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Strong anharmonicity in the phonon spectra of PbTe and SnTe from first principles
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At room temperature, PbTe and SnTe are efficient thermoelectrics with a cubic structure. At low temperature,
SnTe undergoes a ferroelectric transition with a critical temperature strongly dependent on the hole concentration,
while PbTe is an incipient ferroelectric. By using the stochastic self-consistent harmonic approximation, we
investigate the anharmonic phonon spectra and the occurrence of a ferroelectric transition in both systems. We
find that vibrational spectra strongly depend on the approximation used for the exchange-correlation kernel in
density-functional theory. If gradient corrections and the theoretical volume are employed, then the calculation
of the phonon frequencies as obtained from the diagonalization of the free-energy Hessian leads to phonon
spectra in good agreement with experimental data for both systems. In PbTe we evaluate the linear thermal
expansion coefficient γ = 2.3×10−5 K−1, finding it to be in good agreement with experimental value of γ =
2.04×10−5 K−1. Furthermore, we study the phonon spectrum and we do reproduce the transverse optical mode
phonon satellite detected in inelastic neutron scattering and the crossing between the transverse optical and the
longitudinal acoustic modes along the �X direction. The phonon satellite becomes broader at high temperatures
but its energy is essentially temperature independent, in agreement with experiments. We decompose the self-
consistent harmonic free energy in second-, third-, and fourth-order anharmonic terms. We find that the third-
and fourth-order terms are small. However, treating the third-order term perturbatively on top of the second-order
self-consistent harmonic free energy overestimates the energy of the satellite associated with the transverse optical
mode. On the contrary, a perturbative treatment on top of the harmonic Hamiltonian breaks down and leads to
imaginary phonon frequencies already at 300 K. In the case of SnTe, we describe the occurrence of a ferroelectric
transition from the high-temperature Fm3m structure to the low-temperature R3m one. The transition temperature
is, however, underestimated with respect to the experimental one. No satellites are present in the SnTe phonon
spectra despite a not negligible anharmonic broadening of the zone-center TO mode.

DOI: 10.1103/PhysRevB.97.014306

I. INTRODUCTION

Thermoelectric materials are appealing for their capability
of converting heat into electric power, and vice versa [1,2].
Used in conjunction with clean sources of energy, such as
solar radiation, such devices may be an alternative solution for
the increasing global energy demand, and other global issues
such as global warming [2–5]. The development of efficient
thermoelectric devices is linked to a dimensionless quantity
called figure of merit, given by:

ZT = S2σT

k
, (1)

S is the Seebeck coefficient, T the temperature, and σ and
k are the electronic and thermal conductivities, respectively.
The higher is the figure of merit, higher is the efficiency of a
thermoelectric device. A possible strategy to increase the figure
of merit is to look for systems with small thermal conductivity.
In practice, this often means to look for systems with large

phonon-phonon scattering, i.e., with dominant anharmonic ef-
fects in the phonon spectra. Thus a first step towards design and
understanding of new thermoelectric design is the development
of a reliable description of anharmonicity in phonon spectra.
In addition, as several thermoelectric compounds undergo
second-order phase transitions driven by soft modes, a detailed
nonperturbative treatment of anharmonicity is crucial to un-
derstand the lattice dynamics and thermoelectric efficiency of
materials. From a theoretical point of view, several approxi-
mations [6–10] have been developed in recent years to tackle
this problem and it is finally becoming possible to describe
anharmonic effects beyond the perturbative regime [11,12].
This is the goal of the present paper, namely the investigation of
the reliability of the stochastic self-consistent approximation in
describing the vibrational properties of thermoelectrics beyond
the harmonic approximation.

Among thermoelectrics, we consider PbTe and SnTe that
recently have drawn attention due to some of their interesting
properties [13–18]. Both systems have high figures of merit,
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turning them into effective thermoelectrics. Furthermore, at
room temperature they have simple NaCl-like structures. The
simplicity of their structure and the importance of anharmonic
effects to describe their lattice-dynamical properties make
them an ideal playground to validate nonperturbative theoret-
ical approaches to the anharmonic problem.

Beside its thermoelectric properties, SnTe displays an
intriguing ferroelectric transition at low temperatures. This
transition toward a rhombohedral structure occurs when the
transverse optical (TO) modes at the Brillouin zone (BZ) center
softens during cooling. Past and recent experiments measured
different transition temperatures, ranging from 0 K to values
around 100 K. Such a variation in Tc is due to the change
in the intrinsic doping [19]. On the other hand, PbTe does
not undergo a phase transition at low temperature, although
it has an incipient ferroelectric nature. Moreover, recent INS
experiments reported that PbTe exhibits a phonon satellite peak
close to zone center, a clear fingerprint of strong anharmonicity
[16].

From the theoretical point of view, both systems have
been studied in the past by using ab initio calculations,
as well as molecular-dynamics-based methods [18,20–23].
The majority of them use an nonperturbative approach since
previous calculations based on perturbation theory report
structural instabilities that are not present in the measurements
[7,20]. Some of those methods give good agreement with the
experiment, specially for PbTe. However, the results may be
affected by a conjunction of factors, such as the volume used
on the calculations [24]. Furthermore, in all these methods
quantum effects were neglected. For PbTe this is a reasonable
approximation, however, for SnTe it is not obvious as the tem-
perature of 100 K corresponds to 8 meV that is approximately
the transverse optical phonon energy.

In this paper we present the anharmonic phonon spectra
of PbTe and SnTe as function of temperature using the
stochastic self-consistent harmonic approximation (SSCHA)
[9,10,25–27]. We apply the method to both systems and
determine the magnitude of anharmonic effects on vibrational
spectra and on the ferroelectric transition.

This paper is presented in the following order. First, in
Sec. II we introduce the theoretical background and method-
ology applied in our calculations. Then we introduce the
stochastic self-consistent harmonic approximation (SSCHA)
[9,10,27] and, in this framework, the evaluation of the free-
energy Hessian [27]. Section III presents the parameters used in
our ab initio calculations. The main results concerning the har-
monic and anharmonic phonon dispersions, and comparison
between our calculations and experimental data are described
in Sec. IV.

II. THEORY

We study the lattice dynamic of PbTe and SnTe within
the Born-Oppenheimer (BO) approximation. The quantum
Hamiltonian for the atoms is defined by the BO potential
energy V (R). With R we are denoting in component-free no-
tation the quantity Rαs(l), which is a collective coordinate that
completely specifies the atomic configuration of the crystal.
The index α denotes the Cartesian direction, s labels the atom
within the unit cell, and l indicates the three-dimensional lattice

vector. In what follows we will also use a single composite
index a = (α,s,l) to indicate Cartesian index, atom index,
and lattice vector together. Moreover, in general, we will use
bold letters to indicate also other quantities in component-free
notation.

In order to take into account quantum effects and an-
harmonicity at nonperturbative level, we use the stochastic
self-consistent harmonic approximation (SSCHA) [9,10,27].
For a given temperature T , the method allows us to find an
approximate estimation for F (Rαs(l)), the free energy of the
crystal as a function of the average atomic position Rαs(l) (the
centroids). For a given centroid R, the SSCHA free energy
is obtained through an auxiliary quadratic Hamiltonian, the
SSCHA Hamiltonian HR. In a displacive second-order phase
transition, at high temperature the free energy has minimum in
a high symmetry configuration Rhs but, on lowering tempera-
ture, Rhs becomes a saddle point at the transition temperature
Tc. Therefore, the free-energy Hessian evaluated in Rhs,
∂2F/∂R∂R|Rhs

, at high temperature is positive definite but
it develops one or multiple negative eigendirections at Tc. The
SSCHA free-energy Hessian in a centroid R can be computed
by using the analytic formula (in component-free notation) [27]

∂2F

∂R∂R = � +
(3)

��(0)
[
1 −

(4)

��(0)
]−1 (3)

�, (2)

with

� =
〈

∂2V

∂ R∂ R

〉
ρHR

,

(3)

� =
〈

∂3V

∂ R∂ R∂ R

〉
ρHR

,
(4)

� =
〈

∂4V

∂ R∂ R∂ R∂ R

〉
ρHR

, (3)

where the averages are with respect to the density matrix of the
SSCHA Hamiltonian HR, i.e., ρHR = e−βHR/tr[e−βHR ], and
β = (kbT )−1 where kb is the Boltzmann constant. In Eq. (2)
the value at z = 0 of the fourth-order tensor �(z) is used. For
a generic complex number z it is defined, in components, by

	abcd (z) = −1

2

∑
μν

F (z,ωμ,ων)

×
√

h̄

2Maωμ

ea
μ

√
h̄

2Mbων

eb
ν

×
√

h̄

2Mcωμ

ec
μ

√
h̄

2Mdων

ed
ν , (4)

with Ma the mass of the atom a, ω2
μ and ea

μ eigenvalues and

corresponding eigenvectors of D
(S)
ab = �ab/

√
MaMb, respec-

tively, and

F (z,ων,ωμ) = 2

h̄

[
(ωμ + ων)[1 + nB(ωμ) + nB(ων)]

(ωμ + ων)2 − z2

− (ωμ − ων)[nB(ωμ) − nB(ων)]

(ωμ − ων)2 − z2

]
, (5)

where nB(ω) = 1/(eβh̄ω − 1) is the bosonic occupation num-
ber. Evaluating through Eq. (2) the free-energy Hessian in Rhs

and studying its spectrum as a function of temperature, we
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can predict the occurrence of a displacive second-order phase
transition and estimate the relative Tc. Equivalently, we can
analyze lattice instabilities by studying the softening in the
eigenvalues of

D
(F )
ab = 1√

MaMb

∂2F

∂Ra∂Rb
, (6)

which can be considered an anharmonic, temperature-
dependent generalization of the standard harmonic dynamical
matrix. Moreover, since we are considering a crystal, we
can take advantage of the lattice translation symmetry and
Fourier transform with respect to the lattice indexes. Therefore,
since there are two atoms in the unit cell of PbTe and SnTe,
we actually calculate the eigenvalues the sixth-order square
matrix D

(F )
αsβt (q) in different q points of the Brillouin zone.

The magnitude of the different terms comprising Eq. (2) is
discussed in Appendix A. In particular it is shown that, for the

applications considered in the present paper, the term
(4)

��(0)
is negligible with respect to the identity matrix [or, using the
Appendix’s notation, 〈D4V 〉 is negligible].

As shown in Ref. [27], in the context of the SCHA it is
possible to formulate an ansatz in order to give an approximate
expression of the one-phonon Green’s function G(z) for the
variable

√
Ma(Ra − Ra

hs):

G−1(z) = z21 − M− 1
2 �M− 1

2 − �(z). (7)

Here Mab = δabMa is the mass matrix and �(z) is the SSCHA
self-energy, which is given by

�(z) = M− 1
2

(3)

��(z)
[
1 −

(4)

��(z)
]−1 (3)

� M− 1
2 . (8)

Notice that G−1(0) = −D(F ), as it must be. We extend the

negligibility of the static
(4)

��(0) to the generic dynamical case.

That allows us to neglect
(4)

��(z) and reduce the SSCHA self-
energy to the so-called bubble self-energy, namely:

�(z) ≈ �(B)(z) = M− 1
2

(3)

��(z)
(3)

� M− 1
2 . (9)

Again, we take advantage of lattice translation symmetry and
Fourier transform with respect to the lattice indexes. Moreover,
we neglect the mixing between different phonon modes and
assume that the self-energy �(q,z) is diagonal in the basis
of the eigenvectors eαs

μ (q) of D
(S)
αs βt (q). Thus we consider the

quantity

�μ(q,ω) =
∑
αs,βt

eαs
μ (−q)�αsβt (q,ω + i0+)eβt

μ (q). (10)

From the one-phonon Green’s function we obtain the corre-
sponding spectral function −2 Tr Im G(q,ω + i0+). Peaks in
this quantity, as a function of ω, signal the presence of collec-
tive vibrational excitations (phonons) having certain energies,
as they can be probed with inelastic scattering experiments. We
find convenient to multiply the spectral function by the factor
ω/2π, σ (q,ω) = −ω Tr Im G(q,ω + i0+)/π . In this way the

integral, on the real axis, of σ (ω,q) with respect to ω is equal
to the number of modes (six, in this case). It is

σ (q,ω)

= 1

π

∑
μ

−ω Im�μ(q,ω)(
ω2 − ω2

μq − Re�μ(q,ω)
)2 + (Im�μ(q,ω))2

.

(11)

The square phonon frequencies corrected by the self-energy,
�2

μq , are then obtained as

�2
μq = ω2

μq + Re�μ(q,ωμq). (12)

III. METHODS

We perform density-functional theory (DFT) calculations
using the QUANTUM-ESPRESSO package [28]. For both sys-
tems the exchange-correlation interaction is treated with the
Perdew-Burke-Ernzerhof (PBE) generalized gradient approx-
imation [29]. To describe the interaction between electrons
and ions, we use norm-conserving pseudopotentials [30] for
PbTe, and PAW [31] pseudopotentials for SnTe. In both case the
semicore 4d states in valence are included for Te and Sn, and 5d

for Pb. Electronic wave functions are expanded in a plane-wave
basis with kinetic energy cutoffs of 65 Ry and 28 Ry for scalar
relativistic pseudopotentials, for PbTe and SnTe, respectively.
Integrations over the Brillouin zone (BZ) are performed using
a uniform grid of 8×8×8 k points for PbTe, and a denser grid
of 12×12×12 k for SnTe. Particular care must be taken in
converging SnTe with respect to k points as the depth of the
potential well as a function of phonon displacements is strongly
dependent on the sampling. Previous calculations [21] carried
out with smaller samplings are found to be underconverged
(see Appendix B for convergence tests). Born effective charges
calculated via density-functional perturbation theory (DFPT)
are included for PbTe calculations only. For both PbTe and
SnTe we consider the high-temperature rock-salt structure, and
the PBE optimized lattice parameters of 6.55 Å and 6.42 Å,
respectively. The effect of the thermal expansion is discussed
in Appendix C.

Harmonic phonon frequencies are calculated within the
DFPT [32] as implemented in QUANTUM-ESPRESSO. We in-
vestigate the 2×2×2, and then, the 4×4×4 q-point grids for
both systems. Fourier interpolation is used to obtain the phonon
dispersion along high symmetry lines.

To calculate the anharmonic renormalized phonons we use
the SSCHA [9,10,27]. The trial Hamiltonian is minimized in a
supercell. This minimization precess requires the energies and
forces acting on a supercell for a set of random configurations
generated by the trial density matrix. Those elements have been
calculated on 2×2×2 and 4×4×4 supercells using the same
parameters for the harmonic DFPT calculations. The number
of random configurations we use is of the order of 1000.
The difference between harmonic and anharmonic dynamical
matrices is interpolated to a 14×14×14 supercell for SnTe. For
PbTe no interpolation is needed since the 4×4×4 supercell is
converged and adequate to describe the experimental results.

014306-3



GUILHERME A. S. RIBEIRO et al. PHYSICAL REVIEW B 97, 014306 (2018)

FIG. 1. Harmonic phonons dispersion of PbTe and SnTe for dif-
ferent lattice constants and functionals. LO/TO splitting is included in
the calculation. For the experimental lattice parameter (red lines) both
systems do not present negative frequencies. For the PBE optimized
lattice parameter (blue lines), the SnTe phonon spectra has negative
frequencies on �, indicating a structural instability. The instability
disappears if the experimental or local density approximation (LDA)
volumes are used. The TO modes at � exhibit an strong dependence
on the volume.

IV. RESULTS AND DISCUSSION

A. Harmonic phonon dispersion

In ferroelectrics and thermoelectrics the phonon spectra
strongly depends on the volume used in the calculations [24];
we first investigate the dependence of the harmonic phonon
spectra on the lattice parameters. For this reason in Fig. 1 we
calculate harmonic phonon dispersions within DFPT for PbTe
and SnTe using (i) the PBE functional on top of the PBE geom-
etry at zero temperature [aPBE(PbTe) = 6.55 Å, aPBE(SnTe) =
6.42 Å], (ii) the PBE functional on top of the experimen-
tal [33,34] geometry [aexp(PbTe) = 6.46 Å and aexp(SnTe) =
6.32 Å], and (iii) the local density approximation functional
(LDA) on top of the LDA geometry [aLDA(PbTe) = 6.39 Å
and aLDA(SnTe) = 6.24 Å], respectively. The experimental
parameter is smaller (larger) than the theoretical PBE (LDA)

one, as if the system were experiencing a finite negative (pos-
itive) pressure. As expected, the results are strongly volume
dependent. In the case of PbTe, the use of the PBE functional on
top of the experimental geometry hardens all the PBE phonons
on top of the PBE geometry, but the hardening is particularly
large for the transverse optical (TO) mode at zone center that
is shifted from 3.17 meV to 6.19 meV. The LDA functional on
top of the LDA geometry gives even harder phonon frequencies
than PBE on top of the experimental geometry. However, in
all cases, the harmonic phonon frequencies are positive and
no structural instability is detected in PbTe, in agreement
with experiments. PbTe is usually referred to as an incipient
ferroelectric because of the softness of the TO phonon mode.
It is important to underline that in the case of PbTe the
experiments [15,16] find a clear LO/TO splitting. We thus
included this effect in our harmonic calculation.

At ambient pressure SnTe undergoes a phase transition in
the 30–100 K temperature range. At low temperature the crys-
tal symmetry changes from cubic (Fm3m) to rhombohedral
(R3m). The distortion is a displacive phase transition involving
a small dimerization in the unit cell [35]. The distortion is
compatible with a phonon instability at zone center. Real
samples of SnTe are nonstoichiometric and the ferroelectric
transition temperature strongly depends on the number of holes
present in the system. It is approximately 100 K for hole
concentrations of the order of 1×1020 cm−3 and decreases to
approximately 30 K for ten times larger hole concentrations.
At these large doping is is not clear if the LO/TO splitting
needs to be included in the calculation. For this reason, for the
case of SnTe we perform calculations both with and without
LO/TO splitting.

The dependence of the harmonic calculation on volume
is stronger in the case of SnTe. The ferroelectric transition
(imaginary TO phonon at zone center) is present when using the
PBE functional on top of the PBE geometry, while it disappears
if the experimental or LDA geometries are used. This is
consistent with the disappearing of the ferroelectric transition
at finite pressure [36,37] and again underlines the critical role
of the volume used in the calculation of phonon spectra in
ferroelectrics and thermoelectrics [38]. Finally, as SnTe is
substantially doped, the electronic screening is a compromise
between a metallic screening and the poor screening of a polar
insulator. For this reason, in Appendix D, we investigate the
role of metallic screening by considering a hole doped SnTe
and by using the virtual crystal approximation (namely by
changing the number of electrons in the simulation and by
introducing a compensating jellium background). We find that
globally the effects of metallic screening are small, except at
very small momenta.

In the rest of the paper we then neglect metallic screening,
consider stoichiometric SnTe and we use the PBE optimized
lattice parameter at T = 0 K both for PbTe and SnTe in all
calculations. For SnTe, as we are interested in the temperatures
below 100 K, we neglect the effects of the thermal expansion.

B. Anharmonic phonons

1. Lead telluride (PbTe)

In Fig. 2 we compare the PbTe phonon dispersion curves
at 300 K obtained by the SSCHA to INS experimental data
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FIG. 2. PbTe harmonic (dashed lines) and anharmonic (solid
lines) phonon dispersion curves at 300 K compared with INS experi-
ments [15] at 300 K (black dots). The anharmonic phonon dispersion
(�μq) is obtained from Eq. (12) and includes the contribution from
the bubble self-energy.

obtained by Cochran et al. [15]. Our calculated curves are in
good agreement with experimental results. We obtain a higher
value than the experiments for the TO modes at zone center is
consistent to newer observations of a double peak in this region
[16]. Previous calculations [23] found a good agreement for the
lower-energy TO mode at �, however, not obtaining a good
description of the high-energy phonon branches. More recent
INS measurements [16] have suggested the presence of a strong
temperature-dependent phonon satellite close to � originated
from the TO mode. Furthermore, as the temperature increases,
the TO band is shifted to higher energies and the crossing
between LA and TO phonon bands along the �X direction
becomes less evident.

In order to determine if the SSCHA approximation can de-
scribe phonon satellites and to investigate the temperature de-
pendence of the crossing, the phonon self-energy is calculated
performing Fourier interpolation over a denser 40×40×40
phonon momentum grid and a 0.2 meV broadening to regu-
larize the integral in Eq. (5). Figure 3 shows our calculated
anharmonic phonon dispersion versus the spectral function for
PbTe obtained by using the SCHA self-energy. We also show,
with pink dots, the energy of the TO phonon and of its satellite
as measured in INS experiments detailed in Ref. [16].

Both the satellite and the crossing of LA and TO bands
at 300 K are well described by our methodology. Moreover,
the energies of the TO peaks at � obtained by the SSCHA
are compatible with the observed values. The presence of
these features were also investigated in the literature using
different methods. In particular, nonperturbative methods such
as the temperature-dependent effective potential technique
(TDEP) [7,20] were able to obtain similar results. Finally, we
find that the satellite energy depends weakly on temperature
(not shown), although it substantially broadens as a function
of temperature.

FIG. 3. PbTe Spectral function at 300 K calculated along the
X-�-X path (color map). Solid lines denote the anharmonic phonon
dispersion curves, black dots denote the experimental data from
Ref. [15] and pink squares denote the experimental values for the
peaks at the zone center from more recent experiments described in
Ref. [16]. The color code is determined by the value of σ (q,ω) in
Eq. (11).

2. Tin telluride (SnTe)

Calculations for SnTe are reported in Fig. 4 where the
comparison between the phonon spectra obtained via SSCHA

FIG. 4. Harmonic (dashed lines) and anharmonic (solid lines)
phonon dispersion relations of SnTe at 100 K (red lines). The
spectral weight is calculated on a 4×4×4 supercell. The anharmonic
phonon dispersion (�μq) is obtained from Eq. (12) and includes the
contribution form the bubble self-energy.
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at T = 100 K and recent IXS experiments [18] at T = 75 K
is shown. Even, if this system was studied theoretically
before, using methods such as the TDEP and self-consistent
ab initio lattice dynamics (SCAILD) [8,18], the calculations
focused on higher temperatures. Our calculated anharmonic
dispersion curves present the main features of the exper-
imental data for all investigated high symmetry directions
along the BZ. Overall, we find a good agreement with
experimental data. In Fig. 5 we compare the SnTe calculated
anharmonic phonon dispersion and the spectral function for
SnTe obtained by using the SCHA self-energy and compared
with experiments. The calculation of the SCHA self energy is
carried out on a 4×4×4 supercell. The linewidth is interpolated
over 80×80×80 phonon momentum grids and a broadening of
0.2 meV is used to regularize the integral in Eq. (5). Contrary to
the case of PbTe, we do not find the occurrence of any satellite

FIG. 5. SnTe spectral function at 100 K calculated along the
X-�-X path (color map) with (top) and without (bottom) inclusion of
LO/TO splitting in the calculation. Solid lines denote the anharmonic
phonon dispersion curves, black dots denote the experimental data
from Ref. [18] at 75 K (black dots). The color code is determined by
the value of σ (q,ω) in Eq. (11).
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FIG. 6. Energy square of the TO phonons on the zone center
plotted against temperature. The red squares denote the results
obtained by using Eq. (6), and black squares results from O’Neill
et al. [18]. The linear extrapolation indicates that the mode softens
to zero energy towards Tc ≈ 23 K for our calculations. In samples at
very low doping, the ferroelectric transition can be as high as 100 K.

despite a substantial anharmonic broadening of low-energy
modes.

In order to study the second-order structural phase transition
in SnTe we evaluate the energy squared of the TO modes at �

as a function of temperature T . Our data with the inclusion of
anharmonicity are consistent with a ferroelectric transition at ≈
23 K. However, this value should be taken with care as the theo-
retical calculations are limited by the error in the knowledge of
the exchange correlation functional that leads to a big variation
in the equilibrium volume. On the other hand, experimentally,
the transition temperature of SnTe is strongly dependent on
sample doping, varying from 0 K to around 100 K for different
carriers concentrations. Figure 6 compares our results for
the energy squared of the TO mode with recent IXS [18]
experiments.

V. CONCLUSIONS

We applied a novel technique [27] based on the stochastic
self-consistent harmonic approximation capable of investigat-
ing phase transitions via the calculation of the Hessian of
the free energy. We have studied the temperature-dependent
anharmonic phonon spectra of PbTe and SnTe. We found a
strong dependence of vibrational properties on the exchange-
correlation functional used in the calculation and on the
corresponding equilibrium volume. By using the PBE [29]
functional with the theoretical equilibrium volume, we find
very good agreement with experimental INS spectra. The SS-
CHA is not only capable of describing single-particle spectra,
but also many-body features such as phonon satellites are
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correctly explained. Finally, we describe the occurrence ferro-
electric transition in SnTe from the high-T Fm3m structure to
the low-T R3m one. The value of the ferroelectric critical tem-
perature is found to be strongly dependent in the volume used
in the calculations, consequently, on the exchange-correlation
functional.
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APPENDIX A: MAGNITUDE OF 〈D3V〉 AND 〈D4V〉 TERMS

In order to have a better visualization of the different terms
of Eq. (2) one can rewrite it as:

∂2F

∂R∂R = � +
(3)
��(0)

(3)
� +

(3)
��(0)��(0)

(3)
�, (A1)

〈 〈
〈

〉 〉
〉

FIG. 7. Anharmonic phonon dispersion curves for PbTe at 300 K
and 600 K. Orange lines denote calculations neglecting the bubble
and superior order terms, (ωμq). Black dashed lines represent the
calculations including 〈D3V 〉, while red lines includes the full
expression, 〈D3V 〉 + 〈D4V 〉, (�μq). The phonon frequencies are
obtained using Eq. (12) in the static limit, namely by using �μ(q,0).

where

� = [
1 −

(4)
��(0)

]−1(4)
�. (A2)

For simplicity, we define

〈D3V 〉 =
(3)
��(0)

(3)
� (A3)

〈D4V 〉 =
(3)
��(0)��(0)

(3)
�. (A4)

To investigate the different terms in Eq. (A1), and in particu-
lar the mutual role of 〈D3V 〉 and 〈D4V 〉 we perform SSCHA
runs, on a 2×2×2 supercell, for different temperatures; 300
and 600 K for PbTe, and 50 and 100 K for SnTe.

Figures 7 and 8 compare the contribution of 〈D3V 〉 and
〈D4V 〉 to the phonon frequencies. Our calculations show that
for PbTe the 〈D4V 〉 term is negligible below 300 K while it is
somewhat more relevant at 600 K. For SnTe in the temperature
range studied in this work the 〈D4V 〉 term is also negligible.

〈 〈
〈

〉 〉
〉

FIG. 8. SSCHA runs for SnTe at 50 K and 100 K. Orange lines
denote calculations neglecting the bubble and superior order terms,
(ωμq). Black dashed lines represent the calculations including 〈D3V 〉,
while red lines includes the full expression, 〈D3V 〉 + 〈D4V 〉, (�μq).
The phonon frequencies are obtained using Eq. (12) in the static limit,
namely by using �μ(q,0). The calculations have been carried out
without LO/TO splitting.
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FIG. 9. Validity of perturbation theory in PbTe. Left: third-order anharmonicity is treated perturbatively on top of the harmonic spectrum of
Fig. 1. Note the imaginary phonon frequency at zone center at 300 K. Right: third-order anharmonicity treated perturbatively on top of the second
order expansion of the SSCHA free energy, namely on top of the phonon frequencies ωνq (or equally on top of the auxiliary self-consistent
harmonic matrix �).

As a consequence, in these temperature regions the Hessian
of the free energy is entirely determined by the D(S) matrix
and the so-called bubble term 〈D3V 〉. This analysis justifies
why we neglect the 〈D4V 〉 term in the calculations for larger
supercells.
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FIG. 10. Frozen phonon potential for SnTe as a function of the
k-point grid.

Having determined the smallness of 〈D4V 〉 we proceed
toward larger supercell calculations. By using an empirical
potential fitted on the SSCHA configurations we check the
convergence with respect to supercell size (see Appendix E).
We found that the use of a 4×4×4 supercell leads to converged
phonon frequencies. So we use this supercell to carry out our
first-principles calculations.

Given the fact that the 〈D3V 〉 and 〈D4V 〉 terms are small,
it is instructive to see if they can be treated perturbatively. If
perturbation theory is started on top of the initial harmonic
Hamiltonian, namely that leading to the phonon frequencies
in Fig. 1, then perturbation theory breaks down and imaginary
phonon frequencies are obtained at T = 300 K, as shown in
Fig. 9. This is because the third-order anharmonic correction
is so large that the system becomes unstable. On the contrary,
if perturbation theory is carried out on top of the second order
expansion of the SSCHA free energy, namely on top of the
phonon frequencies ωνq (or equally on top of the free energy
�), then the third-order term becomes substantially smaller and
perturbation theory is well defined. In practice this means that
higher-order anharmonic interactions renormalize third-order
anharmonicity. Even in this case, however, the energy of the
phonon satellite is slightly overestimated both with respect to
experiments and with respect to the more complete SSCHA
nonperturbative treatment.

APPENDIX B: K-POINTS SAMPLING IN SnTe

The convergence of DFT calculations for SnTe is quite
tricky. Even if the difference on the total energy of the Fm3m

structure between the 8×8×8 and 20×20×20 k-point grids
is of the order of 0.8 meV/atom, upon distortion towards
the R3m structure, the depth of the potential well differs
of 1.55 meV/cell. Thus, using a smaller k-point grid, as
done previous calculations [21], substantially overestimates
the ferroelectric instability, as shown in Fig. 10. For this reason
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FIG. 11. Anharmonic phonon spectra for the PBE at 600 K lattice
parameter versus the PBE at 0 K case. It is noticeable that the
difference is larger by including only 〈D3V 〉. The phonon frequencies
(�μq) are obtained using Eq. (12) in the static limit, namely by using
�μ(q,0).

we used a converged 12×12×12 k-point grid in our SnTe
calculations.

APPENDIX C: EVALUATION OF PbTe THERMAL
EXPANSION AT 600 K

It has been shown that the quasiharmonic approximation
fails in describing the behavior of the transverse optical
mode as a function of temperature [20]. In particular, the
quasiharmonic approximation leads to strongly decreasing
phonon frequencies in SnTe. Here we show that this error
can be corrected by computing the thermal expansion in the
framework of the self-consistent harmonic approximation and
the calculating anharmonic phonon spectra.

To evaluate the effects of thermal expansion in our calcu-
lations for PbTe at 600 K, we perform several SSCHA runs
for different volumes using a 2×2×2 supercell. We add the
vibrational free energy to the BO total energy to construct an
energy vs lattice parameter curve. By finding the minimum of
this curve we obtain a lattice parameter of 6.642 Å for PbTe at
600 K using the PBE functional in our calculations. We also
estimate the thermal expansion coefficient γ . In PBE we find
γ = 2.3×10−5 K−1, in good agreement with the experimental
value γ = 2.04×10−5 K−1 obtained in Ref. [39]. With this
new lattice constant, we then compute the anharmonic phonon

dispersion as before. Figure 11 shows the phonon spectra for
the two lattice parameters (PBE T = 0 K and T = 600 K)
considering just 〈D3V 〉 and the case 〈D3V 〉 + 〈D4V 〉. The
phonon frequencies shift toward smaller values in relation to
the PBE at 0 K as illustrated in Fig. 8. The shift is not significant
for the 〈D3V 〉 + 〈D4V 〉 case, whereas for the other, terms
beyond the bubble gain more importance.

APPENDIX D: BORN EFFECTIVE
CHARGES AND DOPING

The fact that both undoped PbTe and SnTe do not exist
stoichiometric raises questions on how those systems should be
simulated. For PbTe, since the typical doping is quite small and
the LO/TO splitting is quite pronounced, the inclusion of the
Born effective charges is a natural choice. The effective charges
for PbTe are calculated via DFPT and a posteriori added to
the SSCHA dynamical matrices. On the other hand, on SnTe
the effects of doping on the phonon dispersion are way more
significant. Undoped SnTe should be ferroelectric, however, its
nature depends on the carriers concentration. Typically SnTe
is heavily hole doped [19]. As hole concentration increases,
the transition temperature decreases down to a point in which
the system remains cubic, even at low temperatures, hence
losing the ferroelectric phase. In order to tackle this problem,
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FIG. 12. SnTe harmonic phonon dispersion using a 4×4×4 su-
percell: undoped (red) and doped (blue) case. Besides points very
close to the zone center, doping does not change considerably the
dispersion curves.
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we compared the harmonic phonon dispersion for doped and
undoped SnTe on a 4×4×4 supercell. We have not included
the Born effective charges as they would be screened by
doping, and we used nh = 3.23×1020 cm−3 from Ref. [18]
as the carrier concentration. Figure 12 shows that the insta-
bility remains at this doping level, and the phonon dispersion
along high symmetry directions are almost unaffected within
the BZ.

APPENDIX E: EMPIRICAL POTENTIAL CALCULATIONS

In this paper, in order to investigate supercell size effects on
the phonons modes, especially at the zone center, in addition
to the full ab initio calculations presented in the main text,
we made use of a model potential based on the formulation
developed by Marianetti et al. [40,41]. The potential has the
form:

V (R) = 1

2

∑
ab

φabu
aub + V

(3)
A (u) + V

(4)
A (u), (E1)

where u = R − R(0), R(0) corresponding to the equilibrium
configuration on the rock-salt structure. The harmonic matrices
φab were calculated using the same parameters as for the DFPT
calculations described on the main text. Anharmonic terms V

(3)
A

and V
(4)
A are defined as:

V
(3)
A (u) = p3

Na∑
s=1

∑
α=x,y,z

[
A3

s,α+ − A3
s,α−

]
(E2)

and

V
(4)
A (u) =p4

Na∑
s=1

∑
α=x,y,z

[
A4

s,α+ + A4
s,α−

]

+ p4x

Na∑
s=1

∑
α=x,y,z

[
A2

s,α+
((
E (1)

s,α+

)2 + (
E (2)

s,α+

)2)

+ A2
s,α−

((
E (1)

s,α−

)2 + (
E (2)

s,α−

)2)]
, (E3)

where, for example

As,x± = 1√
2

(ux±(s),x − us,x)

E (1)
s,x± = 1√

2
(ux±(s),y − us,y)

E (2)
s,x± = 1√

2
(ux±(s),z − us,z). (E4)

The variables x+(s) and x−(s) represent the nearest neighbor
of atom s, along the Cartesian direction +x and −x, respec-
tively. For the other Cartesian directions, ±y and ±z, we
generalized this notation. The quantity u is the displacement
from the equilibrium position.

The potentials for both systems were defined by fitting
the parameters p3, p4, and p4x to ab initio forces calculated
for 1000 random atomic configurations generated in the first-
principles SSCHA calculation. For PbTe we used a combina-
tion of configurations generated at 300 K and 600 K, resulting
on the coefficients p3 = 2.99 eV/(Å)3, p4 = 4.17 eV/(Å)4,
and p4x = −1.32 eV/(Å)4. For SnTe we used configurations
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FIG. 13. Anharmonic PbTe phonon dispersion at 300 K on a
4×4×4 supercell: ab initio vs (blue lines) empirical potential (red
lines).

generated at 100 K obtaining p3 = 2.51 eV/(Å)3 and p4 =
6.18 eV/(Å)4, in this case p4x was neglected since its contri-
bution was not relevant.
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FIG. 14. Anharmonic SnTe phonon dispersion at 100 K on a
4×4×4 supercell: ab initio vs (blue lines) empirical potential (red
lines). The phonon frequencies (�μq) are obtained using Eq. (12) in
the static limit, namely by using �μ(q,0).
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FIG. 15. Comparison between PbTe anharmonic phonon spectra
using a 2×2×2 (blue) and 4×4×4 (red) supercell. Both dispersions
were calculated using an empirical potential and including the bubble
term. The phonon frequencies (�μ q) are obtained using Eq. (12) in
the static limit, namely by using �μ(q, 0).

Figures 13 and 14 compare the phonon dispersion on a
4×4×4 supercell calculated ab initio and using the empirical
potential for PbTe (300 K) and SnTe (100 K), respectively. For
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FIG. 16. Comparison between SnTe anharmonic phonon spectra
using a 4 × 4 × 4 (red) and 5 × 5 × 5 (purple) supercell. In this case
the bubble and higher order terms are neglected on our calculations.
The phonon frequencies (ωμq) are obtained using Eq. (12).

〈 〉
〈 〉

FIG. 17. Transverse optical phonon modes as a function of T

for PbTe (top) and SnTe (bottom) for different supercell sizes. The
bubble contribution was taken on for supercells up to the 4×4×4.
The phonon frequencies (�μq) are obtained using Eq. (12) in the
static limit, namely by using �μ(q,0).

PbTe the larger difference is at zone center, this may be due
to the fact that we used random configurations generated on a
broader range of temperatures. However, this is not a problem
in order to study the convergence of the TO modes using the
empirical potential for different supercell sizes. For SnTe, since
we generated our random configurations at 100 K, one may
expect a better agreement.

Figure 17 presents the convergence tests regarding the TO
modes of PbTe and SnTe. For the first compound, the difference
between the 2×2×2 and 4×4×4 is small for the points which
are included exactly by using the 2×2×2 supercell (X,�,L),
as shown in Fig. 15. However, as stated before, we used the
4×4×4 supercell in order to include more points along on
the BZ and, as a consequence, to describe more accurately the
phonon dispersion of PbTe. As mentioned on the main text, for
SnTe we considered at least a 4×4×4 supercell in our ab initio
calculations, since the 2×2×2 does not seem to be sufficient. In
order to test the convergence we explored the model potential
on the 4×4×4 and also on the 5×5×5 supercells. In this case,
we compared just the SSCHA runs without including extra
terms. Figure 16 shows the phonon dispersion for the 4×4×4
and 5×5×5 supercell. It is necessary to emphasize that the
latter presents some wiggles due to the Fourier transform, so
the negative energies are not physical, just an interpolation
artifact. As can be viewed in Fig. 17, the difference between
the TO modes using different supercells is not significant for
our purposes.
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