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Repeatable Motion Planning for Redundant
Robots Over Cyclic Tasks

Giuseppe Oriolo, Fellow, IEEE, Massimo Cefalo, and Marilena Vendittelli

Abstract—We consider the problem of repeatable motion plan-
ning for redundant robotic systems performing cyclic tasks in the
presence of obstacles. For this open problem, we present a control-
based randomized planner, which produces closed collision-free
paths in configuration space and guarantees continuous satisfac-
tion of the task constraints. The proposed algorithm, which relies
on bidirectional search and loop closure in the task-constrained
configuration space, is shown to be probabilistically complete. A
modified version of the planner is also devised for the case in which
configuration-space paths are required to be smooth. Finally, we
present planning results in various scenarios involving both free-
flying and nonholonomic robots to show the effectiveness of the
proposed method.

Index Terms— Motion planning, path planning for manipula-
tors, redundant robots, repeatability.

I. INTRODUCTION

K INEMATICALLY redundant robots [1] possess more de-
grees of freedom (dofs) than strictly needed to accom-

plish a given task and offer, therefore, increased dexterity and
flexibility for pursuing additional objectives, among which the
most important is arguably collision avoidance. Researchers
have been studying kinematic redundancy since the 1980s, but
only the last decade has witnessed a widespread adoption of
redundant robotic systems, both in industrial and nonindustrial
contexts. Popular examples include 7- or 8-dof fixed-base ma-
nipulators, bimanual robotic platforms, mobile manipulators,
humanoid robots, and many others.

For fixed-base manipulators, standard tasks involve the end-
effector, which should be placed at a certain position and/or
orientation (e.g., for picking an object), or follow a certain
path/trajectory (e.g., for cutting or welding). For mobile robots,
tasks can be of a more general kind, e.g., navigating a corri-
dor, tracking visual features, maintaining mechanical balance,
and so on. Independently of the nature of the task variables,
an important case is that of cyclic tasks, which are described
by closed paths (cycles) in the task space. These are typically
tasks that must be repeated over and over, a situation particularly
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relevant in industrial applications but of possible interest in other
scenarios, e.g., service robotics.

Depending on the specific method used for its generation,
the motion of the robot in the configuration space over a cyclic
task may turn out to be closed or not. In the first case, the
generated motion and the method itself are called repeatable.
The repeatability property is obviously desirable under various
aspects. The first is efficiency: if the method is repeatable, the
configuration-space motion over subsequent task cycles will be
a simple repetition of the first cycle motion, and therefore the
computational effort is limited. The main advantage of repeata-
bility, however, is that it improves legibility and predictability of
the robot motion [2]. These properties are particularly valuable
in any context that involves both humans and robots and can be
exploited to make their coexistence and interaction intrinsically
safer. On the other hand, lack of repeatability is clearly a draw-
back, because it means that the robot behavior is essentially
unpredictable: the robot executes the cyclic task but assumes
postures that are different from cycle to cycle. This obviously
poses a threat also to the safety of the robot itself, because a
motion that appears to be safe in early cycles may instead lead
to collisions with obstacles in the long run.

A. Historical Perspective

Motion generation for redundant robots subject to task con-
straints is usually addressed through kinematic control [1], [3],
sometimes called redundancy resolution. In this well-known
approach, the robot is modeled as an elementary linear system
(one simple integrator for each coordinate, the input being the
corresponding velocity) with a nonlinear output function (the
task). Feedback linearization is then used to achieve a linear
and decoupled input-output map and a globally stable error dy-
namics. In view of the redundancy (more inputs than outputs),
inversion of the input-output map requires a generalized inverse
of the task Jacobian and results in an infinity of possible solu-
tions for the velocity input, all expressed as an inverse solution
plus an additional term, which does not perturb task satisfaction
(null-space velocity). In control terms, this is a manifestation of
the existence of a zero dynamics for the output function corre-
sponding to the considered task.

Two alternatives are available for selecting at each instant
one solution among the infinite candidates: either define a cost
function and solve a local optimization problem, as originally
proposed in [4], or perform a suitable task augmentation to
obtain a “square” problem that admits a single solution [5].
Apart from some algorithmic aspects, these two options can be
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shown to be largely equivalent, so we will focus on the first in
the following discussion.

The safety requirement for robot motion may be taken into
account at the optimization level, either by defining proximity
to obstacles as a cost criterion or by adding specific inequality
constraints related to collision avoidance in the workspace [6].
However, it is important to realize that—independently of the
specific version—kinematic control is always a greedy strategy
whose optimization capabilities are inherently local; as a con-
sequence, it cannot guarantee completeness (finding a solution
whenever one exists). In fact, during motion generation, it may
happen that, depending on the previous history of the solution,
the robot has reached a configuration where it cannot continue
to execute the task without colliding with some obstacles or vi-
olating some other constraint (e.g., joint limits). From a general
viewpoint, one may argue that the lack of backtracking capabil-
ities makes kinematic control only suited for online or reactive
motion generation, whereas in a full-information context it may
prove severely suboptimal and even fail to solve relatively easy
problems.

From the specific viewpoint of this paper, where we address
both safety and repeatability, there exists a second, even more
important drawback of kinematic control: the lack of repeatabil-
ity. Consider, for example, its most popular version, i.e., pseu-
doinverse control; it is obtained by taking the Moore–Penrose
pseudoinverse as a generalized inverse and setting the null-
space velocity to zero, and corresponds to minimizing the norm
of the generalized velocity. In spite of its popularity, this tech-
nique is not repeatable: this was first observed on simple pla-
nar robots by Klein and Huang [7], who pointed out how its
application over a cyclic task leads to a drift in the configu-
ration variables, whose final value is different from the initial
value.

In 1988, Shamir and Yomdin [8] presented a necessary and
sufficient condition (which was later refined in [9]) for repeata-
bility of all kinematic control schemes in which the null-space
velocity is set to zero (including pseudoinverse control). In par-
ticular, using differential geometric arguments, they proved that
repeatability is obtained if and only if the distribution spanned
by the columns of the chosen generalized inverse is involutive.
This condition, which is very restrictive and therefore violated in
most cases, was exploited to achieve asymptotically repeatable
kinematic control in [10] and to create repeatable generalized in-
verses in [11]. Other works on the design of repeatable kinematic
control schemes include, e.g., [12] and, more recently, [13], [14].

In any case, kinematic control schemes based on repeatable
generalized inverses leave no room for optimization, in the sense
that adding null-space velocities to the solution automatically
destroys involutivity and therefore repeatability [10]. In other
words, using repeatable generalized inverses amounts to losing
most of the benefits of kinematic redundancy.

The extended Jacobian (EJ) technique, proposed by Bail-
lieul [15] and revisited by Chang [16], deserves a special men-
tion in this discussion. In a nutshell, this kinematic control
method combines optimization with task augmentation: once
a cost criterion has been chosen, the original task is augmented
with additional constraints derived from the constrained opti-
mality conditions. This leads to a square problem with a single

velocity solution and makes the EJ method repeatable by con-
struction. However, its application is impractical due to several
difficulties, the most relevant being the appearance of algorith-
mic singularities, where the additional constraints come into
conflict with the task. In the context of the present discussion,
this is a manifestation of the local nature of the EJ and indicates
that it is not possible to guarantee simultaneously repeatability
and collision avoidance with this method.

B. Proposed Approach

Our approach to the considered problem proceeds from the
observation that cyclic tasks are usually assigned and specified
in advance in full-information contexts. We argue, therefore,
that motion planning—rather than kinematic control—is the
most appropriate setting for generating safe repeatable paths in
the configuration space in the presence of this kind of tasks.

Indeed, within the vast motion planning literature, there ex-
ist methods that address the Task-Constrained Motion Planning
(TCMP) problem, i.e., finding robot motions that are collision-
free and simultaneously realize task constraints; see, for ex-
ample, [17]–[24]. These methods, however, do not address the
Repeatable-TCMP (R-TCMP) problem: if the assigned task path
is closed, the resulting motion in the configuration space will
not be repeatable in general.

In [25], we presented a preliminary study of a randomized
planner targeting the R-TCMP problem (see the next section
for a formal definition of this problem). The basic tool was a
specialized motion generation scheme, first introduced in [20],
which guarantees continued satisfaction of the task constraint
throughout the motion. To achieve repeatability, this scheme was
used within a bidirectional search: two exploration trees were
grown in the task-constrained configuration space, the first in
the forward direction and the second in the backward direction.
When the two trees become sufficiently near, an attempt was
made to connect them using a loop closure procedure designed
using feedback control techniques.

This paper fully develops the ideas in [25]. In particular, it
adds the following contributions:

1) a general loop closure procedure;
2) a theoretical investigation of the associated convergence

conditions;
3) an extension to robotic systems subject to nonholonomic

constraints;
4) a proof of probabilistic completeness;
5) a modified planner that generates smooth paths in the

configuration space;
6) numerical results in new scenarios, including cases of

mobile manipulation.
This paper is organized as follows. In the next section, the

considered planning problem is formulated by specifying the
underlying kinematic model and discussing the nature of the task
assigned to the robot. Section III describes in detail the structure
of the proposed planning method. The loop closure procedure,
which is a key component of our planner, is thoroughly discussed
in Section IV. A proof of probabilistic completeness is given in
Section V. A modified version of the planner that is guaranteed
to produce smooth paths in the configuration space is described
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in Section VI. Numerical results for three different scenarios
are presented in Section VII, while Section VIII offers some
concluding remarks.

II. PROBLEM FORMULATION

In this section, we first present the kinematic model used for
generating motion of the considered robotic systems. Then, the
nature of the assigned task is discussed. Finally, based on this
preliminary material, the planning problem is defined in formal
terms.

A. Motion Model

Consider a general robotic system whose configuration q
takes values in an n-dimensional configuration space C. By gen-
eral, we mean that the robot may be subject to nonholonomic1

constraints, whose number is denoted by r. The number of
dofs (i.e., independent infinitesimal motions) is, therefore,
p = n− r; if r = 0, the robot is actually free-flying in C.

It is also assumed that the nonholonomic constraints involve
only a subset2 of the configuration variables. In particular, re-
order and partition the configuration vector q as (qc , qu ), where
the subvector of (nonholonomically) constrained coordinates
qc is nc -dimensional and the subvector of unconstrained coor-
dinates qu is nu -dimensional, with nu = n− nc . The r non-
holonomic constraints are in Pfaffian form and act on the qc
subvector:

A(qc)q̇c = 0, (1)

with the constraint matrix A full rank at any configuration q ∈
C = Cc × Cu .

Since our motion planning method can be used for planning
either paths or trajectories in C, we shall consider a more general
version of (1), where the time variable t is replaced by a generic
path parameter s, with s = t as a particular case:

A(qc)q
′
c = 0, (2)

with the notation ( )′ = d( )/ds representing a derivative with
respect to s.

In light of the above arguments, the motion model used for
planning characterizes the admissible tangent vectors to the
configuration-space path as

q′ =

(
q′
c

q′
u

)
=

(
G(qc)ṽc

ṽu

)
=

(
G(qc) 0

0 I

)
ṽ, (3)

where the columns of the nc × (nc − r) matrix G(qc) are a
basis for the null space of A(qc). The input vectors ṽc and
ṽu are (nc − r)-dimensional and nu -dimensional, respectively,
and they are collected in the p-dimensional vector ṽ = (ṽc , ṽu ).
The tilde over these symbols indicates that in general (s �= t)
they are geometric inputs, rather than velocity inputs.

1Throughout this paper, it is assumed that holonomic constraints, if present,
have been either solved (through appropriate choice of the generalized coordi-
nates) or incorporated in the task definition.

2The developments in the paper are still valid if the nonholonomic constraints
involve all the configuration variables. However, in this case the considered
robotic system does not contain articulated limbs, and the repeatable motion
planning problem for such a system is of little interest.

The kinematic model (3) applies to a large number of robotic
systems, including fixed-based manipulators (r = 0) and non-
holonomic mobile manipulators (r > 0). Its interpretation is
clear: the geometric motion of the qc coordinates in Cc is lo-
cally constrained by (2), whereas the qu coordinates can move
freely in Cu . In any case, system (3) is fully controllable in view
of the nonholonomy of the constraints (2).

B. Task Kinematics

The task assigned to the robot is described in terms of a set
of coordinates y taking values in an m-dimensional space T .
Typical task coordinates may describe quantities related to ma-
nipulation (end-effector position and/or orientation), navigation
(position of a representative point of the robot, e.g., the center
of mass), or perception (placement of sensors in the workspace
or directly of features in sensing space, as in visual servoing). In
any case, the relationship between the task and the configuration
coordinates is given by a direct kinematic map

y = f(q),

whose differential (with respect to s) version is

y′ = J(q)q′ =
(
J c(q) Ju (q)

) (
q′
c

q′
u

)
,

where J(q) = ∂f/∂q. Using (3), we can derive a more useful
differential map from the actual geometric inputs to the admis-
sible tangent vectors in the task space

y′ =
(
J c(q)G(qc) Ju (q)

)(
ṽc
ṽu

)
= J t(q)ṽ. (4)

The m× p matrix J t(q) is simply called task Jacobian in the
following. However, if r > 0, some elements of J t are not
partial derivatives due to the embedded nonholonomic con-
straints [26].

In the presence of nonholonomic constraints, two kinds of
redundancy can be defined.

1) Static redundancy occurs when n > m (the number of
configuration coordinates exceeds the task dimension).

2) Kinematic redundancy occurs when p > m (the number
of dofs exceeds the task dimension).

These two concepts collapse in the absence of nonholonomic
constraints, i.e., when p = n; this is, for example, the case of
fixed-base manipulators. In general, however, kinematic redun-
dancy implies static redundancy, whereas the converse is not
true; for example, an elementary mobile manipulator consisting
of a unicycle with a rigidly attached gripper is statically but
not kinematically redundant for planar positioning tasks. Sim-
ple static redundancy (n > p = m) is not beneficial for plan-
ning because, unlike kinematic redundancy, it does not allow
self-motions (i.e., continuous motions of the joints that do not
change the value of the task variables). For this reason, we shall
focus on the case of kinematic redundancy.

If the robot is kinematically redundant with respect to the
task, the inverse image q̄ = f−1(ȳ) of a point ȳ in T may
be either 1) an (n−m)-dimensional subset of C, consisting
of one or more disjoint manifolds, or 2) a finite number of
configurations [27]. Task points of the first group include regular
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points and coregular points (also called avoidable singularities),
whereas the second group consists only of singular points (also
called unavoidable singularities).

C. R-TCMP Problem

Consider a general robotic system R whose kinematic model
is expressed as (3). The robot moves in a workspace W (a subset
of IR3) populated by static obstacles. Denote by O ⊂ W and
R(q) ⊂ W , respectively, the volume occupied by the obstacles
and by the robot at configuration q.

The robot must perform a task described in terms of coordi-
nates y, whose differential map from the available geometric
inputs is given by (4). It is assumed that the robot is kinemati-
cally redundant with respect to the task, i.e., p > m.

In this paper, we are interested in the case in which the as-
signed task is cyclic, i.e., it is specified as a closed path yd(s) in
T , with s ∈ [sini, sfin ] and yd(sini) = yd(sfin). If s = t, then a
closed task trajectory is assigned. It is also assumed that yd(s) is
continuously differentiable with respect to s and, for the motion
problem to be well-posed, that

yd(s) ∈ T ∗ ∀s ∈ [sini, sfin ],

where T ∗ is the nonsingular task space, defined as the subset of
T made of regular and coregular points. The initial configuration
qini is assigned,3 with f(qini) = yd(sini).

The Repeatable Task-Constrained Motion Planning problem
consists finding a configuration-space path q(s), s ∈ [sini, sfin ],
such that:

1) y(s) = f(q(s)) = yd(s), ∀s ∈ [sini, sfin ] (the desired
task path is realized);

2) q(sini) = qini = q(sfin) (the configuration-space path is
closed, hence repeatable);

3) R(q(s)) ∩ O = ∅, ∀s ∈ [sini, sfin ] (all collisions are
avoided).

The planning space for the R-TCMP problem is

Ctask = {q ∈ C : f(q) = yd(s), for some s ∈ [sini, sfin ]}.
The manifold Ctask , called task-constrained configuration space
in the following, has the natural structure of a foliation, with s
as a parameter. In fact, by defining the generic leaf as

L(s) = {q ∈ C : f(q) = yd(s)},
the task-constrained configuration space can be characterized as

Ctask =
⋃

s∈[s i n i ,s f in ]

L(s).

Since the assigned task path is closed, it is L(sini) = L(sfin).
The existence of a solution to the above problem obviously

depends on the placement of the obstacles in the workspace. In
particular, denoting by Cfree the set of all configurations in C
that are not in collision, R-TCMP is solvable if and only if there
exists a closed path in Ctask ∩ Cfree that goes through qini and
crosses all leaves of Ctask .

Note that limits on the admissible values of the generalized
coordinates q (e.g., joint limits) can be readily incorporated in

3If needed, qin i can be preliminarily computed by inverse kinematics.

the above formulation by adding them to the list of constraints.
In the rest of this paper, we will consider directly this extended
formulation.

III. R-TCMP PLANNER

The proposed randomized planner performs a bidirectional
search in the task-constrained configuration space Ctask (see
Fig. 1). In short, two trees Tfw and Tbw are generated: both are
rooted at qini , but Tfw explores Ctask in the forward direction
(i.e., the direction of increasing s) from sini , whereas Tbw moves
in the backward direction from sfin . To guarantee continued
satisfaction of the task constraint throughout the motion, each
tree is extended using a control-based variation [20] of the basic
RRT mechanism [28]. Once Tfw and Tbw become sufficiently
close, a purposely designed loop-closing procedure is invoked
to attempt joining them.

During tree extension, we make use of a sequence of N
samples of the desired task path yd(s), respectively taken at
{s1 = sini, s2 , . . . , sN−1 , sN = sfin}. In the following, we shall
use the shorthand notations yd,i = yd(si) and Li = L(si) to
denote, respectively, the task path sample associated with si
and the corresponding leaf of Ctask . Since the task is cyclic, we
have yd,1 = yd,N andL1 = LN . Any node produced during the
search will lie on some leafLi , with i = 1, . . . , N , while any arc
connecting two nodes will go across an infinity of intermediate
leaves of Ctask .

In the rest of this section, we describe in detail the tree ex-
tension mechanism and, in particular, the motion generation
scheme used for guaranteeing task constraint satisfaction along
the arcs. The loop-closing procedure will be presented sepa-
rately in the next section.

A. Tree Extension

Let us consider first the extension of the forward tree Tfw ,
which is rooted at qini .

At each iteration, a value srand is chosen arbitrarily (not
necessarily at the discrete samples si) in the open interval
(sini, sfin). Then, a configuration qrand in Ctask is randomly
generated as one of the inverse kinematic solutions4 corre-
sponding to yd(srand), that is, qrand is chosen such that
f(qrand) = yd(srand).

The tree is then searched to identify the node qnear that is
closest to qrand . Let si be the parameter value associated with
the leaf Li on which qnear is located. At this point, a constraint-
aware randomized scheme (see Section III-B) is invoked to gen-
erate a collision-free subpath that starts from qnear ∈ Li , ends
at qnew ∈ Li+1 and continuously satisfies the task constraint.
In the case of success, the subpath and qnew are added to Tfw as
an arc and a node, respectively.

Extension of the backward tree Tbw , also rooted at qini , is
performed in an analogous way, the only difference being that
motion generation proceeds backwards from sfin , i.e., over de-

4Generating qrand in Ctask is computationally more expensive than simply
taking qrand in C; however, it generally results in the accelerated convergence
of the planner.
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Fig. 1. The R-TCMP planner performs bidirectional search and loop closure in the task-constrained configuration space.

creasing values of s. Therefore, if qnear lies onLj , the generated
subpath will land on Lj−1 (see Fig. 1).

The algorithm proceeds with a classical bidirectional search
that balances exploration with exploitation. In the initial phase,
the same qrand is used for extending both Tfw and Tbw indepen-
dently. As the algorithm proceeds, extension steps are replaced
with increasing frequency by connection steps aimed at reduc-
ing the gap between the two trees. To this end, the latest node
added to one tree is used as qrand for the other.

Whenever a node is added to one of the two trees, the algo-
rithm verifies whether the other tree has a node on an adjacent
leaf. In this case, the bidirectional search is stopped and the
loop-closing procedure is invoked (see Section IV). If the pro-
cedure is successful, a solution is extracted from Tfw and Tbw ;
otherwise, tree extension is resumed.

B. Motion Generation

The motion generation scheme used in the proposed planner
is constraint-aware, i.e., it complies with the constraint that the
desired task path yd(s) is realized for all values of s. In partic-
ular, tree arcs are subpaths in Ctask produced by the kinematic
model (3) under the following input vector:

ṽ = J †
t(q)(y′

d + kt et) + (I − J †
t(q)J t(q))w̃, (5)

where:
1) J †

t is the pseudoinverse of the task Jacobian;
2) kt is a positive scalar gain;
3) et = yd − y is the task error;

4) (I − J †
tJ t)w̃ is the null-space velocity, obtained as the

product of (I − J †
tJ t), the orthogonal projection matrix

in the null space of J t , with w̃, a p-dimensional resid-
ual input vector that can be chosen arbitrarily without
affecting satisfaction of the task constraint.

Since by assumption p > m, if J t is full rank we have
J †
t = JT

t (J tJ
T
t )−1 and thus J tJ

†
t = I . Regardless of the

choice of w̃, plugging (5) in (4) gives e′
t + ktet = 0. The task

error system is then exponentially stable; since the initial error
is zero (f(qini) = yd(sini)), this means that, in principle, the
desired task path will be tracked exactly.5 In practice, exponen-
tial stability guarantees that even the drift associated with the
numerical integration of (3)–(5) is reduced to a minimum.

When the forward tree Tfw is being extended, integration
of (3)–(5) starts from the current qnear for s = si and stops at
s = si+1 . The residual input vector w̃ is chosen randomly in
a bounded subset W of IRn (this will be essential in the proof
of probabilistic completeness) and kept constant6 throughout
the integration interval [si, si+1]. The result of the integration
is a subpath in Ctask that goes from Li to Li+1 . Extension of
the backward tree Tbw is achieved similarly, the only difference
being that integration is performed backwards in s. Since sys-
tem (3)–(5) is symmetric, any backward motion can be reversed
to the direction in which s increases.

5This is unlike sampling-based constrained motion planners, in which the
desired task is typically realized at the nodes (samples of C) but violated along
the arcs (subpaths joining the samples).

6As a consequence, the profile of w̃ will be piecewise constant over [s1 , sN ].
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During the integration, the generated configuration-space
path is continuously checked for 1) collisions (including self-
collisions) between the robot and the obstacles, 2) violation of
joint limits, and 3) rank deficiencies of J t(q). If any of these
conditions arises, generation of the current motion is aborted
and control goes back to the main tree extension procedure.

Note that, in principle, one could use a different parameter-
ization for the task space and configuration paths [20]. This
would allow, for example, to perform a self-motion at the con-
figuration level to modify the robot internal posture, while the
task variables do not change. In this paper, we shall not exploit
this opportunity and will avoid self-motions in order to produce
smoother paths.

IV. LOOP CLOSURE

A fundamental component of our planner is the loop clo-
sure procedure, which takes a pair of configurations qfw ∈ Lk
and qbw ∈ Lk+1 , respectively nodes of Tfw and Tbw , and tries
to join them with a path that avoids obstacles and simultane-
ously realizes the portion of task between the samples yd,k and
yd,k+1 (see Fig. 1). This amounts to performing a collision-free
configuration transfer in an n-dimensional space while con-
tinuously satisfying an m-dimensional constraint. Therefore,
we need to replace (3)–(5) with a constrained motion genera-
tion scheme that can reach an assigned final configuration. To
this end, we take inspiration from the self-motion stabilization
method of [29].

The basic idea is to choose a subset of n−m generalized
coordinates and to perform the desired reconfiguration on these.
The motion of the remaining m coordinates is then computed
so as to satisfy the task constraint. Under certain conditions, to
be discussed in the following, these coordinates will converge
to their desired values as well.

Let us partition vector q as (qr , qb), where the subvector
of redundant coordinates qr is (n−m)-dimensional, and the
subvector of base coordinates qb ism-dimensional. The number
of such possible partitions is n!/m!(n−m)!, i.e., the number of
combinations (without repetition) of class m that can be drawn
from n elements. Correspondingly, the m× p task Jacobian
in (4) can be block-partitioned as J t = (J t,r J t,b), where J t,r

is m× (p−m) and J t,b is m×m.

A. Constrained Configuration Transfer via Feedback

Let us assume first that the robot is free-flying (r = 0, or
p = n). The general motion model (3) reduces to

q′ =

(
q′
r

q′
b

)
= ṽ. (6)

With the chosen partition, loop closure motion is generated by
integrating (6) from (qfw , sk ) using the following input vector:

ṽ = H1(q)ũ + H2(q)(y′
d + ktet), (7)

where

H1(q) =

(
I

−J−1
t,bJ t,r

)
H2(q) =

(
0

J−1
t,b

)

and

ũ = kr (qr,bw − qr ). (8)

As before, y′
d indicates the geometric derivative of the desired

task path (here, the portion between yd,k and yd,k+1), et is
the task error, and kt and kr are positive gains. Note the struc-
ture of H1 and, in particular, of its lower m× (n−m) block,
which guarantees that the task will be realized regardless of the
choice of ũ.

To analyze the convergence properties of the loop closure
scheme, we need some preliminary definitions.

Given a partition q = (qr , qb), and the pair (qfw , qbw ) of
configurations to be joined, define an associated degenerate
robot by letting qr = qr,bw ; in other words, the degenerate robot
is obtained from the original robot by “freezing” the redundant
coordinates at their final desired values. The degenerate robot
is nonredundant, as its configuration vector reduces to qb only,
and therefore for a generic value of the task function y there
exists only a finite number of inverse kinematic solutions. If the
degenerate robot is noncuspidal (see, e.g., [30]), then any path
that joins two such solutions must necessarily cross a singularity
of J t,b . We say that two configurations of the degenerate robot
belong to the same homotopy class if it is possible to go from
one to the other without crossing a singularity of J t,b .

Proposition 1: Assume that the following conditions hold.
1) The degenerate robot is noncuspidal.
2) qb,fw and qb,bw belong to the same homotopy class for

the degenerate robot.
Then, use of (7) and (8) from (qfw , sk ) produces a path

that joins qfw to qbw (i.e., qr,fw to qr,bw and qb,fw to qb,bw )
and simultaneously satisfies the associated portion of task con-
straint, provided that J t,b remains nonsingular throughout the
integration.

Proof: Plugging (7) and (8) into (6) gives the following con-
trolled dynamics:

q′
r = kr (qr,bw − qr ) (9)

q′
b = −J−1

t,b (q)J t,r (q)ũ + J−1
t,b (q)(y′

d + ktet). (10)

The first equation implies that qr converges (exponentially) to
qr,bw . Substituting (7) into (4), we obtain e′

t + kt et = 0. This
implies that y converges exponentially to the final desired task
value yd(qbw ), and therefore qb converges (exponentially) to
one of the inverse kinematic solutions of the degenerate robot
(i.e., the robot with qr frozen at qr,bw ) corresponding to the
final task value yd(qbw ).

Now, assume that the inverse kinematic solution to which
qb converges is qb,fin �= qb,bw . Since the degenerate robot is
noncuspidal, qb,fin must belong to a different class of homotopy
than qb,fw and qb,bw . Therefore, in moving from qb,fw to qb,fin ,
the robot must have gone through a singularity of J t,b ; but
this would contradict the thesis. Hence, we can conclude that
qb,fin = qb,bw . �

Note the following points.
1) Integration of (6) under (7), (8) is possible as long as J t,b

remains nonsingular. This condition is impossible to check
in advance because it depends on the desired task. There-
fore, during the integration, the generated configuration-
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space path must be continuously checked for singularity
of J t,b . We will come back to this shortly when we will
give the actual procedure for loop closure.

2) With the linear control law (8), qr converges to qr,bw
asymptotically in s. This means that at s = sk+1 , where
the integration must be arrested, there will be a nonzero
error. However, since convergence is exponential, the error
can be made arbitrarily small by appropriately choosing
kr . An effective alternative is to replace (8) with a control
law that provides finite-time convergence, such as

ũ = kr (qr,bw − qr )
η , (11)

where η ∈ [0, 1), and exponentiation must be intended as
componentwise and sign-preserving. In particular, denot-
ing by qir the ith component of the (n−m)-dimensional
vector qr , the choice

kr =
max

i=1,...,n−m

(
|qir,bw − qir,fw |

)1−η

(1 − η)(sk+1 − sk )
(12)

guarantees that qr will converge to qr,bw exactly at s =
sk+1 (e.g., see [31]).

To conclude this discussion, we consider the case in which
the robot is subject to nonholonomic constraints (r > 0, or
p < n) so that the full motion model (3) applies. The proposed
approach for task-constrained configuration transfer still works;
however, an adaptation may be needed depending on the chosen
partition. In fact, if the partition is such that qr contains all the
nonholonomically constrained coordinates qc , then (8) or (11)
cannot be used as such, because the number of velocity inputs
for those coordinates (nc − r) is less than their number (nc ).
In this case, it is necessary to generate the components of ũ
corresponding to the ṽc using a nonholonomic path planner,
i.e., a scheme7 that can steer the qc variables between two given
values while complying with the nonholonomic constraints. For
further discussion of loop closure in the presence of nonholo-
nomic constraints, see the third planning scenario in Section
VII, where we consider a nonholonomic mobile manipulator.

B. Example

Consider a 3R planar manipulator with unit link lengths and
tip positioning as task (see Fig. 2). Define its configuration
vector q = (q1 , q2 , q3), where qi is the ith relative joint an-
gle, and consider the partition qb = (q1 , q2), qr = q3 . A simple
computation shows that the singularities of J t,b are met when
q2 + q3 = kπ, with k = 0,±1, . . ., i.e., when the tip of the ma-
nipulator falls on the first link axis.

Assume that a pair (qfw , qbw ) is given. The degenerate robot
is then obtained by freezing the third joint at a relative angle
qr,bw ; this is equivalent to considering a two-link robot with a
virtual second link replacing the second and third link of the
original robot. Note that the degenerate robot is noncuspidal;
in fact, for any generic value of the task variables (tip position-
ing), there exist only two inverse kinematic solutions, and they

7Such schemes are available for a large class of nonholonomic robots. In
particular, all differentially flat robots admit a nonholonomic path planner. See,
for example, [32, Sec. 11.5.3].

Fig. 2. Degenerate robot obtained from a 3R manipulator by freezing the
third joint at a certain value: a singular configuration and two inverse kinematic
solutions belonging to different homotopy classes (elbow-up/elbow down). Note
the virtual link.

belong to different homotopy classes. These classes are easily
visualized as elbow-up and elbow-down using the virtual link
replacement (see Fig. 2).

Proposition 1 applied to this 3R robot guarantees that loop
closure will work between configurations belonging to the same
homotopy class of the degenerate robot, provided that J t,b re-
mains nonsingular. This is confirmed by numerical simulations;
for example, Fig. 3 shows two results obtained by applying (7),
(8) from initial configurations belonging to different homotopy
classes. As expected, in each case, the robot converges to the
only inverse kinematic solution contained in the same class.

C. Procedure

Based on the previous arguments, we can now describe the
actual loop closure procedure in detail. The data in input are
qfw ∈ Lk , qbw ∈ Lk+1 , and the associated portion of the de-
sired task path yd(s), s ∈ [sk , sk+1].

First, all partitions q = (qr , qb) such that J t,b is nonsingular
at both qfw and qbw are put in a list, which is arranged in in-
creasing order of cost. In our experiments, we used the distance
d(qr,fw , qr,bw ) as a cost function.8 A partition is then chosen
from the top of the list, and the conditions of Proposition 1 (non-
cuspidality of the associated degenerate robot and qb,fw , qb,bw
belonging to the same homotopy class) are checked. If they are
satisfied, motion generation is started from (qfw , sk ) under (7),
(8), or under (7), (11). During the integration, the generated
configuration-space path is continuously checked. If either a
singularity of J t,b is met, or a collision occurs, or joint limits
are violated, motion generation is aborted and the procedure
restarts with the next partition of q in the list.

If loop closure is successful, a solution to the R-TCMP prob-
lem is reconstructed by patching together the configuration-
space subpath from qini to qfw on Tfw , the loop closure subpath

8Other choices of cost function are possible; for example, one may use
1/min(det Jt ,b (qfw ), det Jt ,b (qbw )) to characterize the proximity of Jt ,b

to singularities at both the start and goal configuration.
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Fig. 3. Two results of the loop closure procedure for the same task path
but initial configurations belonging to two different homotopy classes of the
degenerate robot (above: elbow-up; below: elbow-down). In each case, the
robot converges to the only inverse kinematic solution contained in the same
class.

from qfw to qbw , and the subpath from qbw to qini on Tbw
(in the reverse direction). If instead motion generation fails for
any feasible partition of q, the loop closure procedure reports a
failure and control goes back to the planner, which will attempt
further extension of the trees.

V. PROBABILISTIC COMPLETENESS

We will now discuss the convergence properties of the pro-
posed planner. In particular, we will show that the random choice
of the residual input vector w̃ in (5) is instrumental in achieving
probabilistic completeness.

Proposition 2: Assume that a solution path q∗(s) exists
which can be produced by the planner. Then, the probability
of generating such path converges to 1 as the number of itera-
tions increases.

Proof: By assumption, q∗(s), s ∈ [s1 , sN ], is a path in
Ctask ∩ Cfree obtained by joining 1) a subpath on the forward
tree from qini ∈ L1 to q∗

fw ∈ Lk , for some k=2, . . . , N−2;
2) a loop closure from q∗

fw∈Lk to q∗
bw ∈Lk+1 ; and 3) a (re-

versed) subpath on the backward tree from q∗
bw ∈ Lk+1 to

q∗
ini ∈ LN = L0 (see Fig. 1). In particular, the first and the

third subpaths are obtained by integrating (3)–(5) with residual
inputs w̃ that are constant within each interval [si, si+1), with
i = 1, . . . , k − 1 for the first and i = k + 1, . . . , N − 1 for the
third, whereas the second subpath comes from the integration of
(6)–(7) from sk to sk+1 . In view of Proposition 1, we can also
assume that q∗

fw and q∗
bw belong to the same homotopy class of

the degenerate robot.
Let us start by focusing on the second subpath. Since it is

produced by integrating (6)–(7) from sk to sk+1 , it is a con-
tinuous function of q∗

fw (the initial condition of the integration)
and q∗

bw (which acts as a parameter via (8)). Hence, there exist
two spherical neighborhoods, respectively, S(q∗

fw ) of q∗
fw on

Lk and S(q∗
bw ) of q∗

bw on Lk+1 , such that for any pair of con-
figurations (q1 , q2) with q1 ∈ S(q∗

fw ) and q2 ∈ S(q∗
bw ), the

loop closure conditions still hold; i.e., q1 and q2 belong to the
same homotopy class for the degenerate robots and J t,b remains
nonsingular throughout the integration.

The previous argument shows that to establish probabilistic
completeness, it is sufficient to prove that the probability of
generating a configuration in S(q∗

fw ) ∩ Lk with the forward
tree (first subpath) and in S(q∗

bw ) ∩ Lk+1 with the backward
tree (third subpath) tends to 1. Clearly, it is enough to prove the
first part only, as the planner behavior is symmetrical.

Let us consider then the first solution subpath

q∗
→k = {q∗(s), s ∈ [s1 , sk ]},

which ends at q∗(sk ) = q∗
fw on Lk , for some k=2, . . . , n−2,

and let

w̃∗
→k = {w̃∗

1 , . . . , w̃
∗
k}

be the associated sequence of residual input vectors w̃. Define
the clearance of q∗

→k as

γ = min
s∈[s1 ,sk ]

d(q∗(s)),

where d(q) denotes the minimum distance between a configu-
ration and the C-obstacle region. At this point, we can define
a circular tube in C around q∗

→k , denoted by T (q∗
→k ), whose

cross-section has radius ρ = min(γ, β), with β the radius of
S(q∗

fw ). By construction, any path produced by the planner in
T (q∗

→k ) realizes the task, is safe, and ends at a configuration in
S(q∗

fw ) ∩ Lk .
Once again, we can rely on the continuity of solutions of

differential equations to claim that there exists a collection of
spherical neighborhoods in IRn

S(w̃∗
→k ) = {S(w̃∗

1), . . . , S(w̃∗
k )}

such that any choice of w̃→k in S(w̃∗
→k ) (i.e., of w̃1 in S(w̃∗

1),
of w̃2 in S(w̃∗

2), and so on) produces a first subpath q→k in
T (q∗

→k ). Considering that the measure of S(w̃∗
→k ) in IRn is

nonzero, and that the residual inputs w̃1 , . . . , w̃k are randomly
generated in a bounded subsetW of IRn (see Section III-B), the
probability of choosing a sequence w̃→k in S(w̃∗

→k ) tends to
1 as the number of iterations increases. In view of the previous
arguments, this concludes the proof. �
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VI. EXTENSION: ACHIEVING SMOOTHNESS

The randomized planner presented so far produces paths in C
that are only piecewise-differentiable with respect to s. This is
due to the piecewise-constant choice of the residual input vector
w̃ in (5), which implies that the geometric velocity q′ will
be discontinuous in correspondence to the discrete parameter
values s1 , . . . , sN .

The isolated discontinuities of q′ may not represent necessar-
ily a problem in practice. One way to handle them would be to
associate to the solution path a timing law s = s(t) that slows
down sufficiently at s1 , . . . , sN to allow the robot actuators to
track accurately the corresponding trajectory. Another possibil-
ity would be to perform a controlled smoothing of the solution
path at s1 , . . . , sN , to recover differentiability while keeping the
task error within reasonable bounds.

However, it is also possible to modify the proposed planner
and specifically the motion generation schemes at its core, to
directly produce continuously differentiable paths, which we
simply call smooth in the following. The modifications concern
both the forward/backward tree extension and the loop closure,
and are discussed in detail below.

A. Smooth Tree Extension

The motion generation scheme introduced in Section III-B for
tree extension can be easily modified to produce smooth paths
in the configuration space. To this end, we still use (5) but with a
piecewise-linear (rather than piecewise-constant) profile of the
residual input vector w̃ over s. This is obtained as follows.

Extension of the forward tree Tfw starts from (qini, s1) plug-
ging in (5) a value of w̃, which is chosen randomly in W and
kept constant for s ∈ [s1 , s2 ]. The same value of residual input,
with opposite sign, is used to extend the backward tree Tbw
from (qini, sN ) over s ∈ [sN , sN−1 ]. Given the smoothness of
yd , continuity of w̃ will result in continuity of ṽ, and, in turn,
this guarantees that paths in Tfw and Tbw join smoothly at qini .

Further extension of Tfw and Tbw is made in such a way that
the same value of w̃ is used when entering and exiting a node.
For example, assume that we are extending Tfw from qnear on
Li (the leaf of Ctask associated to s = si) towards Li+1 . Denote
by w̃near the value of w̃ associated with qnear , i.e., the final
value of w̃ along the subpath leading to qnear (this value is
stored whenever a node is created). We choose a random value
in W for w̃(si+1), and then, we set

w̃(s) = w̃near + ψ (s− si), s ∈ [si, si+1],

where ψ = (w̃(si+1) − w̃near)/(si+1 − si). This will produce
a linear transition of w̃ from w̃near to w̃(si+1).

As before, continuity of w̃ implies that all subpaths in Tfw
and Tbw are smooth at s2 , . . . , sN−1 ; moreover, as explained
before, they also join smoothly at qini .

The above mechanism still guarantees that all residual inputs
w̃ are contained in the bounded subset W , and therefore the
previous proof of probabilistic completeness holds also when
this modified scheme is used for tree extension.

B. Smooth Loop Closure

To achieve smooth loop closure, we must join qfw ∈ Lk and
qbw ∈ Lk+1 , respectively, nodes of Tfw and Tbw with a subpath
that respects the boundary geometric velocities (q)′fw and (q)′bw .
Clearly, this path must also realize the portion of task between
yd,k and yd,k+1 , and be collision-free (see Fig. 1).

The idea is replace the pure feedback scheme (7), (8) (or (7)–
(11)) with a hybrid mechanism, in which motion for the (n−
m)-dimensional vector qr is directly generated as a subpath that
joins qr,fw and qr,bw with the appropriate boundary conditions.
To this end, we use an interpolation scheme. A straightforward
choice is to define qir , the ith component of vector qr , as a cubic
polynomial

qir (s) = ai(s− sk )3 + bi(s− sk )2 + ci(s− sk ) + di,

s ∈ [sk , sk+1],

with scalars ai, . . . , di computed so as to impose the boundary
conditions

qir (sk ) = qir,fw

(qir )
′(sk ) = (qir )

′
fw

qir (sk+1) = qir,bw

(qir )
′(sk+1) = (qir )

′
bw .

Once qr has been computed, the analytic expression of the
geometric velocity q′

r over [sk , sk+1] is easily derived.
Motion for the qb coordinates is then generated by integrating

the lower part of (6) from (qb,fw , sk ) under the same feedback
control as in the lower part of (7):

q′
b = −J−1

t,bJ t,rq
′
r + J−1

t,b (y
′
d + ktet).

Therefore, smoothness of yd (by assumption) and of qr (by
construction) will guarantee that also qb is smooth.

The smooth version of the actual loop closure procedure is
then obtained exactly as in Section IV-C, the only difference
being that the motion to be verified is generated as explained
above. It is important to understand that Proposition 1 is also
valid for the smooth loop closure procedure. Therefore, the latter
will work under the same assumptions in which the standard
procedure does.

VII. PLANNING RESULTS

We implemented the R-TCMP planner as a C++ plugin for
Kite, a cross-platform motion planning software produced by
KineoCAM (now Siemens PLM), on a 64-bit Intel Core i7-2600
CPU running at 3.4 GHz under a 32-bit operating system.

We will illustrate the performance of the planner by pre-
senting numerical results in three different scenarios. Two of
these involve free-flying robots (a fixed-base manipulator and
an omnidirectional mobile manipulator), while a nonholonomic
mobile manipulator is considered in the third. All the results are
also shown in the accompanying video clip.

Table I reports the values used for the planner parameters in
the three scenarios. In particular, we use the following symbols.
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TABLE I
R-TCMP PLANNER PARAMETERS

Scenario (path length) N kt kr (automatic) δs α

1 (0.99 m) 11 100 not used 0.002 150%
2 (7.18 m) 21 100 12.27 0.002 600%
3 (10 m) 11 100 12.92 0.002 300%

TABLE II
R-TCMP PERFORMANCE DATA (AVERAGED)

Scenario Execution
time

Nodes in
Tfw

Nodes in
Tbw

Collision tests Mean task
error

1 19 s 20 19 9587 0.06 mm
2 133 s 48 94 17710 0.32 mm
3 89 s 90 176 109779 0.57 mm

1) N is the number of equispaced sample points chosen on
the assigned task path (see the beginning of Section III).

2) kt is the task error gain in both (5) and (7).
3) kr , used only in Scenarios 2 and 3, is the error gain given

by (12) for loop closure via (11), with η = 1/2.
4) δs is the stepsize used for reconstructing joint motions via

Euler integration.
5) α is the maximum admissible norm of the second term

in (5) (the null-space velocity) as a percentage of the
norm of the first term. This bound induces a bound on
the norm of the random residual input w̃, which will then
take values in a bounded subset W of IRn as postulated
in Section III-B and required by the proof of probabilistic
completeness (see the previous section).

Note that settingα = 0 corresponds to the pure pseudoinverse
solution, i.e., using a zero null-space velocity in (5). Hence, the
larger α, the larger the amount of exploration of the solution
space that the planner is allowed to perform. One may, there-
fore, look at choosing α as the classical problem of finding a
balance between exploitation and exploration. While it is, in
principle, possible to choose α adaptively within the planner
(e.g., using reinforcement learning), we have simply used a
constant α throughout each run of the planner.

Table II collects the most significant performance data in the
three scenarios. Since our planner is randomized, these data
have been averaged over ten runs.

A. Scenario 1: A Manipulator Drawing a Circle

In the first scenario (see Fig. 4), a 7-dof KUKA LWR-IV
manipulator must draw an ellipse on a whiteboard using a felt
tip marker. The configuration vector is q = (θ1 , . . . , θ7), where
θi is the ith joint variable. The task is assigned as an elliptic path,
parameterized by s ∈ [sini = 0, sfin = 1], in the 3-dimensional
task space (tip positioning). The degree of redundancy is then
7 − 3 = 4, but the planning problem is made difficult by the
location of the robot, which is mounted on a platform placed
behind the wall and must pass through a small round opening to
reach the whiteboard. To allow the robot to execute the drawing

task, simple contacts between the marker tip and the whiteboard
are obviously allowed.

For this scenario, we have used the modified planner of
Section VI to obtain smooth paths in configuration space. The
planner parameters are chosen as in row 1 in Table I. Note that
no value is given for kr because loop closure is realized with
the hybrid mechanism described in Section VI-B. Distances in
C are computed using the metric induced by the L1 norm

d(qA , qB ) =
7∑
i=1

min {|θi,A − θi,B | , 2π − |θi,A − θi,B |}.

The solution shown in Fig. 4 is clearly repeatable, because the
first and last robot configurations are identical. This is confirmed
by Fig. 5, which shows that all joint displacements Δθi = θi −
θi,ini return to zero at the end of the motion. Note also the
expected continuously differentiable profile; in particular, the
tangents (i.e., the geometric velocities) at s = 0 and s = 1 are
the same, indicating that the robot transition from one cycle
to the next will be smooth. Loop closure takes place for s ∈
[0.5, 0.6]. The actual motion of the robot is better appreciated in
the accompanying video.

On the average, the planner took 19 s to find this kind of solu-
tion (see row 1 in Table II). Note the very low value (0.06 mm)
of the mean task error, which is computed over the whole joint
motion; this proves that we have indeed achieved exact tracking
in practice. However, it should be considered that we deal with
motion planning and do not address issues related to sensor-
based real-time execution of the generated motions. Therefore,
the above precision simply indicates that arbitrary accuracy can
be achieved at the planning level.

The accompanying video contains also a clip showing an ex-
periment with an actual KUKA LWR-IV manipulator perform-
ing a similar motion plan. In addition to proving the dynamic
feasibility of the planned trajectory, the experiment also high-
lights the role of repeatability for safe coexistence between the
robot and a human.

B. Scenario 2: A Mobile Manipulator Moving Its End-Effector
on an Elliptical Path

The robot considered in the second scenario (see Fig. 6)
is a KUKA youBot, a mobile manipulator consisting of an
omnidirectional base carrying a 5-dof arm. The configuration
vector is q = (x, y, θb , θ1 , . . . , θ5), where x and y are the Carte-
sian coordinates of a representative point of the base, θb is the
orientation of the base, and θi is the ith joint variable of the arm.
The assigned task path is a horizontal ellipse, parameterized by
s ∈ [sini = 0, sfin = 1], that the robot must follow with its end-
effector (a two-finger gripper). Several cone-shaped obstacles
are placed on the ground. We must, therefore, plan for a free-
flying robot (r = 0) with n = 8 and m = 3, and the degree of
redundancy is 8 − 3 = 5.

For this scenario, as for the next, we used the original version
of the planner described in Sections III–IV. The parameters for
the planner are chosen as in row 2 in Table I. In view of the
total length of the path (7.18 m), the number of samples from
the task path is increased to N = 21. A larger α is also used to
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Fig. 4. Scenario 1: A KUKA LWR-IV manipulator drawing an ellipse on a whiteboard. Six snapshots from a solution are shown, taken from two different points
of view. The first (s = 0) and last (s = 1) snapshots confirm that repeatability has been achieved.

Fig. 5. Scenario 1: joint displacements with respect to qin i .

give the planner more leeway in the random exploration of the
space of possible solutions.

The following metric is used in C:

d(qA , qB ) = λ
√

(xA − xB )2 + (yA − yB )2 +

min {|θb,A − θb,B | , 2π − |θb,A − θb,B |} +

5∑
i=1

min {|θi,A − θi,B | , 2π − |θi,A − θi,B |}.

The role of λ is to properly weigh the norm of the Cartesian
versus angular coordinates.

A typical result is shown in Figs. 6 and 7: again, repeatability
has been achieved. Loop closure takes place for s ∈ [0.5, 0.55].

The actual motion of the robot is fully visible in the accompa-
nying video. Row 2 of Table II reports a predictable increase in
the time needed to find solutions. The mean task error, on the
other hand, is still very low.

C. Scenario 3: A Nonholonomic Mobile Manipulator
Performing a “Back and Forth” Task

In the third scenario (see Fig. 8), we consider a nonholo-
nomic mobile manipulator consisting of a differential-drive base
carrying a KUKA LWR-IV. The robot is assigned a task of pos-
sible interest in an industrial context: it must travel back and
forth between two end-effector placements,9 the first in front of
a window opening on a human workstation and the second over
a repository of tools that are needed by the operator. Since the
line of sight between the placements is collision-free, the path
has been simply assigned as a line segment between them, to be
followed first in the forward direction (s ∈ [sini = 0, 0.5]) and
then in the backward direction (s ∈ [0.5, sfin = 1]). The gener-
ation of a repeatable collision-free path in configuration space
is left10 to the planner.

The configuration vector is q = (x, y, θb , θ1 , . . . , θ7), where
x and y are the Cartesian coordinates of a representative point
of the base, θb is the orientation of the base, and θi is the ith
joint variable of the arm. The configuration space has, there-
fore, dimension n = 3 + 7 = 10, but the robot is not free-flying
due to the nonholonomic constraint acting on the base (r = 1),
which reduces the number of effective dofs (p = 10 − 1 = 9).

9One can imagine that such placements have been computed to optimize
certain optimality criteria, related, respectively, to the interaction with the human
and the ease of tool grasping.

10The cyclic task path of this scenario is made by two identical parts (forward
and backward path). In this very special case, a trivial repeatable solution can
be obtained by planning for the forward part and simply reversing joint motions
in the backward part. Our planner, however, was able to compute nontrivial
solutions.
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Fig. 6. Scenario 2: A KUKA youBot moving its end-effector on an elliptical path. Eight snapshots from a solution are shown. The first (s = 0) and last (s = 1)
snapshot confirm that repeatability has been achieved.

Fig. 7. Scenario 2: Cartesian (left) and orientation/joint displacements (right) with respect to qin i .

In particular, we have nc = 3 constrained coordinates (those of
the base) and nu = 7 unconstrained coordinates (those of the
manipulator). Since the dimension of the task is m = 3, the
degree of (kinematic) redundancy in this case is 9 − 3 = 6.

The planner parameters are chosen as in row 3 in Table I. The
metric in C is defined similarly to the second scenario.

Computing a repeatable solution such as the one shown in
Figs. 8 and 9, and fully visible in the accompanying video, takes
an average of 89 s.

For this solution, it is interesting to look at the loop closure
automatically produced by the planner for s ∈ [0.4, 0.5] using

the following partition of q = (qr , qb):

qr = (θb , θ1 , θ2 , θ3 , θ4 , θ6 , θ7)

qb = (x, y, θ5).

Since all the variables in qr are governed by simple integrator
dynamics, they can be directly steered using the finite-time con-
trol law (11). No adaptation was, therefore, necessary for this
specific loop closure.
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Fig. 8. Scenario 3: A nonholonomic mobile manipulator performing a “back and forth” task. Eight snapshots from a solution are shown. The first (s = 0) and
last (s = 1) snapshot confirm that repeatability has been achieved.

Fig. 9. Scenario 3: Cartesian (left) and orientation/joint displacements (right) with respect to qin i .

VIII. CONCLUSION

For redundant robotic systems subject to cyclic task con-
straints, we have presented a control-based approach for plan-
ning repeatable, collision-free paths in configuration space. We
argue that our contribution solves an open problem in the lit-
erature. In fact, on the one hand, kinematic control schemes
are generally nonrepeatable, and when they are, they cannot
claim guaranteed obstacle avoidance. On the other hand, existing
task-constrained motion planners are not designed for mapping
cyclic task paths to repeatable motions in the robot configuration
space.

Our randomized R-TCMP planner relies on bidirectional
search and loop closure in the task-constrained configuration
space. As a consequence, it produces closed paths, on which
continued satisfaction of the task constraint is guaranteed. Its
probabilistic completeness has been proven explicitly, and a
modified version of the planner has been designed for produc-
ing configuration-space paths that are also smooth. Planning

results on various scenarios involving both free-flying and non-
holonomic robots have been presented to show the effectiveness
of the proposed method.

In this paper, we have assumed that a task path or trajectory
is assigned, and that the obstacles are stationary. An interesting
extension would be to consider the case of obstacles moving
along known trajectories. If the task is a trajectory (s = t), then
the proposed method can be applied as is. If the task is assigned
as a path, however, the planner should also generate a time
history s = s(t) to take advantage of the possibility of slowing
down/speeding up along the path. To this end, one may adopt
the framework in [33].

Other future work on this topic may address several points,
including the following:

1) inclusion of torque constraints, moving the proposed ap-
proach to the acceleration level, as in [34];

2) application of this approach to the synthesis of repeatable
gaits for humanoids.
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