

but not significant increase was detected in mDCs+CE. 

IL4 production was modulated contrariwise in iDCs exposed to the live larva or to CE. In fact, IL4 

dampened in iDC+L (p<0.05), while it increased in iDCs+CE. A similar trend was observed in mDCs. 

Interestingly, the two A. pegreffii preparations differently affected GM-CSF secretion. DCs exposed 

to live larva were poor producer of GM-CSF (p<0.001); whereas, a trend of increase was observed in 

mDCs exposed to CE. 

 

3.6 DCs exposed to A. pegreffii are poor inducer of Th1 response. 

The ability of differently treated DCs to polarize naïve T cells towards Th1, Th2 and Th17 phenotype 

was studied. On day 6, iDCL or CE and mDCsL or CE were collected and incubated with autologous 

CD4+CD45RA+ T cells for 4 days. T cells were than stimulated with PMA and Ionomycin for 16-18h 

and the production of IFN, IL4, IL10 and IL17 was evaluated as intracellular cytokine staining (Figure 

7). The presence of both the live parasite and the CE during DC differentiation exclusively hampered 

the production of IFN by T cells, while IL4, IL17 and IL10 production were not affected.  

In particular, IFN mediated T cell response was significantly reduced in response to iDCs+CE with 

respect to control mDCs (p< 0.05); while, a trend in IFNy cytokine decrease was observed upon 
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stimulation of iDC+L and both mDC+L/CE. 

 

4. DISCUSSION 

In this study, we investigated for the first time the immunomodulatory effects of A. pegreffi on the 

differentiation and function of DCs, showing that DCs contribute to the inflammatory chronic 

response to the parasite by sustaining a strong inflammatory microenvironment and modulating 

their ability to recruit immune cells at the infection site.  

DCs are antigen presenting cells equipped with a complex array of dynamically regulated receptors 

that endow them to sense the microenvironment and to interact with the other cells of the immune 

system, thus modulating their functions in response to pathogen interactions.28  

In Anisakis infections, the tissue resident APCs first encounter the parasite, while the larva actively 

penetrates the gastrointestinal mucosa and migrates into the tissues.  

In the following weeks, APCs are exposed to the necrotic debris released by the dying larvae and to 

the stress signals of the damaged tissues.  

As in vitro model, monocyte derived differentiating DCs were exposed to L3 stage live larva or its 

crude extracts.  

The use of the live larvae allows the direct interaction of differentiating DCs with the molecular 

determinants of the cuticle layer and the whole molecular repertoire actively released by the larvae, 

similarly to what happens in vivo.  

This in vitro system also prevents the possible loss of parasite released components as such as 

microvesicles,29 due to the purification of the secretory product. The release of necrotic debris of the 

dead parasite after infection was mimicked by the CE obtained from the same larvae. 
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The first striking effect observed was the decrease of DC viability due to the induction of apoptosis in 

the presence of the live larvae as well as CE. Apoptosis is adopted by helminths to dampen host 

immune responses30-31 and to invade tissues.32-33 Recently, apoptosis of fibroblast exposed to A. 

pegreffii was observed.34 Here, we report that apoptosis is employed by A. pegreffii as a mechanism 

of immune escape, strongly reducing DC viability throughout the infection phases. 

A. pegreffi also appeared to strongly impact DC differentiation and maturation. The presence of both 

the alive larvae as well as the CE in culture generated DCs with an impaired phenotype as 

demonstrated by the lack of CD83 expression, marker of DC differentiation lineage, low expression 

of HLAII-DR, and CD86 costimulatory molecules that are required for the activation of a strong 

immune response. The chemokine receptor CCR7, crucial for DC homing to lymph nodes, was 

downregulated suggesting that DCs are immobilized in the tissue, thus undermining T and B cell 

priming in the lymph nodes.35 

The impairment of DC maturation is a common immunosuppressive mechanism adopted by many 

helminths.36 Exposure to excretory/secretory products of Trichinella spiralis induces immature 

features in both mouse and human DCs activating a Th2 polarization and/or regulatory T cell 

responses.37-38 Soluble products from Schistosoma mansoni induce up-regulation of OX40L and 

modulation of pro-inflammatory cytokines produced by DCs contributing to Th2 skewing.36 Also, DC 

phenotype and maturation are impaired upon exposure to nematodes as Trichuris suis or Ascaris 

lumbricoides, A. suum, Th2 responses.21,39-40 

Other important biological features of DCs affected by A. pegreffii were the intracellular signalling, 

the phagosomal activity and the secretion of pro-inflammatory and regulatory cytokines. 

The interactions with pathogens induce the reprogramming of DC signalling: in particular, the 

balance between ERK,1,2 and NFB pathways seems to be a critical parameter for DC activation.41 

The presence throughout DC differentiation of A. pegreffii (both live larvae and CE) strongly 
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decreased ERK1,2 pathway after DC maturation, while NFB signal was not affected. These results 

appear in contrast with previous evidences showing a transient activation of ERK1,2 pathway in DCs 

following a short-time exposure to helminth components.42-43 The type and the duration of the 

pathogenic stimulus seem to differently modulate phosphorylation of this kinase and to drive 

distinct cellular behaviours. 41 Furthermore, other DC signalling pathways could be involved and 

further studies are required to precisely trace the triggering induced by Anisakis infestation. 

A. pegreffii, both as live larvae or as CE, led to a strong increase of Radical Oxigen Species (ROS) in 

the phagosomal compartment. This is a feature of macrophages and not DCs.26 Recently, increased 

cellular ROS levels have been described as a response of fibroblasts to A. pegreffii.34 In DCs, 

phagosomal ROS levels modulate antigen degradation and therefore impact HLAII/HLAI presentation 

and activation of CD4/CD8 T cells.26 This suggests that DCs exposed to A. pegreffii have antigen 

presenting machinery favouring CD4+ mediated T cell responses. 

Interestingly, cytokine production by DCs was differently modulated by the live larva compared to 

the CE. Indeed, IL4, cytokine required for Th2 polarization, was modulated contrariwise in iDCs 

exposed to the live larvae or to CE: IL4 dampened in iDCs+L (p<0.05), while it increased in iDCs+CE 

(p<0.01). Also IL10 secretion by DCs was reduced in the presence of the live larva, while the CE did 

not exert any significant effect on IL10 production. 

Furthermore, the pro-inflammatory cytokines IL1α and, remarkably, IL6 were significantly enhanced 

by both formulations of A. pegreffii, although the live larva exerted the stronger effect. 

These results suggest that while DCs may contribute to establish local inflammation since the early 

stages of infection, they do not clearly contribute to cytokine environment for Th2 polarization.  

Indeed, autologous CD4+ T cells, stimulated by DCs differentiated in the presence of live larvae or CE, 

failed to produce IL4, IL17 and IL10 suggesting that DCs were not sufficient to drive Th2/Th17 or Treg 

polarization.44 However, T cells displayed a remarkable decrease of IFN production, particularly 
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significant in iDCs, suggesting that DC driven Th1 polarization was impaired.  

The Th2 response against helminths is regulated by a complex cell network: alternative activated 

macrophages, ILC2, fibroblasts, mast cells, damaged epithelial cells release cytokines with 

overlapping regulatory functions.45 IL4 and IL13, the cytokines required for the Th2 skewing and 

granuloma formation are produced by basophils, ILC2 and IL13 is amplified by Th2 cells. Recently, 

Tuft cells, a rare epithelial cell type of the steady state intestinal epithelium, able to amplify in 

response to IL4, have been shown to be responsible for initiation of the type 2 response to helminth 

parasites.46 

In our system, DCs exposed to the live larvae acquired features of impaired ability to recruit immune 

cells: the downregulation of CXCL10 and CCL4, chemokines involved in the migration of leukocytes,47 

counteracted the signals for recruitment given by the increase in CCL3 production and by sICAM 

downregulation.48-49 Furthermore, DCs dampened the production of GM-CSF, a mediator of the 

cross-talk between myeloid cells and T cells in the inflamed tissues.50 

When DCs were exposed to CE, as it happens when the larva is dying in vivo, CCL3 increased and 

CXCL4, CCL4 and GM-CSF levels were similar to control DCs , suggesting a possible role of DCs in the 

recruitment of immune cells. 

Taken together, these results suggest that DCs might participate to the complex scenario of the 

immune reaction to A. pegreffii infection, according to the infection phase.  At the first step, the live 

larva induces apoptosis, DCs differentiation and maturation and reduces DC ability to migrate to the 

lymph node. Such DCs contribute to generate an inflammatory microenvironment (IL1 and IL6 

increase) to sustain the plasticity for Th differentiation, while blocking Th1 polarization (reduced 

IFN T cell responses) and altering leukocytes recruitment. When the parasite undergoes cell death, 

the necrotic debris still induces apoptosis and prevents DCs to migrate to the lymph node. The tissue 

resident DCs upregulates CCL3 chemokine that may favour leukocyte recruitment during granuloma 
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formation and production of IL4, that in combination with IL6 might contribute to redirect T cells 

towards Th2 differentiation.51 

Which are the ligands in A. pegreffii that are involved in such immunomodulatory effects remains an 

open question. Recently, the C-type lectin receptors, recognizing carbohydrate ligands, seem to play 

a key role in triggering immunosuppressive functions of DCs by helminths.21, 52-53 Interestingly, Ani s 

7, among the major allergens in A. pegreffii,10 is indeed a glycoprotein.54  

The post-translational modification that decor the protein array of the anisakid species A. pegreffii 

may be extremely relevant to understand the mechanisms underlying the impact of the parasite on 

innate immunity and DCs, in particular in order to manage and prevent the immune-mediated 

pathological responses caused by this zoonotic parasite.  
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LEGENDS TO THE FIGURES 

FIGURE 1. Maximum Parsimony (MP) consensus tree based on mtDNA cox2 gene sequences of A. 

pegreffii larvae from E. encrasicolus and Merluccius merluccius from Adriatic Sea, (used for 

incubation with DCs and CE preparation) with respect to the other Anisakis spp. That were 

previously sequenced. The analysis was performed by PAUP4*,55 using Bootstrap values (>70) 

reported at the nodes; Toxocara canis and Ascaris suum were used as outgroups. 
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FIGURE 2. Alignment, by using BioEdit,56 of the EF1 α−1 nDNA (409 bp) sequences of A. pegreffii 

larvae, (used for incubation with DCs and CE preparation), with respect to those of A. pegreffii and A. 

simplex (s. s) previously sequenced and deposited in GenBank.23 The relative electropherograms of 

these genotypes are also reported below. The arrows are showing the fixed nucleotide diagnostic 

positions (as indicated in the text) between A. pegreffii and A. simplex (s.s.). Dots indicate identity; 

standard IUPAC codes were used. Accession numbers of sequences of A. pegreffii at the EF1 α−1 

nDNA gene, deposited in GenBank, are reported in the text. 

 

FIGURE 3. Live larvae (L) of A. pegreffii induce apoptosis, alter DC phenotype and activates ERK1,2 

and NFB pathways. A. Histograms represent the percentage of live cells obtained after 6 days of DC 

culture. DCs were differentiated and matured in absence of the larvae (iDCs and mDCs) and in 

presence of the live parasite (iDCs+L and mDCs+L). Data are reported as mean percentage of live 

cells derived from 4 donors standard deviation B. Expression of HLA-DR, CD86, CD83 and CCR7 

markers obtained by flow cytometry from 4 donors in differently treated DCs. Data are reported as 

values of Mean Fluorescence Intensity (MFI) C. Western blotting of differently treated DC lysates. 

Cell lysates were stained with pERK1,2 and p50/105. -tubulin was used as loading control. Samples 

were run in 4-15% SDS-PAGE gels and were analysed in reducing conditions. These results are 

representative of one donor out of three. 

 

FIGURE 4. CE of A. pegreffii activates DC apoptosis, modulates DC phenotype and triggers ERK1,2 

and NFB pathways. A. Histograms represent the percentage of live cells obtained after 6 days of DC 

culture. DCs were differentiated and matured in absence (iDCs and mDCs) and in the presence of the 

OM (iDCs and mDCs). Data are reported as mean percentage of live cells derived from 9 donors 

standard deviation B. Expression of HLA-DR, CD86, CD83 and CCR7 markers obtained by 
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cytofluorimetry from 9 donors in iDCs and mDCs alone or in presence of the OM. Data are reported 

as values of Mean Fluorescence Intensity (MFI). C. Western blotting of differently treated DC lysates. 

Cell lysates were stained with pERK1,2 and p50/105. -tubulin was used as loading control. Samples 

were run in 4-15% SDS-PAGE gels and were analysed in reducing conditions. These results are 

representative of one donor out of four. 

 

FIGURE 5. ROS measurement at 30 minutes of chase. iDCs or mDCs+CE (grey histograms) and iDCs or 

mDCs+L (black histograms) have a significant higher ROS molecules compared to iDCs or mDCs 

(white histograms). ROS levels are plotted as arbitrary units of three independent experiments. ROS 

level in iDCs at time 30 of chase corresponded to 100 arbitrary units. Significance was evaluated as 

Student t test pairing DC control sample vs DCs+L experimental sample or DC+CE experimental 

sample. Anova test was employed to evaluate significative differences among the iDCs or the mDCs 

samples, while t Student test for paired samples. *p<0.05, **p<0.01, ***p<0.001. 

 

FIGURE 6. Live larvae (L) and CE of A. pegreffii modulate the cytokines and chemochine chemokines 

released by DCs (three donors). The amount of sICAM, CXCL10, CCL4, CCL3, IL6, IL1, IL4, IL10 and 

GMCSF were measured in differently treated DC culture supernatants by Luminex multiplex beads 

analysis after 48 hours of PMA/Ionomycin stimulation. Secretion range for each molecule was as 

follow: sICAM: 7,7-12,4 g/mL (iDCs)/12-16 g/mL (mDCs); CXCL10: 25-130 ng/mL (iDCs)/57-138 

ng/mL (mDCs); CCL3: 0,376-1,4 g/mL (iDCs)/0,448-1,7 g/mL (mDCs); CCL4: 19-84 g/mL (iDCs)/22-

96 g/mL (mDCs); IL6: 116-273 ng/mL (iDCs)/0,3-3 g/mL (mDCs); IL1: 36-56 ng/mL (iDCs)/46-98 

ng/mL (mDCs); IL10: 10-39 ng/mL (iDCs)/25-42 ng/mL(mDCs); IL4: 0,107-6,3 g/mL (iDCs)/0,15-8,4 

g/mL (mDCs). For each experiment, Values obtained for iDCs and mDCs control samples were set as 

100% and the corresponding cytokine/chemokine measurement for the experimental DC group 
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compared and calculated as percentage.  

Significance was evaluated as Student t test pairing DCs control samples vs DCs+L experimental 

group or DCs control samples vs DCs+CE experimental group. * p<0.05, **p<0.01, ***p<0.00.  

 

FIGURE 7. DCs treated with the live parasite (L) and the CE of A. pegreffii reduces the production of 

IFN by T cells. Differently treated DCs were co-cultured for 4 days with naïve T lymphocytes. T cells 

were than stimulated for 16-18 hours with PMA/Ionomycin in presence of Brefeldin. The production 

of IFN, IL4, IL10 and IL17 were analysed as intracellular staining. Data are reported as mean 

percentage of cytokine-producing cells derived from 4 donors  standard deviation. Significance was 

evaluated as Anova test among the three experimental conditions for each set of iDC or mDCs. 

Student t test pairing DCs control samples vs DCs+L experimental samples or DCs control samples vs 

DC+CE experimental samples. *p<0.05, **p<0.01, ***p<0.001. 

Anova test indicated significance only for the IFN production induced by iDCs (p<0,05); in particular  

iDC+CE were significantly poor stimulator for IFN production as compared to iDCs (p<0,05).  

 

LEGENDS TO SUPPLEMENTARY FIGURES 

SUPPLEMENTARY FIGURE 1. Phagosomal ROS analysis of DCs by flow cytometry: gating strategy and 

analysis of DC samples. DCs were pulsed with DHR132 (FL1)/FP467(FL4) coupled beads (3 m). After 

washing, DCs were analysed by flow cytometry to evaluate phagosomal ROS. The gating and analysis 

of iDCs (first row, panels a-c), iDCs+CE (second row, panels d-f) and iDCs+L (third row, panels g-i) are 

depicted. DCs were identified and gated by physical parameters SSC-A/FSC-A (panels a, d, g) 

Subsequently, the gated cells were plotted by SSC-A and SSC-W, parameters that allow 

distinguishing single cells from double or multiple cells; the single DCs were then gated (dot plot b, e, 
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h). The gated single cell DCs population was then plotted by fluorescence parameters (APC-A/FL4, y 

axis; FITC-A/DHR132 (x axis) (dot plot c, f, i). The double positive events corresponded to DCs that 

have phagocytated one, two or more beads. A third gating was made to select the double positive 

cells that had phagocytated one bead/cell. The mean Fluorescence Intensity of FL1 and FL4 was 

calculated for this latter gated cell population. The ratio between FL1 (ROS sensitive) and FL4(ROS 

insensitive) of iDCs was set as 100% ROS arbitrary Units. The FL1/FL4 ratio of DC experimental 

samples is then related to the FL1/FL4 ratio of DC control sample and converted in percentage (see 

Supplementary Table 1).  

 

SUPPLEMENTARY FIGURE 2. Flow cytometry analysis of the T cell mediated IFNγ production in one 

representative donor. Panel A) gating of T cells (first column) and analysis of the T cell mediated IFNγ 

production (second column) after stimulation with iDC (first row), iDCs+L (second row), iDCs+CE 

(third row). T cells were plotted for the physical parameter SSC-A (y axis) and FSC (x axis) (first 

column). The gate P1 identified the cells that were analysed by IFNγ production (second column) 

[IFNγ-FITC/FL1(y axis) and FSC (x axis)]. The events above the gate for FITC control were then 

considered positive and percentage calculated and reported in the plot. Panel B similarly depicts T 

cell gating and T cell mediated IFNγ production of T cells stimulated with mDCs (first row), mDCs+L 

(second row) and mDCs+CE /third row). 

 

SUPPLEMENTARY FIGURE 3. Phenotype characterization and viability of DCs exposed to live larvae 

of one representative donor. A) Gating of DCs population by flow cytometry physical parameters 

[SSC-A (y axis) and FSC (x axis)]; B) Apoptosis analysis by double staining PI(FL4)/Annexin V (FL1) of 

iDCs, iDCs+L, mDCs, mDCs+L, respectively. The percentage of cells undergoing apoptosis 

corresponded to the sum of double positive cells and Annexin V-positive cells. C) Phenotype analysis 

of iDCs, (first column), iDCs+L (second column), mDCs (third column), mDCs+L (fourth column). 
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Fluorescence signal associated to the cells is plotted as histograms. Mean Fluorescence Intensity 

(MFI) of each histogram is reported. In first row and in fifth row the FITC-isotype and PE-isotype, 

respectively are reported. 

 

SUPPLEMENTARY FIGURE 4. Phenotype characterization and viability of DCs exposed to CE of one 

representative donor. A) Gating of DCs population by flow cytometry physical parameters [SSC-A (y 

axis) and FSC (x axis)]; B) Apoptosis analysis by double staining PI(FL4)/Annexin V (FL1) of iDCs, 

iDCs+CE, mDCs, mDCs+CE. The percentage of cells undergoing apoptosis corresponded to the sum of 

double positive cells and Annexin V-positive cells. C) Phenotype analysis of iDCs, (first column), 

iDCs+CE (second column), mDCs (third column), mDCs+CE/fourth column). Fluorescence signal 

associated to the cells is plotted as histograms. Mean Fluorescence Intensity (MFI) of each histogram 

is reported. In first row and in fifth row the FITC-isotype and PE-isotype respectively are reported.  
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