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Abstract

The objective of the paper is to develop a vibration-based automated procedure dealing with early detection of mechanical
degradation of helicopter drive train components using Health and Usage Monitoring Systems (HUMS) data. An
anomaly-detection method devoted to the quantification of the degree of deviation of the mechanical state of a component
from its nominal condition is developed. This method is based on an Anomaly Score (AS) formed by a combination of a
set of statistical features correlated with specific damages, also known as Condition Indicators (CI), thus the operational
variability is implicitly included in the model through the CI correlation. The problem of fault detection is then recast as a
one-class classification problem in the space spanned by a set of CI, with the aim of a global differentiation between normal
and anomalous observations, respectively related to healthy and supposedly faulty components. In this paper, a procedure
based on an efficient one-class classification method that does not require any assumption on the data distribution, is used.
The core of such an approach is the Support Vector Data Description (SVDD), that allows an efficient data description
without the need of a significant amount of statistical data. Several analyses have been carried out in order to validate the
proposed procedure, using flight vibration data collected from a H135, formerly known as EC135, servicing helicopter,
for which micro-pitting damage on a gear was detected by HUMS and assessed through visual inspection. The capability
of the proposed approach of providing better trade-off between false alarm rates and missed detection rates with respect to
individual CI and to the AS obtained assuming jointly-Gaussian-distributed CI has been also analysed.

Nomenclature

AS Anomaly Score

AUC Area Under the Curve

CI Condition Indicator

GMM Gaussian Mixture Model

HUMS Health and Usage Monitoring Systems

KRT Kurtosis (fourth standardized statistical mo-
ment)

MD Mahalanobis Distance

OM Amplitude of harmonic component

RMS Root Mean Square value

ROC Receiver Operating Characteristic

SA Synchronous Average

SVDD Support Vector Data Description

1. Introduction

The problem of early fault detection is crucial in heli-
copter maintenance strategy. Early stage, undetected
damage affecting critical sub-systems can progress-
ively increase causing the system to fail. In the best
case, such a scenario could result in increased op-
erating costs for the machine owing to the required
grounding time, maintenance and part replacement,
as well as it could lead to dangerous accidents in some
cases. The drive train sub-system is responsible for
transferring power from the engines to the rotors, and
represents a critical sub-system for the machine due
to non-redundant load paths and the high variability
of the dynamic loads acting on the components ([1]).
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Figure 1: High level overview of HUMS diagnosis process.

As to ensure aircraft airworthiness, the system needs
to be maintained following a prescribed preventive
maintenance program, resulting in a burden to oper-
ating costs and aircraft availability. Therefore, Health
and Usage Monitoring Systems (HUMS), defined as
equipment/techniques/procedures by which selected
incipient failure or degradation can be determined in
[2], were introduced in the last decades in helicopter
industry as a mean of increasing safety and reducing
maintenance costs by enabling Condition Based Main-
tenance (CBM) ([3, 4]). Because damages are not dir-
ectly observable, it is necessary to measure quantities
which are affected by fault development. Mechanical
degradation affects the vibration signature emitted
from drive train rotating components. Moreover, tech-
nologies for measuring vibration signals are readily
available. Therefore, it is common in the helicopter
industry to equip rotating parts in the drive train with
sensitive sensors (typically accelerometers) able of re-
cording dynamic oscillation. The HUMS includes a
transmission monitoring function which uses three
types of data ([5]): accelerometer and tachometer
signals, as well as contextual parameters such as air-
speed, temperature and engine torque. Acceleromet-
ers are typically mounted on gearboxes and shaft
bearings, tachometers on rotor shafts. The contex-
tual parameters, when available, usually come from
sensors which are part of other avionic/navigation
systems than HUMS. Within the HUMS, a diagnosis
logic is implemented in order to process a set of sensor
signals by which the mechanical state of underlying
assets is inferred. Figure 1 represents an overview
of the diagnosis process. Sensor data are in a first
step corrected for the contextual parameters. Invalid
data, like noisy acquisitions or data recorded in un-
favourable conditions (e.g. during run-ups or other
non-stationary conditions of the machine) are rejected
at this stage (contextual correction in figure 1). Fea-
tures extraction consists of converting the raw sensor
input in a metrics which is more informative about the

state of the system ([6]), such features are commonly
referred to as Condition Indicators (CI). Finally, CI
are interpreted as an input to a classifier, with the aim
of producing the most likely decision about the state
of the monitored components. The inference may be
as simple as deciding if a fault is present (fault detec-
tion), up to providing prognostic information on the
remaining useful life for a given component. Such
information is then passed to the overlying decision
logic, supporting the maintenance decision process.
Traditional HUMS ([7]) are based on univariate monit-
oring of each CI. The values of each CI are compared
to an individual threshold, computed from fleet his-
torical data. An alert is generated whenever any of
the CI exceeds its threshold. However, the high vari-
ability of aerodynamic loads, transmission loads and
operating conditions affect the vibration signature,
resulting in high scattering of the CI values ([8, 9]).
Therefore, despite the efforts in developing damage-
sensitive features using advanced signal processing
techniques, state-of-the-art HUMS are prone to in-
creased false alarms ([10]). A novel approach to the
CI analysis was developed in a five-year research pro-
gram involving GE aviation ([10]), where multiple
CI from fleet data are combined in a single Anomaly
Score (AS). Such an AS represents the degree of devi-
ation of an acquisition from the nominal state, defined
using a Gaussian Mixture Models (GMM) based on
the entire fleet multivariate data as a reference. Res-
ults revealed that this feature-level data fusion was
capable of enhancing fault detection performance of
classical HUMS analysis methods, neither requiring
restrictions on operating conditions nor explicit mod-
elling of their effects on the CI values. Contemporary,
the research at Airbus Helicopters (AH) resulted in
a different strategy, adopted in [11], where CI are
combined in a so-called Health Indicator (HI) using
the definition of Mahalanobis Distance. The HI are
defined based on a set of CI for each component, and
the nominal state definition relies on few acquisitions
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following a maintenance action. Differently from [10],
this method aims to model a baseline for each in-
dividual component, independently from fleet data,
thus preventing the between-helicopters variability
due to different configurations and installation toler-
ances ([12]) to mask local trends in the CI. However,
an intrinsic limitation of the methodology is in the
obvious impossibility of detecting manufacturing de-
fects. Besides, Gaussian assumption of the CI distribu-
tion is required. Actually, the fault detection problem
can be considered as a one-class classification prob-
lem, with the task of separating the normal (healthy)
data samples from the faulty ones. Support Vector De-
scription (SVDD) is an unsupervised machine learn-
ing method specifically developed for solving the one-
class classification problem by Tax and Duin ([13]).
SVDD solves the problem of data description given a
set of training samples, from which the boundaries of
the target distribution are learnt. This approach has
been successfully employed in image classification
problems, one-class pattern recognition, damage de-
tection, batch process monitoring, etc. (e.g. [14–17]).
Examples of the application of SVDD in machine con-
dition monitoring are found in [18–21]. Differently
from data description methods aiming to describe
the target density (e.g. Gaussian Mixture Models or
Parzen density estimation), boundary methods (as
SVDD, K-centers [22] or Nearest Neighbors [23, 24])
aim to capture the boundaries of the target in the fea-
ture space, proving particulary useful when only few
examples are available and they are poorly represent-
ative of the complete target class probability density
in the feature space. Further, boundary methods are
advantageous compared to reconstruction methods
(e.g. k-means clustering, learning vector quantization,
self-organizing maps, Principal Components Analysis
or auto-encoder networks [24, 25]) in that they in-
troduce lower bias on the obtained model descrip-
tion, and generally requires less tuning efforts ([24]).
Among boundary description methods, SVDD proves
particularly robust to training sets which are not fully
representative of the test data ([24]). Since in the
current application it is typically desired to learn a
baseline from few training examples, which might
often be insufficient to capture the full data density,
SVDD is deemed a suitable data description method.
In this paper, fault detection using HUMS data is re-
cast as an anomaly detection problem in the space
spanned by multiple CI as in [10]. In order to account
for between-helicopters variability in the same fleet,
individual component models are proposed as in [11].
The operational variability is implicitly accounted for
in the model through the correlation induced within
CI. The general notion of correlation is here used

to indicate a causal or non-causal statistical relation-
ship between random variables. The notion of linear
correlation is explicitely made distinct whenever ne-
cessary. Since CI were preliminarily observed to be
non-linearly correlated, with non-normal marginal
distributions, a SVDD model is used for data descrip-
tion. The SVDD output is used as an AS, quantifying
the degree of abnormality of an observation from the
nominal distribution. The remainder of this paper is
organised as follows. First, a theoretical background
is given in Section 2. Extraction of CI from vibration
data is introduced, then the basic SVDD model is
presented and the proposed methodology described.
In Section 3, the proposed methodology is evaluated
on vibration data from a servicing H135 (formerly
known as EC135) with a developing micro-pitting
damage. Such data are collected in real operating con-
ditions, extracted CI present therefore the associated
scattering. It is shown that the developed algorithm
can be applied in an operational framework, produ-
cing an AS which increases the separation between
normal and faulty data with respect to individual CI
and to a multivariate model based on Gaussian as-
sumption. Finally, conclusions are made in Section 4.

2. Theoretical background

2.1. Extraction of Condition Indicators from
vibration data

The general problem of CI extraction from acceler-
ometers response in complex machinery is briefly
introduced using a linear model, then, considering
the specific case of gear signature extraction, the pro-
cedure adopted for defining related CI is described.
Among the many techniques proposed in literature
for gear local fault detection (see, e.g. [26–30], stat-
istical features extraction based on the so-called syn-
chronous average signal is considered in this work
for its simplicity and proved effectiveness. Methods
based on enhancing the impulsivity of damaged teeth
impacts like the one proposed by Combet and Gel-
man in [31], based on Spectral Kurtosis (SK) optimal
filtering [32, 33] were not considered. On one side,
the limited sampling frequency of available sensors
poses a strong constraint on the signal bandwidth,
preventing from detecting high-frequency resonant
bands. On the other hand, the short-time duration
of the acquisitions results in a relatively gross spec-
tral resolution of the estimated time-frequency energy
distribution of the signal.
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2.1.1 Model of accelerometer response

The vibration response of the structural components
to the operational excitation is assumed to be linear in
the considered frequency range. The linear model for
the response xj(t, θ) at position j in a mechanical en-
vironment characterised by multiple vibration sources,
with t and θ respectively the short time-scale associ-
ated with measurements and the long time-scale char-
acteristic of the monitoring process across machine’s
life, is then given as ([34]):

(1)

xj(t, θ) =
NF

∑
i=1

hF
ij(t, θ) ∗ Fi(t, θ)+

+
NI

∑
i=1

hI
ij(t, θ) ∗ Ii(t, θ)+

+ hS
j (t, θ) ∗m(t, θ) + nj(t, θ),

where ∗ denotes the convolution operation in the
measurement time variable t. In the following, the
dependency of the vibration signal over θ, reflecting
changes in the measured vibration due to long-term
changes in the state of the machine, is dropped from
the notation. The response is then given as the sum
of NF fault-related signals Fi(t) and NI interfering
machinery signals Ii(t) respectively convolved with
the impulse response functions hF

ij(t) and hI
ij(t). The

term hS
j (t) ∗m(t) explicitly introduces in the model

the modal response at location j due to all remaining
excitation sources from normal machine operation
and imperfections. Finally, nj(t) models the ambient
and sensor noise. From equation (1), the measured
acceleration at the transducer location is the convolut-
ive mixture of multiple sources. The identification of
fault-related signatures requires isolating them from
the rest of the signal, filtering out those interfering
components related to the functioning of the healthy
state machinery in its actual operating environment.
Therefore, an understanding of the properties of fault
or normal vibration is mandatory ([35]). Besides, the
model of equation (1) includes the dependency of the
measured vibration on the mode shapes of the system
(and consequently the sensor position as well), the
operating state of the machine and the transmission
paths from the sources to the accelerometer.

2.1.2 Gear signature extraction

Referring to a pair of mating gears composed of
wheels connected to rotating shafts, the dynamic ex-
citation arising from gear motion can be decomposed
in a deterministic part and a random stochastic one.
The former is mainly due to meshing impacts and it is
composed of a contribution with period equal to the

meshing period of the mating gears, amplitude mod-
ulated from shaft-synchronous components, and a
contribution having the common wheels period ([36]).
The latter can be modeled as a white noise process
arising from sliding contact between teeth undergo-
ing periodic gear mesh force amplitude modulation
plus white noise amplitude modulated at shaft fre-
quency connected to imperfections as, e.g. wear [37].
Therefore, the dynamic excitation from the gear, sg(t),
reads:

(2) sg(t) = dg(t) + rg(t),

where dg(t) and rg(t) are the deterministic and ran-
dom contributions to sg(t). The excitation source is
angle-synchronous with the machine cycles, rather
than time-synchronous. Introducing the variable φ(t)
representing the reference shaft rotation angle as a
function of time and allowing for time-varying ro-
tational frequency, it is possible to write sg(t) =

sg(φ(t)). Here φ(t) =
∫ t

0 2π fs(τ)dτ connects the an-
gular and time domain through the instantaneous
rotational frequency fs(t) of the shaft. The determ-
inistic contribution dg(t) from equation (2) can be
thus expressed as (dropping the dependency of the
shaft rotation angle on time in order to simplify the
notation):

(3)
dg(t) =Qd( fs(t))(1 + Ms1(φ)+

+Ms2(φ) + Mi(φ))∑
k

akcos(kZφ),

where Qd( fs(t)) is a monotonically increasing mod-
ulation function with respect to the shaft speed as
introduced in [37], accounting for long-term non-
stationarities, Z is the number of teeth of the gear, ak
the kth Fourier coefficient of the angle-periodic gear
mesh harmonic, Ms1(φ) and Ms2(φ) the amplitude
modulation due to the wheels rotation and Mi(φ) the
amplitude modulation due to an eventual local gear
fault. The non-deterministic contribution to the gear
signal can be modeled as:

(4)

rg(t) =Qr1( fs(t))W1(t)∑
k

akcos(kZφ)+

+Qr2( fs(t))W2(t)∑
j

ajcos(jφ),

in which the white noise processes W1(t) and W2(t)
are modulated by angle-periodic functions of period
equal to that of the shaft and to that of the gear mesh,
and the speed-dependent energy modulation caused
by the change of machine power intake [37] is accoun-
ted for in terms Qr1( fs(t)) and Qr2( fs(t)). Specifically,
the first term in (4) is directly related to the gear sur-
face roughness [38], whereas the second one is the
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stochastic contribution related to load, random stiff-
ness fluctuations, machining errors, etc. Although
accounting for a significantly smaller contribution to
the signal energy when compared to the deterministic
part, the random part of the gear signal can highlight
information about early damaged teeth generating
impulsive contacts. Such small-amplitude repetitive
impulses can be detected using second order cyclosta-
tionary tools [36] and exploiting high-frequency res-
onant bands in which the signal to noise ratio is high
enough for allowing signal identification and extrac-
tion. The measured response signal can be expressed
as:

(5) xg(t) = hg(t) ∗ sg(t),

where hg(t) denotes the linear time invariant (LTI)
impulse response representing the transfer path (TP)
from the source location of the dynamic excitation to
the measurement point location. It is assumed that for
the operating conditions considered in this work, the
fluctuation of the reference shaft rotational frequency
is sufficiently small during the observation time. This
implies that:

• The modulation terms Qd( fs(t)), Qr1( fs(t)) and
Qr2( fs(t)) can be considered constant during
the observation time;

• The LTI filtering of the transfer path introduces
negligible distortion in the angle-periodic sig-
nal, i.e. the amplitude and phase delay of the
generic response component in the shaft order
domain can be considered constant during the
observation time.

Consequently, owing to the periodicity of the modu-
lation functions, the response signal due to the gear
excitation can be expressed as [36]:

(6) xg(φ) = p1(φ) + p2(φ) + p1,2(φ) + r(φ),

with pi denoting periodic contributions synchronous
with the i-th shaft rotation, p1,2 the contribution from
the common wheels period, and r(φ) the stochastic
one, that is generally small compared to the determ-
inistic one. Moreover, the random part is discarded
from the analysis due to the very same operational
limitations explained in the beginning of section 2.1.2,
which make difficult to separate the random part of
the gear signal from the background noise. In order
to extract the gear contribution xg(φ) from the whole
response signal xj(t), it is then necessary to isolate
the angle-periodic contribution. Such an operation
requires in general two main steps, namely angle-
synchronization and filtering. In angle synchroniz-
ation the measured vibration signal xj(t), sampled

synchronously with time, is resampled in the angle-
domain. This step is achieved using computed or-
der tracking (COT) techniques [39]. Such techniques
are based on reconstructing through interpolation
(second-order polynomial in [39]) the time-angle rela-
tionship based on associating specific time instants to
specific fractions of shaft revolutions. This association
can be made both using an external trigger signal (e.g.
keyphasor pulses) or, under some conditions, extract-
ing the speed progression directly from the vibration
signal as in [40]. After the time-angle relationship is
given, the time-sampled response signal, xj(t), can be
resampled for constant angle increment values. The
resulting signal xj(φ) is then described as a function
of a given shaft angle φ. In this work, order track-
ing is performed using keyphasor pulses provided
from a magnetic pickup which is part of helicopter
HUMS equipment, whereas cubic spline interpolation
is used for resampling the vibration signal recorded
from an accelerometer. The second step, consisting
of the filtering operation can be efficiently performed
through synchronous average in the angle domain.
The synchronous average (SA) procedure requires
prior knowledge of the period to be extracted, and it
consists of averaging NSA distinct periods of the con-
sidered signal. This synchronous average corresponds
to an estimation of the first-order cyclostationary part
(CS1) of the signal of cycle equal to the considered
averaging period [36]. Under the assumption of cyc-
loergodicity, the ensemble average can be confused
in facts with cycle averaging [36]. Namely, the syn-
chronous average of an angular-sampled signal x(φ)
of angular cycle Φ is estimated as:

(7) xSA(φ) =
1

NSA

NSA

∑
k=0

x(φ + kΦ).

It can be shown that the attenuation of the white
noise in the signal is proportional to 1/

√
NSA. When

described in angular-frequency domain, the synchron-
ous average operation corresponds to a comb-filter
applied to the signal, with unit gain for multiples of
the basic cycle Φ and transfer function of modulus:

(8) |HSA(γ)| = |
sin(πγΦNSA)

NSAsin(πγΦ)
|,

where γ is the equivalent of a frequency for the
angular-domain signal (i.e. γ represents orders of
the reference shaft when Φ = 1). Equation (8) shows
that the number of averages determine not only the
attenuation of non-synchronous components, but also
the position of the zeros of the filter and its max-
ima, therefore it might be worth considering NSA as a
design parameter when strong deterministic, known
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components need to be attenuated in the signal. Un-
der the assumption of small speed fluctuations, the
gear signal related to wheel i can then be estimated
from the re-sampled response signal xj(φ) as:

(9) ŝg(φ) ≈ pi(φ) ≈
1

NSA

NSA

∑
k=0

xj(φ− kΦi) = xSA(φ),

being Φi the cycle of wheel i and the sensor j the
one which (among available sensors) minimizes the
transfer path from the source of interest. The estima-
tion ŝg(φ) of sg(φ) is representative of the gear source
signature, having neglected the mutual wheel modu-
lation effects term p1,2(φ), due to the common period
of the mating gears being (usually, but not necessar-
ily) too long for obtaining a proper number of cycles
to be averaged from a short vibration record. It shall
be then kept in mind that the information on mutual
modulation of the wheels is discarded.

2.1.3 Gear Condition Indicators

A common monitoring strategy in the industry is re-
ducing the acquired vibration to a set of indicators
which can represent the data in a compact way. In the
literature, a number indicators were proposed and ex-
tensively tested for prompt detection specific damages
in gear assets (see e.g. [27, 41, 42]). The health mon-
itoring strategy is based on observing the deviation
of such indicators from their nominal values, which
are expected to be in some range usually estimated
statistically. As already mentioned, signals acquired
in different operating conditions and configurations
will present a certain between-acquisitions variability,
which is reflected directly in the CI values. Based on
the analysis presented in 2.1.2, features related to a
given gear can be extracted from the estimation ŝg(t)
of sg(t). A basic strategy for monitoring could be
based on defining a similarity measure between the
test signals and a reference expected signature. How-
ever, specifying the invariants for the measure under
uncertain operating conditions effects is no trivial
task. In the case under analysis, the CI computed
as the second and fourth statistical moments of ŝg(t)
were considered for condensating the information
contained in ŝg(t) instead. The extraction of scalar CI
from vibration records has the advantage of providing
a meaningful way of condensating information and
a quick analysis tool. It was observed on operational
data that the extracted CI present a joint distribution
showing some degree of correlation, linked to the
operational (latent) variables. Specifically, the second
and fourth statistical moments were selected in this
work for characterizing the signal due to their ability
of keeping track of the global changes in the signal

distribution, although in general they are not suitable
for differential diagnosis leading to discrimination
between different gear fault types. Several more spe-
cific indicators were considered, such as modulation
amplitude around the gearmesh (MOD), amplitude
of shaft/mesh harmonics (OM), narrowband energy
of the signal (NBE) or high order gearmesh sidebands
connected to frequency modulation. Indicators de-
signed ad-hoc for the detection of a specific fault
should in general perform better in the detection task
of such a fault. However, it is in the scope of the
proposed methodology to devise an anomaly detec-
tion procedure relying on minimal assumptions on
the nature of the mechanical fault that could arise,
being robust to the unknown effects of the changing
operational conditions of the monitored helicopters,
and finally reducing the number of indicators that
necessitate to be monitored. The afore-mentioned
specific indicators span a wide set of features connec-
ted to specific degradations and are prone to result
into noisy features when different faults arise (see
Section 3.2.3). Therefore, it was preferred to obtain a
minimal set of global statistics (second and fourth stat-
istical moments of the extracted gear signal) which
are more likely to be influenced by any change of
the mechanical state of the component. Further, by
considering a joint description of the features, the
operational conditions influence is kept into account,
enabling the methodology to differentiate properly
between changes due to operating conditions and
changes due to mechanical degradation. It should be
however kept in mind that the proposed methodology
is general and applies for any set of descriptors of the
signal of interest (SOI) showing a correlation struc-
ture through the helicopter operating state. Due to
the finite length of the records, the selected statistical
moments are estimated from the discrete signals. The
resulting CI are taken as the square root of the vari-
ance, for it represents the Root Mean Square (RMS)
value of the zero-mean signal and is commonly em-
ployed in the industry, and the standardized fourth
statistical moment (Kurtosis) as follows:

1. Root Mean Square value of the discrete signal
(RMS)

(10)

RMS =

=

√√√√ 1
Ns

Ns

∑
k=1

(xSA(k∆φ))− x̄SA)2
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2. Kurtosis of the discrete signal (KRT)

(11) KRT =

Ns
∑

k=1
(xSA(k∆φ)− x̄SA)

4

NsRMS4 ,

where k indicates the sample number, ∆φ the samples
spacing in the angular domain, Ns the number
of samples and x̄SA the mean value of the shaft-
synchronous signal samples. Considering those in-
dicators provides a set of two CI that are able of
describing the global properties of the gear signal,
which are likely to change in a faulty state.

2.2. Support Vector Data Description

SVDD is a data domain description method inspired
by the support vector machines ([43–45]). The ba-
sic idea is to determine, from a small set of training
samples, the minimal volume hypersphere enclos-
ing most of the target data. New instances outside
the boundaries of the describing hypersphere are then
classified as outliers. SVDD is suitable for the problem
of fault detection when fault data are not available,
since it only requires normal (target) objects in order
to find a description of the normal state. The problem
can be cast as a standard quadratic optimization with
unique optimal solution ([46]), resulting in high com-
putational efficiency for the method. In the following,
the SVDD method as reported in [13] is briefly intro-
duced. Assume a training set composed of M objects
{xi, i = 1, 2, ..., M} which are drawn from the target
distribution. Being a the center of the hypersphere
and R its radius, the cost function to be minimised
reads:

(12) F(R, a) = R2,

subject to the constraints:

(13) ||xi − a||2 ≤ R2, ∀i.

Cost function (12) is modified as to allow the possibil-
ity to reject some training points from the description,
introducing slack variables ξi ≥ 0 such that large
distances from the center a are penalised:

(14) F(R, a) = R2 + C ∑
i

ξi.

Constraints (13) hence become:

(15) ||xi − a||2 ≤ R2 + ξi, ξi ≥ 0, ∀i.

The parameter C controls here the trade-off between
the volume of the hypersphere and the errors. In-

corporating the constraints (15) into equation (14) by
using Lagrange multipliers αi ≥ 0 and γi ≥ 0 leads
to:

(16)

L(R, a,αi, γi, ξi) =

= R2 + C ∑
i

ξi −∑
i

αi{R2+

+ ξi − [‖xi‖2 − 2(a · xi)+

+ ‖a‖2]} −∑
i

γiξi.

In (16), L should be minimised with respect to R, a, ξi
and maximised with respect to the Lagrange multipli-
ers αi and γi. Setting to zero the partial derivatives
gives the constraints:

∂L
∂R

= 0 : ∑
i

αi = 1(17)

∂L
∂a

= 0 : a = ∑
i

αixi(18)

∂L
∂ξi

= 0 : C− αi − γi = 0.(19)

From (19) and from the Lagrange multipliers being
non-negative, the γi can be removed by imposing:

(20) 0 ≤ αi ≤ C.

Substituting back (17)–(19) into (16) results in:

(21) L = ∑
i

αi(xi · xi)−∑
i,j

αiαj(xi · xj),

subject to the constraints (20). Now when a train-
ing object xi strictly satisfies the inequality in (15),
the constraint is satisfied and the corresponding αi is
zero. Differently, when (15) holds with equality, the
constraint has to be enforced (αi > 0). Hence:

||xi − a||2 < R2 → αi = 0, γi = 0(22)

||xi − a||2 = R2 → 0 < αi < C, γi = 0(23)

||xi − a||2 > R2 → αi = C, γi > 0.(24)

From equation (18), the center of the sphere is a linear
combination of the objects, hence only training objects
for which αi > 0 are needed for the description and
they are therefore named support vectors (SV’s) of
the description. Besides, support vectors lie on the
boundary of the hypersphere, hence R2 can be ob-
tained as the distance from any support vector to the
center of the hypersphere a. The distance of any new
object z from the center of the hypersphere is then
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computed as:

(25)

∆(z) = ‖z− a‖2 =

= (z · z)− 2 ∑
i

αi(z · xi)+

+ ∑
i,j

αiαj(xi · xj).

In order to allow for more flexible boundaries (i.e.
when data do not follow a spherical distribution), the
inner product (xi · xj) can be replaced by a kernel
function K(xi, xj) satisfying Mercer’s theorem ([16]).
In this way, the input space is implicitly mapped to
some other high-dimensional feature space, where
the data are better described from the hypersphere.
Equation (25) reads then in the new feature space:

(26)

∆(z) = K(z, z)− 2 ∑
i

αiK(z, xi)

+ ∑
i,j

αiαjK(xi, xj).

A common choice for the kernel function is the Gaus-
sian kernel, defined as:

(27) K(xi, xj) = exp

(
−‖xi − xj‖2

σ2

)
,

where σ is the (positive) width parameter of the Gaus-
sian kernel: smaller values result in a tighter solution
with lower generalization ability, characterized by the
presence of more support vectors, whereas higher val-
ues result in a more flexible description of the data
set. It can be shown that in the limit for small σ,
the solution of the optimization problem (16) is such
that all objects become support vectors and coincides
with Parzen density estimation with a small kernel
width. On the other hand, very large values approx-
imate the initial spherically shaped solution ([13]).
This kernel is independent of the position of the data-
set with respect to the origin, i.e. only the distance
between objects matters. Objects are mapped to unit
norm vectors, so that only the angles between them
count ([13]). In the standard SVDD setting, objects
are rejected and flagged as outliers when they lie out-
side the hypersphere (∆ > R2). Optimal selection
of the model parameters (C and σ) is still an open
issue in data description problems. In this article,
the approach proposed by Tax in [47] is used. Such
an approach consists of generating an artificial out-
lier class (uniformly distributed N-sphere around the
training data, where N is the dimension of the set of
features) in order to estimate the volume of the classi-
fier. The optimal description parameters are found by

minimizing the cost function:

(28) E(σ, C) = λ(
NSV

Ntrain
) + (1− λ)(1− POD),

where λ is introduced in order to adjust the trade-off
between the importance of false alarms and probabil-
ity of detection and is here set as λ = 0.5 in order to
give equal weight to both. The quantity NSV/Ntrain
is the ratio between the number of support vectors in
the model (dependency on model parameters omitted
in the notation) and the number of training points
and provides a Leave One Out (LOO) estimate of the
probability of false alarm, whereas the probability of
detection is estimated from the artificial outlier class.
The quantity (1− POD) can indeed be interpreted as
a Montecarlo estimate of the volume of the classifier,
owing to the uniform distribution of the introduced
outliers, it is as well depending on the model para-
meters. Furthermore, the quantity ν = 1/CNtrain
upper-bounds the error on the target set (i.e. the prob-
ability of false alarm), hence it is possible to set C
accordingly, thus optimizing (28) with respect to σ
only.

2.3. Proposed methodology

Because the variation in the operating conditions of
the machine affects the CI values through the influ-
ence on the measured response as from equation (1),
CI values are expected to be correlated to the oper-
ating condition parameters. Studies on the correl-
ation among different CI and between CIs and op-
erating conditions are reported in [9], highlighting
strongly non-linear correlation. Ideally, such a cor-
relation would change with mechanical degradation
progressively affecting the measured response signal.
Therefore, it is proposed to extend the idea described
in [11] of fusing multiple CI in an AS (therein re-
ferred to as Health Indicator), keeping into account
the non-linearities in the correlation between indicat-
ors induced from the underlying unknown operating
variables. The idea behind the AS is then to exploit
the correlation information in order to obtain better
separation between the healthy state and the faulty
state of a given component, under the assumption
that given a sufficient amount of observations, vibra-
tion data will be acquired under similar conditions
for a helicopter operating similar mission profiles,
i.e. assuming that a sufficient number of vibration
acquisitions is representative of the baseline vibra-
tion behavior. In order to retain the non-linearities
in the CI correlation model, a SVDD model for the
healthy distribution is proposed instead of a multivari-
ate Gaussian one. The metric for the AS was selected
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to be the distance of an observation from the center
of the hyper-sphere in the kernel space, according to
equation (26). The metric of the AS for the Gaussian
model was computed as the squared Mahalanobis
Distance ([48]) of an observation to the learnt Gaus-
sian model, according to [11]. The algorithm involves
a learning phase, in which models are trained using
Ntrain observations, and an evaluation phase in which
new observations are compared to the model and an
AS obtained. All considered features are normalized
by z-score during the learning phase in order to obtain
meaningful descriptions. The learning phase can be
triggered from the operator after any relevant main-
tenance action, manually entered or automatically
detected with methods like, e.g., the one mentioned
in [11]. The issue of setting a threshold on the AS
values in order to decide whether an observation is
normal or not is not addressed in this work, since it
involves several additional steps which are part of the
overlying logic (see Figure 1). Seemingly, Ntrain needs
to be determined according to the maintenance policy
and is given here as a constraint.

3. Experimental results

3.1. Preliminary data characterization

Flight data have been recorded from two piezoelec-
tric accelerometers mounted on the gearbox case of a
H135 helicopter. The monitoring system with which
the considered helicopter was equipped recorded the
output acceleration from seven sensors at different
locations. Three of them are dedicated to monitoring
the cabin vibration, one to the tail drive shaft, one
to the tail gearbox and the latter two to the main
gearbox. A sketch of the main gearbox is shown in
Figure 2. The two input drive shafts rotate at a speed
of about 98.3Hz (≈5900rpm) and transmit power from
the engines to the main gearbox. Shafts speed ranges
from about 6.5Hz at the main hub shaft to 210Hz at
the fan drive shaft at 100% nominal engine speed.
The main gearbox accelerometers are located on the
right and left side of the case, in proximity of the
input drive shafts and measure the radial acceleration.
For monitoring purposes, the system periodically ac-
quires around 2.85s of vibration data per acquisition
per accelerometer. The system starts recording only
when flight conditions are stable (contextual correc-
tion in Figure 1), as to prevent from acquiring highly
non-stationary vibration data (e.g. during start-up),
restricting in a first place the space of possible oc-
curring operating conditions during a record. A first
effect of the constraint is reducing the number of
acquisitions in a given period, the second is that of
imposing a first limitation to the CI values variability

due to the different operating conditions. Addition-
ally, due to memory constraints from the acquisition
system, a maximum number of files is stored during
each flight session. Together with vibration, a mag-
netic pickup installed on the main rotor swash plate
and one on the tail rotor store a synchronizing signal,
allowing for the establishment of angle/time relation-
ships used for resampling of the TSA signal. The
mechanical complexity of the system and the flight
environment results in multiple vibration sources,
mainly consisting of main rotor and blades vibration,
wind/structure interactions and other aerodynamic
effects and vibration directly related to the rotating
components, like unbalanced/misaligned shafts or
meshing gears. The mixture of all these sources
is transmitted through the structure to the acceler-
ometers according to model (1), giving rise to a pro-
fuse spectrum in which characteristic frequencies are
hardly identifiable. A typical measured spectrum in
a fault-free condition is shown in Figure 3. The peak
of the response at about 2260Hz is the meshing fre-
quency of the input drive gear and the intermediate
shaft output pinion. Such a noisy spectrum justi-
fies the introduction of signal processing techniques,
based on a first-principle understanding of the effect
that the developing damage has on the measured vi-
bration signal (section 2.1.2). The data used for this
analysis were acquired during almost 22 months of
operating life of the helicopter (≈2130 Flight Hours).
In this time frame, micro-pitting degradation occurred
on the right input drive shaft’s pinion. Ground truth
is available from two inspections carried on after 1600
FH and 2130 FH. After the first inspection, the meas-
ured damaged area was about 16mm2 and was judged
safe for the operations of the gears. The damaged area
at the time of the second inspection was about 34mm2

and the asset was then replaced. The degradation
is visible in the form of gray staining on the tooth
surface (Figure 4). The damage started developing
between 1000 FH and the date of first assessment.
However, no feedback on direct inspections of the
component is available before the 1600 FH inspection.
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(a) (b)

Figure 4: Gray staining on the right input drive shaft’s pinion. a) Component at the time of first inspection; b) component
at the time of second inspection.

Figure 2: H135 main gearbox.
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Figure 3: Spectrum of a 2.85s fault-free vibration signal
recorded in flight by one of the monitoring sys-
tem main gearbox accelerometer with a sampling
frequency of 7000Hz (estimated using Hanning
window and 16 non-overlapping averages).

3.2. Fault detection performance

For verification purposes, and with reference to the
previously reported maintenance inspections, the
flight data were divided in the following sequential
blocks:

1. Healthy state (≈1000 FH);

2. Early degradation (unknown state) (≈600 FH);

3. Known degradation (faulty state) (≈530 FH).

The proposed methodology, based on AS generation
through SVDD data fusion is assessed by comparing
its performance in detecting the early degradation
with respect to the univariate analysis of the CI pro-
posed in section 2.1 and with respect to the method
based on the Gaussian model proposed in [11]. First,
the CI computed over the entire data history are
presented. Next, the Gaussian and the proposed
method are applied using Ntrain = 80 acquisitions
for training and the remaining for evaluation of the
AS. Since the goodness of the obtained multivariate
model depends on some extent on the representat-
iveness of the training set, the models were trained
picking all the possible training sets from the healthy
data. In this way, robustness to eventually poorly
representative training sets is accounted for. Classi-
fication performance can be measured independently
from threshold setting by introducing the receiver
operating characteristic (ROC) curves. Such curves
represent the fraction of target objects accepted by the
model (i.e. healthy observations classified as healthy)
against the fraction of outliers accepted (i.e. faulty
observations classified as healthy). The area under
the ROC curve (AUC) gives a scalar measure of the
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(a) (b)

Figure 5: Time history of the condition indicators (time axis is translated such that the first acquisition coincides with the
reference date of 01 Jan 00). Black vertical lines: first inspection and second inspection. a) RMS CI; b) Kurtosis CI.

(a) (b)

Figure 6: Normality test of each CI visualized through quantile-quantile plots. a) RMS CI; b) Kurtosis CI.

(a) (b)

Figure 7: Scatter plots of the CI in the normalized feature space and contours representing varying AS. a) Gaussian model
contours; b) SVDD model contours.
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achieved separability between states. Computing the
classification performances requires the definition of
a healthy and a faulty dataset. The healthy data-
set was defined including the first 1000 FH, whereas
four definitions are introduced for the faulty state:
early stage degradation (from FH 1150); middle stage
degradation (from FH 1300); advanced stage degrada-
tion (from FH 1450) and assessed degradation (from
FH 1600). The models were evaluated in the four
cases, which allows for comparing their efficiency in
responding early to the fault development in terms of
AUC, without introducing model-specific thresholds
or novel key performance indexes. The CI extrac-
ted from the vibration data were computed as de-
scribed in section 2.1. Figure 5 shows the values of
the RMS and Kurtosis indicators computed from the
shaft-synchronous signal. The dates in which damage
was assessed are indicated with black vertical lines.
Although there is a clear upward trend correlated
with the degradation, the values are very scattered
and present a complex distribution. A visualization
of the CI distribution in the healthy state is shown in
Figure 6, where the quantiles of the CI distributions
are plotted against the quantiles of the normal distri-
bution. It can be seen that both the CI distributions
do not match the Gaussian (dashed line in the figure).
In Figure 7, scatter plots of the CI centred in the fea-
ture space normalized by their mean are shown. The
contours of example data descriptions obtained using
the Gaussian model and the SVDD model are plotted
for varying AS values. It is evident that the SVDD
model produces a tighter description, which results in
a better ability of discriminating between those data
points belonging to the healthy distribution all the
others not belonging to it.

3.2.1 Receiver Operating Characteristic curves and
related measures

The ROC curves in the four degradation cases men-
tioned above are shown in Figure 8. The curves for the
multivariate models are obtained as mean ROC curves
over all the possible 4680 ROC curves computed on
training sets obtained drawing a sequence of Ntrain
acquisitions from the healthy distribution. The mean
AUC, computed from the mean ROC curve, is repor-
ted in the legend along with the AUC values standard
deviation in squared brackets. The indicators (both
from the multivariate and from the univariate models)
gain a better discriminating ability with the damage
progression. This is not surprising, since the CI are
designed for being correlated with fault evolution
and hence their value increase with the defect growth.
However, both the multivariate indicators performs
better in general. Moreover, they offer the advant-

age of resuming the information from multiple CI in
one single AS, thus enabling simpler decision. The
AS computed from SVDD model is the one granting
highest probabilities of detection at a given probabil-
ity of false alarm in the early, middle and advanced
degradation stages, whereas for more several degrad-
ation (first inspection onward), the Gaussian model
performs slightly better on average, since the healthy
and faulty distributions becomes very well separated
in the features space. Except for the last stage, the
SVDD model is more robust to the variability of the
training set with respect to the Gaussian model, as ob-
served from the standard deviation values. In order to
better visualize the influence of different training sets,
a boxplot of the AUC values in the four degradation
stages is shown in Figure 9. Training sets which are
more representatives of the real multivariate distribu-
tion of the indicators leads in general to higher AUC
scores for the multivariate models. The horizontal
black lines in the plot represent the AUC computed
for the best-performing univariate CI, whereas the
boxes represent the AUC values for different training
sets obtained for the multivariate models. In general,
the SVDD model results in higher AUC than the uni-
variate models for almost all the possible training sets,
yielding an AUC relatively close to that of the univari-
ate CI in the few cases in which they perform better.
The Gaussian model suffers more from the training
set representativeness in the first three considered
degradation stages. However, in the majority of the
cases it yields better performance than the univariate
indicators, outperforming also the SVDD model when
considering the severe degradation case.

3.2.2 Methods comparison

Tables 1 to 4 summarize the comparison between
SVDD AS and Gaussian AS for the four considered
degradation cases, by the mean of three parameters.
The first one is the average AUC gain (AAG), defined
as the difference between the mean AUC value ob-
tained over all the training sets and the best AUC
value from the univariate CI. The second parameter is
the failure rate (FR), defined as the count of the cases
in which the multivariate model performed worst
than the best univariate CI divided by the total num-
ber of cases (4680). The third introduced parameter is
the worst AUC loss (WAL), defined as the difference
between the best AUC from the univariate CI and the
worst case AUC valued obtained for the AS. From
the tables, the AS from SVDD model outperforms
both the AS from Gaussian model and the univariate
CI for early detection. Once the fault condition is
sufficiently developed, it seems that the Gaussian
model performs slightly better with respect to the
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Figure 8: ROC curves. SVDD and Gaussian model average performance over 4680 training sets compared with univariate
CI performance in the four degradation stages. a) Early stage degradation; b) middle stage degradation; c)
advanced stage degradation and d) minimum assessed micro-pitting of 16mm2
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Figure 9: Boxplot of AUC values obtained in the four degradation cases for the Gaussian and SVDD models over the 4680
evaluations, compared to the AUC of the best performing CI (black lines in the plot).
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Figure 10: Trend values of the AS and the CI computed using a moving average filter with a length of 100 acquisitions.
The vertical black lines indicate the defined damage stages (time axis is translated such that the first acquisition
coincides with a reference date of 01 Jan 00). a) SVDD AS; b) Gaussian AS; c) RMS; d) Kurtosis.
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SVDD, owing to the increased topological separation
between the cluster of the anomalous points and
that of the reference distribution in the CI space.
However, both the multivariate models consistently
outperform the traditional univariate CI analysis.
These results translate into a clearer ability of the
AS of reacting to the faults with respect to the CI,
as shown in Figure 10, where the AS and CI trends
are compared. Trends are obtained using a moving
average filter with a length of 100 acquisitions. The
black vertical lines indicate the beginning of each of
the four defined sequential degradation stages. It
is observed that the AS from the SVDD model is
reacting quicker to the fault initiation, resulting in
improved fault detection ability. Having indicators
which are able of better separating faulty states from
the healthy ones is preferable, since using the same
number of points, increased confidence in the decision
can be obtained, whatever the decision policy is.

Table 1: Comparison of AS and CI performance, early
stage degradation

Parameter Gaussian model SVDD model

AAG 0.0422 0.1174
FR 0.1558 0.0064
WAL 0.0515 0.0232

Table 2: Comparison of AS and CI performance, middle
stage degradation

Parameter Gaussian model SVDD model

AAG 0.0794 0.1184
FR 0.0058 0.0011
WAL 0.019 0.0056

Table 3: Comparison of AS and CI performance, advanced
stage degradation

Parameter Gaussian model SVDD model

AAG 0.0909 0.0973
FR 0 0.0011
WAL - 0.005

Table 4: Comparison of AS and CI performance, min-
imum assessed micro-pitted area of 16mm2

Parameter Gaussian model SVDD model

AAG 0.1216 0.1131
FR 0 0
WAL - -

3.2.3 Influence of feature selection

Features (or CI) for defining an AS should be selec-
ted such as to capture global changes of the signal
of interest, so that increasing values of the AS, trig-
gering a departure of the signature from baseline, are
representative of a change of the dynamic properties
of the component under analysis. However, one may
include specific CI in the signal description in order
to design an AS reacting more promptly to a known
fault. With illustrative purpose, in this section the
previous analysis is repeated on an expanded gear
AS defined as the combination of four CI. Namely,
the OM1 and OM2, amplitude of the first and second
harmonics of the reference shaft SA signal, are addi-
tionally included in the previous description. In this
way, the AS additionally includes two CI typically
related to shaft unbalance and misalignment. Due
to the fact that the considered fault case does not in-
volve shaft unbalance/misalignment, both the added
CI are insensitive to the changes provoked by the fault.
Moreover, such CI are not describing the global prop-
erties of the signal of interest, but specific features
of its frequency (order) domain representation. The
boxplot of the AUC scores is presented in Figure 11 in
the same fashion of Figure 9. Although the AS keep
performing better than the univariate CI, an average
decrease in performance is observed. In an anomaly
detection framework, this can be explained as increas-
ing the ratio of irrelevant features in the descriptions
leads in general to decreased performance of anomaly
detection metrics (noise attributes problem in [49]).
This fact can also be used for intuitively explaining
why the noise attributes OM1 and OM2 are affecting
less the performance of the Gaussian description than
that of the SVDD model. In fact, the SVDD model is
aimed to better capturing the intrinsic dimensionality
of the data through accounting for a general correl-
ation structure. As a consequence, it is less accurate
when features hiding this correlation structure are in-
troduced. On the countrary, the Gaussian description
may only account for a linear correlation, and results
therefore less influenced. In general, a well-defined
AS shall then better consist of a set of CI which are
able of capturing a global description of the signal
of interest, rather than of a set of CI tailored for the
detection of specific faults.

4. Conclusion

In this paper, an anomaly-detection procedure de-
voted to the quantification of the degree of deviation
of the mechanical state of a component from its nom-
inal condition is developed. The work reported on the
possibility of obtaining improved information from
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Figure 11: Boxplot of AUC values obtained in the four degradation cases for the Gaussian and SVDD models (R4 features
set) over the 4680 evaluations, compared to the AUC of the best performing CI (black lines in the plot).

Health and Usage Monitoring Systems vibration data
by fusing traditional CI into a single AS using data
description models. Such an improvement is achieved
by considering the variability induced by the oper-
ating conditions of the helicopter on the CI values
implicitly inside the AS models, in the form of a cor-
relation between multiple CI through latent variables.
The models are learnt from the acquired data dur-
ing a learning phase of the algorithm. Therefore, a
set of reference values are needed before the monit-
oring can be effectively enabled. Remarkably, since
operating conditions are treated as latent variables,
there is no need for direct measurements of the flight
parameters. In order to address the limits of the ori-
ginal proposal based on a Gaussian model, an SVDD
model was introduced. The method allowed to obtain
an AS which improved the detection of early stage
degradation with respect to the AS obtained from the
Gaussian model and with respect to traditional uni-
variate CI. Moreover, only few training acquisitions
were sufficient for learning a proper data description.
The choice of the model parameters was automatized,
yielding good results for the considered case. The
method was assessed on comprehensive real operat-
ing vibration data. It was shown that although the
multivariate models depend on some extent on the
training set representativeness of the true distribution,
reasonably robust performance improvements could
be obtained over the univariate CI. However, no gen-
eral indication can be given on the minimum number
of the training acquisitions necessary for an accurate

description of a set of CI, which greatly depends on
the characteristics of the distribution. The selection of
CI for building proper AS in the anomaly detection
framework was discussed, and the effect of adding
insensitive CI considered. Importantly, it was high-
lighted that due to the very nature of the anomaly
detection problem, the CI used for building a valid
AS shall be able of capturing globally the nominal
behavior of the signal of interest, rather than react-
ing to each possible fault, a fact often overlooked in
previous works on the subject.
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