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Abstract

Generic Virtualization Service (GVirtuS) is a new solution for enabling GPGPU on Virtual Machines or low powered devices.
This paper focuses on the performance analysis that can be obtained using a GPGPU virtualized software. Recently, GVirtuS
has been extended in order to support CUDA ancillary libraries with good results. Here, our aim is to analyze the applicability
of this powerful tool to a real problem, which uses the NVIDIA cuFFT library. As case study we consider a simple denoising
algorithm, implementing a virtualized GPU-parallel software based on the convolution theorem in order to perform the noise
removal procedure in the frequency domain. We report some preliminary tests in both physical and virtualized environments to
study and analyze the potential scalability of such an algorithm.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Hybrid infrastructures, Virtualization, High Performance Computing, FFT, GPGPU, image denoising;

1. Introduction

Analysis and processing of very large datasets, or big data, poses a significant challenge. Massive datasets are
collected, studied and interpolated in numerous domains, from mathematical and engineering sciences>!311:12:13.16 o
social networks !, from biomolecular research, commerce and security>>3! to IoT applications **7-810In order to
obtain the best performance in analyzing big data, the use of computing machines with high processing power became
necessary 2. Virtualization technologies are currently widely deployed, as their use yields important benefits such as
resource sharing, process isolation, and reduced management costs 12, Thus, it is straightforward that the usage of
virtual machines (VMs) in HPC is an active area of research. From a computational point of view, the hierarchical
and heterogeneous high performance computing paradigm, that emerged in the last decade, delivers enough power to
process spatial big data leveraging on massive multicore CPUs, general purpose graphic processing units (GPGPUs)
and, recently, field-programmable generic arrays (FPGAs) and supported by solid state storage skyrocketing the long
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term memory access performance?>*. In order to mitigate the computational infrastructures total cost of ownership,
and accelerate the tools availability to a large users footprint, the use of high performance cloud computing resources
pushes to minimize the big data based products time to market. While CPU virtualization and elastic storage is a
common practice in public, private and hybrid clouds?>?®, the same techniques are not widely available due to the
fact that often the accelerators exploit closed technologies.

In this paper we demonstrate how is possible to use the GPGPU resource leveraging on the RAPID GVirtu
GPGPU virtualization service presenting a specific case related to the image denoising process. As is well-known,
image denoising algorithms have a very high computational cost, especially when dealing with large-scale images.
An effective approach to solve this problem is to use a parallel algorithm. There are many research efforts in this field,
using different parallel computing architectures %!, especially on hybrid environment 4.

Here we present a denoising algorithm, based on a frequency domain convolution leveraging the CUDA environment,
which exploits the computational power of the NVIDIA cuFFT library'. Our aim is to highlight the benefits in
using virtualization without loss of efficiency. We used this simple case study in order to analyze how the overall
virtualization cost affects the execution time. To be specific, starting by the Fourier Transform (FT) approach, we
use the convolution theorem to perform the image denoising process as a pointwise product of FTs on GPU device.
Therefore, we report some tests in both physical and virtualized environments and compare them.

The rest of the paper is organized as follows: in section 2 we recall the image denoising problem, the FT de-
composition and the convolution theorem; in section 3 we present the cuFFT library of CUDA and how to use it
efficiently: moreover a description of the GPU-parallel algorithm and of the virtualization approach with GVirtusS is
also provided; the evaluation is carried out in section 4. Finally, in section 5 we conclude the paper.

S 25,27

2. The image denoising in frequency domain

Reconstruction of a signal from a noisy one is a well-known inverse problem. From a mathematical point of view
a noisy image can be defined as a piecewise function f(x,y) = C[u(x,y)], where u(x,y) is the image function (non-
corrupted by noise) and C is a function that defines the noise we wish to eliminate. Estimation of an unknown signal
u from the available noisy data f, is an ill-posed problem that involves to find the noisy-free image, by preserving
useful information. Noise in digital image may arise during the acquisition step, caused by poor illumination and/or
high temperature. It can be either additive or multiplicative. Some noise models are also called white: the noise is
spatially uncorrelated and identically distributed. Another often observed noise model is the so-called salt and pepper

noise, which can be re;duced with a median filter. In this work we deal with additive white Gaussian noise, defined
as pg(u) = #ﬂe—(‘;ﬁﬁ where u represents the image gray level and u and o are the Gaussian distribution mean and
standard deviation, respectively. Generally, the simplest method to perform image denoising, in the spatial domain,
is based on a convolution operation between the function f and the Gaussian function. The related algorithm uses
a finite size mask (or kernel) which scannes across the image. The value of each pixel on the output image is the
weighted sum of the input pixels within a window where the weights are the values of the mask. This algorithm has
a high computational complexity, therefore this naive approach can become very slow for big inputs (requiring too
much time for large images). A more efficient approach exploits the computational power of the Fourier Transform
(FT) and the related frequency domain operations.

The Fourier transform of a function of time itself is a complex-valued function of frequency, defined as follows:

F(p) = f - fOe > dt,

The numerical approach for computing FT approximates a non periodic function as sum of a certain number of sine
and cosine functions. The component frequencies of the sine a cosine functions that spread across the spectrum
are represented as peaks in the frequency domain. Starting by the FT concept, the image denoising process in the
frequency domain uses the Convolution Theorem for which: under suitable conditions the FT of a convolution is the

! https://developer.nvidia.com/cufft
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pointwise product of FTs. Therefore, it is possible to write:

fO@ht) = F(n)-H@)

Then, to deal with the noise removal problem by avoiding a convolution in the spatial domain, we use the more
efficient way which consists in performing a FT, computing an element-wise product and finally the related IFT.
(inverse Fourier Transform). Following section describes the computational kernel of our parallel software.

3. GPU-Parallel Algorithm description and Virtualization approach

In order to develop an efficient parallel software we propose to use the cuFFT library for (direct and inverse) Fast
Fourier Transforms computation in the GPU-CUDA environment. NVIDIA-CUDA Fast Fourier Transform (cuFFT)
library provides a simple interface for computing parallel FFTs on an NVIDIA GPU environment. The library allows
users to exploit the floating-point power and parallelism of the GPU without having to develop a custom GPU-based
FFT implementation. By using cuFFT we gained a massive performance improvement with respect to the sequential
CPU algorithm. Recently, cuFFT has been added to the CUDA libraries supported by GVirtuS.

GVirtuS? is an open source project with Apache License v2.0. Born in the University of Naples Parthenope (RAPID
project) '824_ the project is intended to provide a virtual version of computer hardware platforms, storage devices, and
computer network resources. The GVirtuS scheme is based on the split-device driver model: device access control
split between the frontend driver in the guest VM and backend driver in the host machine: GVirtuS frontend runs
in a guest user space; GVirtuS backend is a server application that handles concurrent requests by multiple clients
and runs in host user space. Each plug-in module of GVirtuS is composed by a frontend layer and a backend layer.
The choice of the hypervisor deeply affects performances. GVirtuS project is paired to the KVM/QEMU hypervisor,
which allows to reach high performance guest/host communication. For testing purposes, we can avoid the hypervisor
layer and use TCP Unix sockets as communicator?°.

In particular, GVirtuS allows HPC on low-power devices, as GPUs and supports the CUDA libraries cuFFT, CUBLAS
and CUDNN (work in progress). A GVirtuS offloading example is shown in Figure 1 on the right.
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Fig. 1. Left: GVirtuS for GPU. Right: GVirtsuS offloading example.

The Guest OS calls the frontend definition of cudaMemcpy and sends the parameters to the remote machine trough
the TCP Socket(Communicator). Of course, host pointers must be translated. Device pointers, instead, do not need
any translation. The GVirtuS-CUDA stack allows to accelerate any virtual machine with a small impact on overall
performance compared to a pure host/gpu setup.

2 https://github.com/raffmont/G VirtuS
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4. Performance test

In this section we report some experiments. We have tested two versions of the denoising GPU-parallel software:
the first one in the GPU-CUDA environment, the second one in the GPU-CUDA environment with GVirtuS. Both
versions, together with the sequential version, have been tested on a CPU: Intel Xeon E5-2609 v3 - RAM: 64 GB
with a GPU: Nvidia GeForce Titan X. First, we compared the efficiency of our GPU-parallel software with respect to
the sequential CPU version. The execution times are shown in Figure 2. We have observed a significant reduction in
terms of execution times, mainly due to the use of the optimized cuFFT library.

Fig. 2. Execution times (ms): in blue the CPU sequential code, in green the GPU-parallel code.

In order to run our CUDA software with GVirtusS, it is not necessary any modification; the code must be compiled
on a machine with nvcc and the executable must link the NVIDIA shared libraries. Then, the compiled binary file
must be moved to the VM with GVirtuS libraries, exporting some environment variables, in order to link GVirtuS
shared libraries. Finally, the binary executable can be run.

In Table 1 we report the execution times of the GPU-parallel version without and with GVirtuS. The same results are
also shown in Figure 3.

Table 1. Code execution times in ms

Image size GPU code with GVirtuS GPU code
512x 512 565.856 461.781
1024 x 1024 703.875 505.825
2048 x 2048 1257.755 690.869
10000 x 10000 21302.798 9420.8

Since GVirtuS transfers data to the host machine, it is interesting to estimate the cost function due to the latency
introduced by the communicator. Standard CUDA times and GVirtuS times of routine cudaMemcpy are reported in
Table 2.

Table 2. The cudaMemcpy execution times in ms

Image size GPU code with GVirtuS GPU code
512 x 512 92.416 21.796
1024 x 1024 212.869 59.668
2048 x 2048 587.348 201.057
10000 x 10000 7303.230 4614.778

In order to study the virtualization cost, we assume that T is the time of the cudaMemcpy executed in a standard
CUDA environment and T, is the time of the cudaMemcpy executed in the GVirtuS usage. With these notations, we
can define a function that gives us an idea of the overall virtualization cost function, i.e. L, = [T, — T,,|.

The Figure 3 (right) shows the obtained results. Note that the function grows linearly as the size of the problem
increases and follows the trend of the curves in Figure 3 (left).
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Fig. 3. Left: execution times (ms); the continuous green line is related to the GPU code without GVirtuS, the dotted green line is related to the
GPU code with GVirtuS. Right: the virtualization cost function.

5. Conclusions

In this paper, we have presented a virtualized GPU-parallel algorithm in order to analyze the performance that
can be obtained. To be specific, we have studied how the usage of the optimized cuFFT library of nVIDIA can be
useful and governed in a virtualized environment. As case study we have considered a frequency domain denoising
algorithm, reporting some preliminary tests in different environments. We have noticed that GVirtuS is a good solution
for enabling GPGPU on Virtual Machines, or low powered devices, even for this kind of problem. This property
depends on the fact that a massive optimized GPU code wins over a CPU implementation. Of course, the latency due
to the TCP communicator grows linearly as the size of the problem increases, but it can be reduced by using a faster
communicator (or network). This issue probably needs further investigations in a future work.
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