
Service Composition in Stochastic Settings

Ronen I. Brafman1, Giuseppe De Giacomo2, Massimo Mecella2, Sebastian Sardina3

1 Ben-Gurion University, Beer-Sheva, Israel
brafman@cs.bgu.ac.il

2 Sapienza Univ. Roma, Rome, Italy
{degiacomo,mecella}@dis.uniroma1.it

3 RMIT University, Melbourne, Australia
sebastian.sardina@rmit.edu.au

Abstract. With the growth of the Internet-of-Things and online Web services,
more services with more capabilities are available to us. The ability to generate
new, more useful services from existing ones has been the focus of much research
for over a decade. The goal is, given a specification of the behavior of the target
service, to build a controller, known as an orchestrator, that uses existing services
to satisfy the requirements of the target service. The model of services and re-
quirements used in most work is that of a finite state machine. This implies that
the specification can either be satisfied or not, with no middle ground. This is a
major drawback, since often an exact solution cannot be obtained. In this paper
we study a simple stochastic model for service composition: we annotate the tar-
get service with probabilities describing the likelihood of requesting each action
in a state, and rewards for being able to execute actions. We show how to solve
the resulting problem by solving a certain Markov Decision Process (MDP) de-
rived from the service and requirement specifications. The solution to this MDP
induces an orchestrator that coincides with the exact solution if a composition ex-
ists. Otherwise it provides an approximate solution that maximizes the expected
sum of values of user requests that can be serviced. The model studied although
simple shades light on composition in stochastic settings and indeed we discuss
several possible extensions.

1 Introduction

With the growth of the Internet-of-Things (IoT) and online Web services, more and
more services with more and more capabilities are available to us. By combining the
functionalities offered by multiple services, we can provide much added value. A clas-
sic example is the ability to offer a complete vacation by combining Web services that
offer (functionalities for buying) flights, ground transportation, accommodations, and
event tickets. But as more physical devices are controlled through the Web via services,
this can also be used to orchestrate the behavior of various kitchen devices, home en-
tertainment systems, and home security services [1, 2].

The problem of service composition has been considered in the literature for over
a decade, starting from seminal manual approaches, e.g., [3–5], which mainly focussed
on modeling issues as well as on automated discovery of services described making

use of rich ontologies, to automatic ones based on planning, e.g., [6, 7] or on KR tech-
niques, e.g., [8], or on automated synthesis [9–11]. The reader interested in a survey of
approaches can refer to [12, 13, 1]. Here we concentrate on the approach known in liter-
ature as the “Roman model” whose original paper [9] was awarded the most influential
SOC paper of the decade prize at ICSOC 2013. Actually, for sake of simplicity, in our
mathematical treatment we will consider the Roman model in its most pristine form.
Though we will describe several extension in the discussion section.

In the Roman model, composition is as follows: each available (i.e., to be used in
the composition, therefore referred to as component) service is modeled as a finite state
machines (FSM), in which at each state, the service offers a certain set of actions, where
each action changes the state of the service in some way. The designer is interested in
generating a new service (referred to as composite, or target) from the set of exist-
ing services. The required service (the requirement) is specified using a FSM, too. The
computational problem is to see whether the requirement can be satisfied by properly or-
chestrating the work of the component services. That is, by building a scheduler (called
the orchestrator) that will use actions provided by existing services to implement action
request of the requirement. Thus, a new service is synthesized using existing services.

Unfortunately, it is not always possible to synthesize a service that fully conforms
with the requirement specification. Furthermore, a deterministic model (adopted in
many approaches) is inappropriate for most services. Many services have various fail-
ure modes and different potential transitions for the same action. This can be addressed
by allowing for non-determinism, but satisfying the requirement in this case can be
even harder. This zero-one situation, where we can either synthesize a perfect solution
or fail, should be improved. Rather than returning no answer, we need a notion of the
“best-possible” solution, and the main contribution of this paper is to provide a solution
to this problem.

In this paper we discuss and elaborate upon a probabilistic model for the service
composition problem, first presented in [14]. In this model, an optimal solution can
be found by solving an appropriate probabilistic planning problem (a Markov decision
process – MDP) derived from the services and requirement specifications. Specifically,
it is natural to make the requirement probabilistic, associating a probability with each
action choice in each state. This probability captures how likely the user is to request
the action in that state. Such information can be, initially, supplied by the designer, but
can also be learned in the course of service operation in order to adapt the composi-
tion to user behavior. Next, a reward is associated with the requirement behavior. This
reward can be defined in different ways depending on the designer’s objectives. For ex-
ample, we can associate a reward with different states that represent achieving certain
milestones, so that solutions that make sure that the service is able to reach these mile-
stones will be preferred. Or, we can associate a reward with actions at a state, modeling
how important it is to provide the user with this option at this state. Thus, if certain ac-
tions represent crucial aspects of the service, they will be associated with high rewards,
whereas actions that have added value, but are less important, can be associated with
lower rewards.

We observe that rewards can be related to Quality-of-Service (QoS), which is often
considered crucial in modeling Web services [15, 16]. Rewards on some states represent

situations that the designer wants to enforce in order to guarantee QoS, while rewards
on actions represent non-functional QoS requirements. As we discuss later on, one can
use complex reward specifications in the form of transducers, or formulas in expressive
logics such as LTLf and LDLf – linear-time temporal logic and dynamic logic on finite
traces [17].

Given a set of available services and a probabilistic requirement specification, we
formulate a new MDP that aggregates this information – it is very similar in spirit to the
product automata used to solve the non-stochastic case – such that an optimal policy
for this MDP generates an orchestrator that maximizes the expected sum of rewards.
In some sense, the orchestrator will ensure that target transitions of highest value are
provided for the longest possible time.

This model can also accommodate various useful extensions. For example, we can
associate a cost with existing service actions or service states – e.g., energy use in the
case of smart homes or service cost in the case of travel services. If these costs are
commensurable with the value of services offered by the synthesized service, we still
obtain a standard MDP. Otherwise, we obtain a multi-objective MDP (if we want to
optimize both aspects) or a constrained MDP (if we have an energy or travel budget).
Both models have been studied in literature and solution algorithms for them exist. In
the last section, we discuss a number of such useful extensions.

Before continuing, we observe that our probabilistic extension to service composi-
tion is orthogonal to that proposed in [18], where available services are probabilistic,
but the target specification (expressed as ω-regular languages, there) is not and the or-
chestrator is required to satisfy the target specification with probability 1.

The paper is structured as follows: Section 2 introduce our model of services,
whereas Section 3 presents the model for the requirement and the solution of the pro-
posed problem. In Section 5 we conlcude with a discussion some extensions of the basic
framework.4

2 The Non-Stochastic Model

We adopt the Roman model for service composition [1], in its most pristine form [9],
which we describe below. A service is defined as a tuple S = (Σ, σ0, F,A, δ), where:

– Σ is the finite set of service’s states;
– σ0 ∈ Σ is the initial state;
– F ⊆ Σ is the set of service’s final states;
– A is the finite set of service’s actions;
– δ ⊆ Σ × A 7→ Σ is the service’s transition (partial) function, i.e., actions are

deterministic.

We interchange notations s′ ∈ δ(σ, a) and σ a−→ σ′ in δ, possibly keeping implicit δ
when no ambiguity arises. Finally, we writeA(σ) to denote {a ∈ A : δ(σ, a) is defined}
– the set of actions available at s.

4 A preliminary version of this paper has been presented at the ICAPS 2017 Workshop on Gen-
eralized Planning. (The workshop does not have published proceedings.)

In the Roman model, we focus on the interface that services expose, which capture
a conversational model of the service, i.e., one that represents the sequences of requests
a service can serve, as the interaction with a client goes on. More specifically, from a
given state, a service can serve only requests for actions that “label” an outgoing transi-
tion. Such actions, although atomic from the client perspective, correspond, in general
to complex activities that may include, e.g., conversations with software modules or
interactions with external users. Upon execution of the requested action, the service
moves to a successor state, i.e., a state reachable from the current one via a transition
labeled with the executed action.

A history h of a service S is a, possibly infinite, sequence alternating states and
actions (necessarily ending with a state)

σ0 · a1 · σ1 · a2 · · · · · an · σn · · · ·

s.t. σ0 = σ0 and σi
ai+1−−−→ σi+1, for all i ≥ 0. That is, a possible progression of the

states of the service, annotated by an appropriate action. Note that the above implies
that ai ∈ A(σi−1).

We assume we have a finite set of available services Si = (Σi, σi0, Fi, A, δi), over
the same set of actions A. The set of all such services is referred to as the service
community, denoted as S = {S1, . . . , Sn}.

Given S, [1] defines a target service as a further service T = (Σt, σt0, Ft, A, δt),
again over the actions A. The target service provides a formal characterization of a de-
sired service that may not be available in the community. We denote the set of possible
target service histories by Ht.

Informally, the target represents a business process that one would like to offer to
clients, where each state represents a decision point. At each state, the client is provided
with a set of options to choose among, each corresponding to an action available in the
state. Notice that typically the target service is not available. Further, the only entities
able to execute actions, i.e., activities, are the available services. Thus, one cannot build
the target service by simply combining the actions of the target service, but has to
resort to the available services, which impose constraints on the execution of actions,
depending on the conversations they can actually carry out.

The goal of service composition is to combine the available services in an appropri-
ate way so as to mimic, from a client point of view, the behavior of the target service.
This can be done by interposing an orchestrator between the available services and
the client. The orchestrator delegates the current action requested by the client to some
available service, waits for the service to fulfill it, then notifies the client, receives a new
request, delegates it again, waits, and so on. In order to do this correctly, one not only
needs to find a service that is able to execute the current action, but also has to choose
the service so that all possible future requests compliant with the target service can be
fulfilled.

To formally define the computational problem and its solution, we require some
preliminary notions: The system service of S is the service Z = (Σz, σz0 , Fz, Az, δz),
s.t.:

– Σz = Σ1 × · · · ×Σn;
– σz0 = (σ10, . . . , σn0);

– Fz = {(σ1, . . . , σn) | σi ∈ Fi, 1 ≤ i ≤ n}
– Az = A× {1, . . . , n} is the set of pairs (a, i) formed by a shared action a and the

index i of the service that executes it;

– σ
(a,i)−−−→ σ′ iff, for σ = (σ1, . . . , σn) and σ′ = (σ′1, . . . , σ

′
n), it is the case that

σi
a−→ σ′i in δi, and σj = σ′j , for j 6= i.

Intuitively,Z is the service stemming from the product of the asynchronous execution of
the services in S. This is a virtual entity, i.e., without any actual counterpart, that offers
a formal account of the evolution of the available services, when the community is seen
as a whole. Note that in the transitions of Z, the service executing the corresponding
action, is explicitly mentioned. Also (a, i) ∈ A(σz) indicates that a can be executed by
service i in the current state. We denote the set of system service histories by Hz .

An orchestrator for a community S is a partial function5:

γ : Σz ×A 7→ {1, . . . , n}.

Intuitively, γ is a decision maker able to keep track of the way the services in S have
evolved up to a certain point, and that, in response to an incoming action request, returns
the index of a service.

Notice that, in general, γ is not guaranteed to return a service able to execute the
requested action, nor that delegating the action to the returned service guarantees that all
possible future requests can be served. Obviously, only the orchestrator that guarantees
such features can be actually used to realize the desired service, as formalized below.

The dynamics of the system is deterministic given the actions selected by the user.
Hence, together with the orchestrator choice, it determines a system history. That is, an
orchestrator defines a partial function from target-service histories to system histories,
based on the (partial) mapping from system state and action to a service and the (partial)
mapping from system state, action, and service, to the next system state. We denote
this mapping by τ . More formally, τ : Ht 7→ Hz is defined inductively as follows:
τ(σt0) = σz0. Let τ(ht) = hz , and let st, sz denote the last states, respectively, in
ht, hz . Then, τ is also defined on ht · a · s′t provided: a ∈ A(st) and s′t = δt(st, a), and
that γ is defined on (sz, a), and (a, γ(sz, a)) ∈ A(sz). That is, provided the orchestrator
function is defined on sz and a, assigning some value i, and δz is well defined on (sz, i),
we have τ(ht · a · s′t) = hz · a · δz(sz, (a, i)). Otherwise, τ(ht · a · s′t) is undefined.

If τ(ht) is well defined, we say that target history ht is realizable by the orchestrator.
The orchestrator γ is said to realize a target service Z if it realizes all histories of

Z. In this case, γ is also called a composition of Z (on S).
The problem of service composition in known to be EXPTIME-complete, in fact

exponential on the number of the available services [9, 19] and techniques based on
model checking, simulation, and LTL synthesis are available [1]. Also, several variants
have been studied, including the case of nondeteministic (i.e., partially controllable but
fully observable) available services [11].

5 In the original orchestrator definition γ is a function of the entire history instead of the system
service’s current state only. It can be shown that if an orchestrator of the previous form exist
then one of the current form exists [9, 11]. So we adopt this simpler notion.

3 The Valued Requirement Model

The main limitation of the composition approach outlined above is that if a composition
does not exists, no notion of a “good” or “approximate” solution exists. An interesting
notion of unique supremal composition has been introduced in [20]. But this notion
puts the burden on the client executing the target to foresee in advance what requests
it will ask in the future, and this may be too limiting in various contexts. Furthermore,
in actual applications, requests are not usually of uniform importance. Some parts of
the target service may be good to have, but not essential, while other parts may be
central to its functionality. And typically, different requests are not equally likely. These
considerations are not captured by the above model and its solution concepts. Hence, we
propose a modified model that takes these considerations into account, thus obtaining
a richer, finer grained, formulation of the objective that allows us to define appealing
notions of “optimal” compositions.

To model the value and likelihood of requets, we augment the target service model
with two additional elements. Pt will be a distribution over the actions given the state.
Pt(s, a) is the likelihood that a user will request a in target state s. Technically, Pt(s)
returns a distribution over the actions, or the empty set, when s is a terminal state on
which no actions are possible. Rt is the reward function, associating a non-negative
reward with the ability to provide the action requested by a user. Rt(s, a) is the value
we associate with being able to provide action a in state s. Formally, a target service
is T = (Σt, σt0, Ft, A, δt, Pt, Rt), where Σt, σt0, Ft, A, δt are defined as before, Pt :
Σt → π(A) ∪ ∅ is the action distribution function, and Rt : Σt ×A→ R is the reward
function. We assume rewards are non-negative.

One can specialize this definition in various ways: Rt can depend on Σt only, if for
example, we assume that the reward is given for reaching a final state, or some particular
“normal” finite states, capturing the fact that the service has completed appropriately.Rt
could simply assign an identical positive value to every pair (σ, a) such that a ∈ A(σ).
This essentially implies that what we care about is the ability to service as many actions
as possible in a state.

The definitions of an orchestrator, a target history, a realizable target history, and
a realizable target do not change. But we can now define additional notions. First, Pt
induces a probability density function over the set of all infinite target histories, which
we will denote by P∞. (This follows by the Ionescu Tulcea extension theorem.) Second,
Rt can be used to associate a value with every infinite history. The standard definition of
the value of a history ht, which we adopt here, is that of the sum of discounted rewards:
v(σ0, a1, σ1, · · ·) =

∑∞
i=0 λ

iRt(σi, ai+1), where 0 < λ < 1 is the discount factor. The
discount factor can be viewed as measuring the factor by which the value of rewards is
reduced as time progresses, capturing the intuition that the same reward now is better
than in the future.6 7

6 It can also be viewed as quantifying the probability (1 − λ) that the process will terminate at
some state.

7 An alternative notion, for which similar results can be obtained is that of average reward,
defined, e.g., as lim infm→∞

1
m

∑m
i=0Rt(σi, ai+1), which requires more mathematical so-

phistication to handle.

Given the above, we can define the expected value of an orchestrator γ to be:

v(γ) = Eht∼P∞(v(ht) · real(γ, ht))

where real(γ, ht) is 1 if ht is realizable in γ, and 0 otherwise. That is, v(γ) is the
expected value of histories realizable in γ. Finally, we define an optimal orchestrator to
be γ = argmaxorchestrator γ′ v(γ

′). The following is reassuring:

Theorem 1. If the target is realizable and every target history has strictly positive value
then γ realizes the target iff it is an optimal orchestrator.

That is, if it is possible to realize the target requirement, then any orchestrator realizing
it is optimal, and any orchestrator that does not realize some history, is non-optimal.
The former stems from the fact that if the set of histories realizable using orchestrator
γ contains the set realizable using orchestrator γ′, then v(γ) ≥ v(γ′). The latter stems
from the fact that if, in addition, the set of histories realizable by γ but not by γ′ has
positive probability, then v(γ) > v(γ′). Now, if h is not realizable by γ′, there exists a
point in h where γ′ does not assign the required action to a service that can supply it.
Thus, any history that extends the corresponding prefix of h is not realisable, and the set
of such histories has non-zero probability. Since we assume all histories have positive
value, we obtain the desired result.

The importance of this new model is that we now have a clear notion of an optimal
orchestrator that works even when the target service is not fully realizable, and this
notion is clearly an extension of the standard notion, coinciding with it when the service
is realizable by some orchestrator. An optimal controller is simply one that is able to
handle more (in expectation) valued histories.

4 Computing an Optimal Orchestrator

We now explain how to solve the above model by formulating an appropriate MDP. An
MDP is a four-tuple M ′ = (S′, A′, T r′, R′), where S′ is a finite set of states, A′ a finite
set of actions, Tr′ : S′ × A′ → π(S′) is the transition function, and R : S′ × A′ → R
is the reward function. The two latter terms were defined above in the context of the
valued composition model.

The composition MDP is a function of the system service and the target service
as follows M(Z, T) = (SM , AM , T rM , RM), where (i) SM = ΣZ × ΣT × A ∪
sM0 (ii) AM = {aM0, 1, . . . , n} (iii) TrM (sM0, aM0, (σz0, σt0, a)) = Pt(σt0, a)

(iv) TrM ((σz, σt, a), i, (σ
′
z, σ
′
t, a
′)) = Pt(σ

′
t, a
′) if σz

(a,i)−−−→ σ′z and σt
a−→ σ′t, and

0 otherwise. (v) R((σz, σt, a), i) = Rt(σs, a) if (a, i) ∈ A(σz) and 0 otherwise.
That is, the set of states is the product of the states of the system service, the states of

the target service, and the set of actions. Intuitively, the state (σz, σt, a) denotes the fact
that the system state is currently σz , the target state is currently σt and the requested ac-
tion is a. In addition, there is a distinguished initial state sM0. The actions correspond
to selecting the service that will provide the current requested actions, together with
a special initializing action, aM0. A transition in state sM0 is defined only for action
aM0. From this state, we can get to state (σz0, σt0, a) with probability that is equal to

the probability that action awould be requested from the target service at its initial state.
The state (σz0, σt0, a) represents the situation that the system and target service are in
their initial state, and that a is requested of the target service. In general, the defintion
of Tr((σz, σt, a), i, (σ′z, σ

′
t, a
′)) captures the fact that if service Si provides action a in

system and target states σz and σt, then the next system state is determined by (a, i) and
the previous system state, and the next target state is determined by a and the previous
target state. The probability associated with this transition is the probability that action
a′ will be requested in the new target state. Finally, the reward function associates a
positive reward with states in which the assigned service Si is able to perform the re-
quested action a, and the value of this reward is the value of doing actions a at the target
state.

Theorem 2. Let ρ be an optimal policy for M(Z, T). Then, the orchestrator γ such
that γ((σz, σt), a) = ρ(σz, σt, a) is an optimal orchestrator.

Above we assume that an optimal policy for the MDP is one maximizing expected
discounted sum of rewards with discount factor λ. The result follows from the fact that
there is a one-to-one correspondence between orchestrators and policies for M(Z, T),
via the relationship: γ((σz, σt), a) = ρ(σz, σt, a), and the fact that the value of policy
ρ so defined equals v(γ).

5 Extensions

With the basic setting indtroduced, here we can now discuss several possible extensions.

Stochastic available services. For the sake of simplicity, we have assumed so far that
the component and target services are deterministic. Extending our model to capture
stochastic services, where the service transitions are probabilistic too, is quite easy, see
[14]. One needs to simply alter the relevant transition functions. The precise definition
of realizability now becomes slightly more cumbersome to write, but the underlying
intuitions are the same. The MDP construction, too, need only be modified slightly to
take into account the stochastic transitions of the system state and target state.

Handling exceptions. Our current model does not explicitly capture a critical aspect
of many real-world scenarios, exception handling [21]: if the target/composite service
terminates before a terminal state has been reached, work done so far has to be undone.
This work is distributed across different services. For example, if while booking a va-
cation, we book a flight but cannot book a hotel, we must cancel the flight reservation,
which can be costly. If we also booked a car by now, the cost would be higher. We can
augment the MDP defined earlier to take these costs into account by adding a negative
reward to states (sz, st, a) and service choice i such that i cannot supply action a in its
current state. The size of the reward can depend on the states of the various services, as
reflected in sz , which reflects the work that needs to be undone in each of the existing
services.

Separate rewards specifications. In the setting considered here, we have coupled the
rewards with the likelihood of the client making certain action requests into the target
service to be realized. In fact it may be convenient to keep the two specification sepa-
rated, and use the target service only to specify the likelihood of action request, in line
with what happens in the deterministic case. Rewards in this case could be expressed
dynamically on the history of actions executed so far by the target, through a transducer.

More precisely a transducer R = (Σ,∆, S, s0, f, g) is a deterministic transition
system with inputs and outputs, whereΣ is the input alphabet,∆ is the output alphabet,
S is the set of states, s0 the initial state, f : S × Σ −→ S is the transition function
(which takes a state and an input symbol and returns the successor state) and g : S ×
Σ −→ ∆ is the output function (which returns the output of the transition).

In our case the input alphabet would be the set of actions A, the output alphabet the
possible rewards expressed as reals R. In this way the output function g : S×A −→ R,
would correspond the reward function. The point is that now the rewards do not depend
on the state of the target, but on the sequence of actions executed so far. Interestingly if
we take the synchronous product of the target T (without rewards, but with stochastic
transitions) and of R (which is deterministic but outputs rewards), we get a target of
the form specified in Section 3, though this time computed from the two separated
specifications, and we can apply the MDP construction presented here (or its extension
with stochastic available services discussed previously).

Non-Markovian rewards. In line with the above point, it has long been observed [22,
23] that many performance criteria call for more sophisticated reward functions that do
not depend on the last state only.

For example, in Robotics [24], we may want to reward a robot for picking up a cup
only if it was requested to do so earlier, where the pick-up command may have been
given a number of steps earlier. Similarly, we may want to reward an agent for behavior
that is conditional on some past fact – for example, if the person was identified as a
child earlier, we must provide her with food rich in protein, and if he is older, in food
low in sodium. Or we may want to reward the robot for following some rules, such
as executing an even number of steps back and forth, so as to end up in the starting
position.

All these proposal share the idea of specifying rewards on (partial traces or histories)
through some variant of linear-time temporal logic over finite traces LTLf . The research
on variants of LTLf has become very lively lately with promising results [17, 25–28]. A
key point is that formulas in these logics can be “translated” into standard deterministic
finite state automata DFAs that recognize exactly the traces that fulfill the formula.
Such DFAs can be combined with probabilistic transition systems to generate suitable
MDPs to be used for generating optimal solutions. This can be done also in our context.
Essentially we replace (or enhance) the target specification with a declarative set of
logical constraints. Then we compute the synchronous product with a target transition
system that us the likelihood of action choice, hence getting a target specification as
that of Section 3, analogously to the case of the transducer above. This can be solved
by the techniques presented earlier.

High-level programs as target services. Often certain non-Markovian specifications can
be expressed more naturally by using procedural constraints [25, 29, 30]. In particular,
we can introduce a sort of propositional variant of GOLOG [31]:

δ ::= A | ϕ? | δ1 + δ2 | δ1; δ2 | δ∗ |
if φ then δ1 else δ2 | while φ do δ

Hence, we can assign rewards to traces that correspond to successful computations of
such programs.

For example in a smart environment such as that in [32] we could have a reward
associated to completing the following program:

while(true) do
if (cold ∧ windowOpen)) then

closeWindow;
turnOnFirePlace + turnOnHeating

which says that, all along, if it is cold and the window is open, then immediately close
the window and either turn on the fire place or the heating system (no other actions can
interleave this sequence).

Note that if and while can be seen as abbreviations for regular expression [33],
namely:

if φ then δ1 else δ2
.
= (φ?; δ1) + (¬φ?; δ2)

while φ do δ .
= (φ?; δ)∗;¬φ?

Hence these programs can also be translated into regular expressions and hence in DFA
to be used as above.

Interestingly, we can combine procedural and declarative temporal constraints by
adopting a variant of LTLf , called linear-time dynamic logic on finite traces, or LDLf ,
as specification language [17]. For example we may write

[true∗]〈while(cold ∧ heatingOn)) do
(¬turnOffHeating∗; heat)〉

which says that at every point in time, while it is cold and the heating is on then heat,
possibly allowing other action except turning off heating. Again we are able to trans-
form these formulas into DFAs and proceed as discussed above.

Finally these ideas are related to so called agent planning programs [34], where the
target is specified as a network of declarative goals. Such programs can also be extended
to the stochastic setting presented here

Learning. Although we focus on this paper on model specification and model-based
solution techniques, we point out that for Web services, statistics gathering is very sim-
ple, and in fact, is carried out routinely nowadays. Consequently, it is not difficult to
learn the stochastic transition function of existing services online, and use it to specify
the probabilistic elements of the model.

6 Conclusion

In the service composition problem, we attempt to satisfy a specification of a new ser-
vice using existing services. This allows users and businesses to define new, compli-
cated services with added value on top of an existing set of services. By improving the
Roman model of service composition to include request likelihood and values, we were
able to not only provide a more faithful formal model of the problem, but also to address
the long-standing problem of defining optimal orchestrators when no orchestrator can
realize all possible desirable behaviors. Thanks to the correspondence established be-
tween orchestrators and policies of a suitably defined MDP, we can also show how such
orchestrators can be easily computed. Moreover the setting proposed can be extended
in several directions of great theoretical and practical interest.

References

1. De Giacomo, G., Mecella, M., Patrizi, F.: Automated service composition based on behav-
iors: The roman model. In: Web Services Foundations. Springer (2014) 189–214

2. Bronsted, J., Hansen, K.M., Ingstrup, M.: Service composition issues in pervasive comput-
ing. IEEE Pervasive 9(1) (2010)

3. Medjahed, B., Bouguettaya, A., Elmagarmid, A.: Composing web services on the semantic
web. Very Large Data Base Journal 12(4) (2003) 333–351

4. Yang, J., Papazoglou, M.: Service components for managing the life-cycle of service com-
positions. Information Systems 29(2) (2004) 97–125

5. Cardoso, J., Sheth, A.: Introduction to semantic web services and web process composi-
tion. In: Proc. 1st Int. Work. on Semantic Web Services and Web Process Composition
(SWSWPC). (2004)

6. Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.: Automating daml-s web services compo-
sition using shop2. In: ISWC. (2003)

7. Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated composition of Web services
by planning at the knowledge level. In: IJCAI. (2005)

8. McIlraith, S., Son, T.: Adapting golog for composition of semantic web services. In: KR.
(2002)

9. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic com-
position of e-services that export their behavior. In: ICSOC. (2003)

10. Hu, Y., De Giacomo, G.: A generic technique for synthesizing bounded finite-state con-
trollers. In: ICAPS. (2013)

11. De Giacomo, G., Patrizi, F., Sardiña, S.: Automatic behavior composition synthesis. Artif.
Intell. 196 (2013) 106–142

12. Hull, R.: Artifact-centric business process models: Brief survey of research results and chal-
lenges. In: OTM. (2008)

13. Su, J.: Semantic web services: Composition and analysis. IEEE Data Engineering Bulletin
31(3) (2008)

14. Yadav, N., Sardiña, S.: Decision theoretic behavior composition. In: AAMAS. (2011)
15. Menasce, D.: Qos issues in web services. IEEE Internet Computing 6(6) (2002)
16. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: Qos-aware mid-

dleware for web services composition. IEEE Transactions on Software Engineering 30(5)
(2004)

17. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces.
In: IJCAI. (2013)

18. Nain, S., Lustig, Y., Vardi, M.Y.: Synthesis from probabilistic components. Logical Methods
in Computer Science 10(2) (2014)

19. Muscholl, A., Walukiewicz, I.: A lower bound on web services composition. Logical Meth-
ods in Computer Science 4(2) (2008)

20. Yadav, N., Felli, P., De Giacomo, G., Sardiña, S.: Supremal realizability of behaviors with
uncontrollable exogenous events. In: IJCAI. (2013) 1176–1182

21. Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and monitoring web
service composition. In: AIMSA. (2004)

22. Bacchus, F., Boutilier, C., Grove, A.J.: Rewarding behaviors. In: AAAI. (1996)
23. Thiébaux, S., Gretton, C., Slaney, J.K., Price, D., Kabanza, F.: Decision-theoretic planning

with non-markovian rewards. J. Artif. Intell. Res. 25 (2006) 17–74
24. Lacerda, B., Parker, D., Hawes, N.: Optimal policy generation for partially satisfiable co-safe

LTL specifications. In: IJCAI. (2015)
25. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In: IJCAI. (2015)
26. De Giacomo, G., Vardi, M.Y.: LTLf and LDLf synthesis under partial observability. In:

IJCAI. (2016)
27. Torres, J., Baier, J.A.: Polynomial-time reformulations of LTL temporally extended goals

into final-state goals. In: IJCAI. (2015)
28. Camacho, A., Triantafillou, E., Muise, C., Baier, J.A., McIlraith, S.: Non-deterministic plan-

ning with temporally extended goals: LTL over finite and infinite traces. In: AAAI. (2017)
29. Fritz, C., McIlraith, S.A.: Monitoring plan optimality during execution. In: ICAPS. (2007)
30. Baier, J.A., Fritz, C., Bienvenu, M., McIlraith, S.A.: Beyond classical planning: Procedural

control knowledge and preferences in state-of-the-art planners. In: AAAI. (2008)
31. Levesque, H.J., Reiter, R., Lesperance, Y., Lin, F., Scherl, R.: GOLOG: A logic programming

language for dynamic domains. J. of Logic Programming 31 (1997)
32. De Giacomo, G., Di Ciccio, C., Felli, P., Hu, Y., Mecella, M.: Goal-based composition of

stateful services for smart homes. In: OTM. (2012)
33. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. of Computer

and System Sciences 18 (1979)
34. De Giacomo, G., Gerevini, A.E., Patrizi, F., Saetti, A., Sardiña, S.: Agent planning programs.

Artif. Intell. 231 (2016)

