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Abstract— In this paper an approach to the many-to-

many carpooling problem with automated passenger 

aggregation is presented. The proposed solution allows to 

optimally solve the related routing problem, by relying on 

a constrained shortest path algorithm, for users travelling 

within multiple transportation networks, thus enabling 

multi-modality, and exploits the users’ availability to be 

aggregated into carpools. The mathematical model behind 

the proposed approach is illustrated. Then, an algorithmic 

procedure capable of reasonably coping with the 

complexity that arises in real-sized scenarios, often 

characterized by multiple heterogeneous data sources, is 

discussed. Finally, simulations are reported in order to 

evaluate the effectiveness and the performance of the 

proposed approach. 

I. INTRODUCTION 

Over the years, many countries have been implementing 

policies aimed at reducing the harmful emissions caused by 

ground transportation [1]-[3]. In particular, since urban 

contexts are very often characterized by the presence of some 

attractive points (e.g., schools, offices, shopping centers), it is 

likely to have groups of people moving along the same path. 

This, together with the fact that most cars carry the driver only 

[4], has suggested the potential positive impact of a 

rationalization of urban traffic flows. In this respect, several 

solutions can be found in the literature, all of which involve 

the aggregation of users’ trips either at public level (i.e., 

Demand Reactive Transportation, DRT [5]) or at private level 

(i.e., carpooling). This paper is focused on carpooling as a key 

enabler of multi-modal trip planning in urban scenarios. As 

specified in [5], tackling the problem of trip aggregation at 

private level allows to remove structural costs while 

promising lower prices for end users, if compared with DRT. 

The most general formulation of the carpooling problem 

involves (i) a group of users whose role (driver or passenger) 

should be determined, (ii) the composition of the pools and 

(iii) the related routes, possibly in real time. As discussed in 

[6], such a problem is NP-hard and thus it is generally tackled 

by means of (meta-)heuristics. More precisely, carpooling 

algorithms can be classified based on the presence or absence 

of one of the following characteristics: 

1. users share either the same source or the same  

destination  (i.e.,  the  so-called  go-to  and  return-from  
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work problems, respectively); 

2. the role of each user is known in advance;  

3. users cover the same trip periodically;  

4. apart from going by car, only one mode of transportation 

is allowed; 

5. users can specify their priorities/preferences. 

It goes without saying that carpooling algorithms are also 

classified according to the nature of the matching procedure 

(manual/automated) and to the reference time scale (whether 

they be designed to work in real time or on a day-ahead basis). 

While points 1-3 simplify the problem, point 5 certainly 

increases the problem complexity. Moreover, point 4 connotes 

a more general service which, along with the aggregation of 

users, is also capable of planning a multi-modal trip. 

In the literature, the carpooling problem is usually 

formalized either as a many-source single-destination (MS-

SD) problem (i.e., the go-to work one) or as a single-source 

many-destination (SS-MD) problem (i.e., the return-from 

work one) [7]-[12]: both cases involve less computational 

costs than the general many-to-many (M2M) case. 

Nonetheless, while the literature related to the MS-SD and SS-

MD carpooling problems is sufficiently developed, the 

literature related to the M2M carpooling problem is still poor 

in efficient solutions.Also, most of the proposed solutions are 

non-automated. In other words, the actual creation of carpools 

is left to users: they are provided with nothing but a platform 

allowing them to communicate their trip and/or search for 

suitable pools. Another aspect that should be taken into 

account is the optimality of the carpool path. Indeed, most 

approaches consider the passenger sources and destinations as 

fixed. However, such an assumption does not allow to yield 

optimality whereas the automated bending of both driver’s and 

passengers’ trajectories allows to increase the number of 

carpools that can be arranged and to reduce the impact of 

carpooling, in terms of time and cost, on the user’s trajectory.  

The paper is organized as follows. Section II presents the 

mathematical formulation of the M2M carpooling problem 

with automated passenger aggregation within an urban area, 

which is solved by the multi-modal trip planning functions 

embedded in the BONVOYAGE Intelligent Transportation 

System (ITS, see the H2020 project that goes under the same 

name [13]). Section III discusses the heuristic algorithm 

adopted for solving the considered problem. Eventually, the 
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effectiveness of the approach is shown through simulation 

results and possible improvements are discussed. 

II. MATHEMATICAL FORMULATION 

The goal of this section is to derive a mathematical 

model for the carpooling problem with automated passenger 

aggregation and characterize the set of possible solutions to 

such a problem in the M2M scenario. Due to the problem 

complexity, the approach followed is structured into the 

following two steps. 

Step (1) At first, passenger trajectories are computed over a 

multi-layer network including public and pedestrian 

networks as well as the portion of the private network 

identified by each driver’s path along with his/her detour 

range. If there happen to be passengers for whom it is 

convenient to use the private network and hence join a 

carpool, their entry and exit points are stored and will be 

used in the next step of the algorithmic procedure. Entry and 

exit points are defined as those nodes of the private network 

where passengers should be picked up and dropped off, 

respectively, by the driver.  

Step (2) Then, the routing problem from the drivers’ point 

of view is tackled: as a consequence of the previous step, 

the problem reduces to the computation, for each driver, of 

the shortest path through fixed points (i.e., the entry and exit 

points for those passengers who are forming the carpool). 

Before tackling the routing problem from the passengers’ and 

drivers’ viewpoints (Section II.B), in the following subsection 

a mathematical description of the transportation networks 

used is provided. 

A.  Network Modelling 

In an urban context, roads can support different types of 

users such as pedestrians, bicycles and private/public 

vehicles. Hence, each transportation mode is associated with 

the corresponding transportation network, which can be 

modelled as a directed graph 𝒢 = (𝒱, ℰ), with 𝒱 and ℰ being 

respectively the sets of graph vertices and edges. In this work, 

only three modes of transportation are considered – namely, 

private cars, public vehicles and walking – but the extension 

to other modes is straightforward. As a result, the following 

graphs are defined: 

 𝒢pri = (𝒱pri, ℰpri), modelling the private transportation 

network; 

 𝒢pub = (𝒱pub, ℰpub), modelling the public transportation 

network; 

 𝒢ped = (𝒱ped, ℰped), modelling the pedestrian network. 

The routing problem can be solved on one or more of these 

graphs, depending on the user type. Moreover, we assume that 

passengers can specify if they want to be aggregated with 

other users (namely, with drivers) and/or if they want to use 

public vehicles. In both cases, passengers’ trajectories belong 

to different transportation networks. On the other hand, 

drivers can travel only over 𝒢pri and thus their paths can be 

computed with classical shortest path algorithms: once the 

path for the 𝑑-th driver has been computed, the sub-graph 

𝒢pri
(𝑑) ⊆ 𝒢pri, modelling the portion of 𝒢pri that the 𝑑-th driver 

is available to sweep for picking up passengers, can be 

defined based on the detour range specified by the driver 

him/herself. This means that the aggregation procedure, from 

the driver’s viewpoint, considers 𝒢pri
(𝑑)

 and not 𝒢pri. Instead, as 

regards passengers, since multiple transportation modes are 

allowed, the routing problem relies on a more complex 

network structure: namely, for each passenger the following 

multi-graph is defined: 

𝒢𝑃
(𝑑) = 𝒢ped ∪ 𝒢pub ∪ 𝒢pri

(𝑑)
 

i.e., 𝒢𝑃
(𝑑)

 models the network over which passengers can 

travel, including not only the pedestrian and public networks 

but also the portion of the private network identified by the 𝑑-

th driver (more precisely, by his/her source node, destination 

node and detour range).  

B. Carpooling Problem Formulation 

As anticipated, in order to solve the M2M carpooling 

problem with automated passenger aggregation, a procedure 

structured into two steps is presented. In particular, in Step 

(1), it is checked if there are passengers eligible for 

aggregation and then if there are drivers with whom they can 

be matched. The problem, from the point of view of each 

passenger, consists in determining the shortest path over the 

multigraphs 𝒢𝑃
(𝑑)

 for each 𝑑 = 1,… ,𝑀, where 𝑀 is the 

number of available drivers. If the solution path does not 

include a sub-path on the private network 𝒢pri
(𝑑)

, this means that 

for the considered passenger it is not convenient to share part 

of the trip with the 𝑑-th driver. Conversely, if the passenger’s 

solution path implies that part of the trip occurs on 𝒢pri
(𝑑)

, then 

it means that the considered passenger is eligible to be 

aggregated with the 𝑑-th driver. If this is the case, the nodes 

where he/she is meant to be picked up and dropped off (i.e., 

the first and last nodes of the passenger’s sub-path over 𝒢pri
(𝑑)

) 

are stored as the corresponding entries of two arrays 𝑆 and 𝐷, 

respectively. Hence, after this procedure has been carried out 

for each passenger, these two sets 𝑆 and 𝐷 contain all the 

sources and destinations of passengers, with respect to the 

private network, that is, they identify the points through which 

the 𝑑-th driver should pass in order to create a carpool. More 

in detail, Step (1) can be formulated as a single-objective 

multi-modal Shortest Path Problem (SPP) where the function 

to be minimized is the total cost along the path. This instance 

of the SPP has gained popularity in recent years due to the 

development of ITSs. The solution method adopted in this 

work is based on [14] and consists in a modified version of 

Dijkstra’s algorithm, referred to as the Generalized Dijkstra’s 

(GD) algorithm. 

Then, Step (2) tackles the routing problem from the 

driver’s point of view: such a problem consists in determining 

the minimum-cost path, passing through a set of fixed points, 

for each driver (who identifies each carpool). In other words, 

the aim is to determine the best sequence of actions in the set 

Α ≔ {pick up passenger 1, …, pick up passenger 𝑁, drop off 

passenger 1, …, drop off passenger 𝑁}. In this respect, a 

linear programming formulation, designed as an extension to 

the M2M case of the solution procedure presented in [12] is 

proposed. 



  

TABLE I.  VARIABLES AND PARAMETERS USED IN STEP (2) 

𝑁 Number of passengers 

𝑀 Number of drivers 

𝑆, 𝐷 Ordered sets of entry and exit points, 

respectively, of all passengers 

Σ, Δ Ordered sets of sources and 

destinations, respectively, of all drivers 

𝜂 = {𝑆 ∪ 𝐷 ∪ 
∪ Σ ∪ Δ} ⊆ 𝒱 

Ordered set including all entry points, 

exit points, sources and destinations 

𝑥𝑖𝑗  Polygonal chain (or polyline) 

connecting node 𝑣𝑖 ∈ 𝜂 to node 𝑣𝑗 ∈ 𝜂 

𝑤𝑖𝑗 , 𝑙𝑖𝑗 , 𝜏𝑖𝑗  Cost, length and travel time of the path 

identified by 𝑥𝑖𝑗  

𝜒𝑖𝑗𝑘𝑑 Boolean decision variable 

𝐴𝑑 Number of free seats made available by 

the 𝑑-th driver 

𝐾𝑑 Number of consecutive polylines 

composing the 𝑑-th driver’s solution 

path 

𝐿𝑑 Maximum allowed length for the 𝑑-th 

driver’s solution path 

𝑇𝑑 Maximum allowed time for the 𝑑-th 

driver’s solution path 

𝛼𝑗  Maximum allowed waiting time for 

passenger 𝑗 
𝛾𝑗  Time when passenger 𝑗 arrives at its 

pick-up point 

𝛽𝑑 Maximum allowed waiting time for the 

𝑑-th driver 

𝜁𝑗 Maximum allowed time when 

passenger 𝑗 should be dropped off 

 

Table I describes the variables and parameters appearing 

in the mathematical formulation of Step (2). It is also assumed 

that the set 𝜂 containing sources and destinations of all users 

is ordered in the sense that the elements 𝑣𝑗 , 𝑣𝑁+𝑗 ∈ 𝜂 are, 

respectively, the entry and exit points of the same user 𝑗 =
1,… , 𝑁 (i.e., a passenger), whereas 𝑣2𝑁+𝑑 ∈ 𝜂 and 

𝑣2𝑁+𝑀+𝑑 ∈ 𝜂 are the source and destination of driver 𝑑 =
1,… ,𝑀. In addition, assuming that variables 𝛼𝑗, 𝛾𝑗, 𝜁𝑗 , and 

𝑣𝑗 , 𝑣𝑁+𝑗 ∈ 𝜂 all refer to the same passenger 𝑗 and, similarly, 

that 𝐿𝑑, 𝑇𝑑, 𝐾𝑑 and 𝛽𝑑 refer to the same driver 𝑑, the solution 

path for the 𝑑-th driver can be identified by a sequence of 𝐾 

polylines (i.e., 𝑥𝑖𝑗). Let 𝜒𝑖𝑗𝑘𝑑  be a Boolean decision variable 

defined as 

 

𝜒𝑖𝑗𝑘𝑑 =

{
 

 
1

if the 𝑘-th polyline of the

solution path of the 𝑑th driver
coincides with 𝑥𝑖𝑗  ,

0 otherwise,

 (1) 

 

where 𝑘 = 1,2, … , (𝐾 − 1) represents each moment when a 

passenger is either picked up or dropped off, while 𝑘 = 𝐾 

represents the instant when the 𝑑-th driver reaches his/her 

destination. Furthermore, consider the set of Boolean 

auxiliary variables 𝑦𝑝𝑑 defined as 

 𝑦𝑝𝑑 =∑ ∑ 𝜒𝑖𝑝𝑘𝑑
𝐾−1

𝑘=1

2𝑁+1

𝑖=1
                 (2) 

i.e., 𝑦𝑝𝑑 = 1 if the 𝑝-th passenger is aggregated with the 𝑑-th 

driver. With the above notation in mind, the drivers’ routing 

problem can thus be formulated as follows:  

 

𝑚𝑖𝑛∑ ∑ ∑ ∑ 𝑤𝑖𝑗𝜒𝑖𝑗𝑘𝑑
𝐾

𝑘=1

2𝑁+2𝑀

𝑗=1

2𝑁+2𝑀

𝑖=1

𝑀

𝑑=1
      (3) 

subject to 

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ∑ 𝜒(2𝑁+𝑑)𝑗1𝑑

𝑁

𝑗=1
+ 𝜒(2𝑁+𝑑)(2𝑁+𝑀+𝑑)1𝑑 = 1

𝑑 = 1,… ,𝑀,

                     (4)

∑ 𝜒ℎ(2𝑁+𝑀+𝑑)𝐾𝑑
2𝑁

ℎ=𝑁+1
+ 𝜒(2𝑁+𝑑)(2𝑁+𝑀+𝑑)𝐾𝑑 = 1

𝑑 = 1,… ,𝑀,

         (5)

∑ ∑ 𝜒𝑖𝑗𝑘𝑑
𝐾

𝑘=1

2𝑁+𝑀

𝑖=1
−∑ ∑ 𝜒𝑖(𝑗+𝑁)𝑘𝑑

𝐾

𝑘=1

2𝑁+𝑀

𝑖=1
= 0  

𝑗 = 1,… , 𝑁, 𝑑 = 1,… ,𝑀,

  (6)

∑ 𝜒𝑖𝑗𝜏𝑑
2𝑁

𝑖=1
−∑ ∑ 𝜒(𝑗−𝑁)𝑖𝑘𝑑

𝜏−1

𝑘=1

2𝑁+𝑀

𝑖=1
= 0

𝑗 = 1,… , 𝑁, 𝜏 = 1… ,𝐾 − 1, 𝑑 = 1,… ,𝑀,

        (7)

∑ ∑ 𝜒𝑖𝑗𝑘𝑑
𝐾

𝑘=1

2𝑁+2𝑀−1

𝑗=1
≤ 1 

𝑖 = 1,… ,2𝑁 + 2𝑀 − 1,    𝑑 = 1,… ,𝑀,

                              (8)

∑ ∑ 𝜒𝑖𝑗𝑘𝑑
𝑟

𝑘=1

2𝑁+𝑀

𝑖=1
−∑ 𝜒𝑗𝑖(𝑟+1)𝑑

2𝑁+𝑀

𝑖=1
= 0

𝑟 = 1,… , 𝐾 − 1,− 𝑑 = 1,… ,𝑀, 𝑗 = 1,… ,2𝑁 + 𝑀

(9)

∑ ∑ 𝜒𝑖𝑗𝑘𝑑
2𝑁+2𝑀

𝑗=1

2𝑁+𝑀

𝑖=1
= 1,

𝑘 = 1,… , 𝐾
𝑑 = 1,… ,𝑀

              (10) 

|∑ ∑ 𝜏𝑖𝑗𝜒𝑖𝑗𝑘𝑑
2𝑁

𝑗=1

2𝑁+𝑀

𝑖=1
− 𝛾𝑝|  ≤ min{𝛼𝑝, 𝛽𝑑}

𝑝 = 1,… ,𝑁, 𝑑 = 1,… ,𝑀, 𝑘 = 1,… , 𝐾 − 1

   (11)

∑ ∑ ∑ 𝜏𝑖𝑗𝜒𝑖𝑗𝑘𝑑
𝑟

𝑘=1

2𝑁

𝑗=1

2𝑁+𝑀

𝑖=1
≤ 𝜁𝑝

  𝑟 = 1,… ,𝐾 − 1, 𝑑 = 1,… ,𝑀, 𝑝 = 1,… , 𝑁 

 (12)

∑ ∑ ∑ 𝜏𝑖𝑗𝜒𝑖𝑗𝑘𝑑
𝐾

𝑘=1

2𝑁+2𝑀

𝑗=1

2𝑁+𝑀

𝑖=1
≤ 𝑇𝑑

𝑑 = 1,… ,𝑀,

                          (13)

∑ ∑ ∑ 𝑙𝑖𝑗𝜒𝑖𝑗𝑘𝑑
𝐾

𝑘=1

2𝑁+2𝑀

𝑗=1

2𝑁+𝑀

𝑖=1
≤ 𝐿𝑑

  𝑑 = 1,… ,𝑀,

                          (14)

∑ 𝑦𝑖𝑗
𝑀

𝑗=1
≤ 1, 𝑖 = 1,… , 𝑁                                         (15)

∑ 𝑦𝑖𝑗
𝑁

𝑖=1
≤ 𝐴𝑗 , 𝑗 = 1, … ,𝑀                                       (16)

 

 

where 

(3) specifies that the total drivers’ routing cost is the 

objective function to be minimized; 

(4) specifies that the computed routes have to start at the 

drivers’ sources; 

(5) specifies that the computed routes have to end at the 

drivers’ destinations; 

(6) specifies that a passenger who has been picked up at 

some node should be left at some other node; 



  

(7) specifies that a passenger cannot be dropped off before 

being picked up; 

(8) specifies that, once in a node, only one polyline can be 

chosen at the next iteration; 

(9) specifies that the destination and source node of, 

respectively, the 𝑘-th and (𝑘 + 1)-th polylines coincide; 

(10) specifies that at each 𝑘 exactly one polyline is chosen; 

(11) specifies that driver 𝑑 (for 𝑑 = 1,… ,𝑀) will not wait at 

the entry point of passenger 𝑝 (for 𝑝 = 1,… ,𝑁) more 

than min {𝛼𝑝, 𝛽𝑑}; 

(12) specifies that a passenger is dropped off at his/her 

destination within his/her required time; 

(13) specifies that the driver has to reach his/her destination 

within his/her required time; 

(14) specifies that the driver’s path should not be longer than 

the maximum length he/she has previously indicated; 

(15) specifies that each passenger can be aggregated with 

only one driver; 

(16) specifies that, at most, as many passengers as the 

maximum available seats are aggregated with each 

driver. 

In particular, also in Step (2), as optimality criterion for 

the driver we choose to minimize the overall travel cost only. 

The authors are currently working on the implementation of 

more complex personalized optimality criteria, weighing 

different objectives, both for passengers (in Step (1)) and 

drivers (in Step (2)). 

Moreover, for the sake of simplicity, in this work the 

problem has been formulated in static conditions, i.e., in a 

scenario where the aggregation is performed (relatively) 

shortly before the users’ departure time. In other words, the 

state of the network can be assumed to be known and fixed. 

However, if accurate discrete-time measurements of the 

network state were available, thanks to the employment of 

suitably-designed widespread sensing technologies, and if 

such measurements were updated with a sampling period of 

amplitude 𝛿, then the polylines 𝑥𝑖𝑗  and the associated 

quantities could be rewritten as 

 

𝑥𝑖𝑗[𝑧] Polyline connecting node 𝑣𝑖 ∈ 𝜂 to 

node 𝑣𝑗 ∈ 𝜂 at time 𝑡 ∈ [𝑧𝛿, (𝑧 + 1)𝛿[, 

with 𝑧 ∈ ℤ+. 

𝑤𝑖𝑗[𝑧], 𝑙𝑖𝑗[𝑧], 

𝜏𝑖𝑗[𝑧] 

Cost, length and travel time of 𝑥𝑖𝑗  at 

time 𝑡 ∈ [𝑧𝛿, (𝑧 + 1)𝛿[, with 𝑧 ∈ ℤ+. 

 

Hence, by considering the following time-varying decision 

variables 

𝜒𝑖𝑗𝑘𝑑[𝑧] = {
1

if the 𝑘-th polyline of the 𝑑𝑡ℎ driver

solution path coincides with 𝑥𝑖𝑗[𝑧] ,

0 otherwise,

 

the solution procedure could be readily extended to the 

dynamic case, thus enabling also event-driven re-planning. In 

this respect, according to the BONVOYAGE platform 

architecture presented in [15][16], the authors are focused on 

ensuring (i) the real-time monitoring of the dynamic present 

context (accounting for the multi-modal transportation 

network dynamics by means of a suitable multi-layer graph 

[15][17]) and (ii) the exploitation of the user feedbacks 

provided in real-time by the users themselves (e.g., the 

Quality of Experience level perceived by each user during a 

given travel), in order to enable re-planning any time the 

occurrence of an event in the considered transportation 

network seriously compromises the feasibility of the currently 

selected travel solution. Indeed, the exploitation of user 

feedbacks and the real-time monitoring of the dynamic 

present context enable the closed-loop control mechanism 

that, by relying on similar methods as those used in [18]-[35], 

represents one of the most innovative features of the 

BONVOYAGE platform. Finally, it is worth mentioning the 

fact there are several interpretations of 𝑤𝑖𝑗 , 𝑙𝑖𝑗  and 𝜏𝑖𝑗: for 

instance, as per-unit or absolute quantities.  

Once Step (1) is solved, the formulation (1)-(16) allows 

to generate all optimal drivers’ routes as solutions to the 

considered M2M carpooling problem. However, due to the 

huge dimensions of real-sized scenarios, in the following 

simulations we resort to a heuristic approach. 

III. SIMULATIONS 

To evaluate the effectiveness of our heuristic approach, 

in this section simulations on a real scenario of medium 

dimensions are shown. More in detail, a portion of the city of 

Bilbao, Spain, covering an area of 8.75 km2 has been 

considered. The data needed for building the transport 

networks 𝒢ped, 𝒢pub and 𝒢pri have been downloaded from 

OpenStreetMap [36] and the multigraph 𝒢 = 𝒢ped ∪ 𝒢pub ∪

𝒢pri consists of 4981 nodes and 9790 edges. 

A. Algorithm 

As already mentioned, the problem complexity imposes 

the use of some heuristic procedure. The adopted approach is 

structured into two stages, namely the Pre-Processing Phase 

and the Main Processing Phase. The algorithmic structures of 

these two stages are described below. 

 Pre-Processing Phase. The goal of this step is to compute 

a matrix 𝑆∗ encoding the similarity degree between users 

(classified into Passengers and Drivers). For each 

passenger-driver couple, at first it is checked if hard 

constraints (whose satisfaction passengers cannot do 

without) match: if this is the case, then the 𝑠𝑖𝑗  entry of the 

similarity matrix is computed according to the function 

similarity(Driver 𝑑𝑖, Passenger 𝑝𝑗) which takes into 

account soft constraints, behavioural affinity and spatial 

proximity (for the detailed implementation, the reader is 

referred to [37]). The problem dimensions are reduced at 

this stage since, by checking whether hard constraints do 

match or not, the set of users is restricted to only those 

eligible for aggregation. 

PRE-PROCESSING PHASE 

Input: Drivers, Passengers 

Output: Similarity Matrix 𝑆∗ 
1: PassengersToAggregate ← empty set 

2: DriversToAggregate ← empty set 

3: Similarity matrix 𝑆 ← zero matrix 

4: for each driver 𝑑𝑖 ∈ Drivers 

5:    for each passenger 𝑝𝑗 ∈ Passengers 

6:       if hard constraints do match 



  

7:          𝑆 ← 𝑠𝑖𝑗 = similarity(𝑑𝑖 , 𝑝𝑗) 

8:       endif  

9:    endfor  

10: endfor 
11: 𝑆∗ ← 𝑆 removing all zero rows and columns 

12: PassengersToAggregate ← columns of 𝑆∗ 
13: DriversToAggregate ← rows of 𝑆∗ 

return reduced similarity matrix 𝑆∗ 

 

 Main Processing Phase. Here the very aggregation 

procedure is performed using the similarity matrix and the 

reduced set of users identified in the previous step. More 

in detail, this procedure is iterative and at each step an 

attempt is made to aggregate the passenger-driver couple 

exhibiting the highest similarity degree. At first, the 

shortest path for the current passenger is computed on the 

multigraph 𝒢𝑃
(𝑑)

 through the function SP(Passenger, 

Graph). Then the driver’s path for picking up and 

dropping off the current user is computed and, if for both 

users aggregation is convenient, the carpool associated 

with the current driver is updated. If in the carpool there 

are already other passengers, it is checked whether the 

modified path of the pool is acceptable; if not, the current 

user is discarded. 

MAIN PROCESSING PHASE 

Input: Similarity Matrix 𝑆∗: = [𝑠𝑖𝑗
∗ ], DriversToAggregate, 

PassengersToAggregate 

Output: carpools 𝐶𝑃𝑖∗ 
1: while 𝑆∗ ≠ 0 

2: select driver-passenger couple (𝑑𝑖∗ , 𝑝𝑗∗) such that 

(𝑖∗, 𝑗∗) = arg max
𝑖,𝑗

 [𝑠𝑖𝑗
∗ ] 

3: create a carpool 𝐶𝑃𝑖∗ associated with driver 𝑑𝑖∗  
4: if the number of seats requested by 𝑝𝑗∗  is less than or 

equal to those offered by 𝑑𝑖∗ 

5: path_𝑝𝑗∗ ← 𝑆𝑃 (𝑝𝑗∗ , 𝒢𝑃
(𝑑𝑖∗))  

6: if path_𝑝𝑗∗ is more convenient than 

𝑆𝑃(𝑝𝑗∗ , 𝒢ped ∪ 𝒢pub) and 𝐶𝑃𝑖∗ is empty 

7: newPath_𝑑𝑖∗  ← shortest path for 𝑑𝑖∗ passing 

through 𝑝𝑗∗’s entry and exit points 

8: if newPath_𝑑𝑖∗  satisfies the requirements of 

driver 𝑑𝑖∗  in terms of waiting time and 

number of transit nodes 

9: add passenger 𝑗∗ to carpool 𝐶𝑃𝑖∗ 
10: set column 𝑗∗ of 𝑆∗ to zero 

11: if carpool 𝐶𝑃𝑖∗ is full 

12: set row 𝑖∗ of 𝑆∗ to zero 

13: endif  

14: else if path_𝑝𝑗∗ is more convenient than 

𝑆𝑃(𝑝𝑗∗ , 𝒢ped ∪ 𝒢pub) and 𝐶𝑃𝑖∗ is not empty 

15: {newPaths} ← set of shortest paths for 𝑑𝑖∗  
passing through the entry and exit points of 

𝑝𝑗∗  and of those passengers who are already 

in 𝐶𝑃𝑖∗ 
16: while {newPaths} ≠ ∅ 

17: newPath_𝑑𝑖∗ ← the fastest path in 

{newPaths} according to the driver’s 

point of view 

18: if newPath_𝑑𝑖∗ satisfies the requirements 

of 𝑑𝑖∗  in terms of waiting time and transit 

nodes and the requirements of the 

previously aggregated passengers 

19: add passenger 𝑗∗ to carpool 𝐶𝑃𝑖∗ 
20: set column 𝑗∗ of 𝑆∗ to zero 

21: if carpool 𝐶𝑃𝑖∗ is full 

22: set row 𝑖∗ of 𝑆∗ to zero 

23: endif  

24: {newPaths} = ∅  

25: else  
26: remove newPath_𝑑𝑖∗  from {newPaths}  

27: endif 

28: endwhile 

29: endif 

30: endif 

31: 𝑠𝑖∗𝑗∗
∗ ← 0 

32: endwhile  

return all carpools 𝐶𝑃𝑖
∗ 

 

It is worth stressing out the fact that there is no one-to-one 

correspondence between these two phases and the two steps 

mentioned in Section II. Instead, from the algorithmic 

implementation viewpoint, Step (1) and Step (2) collapse into 

the Main Processing Phase (points 5 through 7). In the best-

case scenario, the GD algorithm (i.e., Step (1)) is invoked 

once for each passenger (instead of 𝑀 times). In addition, the 

constrained SPP from the driver’s point of view (i.e., Step (2)) 

is simplified due to the priority order assessed as a result of 

the Pre-Processing Phase. 

B. Results 

The simulations presented in this section have been 

carried out using MATLAB® on an Asus notebook, Intel 

Dual Core 2.90 GHz, 8GB RAM, running Windows 10.  

First of all, a simple scenario with 2 drivers and 5 

passengers is considered. The drivers are assumed to offer 3 

seats each and to specify two distinct maximum detour 

ranges. Moreover, each passenger is assumed to require only 

one seat. Hence, the algorithm described in the previous 

subsection yields the creation of 2 carpools – each of them 

composed of a driver and 2 passengers – and only one 

passenger is left alone (i.e., passenger no. 1, because it is more 

convenient for him/her to use 𝒢𝑝𝑒𝑑 ∪ 𝒢𝑝𝑢𝑏). In particular, 

from Figs. 1-4 it is clear that the proposed algorithm solves an 

instance of the M2M carpooling problem, and therefore, a 

fortiori, can also be relied upon for solving instances of the 

MS-SD and SS-MD problems. Note that the polygon outlined 

by a black line and surrounding the planned path in Figs. 1 

and 3 represents the area each driver is willing to sweep 

according to his/her detour range. 

A second set of simulations has been carried out so as to 

assess the performances with respect to other solution 

approaches available in the literature. In this case, the map is 

populated with 35 passengers and 15 drivers. The number of 

seats offered by each driver ranges between 1 and 3 as well as 

the number of seats requested by each passenger. The drivers’ 

detour range and the maximum number of transit nodes is 

changed at each simulation in order to reproduce different 

scenarios. Furthermore, the users’ sources are chosen 

randomly, assuming that 70% of the users’ destinations belong 

to a set of 3 nodes, representing attractive points which in an 



  

urban context are likely to appear (e.g., schools, offices, 

shopping centers). Within this framework, the average number 

of aggregated passengers is 22 (i.e., 60% of the total number 

of passengers), while the number of empty carpools is zero 

(i.e., all drivers are aggregated with at least one passenger). 

The algorithm runtime ranges between 34 seconds and 2 

minutes. This uncertainty in the algorithm runtime mainly 

depends on two factors: (i) the fact that a high similarity degree 

translates into a high aggregation probability, and (ii) the 

availability of other feasible travel solutions featuring 

carpooling, should the currently proposed one turn out to be 

infeasible for the driver.  

Considering the best-case scenario, the proposed heuristics 

allow to drastically reduce the computational costs. More in 

detail, the algorithm runtime is one order of magnitude smaller 

than that reported in [12]. However, when making this 

comparison, it must be noted that the solutions proposed in the 

cited work, unlike ours, are designed on a day-ahead basis and 

thus, in such a context, fast computations are not mandatory. 

In [11], the authors report 2-3 seconds for solving the problem 

for each driver and a percentage of aggregated passengers 

around 70%. When comparing these last results with ours, it 

should be noted that (i) the map considered in [11] consists in 

a set of edges and vertices whose cardinality is one order of 

magnitude smaller than the cardinality of the edge and vertex 

sets considered in our simulations – the authors of [11] 

themselves claim that enlarging the map dimensions would 

lead to a considerable increase in terms of computational 

complexity – and (ii) the algorithm proposed in [11] is capable 

of bending the drivers’ trajectories only. 

 

 
 

 

 
 

 

 
 

 

 

IV. CONCLUSION 

This work presents the mathematical formulation and the 

algorithmic implementation of the many-to-many carpooling 

problem with automated passenger aggregation in the context 

of multi-modal trip planning. The simulation results show that 

the proposed heuristic approach provides an efficient solution 

to the considered problem and its computation time is 

compatible with a real-time implementation. The proposed 

approach is truly multi-modal, in that it is capable of handling 

combinations of any private and public transportation modes 

(e.g., train, bus, electric car-sharing in urban areas [38][39]), 

ensuring that user preferences and constraints are 

simultaneously met. The authors plan to adjust the 

aggregation algorithm, for it to reach a high degree of 

scalability, thus exhibiting a reasonable computational 

complexity even as the multi-graph dimensions grow and the 

number of drivers and passengers is further increased. 
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