SCIENTIFIC REPLIRTS

Digital reconstruction of the
Ceprano calvarium (ltaly), and
implications for its interpretation

Received: 30 June 2017 Fabio DiVincenzo?, Antonio Profico'?, Federico Bernardini**, Vittorio Cerroni®, Diego
Accepted: 13 September 2017 . Dreossi®, Stefan Schlager’, Paola Zaio®, Stefano Benazzi®?, Italo Biddittu?, Mauro Rubini**1?,

Published online: 25 October 2017 Claudio Tuniz**!! & Giorgio Manzi'2

The Ceprano calvarium was discovered in fragments on March 1994 near the town of Ceprano in
southern Latium (Italy), embedded in Middle Pleistocene layers. After reconstruction, its morphological
features suggests that the specimen belongs to an archaic variant of H. heidelbergensis, representing a
proxy for the last common ancestor of the diverging clades that respectively led to H. neanderthalensis
and H. sapiens. Unfortunately, the calvarium was taphonomically damaged. The postero-lateral

vault, in particular, appears deformed and this postmortem damage may have influenced previous
interpretations. Specifically, there is a depression on the fragmented left parietal, while the right cranial
wall is warped and angulated. This deformation affected the shape of the occipital squama, producing
an inclination of the transverse occipital torus. In this paper, after X-ray microtomography (uCT) of both
the calvarium and several additional fragments, we analyze consistency and pattern of the taphonomic
deformation that affected the specimen, before the computer-assisted retrodeformation has been
performed; this has also provided the opportunity to reappraise early attempts at restoration. As a
result, we offer a revised interpretation for the Ceprano calvarium'’s original shape, now free from the
previous uncertainties, along with insight for its complex depositional and taphonomic history.

The hominid fossil calvarium discovered near Ceprano (Frosinone, Latium, Italy) represents a rather puzzling
specimen in relation to other European hominins of the Middle Pleistocene’. For a decade after the discovery
(March 13th, 1994), its chronology was considered to be around 800-900 ka**, whereas more recent data points
to the beginning of MIS 11, providing a date bracketed between 430 and 385 ka®. This revised chronology cor-
responds to a time span when European cranial and postcranial samples already exhibited derived phenotypes
shared with Homo neanderthalensis®='°. The absence of clear Neanderthal-like traits in the Ceprano calvarium?®,
combined with its unique combination of architectural and discrete features*''-'%, distinguishes the Italian spec-
imen from great part of the penecontemporaneous fossil record in Europe, suggesting that its morphology prob-
ably persisted in an eco-geographic isolated refugium, while more derived morphs were spreading across the
continent™',

From a taxonomic point of view, since its discovery the Ceprano calvarium has been alternatively viewed as a
“late” H. erectus?, a possible adult representative of H. antecessor* and even the holotype of a new species named
H. cepranensis'®. By contrast, Ceprano is more probably representative of an archaic variant of H. heidelbergen-
sis'2, furnishing evidence for the cranial morphology of the still poorly known stem subspecies (or paleodeme)
of this taxon™'°.
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Figure 1. Three stages of the challenging process of restoration of the Ceprano calvarium performed directly on
the original specimen by various workers between 1994 and 1999. As described in the text, the reconstruction
was originally performed under the direction of the late A. Ascenzi (top row), subsequently corrected by R.J.
Clarke (middle), and revised by M.A. de Lumley, F. Mallegni and co-workers (bottom).

Background

The Ceprano calvarium was discovered by one of us (I.B.) in an area known as Campogrande, encompassed
between the small towns of Ceprano, Pofi and Castro dei Volsci in southern Latium. The discovery occurred
after a bulldozer sectioned (approximately from west to east) the clay containing the cranium and the other over-
lying sediments. Thus, the fragments of the calvarium were found within a stratified series of fluvio-lacustrine
deposits*® and some of them were still in situ. Specifically, great part of the frontal bone was found with the
brow ridges inclined downwards and inserted in the clay, showing the coronal profile (parallel to the east-west
section of the deposit) and the endocranial surface to the observer, suggesting that the cranium was facing toward
south-south-west before it was disturbed, with the rear portion of the vault rather upwards (I.B., personal obser-
vation). Approximately 50 large fragments were unearthed in a small area near the original find and more than
200 small pieces were collected by sieving the sediments. Unfortunately, most of the facial bones, as well as large
part of the cranial base and almost of all the left parietal were not located.

Since its discovery, the state of preservation and the incompleteness of the Ceprano calvarium contributed to
uncertainty about its taxonomy and phylogenetic position. In several attempts to resolve this problem, the large
and anatomically identifiable cranial fragments were submitted to a challenging process of restoration. This took
place just after the discovery and was completed in 1999: the final restoration is based on the original reconstruc-
tion performed preformed between 1994 and 1996 under the direction of the late prof. A. Ascenzi? this work
was subsequently corrected by R.J. Clarke in 1997'7 and his restoration was further revised by M.A. de Lumley,
F. Mallegni and co-workers in 1999° (Fig. 1). The main difference between the first and the subsequent recon-
structions involves the removal of many of the original inclusions of dental plaster (i.e. gypsum), as well as the
relationship between the anterior and posterior portions of the cranium. On the right side of the calvarium, this
relationship now rests on the articulation between the frontal and the parietal bones (along two large segments of
the coronal suture), while the greater wing of the sphenoid articulates with the frontal bone and (endocranially)
with the temporal squama. On the left side of the calvarium, the temporal bone is largely connected with the pre-
served part of the sphenoid, which in turn articulates with the frontal bone. The third and current reconstruction®
specifically differs from the previous ones for the following improvements: a large fragment of the right parietal
(originally considered as a posterior part of the left parietal) has been referred to the anterior corner of the right
parietal, joining the frontal bone along the first third of the coronal suture, and was thus repositioned; some
small anatomical elements have been added to the restored calvarium, as for example the frontal processes of the
zygomatic bones.
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Figure 2. Hypothesized original position of the Ceprano calvarium within the sediments, and subsequent
phases of the diagenetic process; plastic deformation occurred before the fossilization of the cranium, with
eventual breakage and loss of bony materials on the left and longitudinal fractures on the right.

Unfortunately, all these reconstructions were made directly with the original fragments and with extensive
use of dental plaster, particularly at the end of the first attempt?. The subsequent restoration procedures required
the removal of great part of the plaster used for the original reconstruction. Medical CT-scans of the calvarium
revealed the extent of plaster of at least two types, which pervade the fine texture of the diploic layer of vari-
ous bones (Fig. S1) and discouraged mechanical removal. The use of chemical solvents were also not possible.
Attempts to digitally delete the plaster from the calvarium have also failed, since medical CT scanners do not have
enough resolution; therefore, even this procedure did not work either using threshold filters applied globally or
working manually on each tomographic slice.

Nevertheless, it is clear that the Ceprano calvarium requires further restoration efforts in order to be better
understood. As a matter of fact, the calvarium appears affected by a deformation involving the postero-lateral
vault. The main feature of this deformation is clearly visible in posterior view (Figs 1 and S2), where the cranial
vault appears compressed on the left and bent on the right, with comparable but opposite deformation effects!>!5.
This implies an action of taphonomic processes due to the overlying sediments (Fig. 2), which appears to have
applied an exertion of a lateral and downward pressure onto the left parietal. This pressure then flattened and
fragmented the left parietal, with irregular edges of the preserved fragments and the rest of the bone that became
largely missing. By contrast, the right parietal is angulated in coronal sections at the level of the temporal lines,
with elongated fractures that run antero-posteriorly along the sub-vertical lateral wall of the cranium. It is proba-
ble that the same taphonomic process of deformation affected the occipital squama too, which exhibits an unnat-
ural tilting of the transverse occipital torus leading it to appear clearly sloping toward the right when observed in
posterior view (see Figure S2).

Our goal is to examine in detail the effects of these presumed taphonomic events, providing new insight
into the original morphology of the specimen. We have chosen to apply methods from virtual anthropology®,
submitting the calvarium and a number of isolated fragments to X-ray microtomography (WCT). Only with
high-resolution 3D imaging we can in fact digitally remove the insertions of dental plaster and separate the frag-
ments. This was a prerequisite for correcting the positions of pieces that were misplaced or misaligned. Eventually,
we performed the retrodeformation realignment of the entire volume of the calvarium through a symmetrization
procedure in R environment?*-?2. Before the retrodeformation was performed, we followed an analytical proto-
col that aimed to quantify consistency between the taphonomic hypothesis and the pattern of deformation that
affected the calvarium.

Results and Discussion

Each fossil fragment of the digitized Ceprano calvarium (N =41) was freed from the plaster matrix and separated
- using manual segmentation methods - from the other fragments (Fig. 3). It was not possible to add any of the
larger isolated fragments (N = 20; Figure S4) into the new reconstruction; although we were able to determine
their anatomical identity (Table S2), none of them displays a clear contact with any of the fragments included in
the reconstruction.

When the fossil fragments were freed from the plaster, it was clear that the original reconstruction needed
further intervention. It became obvious that several of the fragments had been misplaced or misaligned. We were
able to implement a series of corrections to the relative position of each digital fragment. The consequences of
these changes are visible in Figs 4-5 (compare with Figure S5).

Specifically, the temporo-parietal region of the left side of the calvarium required considerable adjustment.
The right temporal bone had been successfully reconstructed by previous research efforts, whereas the left tem-
poral bone lacked bony contacts anteriorly (for example, at the base of the zygomatic arch) and posteriorly (where
an ossicle at asterion is missing). Thus, looking at the first physical reconstruction?, this region appears projected
posteriorly and laterally with respect to the midsagittal plane (Figs 1 and S2). This displacement was never cor-
rected®!” and confers to the left side of the calvarium an unnaturally irregular profile, as compared to the right
side from a superior view. At the same time, the left mastoid complex appears displaced inferiorly, when com-
pared in posterior view to the mastoid of the right side.
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Figure 3. Six canonical views of the segmentation of the Ceprano calvarium after pCT scans, which freed it
from the plaster matrix. All the fragments included in the last physical reconstruction® (N =41) were thus
digitally isolated and are distinguished here by color.

Our digital repositioning of these skeletal elements started by moving the fragments labelled 1-4 superi-
orly and anteriorly (see Fig. 4), in order to find a better fit with the anterior portion of the left temporal bone.
Specifically, fragment 1 was isolated and then realigned to firmly connect to fragment 2 (posterior portion of the
left temporal bone). To accomplish this, we used the relationships between the various anatomical elements that
are visible on the right side to guide us. These elements included the relative position of the angular torus, the
inferior temporal line and a terminal segment of the supramastoid crest. Because of this effort, the segment of the
temporal line that is visible on fragment 1 now rests in a natural continuity with the temporal line preserved on
the anterior portion of the temporal bone (parietal component of fragment 2).

The new position of fragment 1 produced several cascading effects, starting from a hiatus of a few millimeters
that was filled by moving fragment 2 superiorly and rotating it medially. In addition, the anterior portion of the
temporal bone was rotated medially, in order to fit with the new position of the mastoid complex (Fig. 4). These
movements reduced the lateral projection of the left parietal profile, while the preserved portion of the sphenoid
on the left now better approximates the level of the same region preserved on the right side (compare Fig. 5).
Eventually, given the adjusted anterior position of the left temporal bone, the occipital bone was also repositioned,
followed by the entire right side of the cranial vault, which shifted posteriorly and slightly superiorly.

Another important repositioning involved the new orientation of fragments of the occipital squama labeled
5 and 6 (see Fig. 4). These have been placed more medially than in the previous reconstruction; in particular, a
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Figure 4. These pictures show changes occurred in our digital reconstruction of the Ceprano calvarium

with respect to the last physical one®. (a) Temporal fragments labeled 1-4 are moved superiorly and rotated
anteriorly and connect better with other portions of the left temporal bone; while the occipital fragments 5 and
6 are moved slightly medially to fit better with the occipital bone (compare Figure S6). (b) The final result is
represented in light green (dark green =former reconstruction). (c-e) Three orthogonal sections showing the
main differences in the position of the bony fragments 1-4 when moved from the previous reconstruction (solid
surfaces) to the newly restored one (empty light contours).

small fragment specific to the inion landmark (fragment 5 in Fig. 4), including a portion of the external occipital
protuberance, was rotated towards the nuchal plane (see Figure S5). As a result of this repositioning, the residual
part of the external occipital protuberance now makes direct contact with a cranial fragment housing the external
occipital crista.

After digital restoration, the taphonomic deformation that affected the specimen required an extensive study
of the deformation pattern. This assessment mainly involved the parietal bones (with crushing of the left parietal
and bending of the right parietal) and the occipital bone (including the tilted transverse torus). This evalua-
tion was carried out using a protocol that combined Thin Plate Spline (TPS) and Finite Element Analysis (FEA)
approaches, as described in the “Material and Methods” section of this paper.

The TPS analysis (Fig. 6) showed that the recorded values of Bending Energy (BE) associated with left/right
asymmetry of the cranium are close to zero, displaying similar values along all the portions of cranial vault exam-
ined (Fig. 6 and Table S3). This result is expected for a deformation that follows an affine or uniform pattern of
warping®>?*, It is also in accordance with the hypothesis put forward by Bruner and Manzi'?, which implies a
constant pressure exerted by the sediment pack on the bony material during early phases of the diagenesis, when
the bones were still rich in collagen. According to this hypothesis, the pressure exerted on the left parietal was
responsible for its crushing, on the one hand, and for the symmetrical deformation of the right parietal, on the
other hand, while the entire bi-parietal vault was uniformly translated from left to right. This is also highlighted
by the considerable bending of the right side of the cranium at the level of the temporal lines, associated with the
antero-posterior fractures of the lateral wall. At the same time, the unnatural inclination toward the right side of
the transverse occipital torus is consistent with this process of deformation.
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Figure 5. These six views show our digital restoration of the Ceprano calvarium superimposed on the last
physical reconstruction. In this representation, transparent (light gray) anatomical parts correspond to previous
positions of bony elements that moved to new positions (in light brown), contrasting with those that are
unchanged (in dark brown).

Given the results of the TPS-based analysis, we modeled with FEA the plastic response of a cranium submitted
to a single event of deformation. This is reasonable since, a human cranium, like other complex skeletal parts*~2°,
rarely tolerates more than a single episode of plastic deformation. The results of the FEA analysis (Figure S6)
shows that the deformation induced on the model (the Middle Pleistocene cranium from Petralona, Greece)
is fully consistent with what is visible on the Ceprano calvarium. When observed in posterior view, we note
both in the model and in Ceprano a rather flattened left parietal and a more vertical right wall of the cranium,
which increases at the level of the temporal lines. Moreover, there is a consistent clockwise tilting of the occipital
squama, which is reflected by the inclination of the internal occipital crista.

On the basis of these results, we were then able to apply the retrodeformation algorithm?? to our reconstruc-
tion of the calvarium. It is worth noting that the retrodeformation is effective and reliable here, because we are
dealing with a simple, affine deformation (where the deformation of one side is likely to be the opposite of the
deformation on the other side). Thus, the retrodeformed model occupies a point in shape space that is likely to be
close to that occupied by the original. More complex deformations are more difficult to restore based on asymme-
try, for the simple reason that the deformations themselves are unlikely to be opposite and equal between sides,
despite the algorithm we used? has been developed in order to work also in case of non-affine deformations.
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Figure 6. Transformation grids and associated bending energy values obtained after superimposition of the
left/right profiles of the external surface of the parietal walls along seven coronal cross sections, equally spaced
1 cm apart.

The result is a model of the Ceprano calvarium that we consider as close as possible to the original morphol-
ogy of the specimen before the taphonomic deformation occurred. In order to quantify and visualize this result,
the retrodeformed shape of Ceprano is represented as mesh distances (ranging from —6 to + 6 mm) from the
shape of our restoration of the specimen (Fig. 7).

Conclusions

The main issues resolved by our digital assessment of the Ceprano calvarium are as follows: 1) realign-
ment of the parietal bones providing the original profile of the parietal walls of the cranium; 2) rotation
of the occipital transverse torus and the adjacent portions of other occipital bone fragments; 3) symmetrisa-
tion of the occipital-temporal regions relative to the zygomatic and mastoid complexes; 4) realignment of the
spheno-ethmoidal regions; 5) moderate symmetrisation of the frontal squama.

These results indicate that the protocol we adopted has provided a new and more reliable shape of the
Ceprano calvarium, one that better approximates the original form of such an important specimen of the Middle
Pleistocene'. We may thus assume that the realigned morphology corresponds to the shape of the calvarium
before the overlying sediments compressed the cranial vault. Yet, no morphometric changes took place compared
to previously published morphometric data’, because standard anthropological measures do not register varia-
tions in the regions that were mostly distorted.

Given the deformation pattern, it should have occurred when the cranium was still rich in collagen. As a
result, the plastic deformation reached a threshold of breakage and produced two main effects: a severe fragmen-
tation of the left parietal and the occurrence of the antero-posteriorly elongated fractures that are visible on the
right parietal. Consequently, the compressive loads exerted on the left side were transmitted to the other side of
the cranial vault, causing the unnaturally angled right parietal wall along with several other specific defects, such
as the oblique transverse occipital torus; the frontal bone, by contrast, does not seem to have been significantly
affected by the postmortem deformation process.

The retrodeformed shape we obtained reduces (at least in intensity) some of the peculiarity of the Ceprano cal-
varium that have been claimed. For instance, when Mallegni and colleagues'> named the new species H. cepranen-
sis, they based their tentative cladistic analysis and conclusions on a single apomorphy (the relative short length of
the calvarium) that should distinguish a cluster including only Ceprano and the African calvarium BOU-VP-2/66,
referred to as Daka?’-%. On the contrary, Ceprano shares a number of shape specific features with most of the
crania that are commonly included in the hypodigm of H. heidelbergensis. After the present reconstruction and
retrodeformation (see Fig. 7), both the angulation of the right parietal wall and the depression of its left side
have disappeared. Thus, as a result of the realignment of cranial fragments, the shape of the Ceprano calvarium
appears to be closer to Middle Pleistocene specimens from Africa and Eurasia, such as Kabwe and Petralona (see
Figure S8). This conclusion places more firmly the Italian specimen among a group of fossils that represents the
species that was likely ancestral to Neanderthals, modern humans and the so-called “Denisovans”$!2.

Another implication of our work helps to better locate the Ceprano calvarium chronologically, with respect
to its depositional history. For almost a decade after discovery, the specimen was dated to the end of the Early
Pleistocene (800-900 ka)>* More recently, it has been dated to the interval between 430 and 385 ka; this was done
using multidisciplinary evidence collected during systematic excavations of the last decade®. Moreover, this chro-
nology is consistent both with the geomagnetic pattern recorded in the area® and with the Ar/Ar date of 353 +4
ka®! obtained from K-feldspars that were sampled above the gray clay layer in which the cranium was located.

It should be pointed out, however, that the original late Early Pleistocene age of the Ceprano fossil is still main-
tained by some workers®?. This claim is based on the assumption that the calvarium was discovered in secondary
deposition within younger sediments®.
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Figure 7. The retrodeformed Ceprano calvarium. Differences from our digital reconstruction (reported in

Fig. 5) are expressed by colors (ranging from —6 to 6 mm). These colors represent inter mesh distances; moving
toward the yellow-red extreme of the spectrum we find the regions of the new reconstruction that are pushed
inward and are now less angulated with respect to the non-deformed reconstruction; vice versa for the blue
areas.

Conversely, our analysis support the idea that the calvarium was located in a primary deposition. The rationale
for this conclusion relies on the fact that the taphonomic process of plastic deformation and final fragmentation of
the specimen occurred when the cranial bones were still rich in collagen, that is before mineralization took place.
It is improbable that all the cranial fragments moved as a whole during geological time from their primary dep-
osition??; while, vice versa, the fact that all these fragments were found in one single location supports a primary
deposition of the fossil specimen.

A “fresh” (i.e., not yet “fossil”) bone can be plastically deformed before it breaks because it is still rich in colla-
gen and because the calcium crystals that constitute large part of the bony matrix are not yet substituted by other
minerals, as happens during the process of mineralization®®. Such a diagenetic process may occur in environments
that are rich in water, like a riverbed or a perilacustrine paleosol; the latter was probably the case in the Ceprano
area®. This depositional environment is consistent, in turn, with the absence of taphonomic signatures on the
calvarium, which lacks any gnaw-marks, weathering signatures (such as radial flaking) or transport-induced
abrasions, indicating that it was not affected by long exposure and/or fluvial reworking®. Further, the normal
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processes of raising and lowering of water levels — demonstrated by pedofeatures of the sediment in which the
cranium was included® - likely dispersed other bony elements of the same skeleton and rapidly added sediments
on the cranium.

Therefore, the combined evidence collected here supports the hypothesis that, shortly after death, the Ceprano
calvarium was permanently buried in the perilacustrine environment where it was found.

Material and Methods

Microtomography and digital segmentation. The Ceprano calvarium was digitally recorded with
the pCT system available at the Multidisciplinary Laboratory of the “Abdus Salam” International Centre for
Theoretical Physics in Trieste, Italy®. Due to the size of the specimen, it was scanned in three partially overlap-
ping parts, by changing the vertical spatial coordinate. The X-ray pCT acquisitions were carried out with a source
voltage of 145KV, a current of 206 1A, a 3 mm aluminium filter, an exposure time of 1s and recording 4800 pro-
jections of the sample over 360°. The resulting pCT slices, reconstructed using the commercial software DigiXCT
in 16-bit format with a pixel size of 42.41 um, were merged in order to obtain a single 3D volume rendering of the
whole specimen. In addition, twenty isolated bony fragments (see Figure S4) were separately scanned using the
same analytical parameters.

Modelling the taphonomic deformation. In order to quantify the pattern of deformation that occurred
in the Ceprano cranium during the taphonomic process, we followed a protocol that combines Thin Plate Splines
(TPS) and Finite Element Analysis (FEA).

TPS is an interpolator for one configuration of landmarks onto another®®*. It minimizes the integral of the
squared second derivatives, a quantity referred to as bending energy (BE), which measures the amount of local
shape deformation or landmark displacement®. In affine transformations, which correspond to a tilting without
bending, the bending energy is equal to zero, while it increases in magnitude when bending (non-affine transfor-
mations) occurs.

We traced the coronal profile of the parietals following the same rationale reported in Bruner & Manzi'?, who
used a single digital section approaching the maximum width of the cranium. Thus, after the interpolation of the
missing fractions into a reasonable minimally bent profile, we outlined the right and left parietal external profiles.
We repeated the sampling for seven coronal sections, evenly spaced by 1 cm and for a total length of 6 cm along
the cranial walls (see Fig. 6). These profiles were reduced to a 30 semilandmarks configuration and superimposed
(after mirror imaging) using the Procrustes procedure. We then used the BE values as a measure of the total warp-
ing that affected the calvarium during the taphonomic process.

The aim of the TPS-based procedure was to assess whether an affine or non-affine transformation was most
likely to have occurred during the taphonomic process. We were then able to apply FEA, simulating either a single
or multiple vector(s) of compressive loadings. FEA is a powerful method of mechanical simulation, which may
be applied to the dynamic behavior of a given physical object; it acts by reducing a complex geometry into a finite
number of elements with simple geometries connected by shared nodes*~**. It can be used to investigate and
predict deformations produced by geological forces acting on vertebrate fossils during diagenesis?.

Eventually, a 3D model based on the Middle Pleistocene cranium from Petralona was generated with Amira
5.4.5 and imported into VoxFE Ver. 1.0*. In order to simulate the original loading conditions, the model was
constrained on the cranial base at the level of the occipital condyles, with the compressive loadings acting on the
whole surface of the left parietal bone. The model was simplified and allocated homogeneous material properties
of compact bone (Poisson’s ratio = 0.3, and Young’s modulus = 16.9 GPa). It was solved using 50000 iterations and
a tolerance = 1e-09.

Retrodeformation. Retrodeformation of the Ceprano calvarium was based on a set of bilateral cranial
landmarks. Our aim was to remove postmortem taphonomic damage to the cranium shape. The traditional
approaches commonly used to symmetrize a 3D model are based on the definition and acquisition of anatomical
points (e.g. ref.**). Unfortunately, anatomical landmarks are most often not uniformly distributed, and in some
portions are completely absent. The protocol recently developed by Schlager® overcomes this problem. Besides
the traditional methods, this procedure uses bilateral landmark sets and symmetrical semilandmark sets. In doing
so, the configuration of points adequately represents the entire geometry of the structure. In detail, this protocol®
is an implementation of the closed form solution proposed by Ghosh and colleagues*, improving the placement
of the semilandmarks with respect to other methodologies*”*8 and adding a symmetrisation step to make these
sets of points geometrically homologous®.

The retrodeformation of Ceprano required the acquisition of 18 bilateral landmarks and 4 semilandmark
patches, for a total of 172 points (Figure S3). Subsequently, we applied the function symmetrize, relaxLM, and
retroDeformMesh from the Morpho R package??2.

One of the main problems we faced in positioning the semi-landmarks bilaterally on the external surface of
Ceprano is that the left parietal is largely missing. Thus, we reconstructed the deficient portions using a CAD
protocol in order to draw a number of best fitting curves of the original profile of the lateral wall, based on the
preserved portions. Specifically, we used a network of a 20 polynomial (Bézier) curves that were built connecting
three or more points aligned on a given vector along the preserved portions of bone*’, according to the definition
of the Bézier curves®. Bézier curves can be defined from a set of Cartesian coordinates in 2 or 3 dimensions
obtaining a parametric curve interpolation in a plane or in a three-dimensional space*”>!. Thus, it is possible to
acquire a series of control points on the actual surface of a 3D model and calculate the Bezier curves that cross
its missing portion. It is then possible to obtain a series of landmark points evenly spaced along the curves.
Therefore, using Mimics Materialise 17.0, we calculated 20 sets of evenly spaced points starting and ending on the
preserved region of the Ceprano calvarium and crossing the missing portions of the left parieto-temporal wall.
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The cloud of points was eventually used to create a digital approximation of the external surface of the braincase
applying a Delaunay algorithm®” in Amira 5.4.5 (Figure S3).

Data Availability. All data are available upon request.
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