
T-NOVA: An Open-Source MANO
Stack for NFV Infrastructures

Michail-Alexandros Kourtis, Michael J. McGrath, Georgios Gardikis, Georgios Xilouris, Vincenzo Riccobene,
Panagiotis Papadimitriou, Eleni Trouva, Francesco Liberati, Marco Trubian, Josep Batallé,

Harilaos Koumaras, David Dietrich, Member, IEEE, Aurora Ramos, Jordi Ferrer Riera,
José Bonnet, Antonio Pietrabissa, Alberto Ceselli, and Alessandro Petrini

Abstract—One of the primary challenges associated with
network functions virtualization (NFV) is the automated man-
agement of the service lifecycle. In this paper, we present a full
software-based management and orchestration (MANO) stack
which operates with OpenStack and OpenDaylight controllers
and has the in-built functionality to automate the key phases
of the NFV service lifecycle, namely resource discovery and
matching, service mapping, service deployment, and monitoring.
The MANO stack is being implemented by the EU FP7 project
T-NOVA, with the components being released as open-source
software. Service mapping and service deployment solutions
developed in the scope of T-NOVA are presented in detail. As
a proof-of-concept, we evaluate the performance of a virtual-
ized traffic classifier network function, demonstrating the gains
of virtualized hardware acceleration.

Index Terms—NFV, SDN, resource management, EPA, service
mapping, monitoring, DPDK.

I. INTRODUCTION

MANY of the latest developments in the fields of network
management and service provisioning are primarily

Manuscript received October 26, 2016; revised March 11, 2017 and June 30,
2017; accepted July 25, 2017. Date of publication July 31, 2017; date
of current version September 7, 2017. This work was undertaken under
the Information Communication Technologies, EU FP7 T-NOVA project,
which is partially funded by the European Commission under the grant
619520. The associate editor coordinating the review of this paper and
approving it for publication was F. De Turck. (Corresponding author:
Michail-Alexandros Kourtis.)

M.-A. Kourtis is with the National Centre for Scientific Research-
Demokritos, Athens 153 10, Greece, and also with the Universidad del Pais
Vasco, Lejoa 48940, Spain (e-mail: akis.kourtis@iit.demokritos.gr).

G. Xilouris, E. Trouva, and H. Koumaras are with the National Centre for
Scientific Research-Demokritos, Athens 153 10, Greece.

M. J. McGrath and V. Riccobene are with Intel Labs Europe, Leixlip,
Ireland.

G. Gardikis is with Space Hellas S.A., Athens 153 41, Greece.
P. Papadimitriou is with Leibniz University Hannover, Hanover 30167,

Germany, and also also with the University of Macedonia, Thessaloniki
546 36, Greece.

F. Liberati and A. Pietrabissa are with the University of Rome La Sapienza,
Rome 00185, Italy, also with the Space Research Group of the Consortium
for the Research in Automation and Telecommunication, Roma 00185, Italy.

M. Trubian, A. Ceselli, and A. Petrini are with the Universita degli Studi
di Milano, Milan 20122, Italy.

J. Batallé and J. Ferrer Riera are with FundaciÃş i2CAT, Barcelona 08034,
Spain.

D. Dietrich is with Institut fÃijr Kommunikationstechnik, Hannover 30167,
Germany.

A. Ramos is with Atos Spain SA, Madrid 28037, Spain.
J. Bonnet is with PT Inovacao e Sistemas SA, Aveiro 3810, Portugal.
Digital Object Identifier 10.1109/TNSM.2017.2733620

focused on Network Function Virtualization (NFV). NFV
introduces a novel approach to the implementation and man-
agement of network functions. In particular, the main focus in
NFV is decoupling the physical appliances from the network
functions that operate on them; in other words, the transition
from hardware to software -based network functions [1], [2].
This paradigm has gained significant attention from the
Telecommunication Service Providers (TSPs), due to its
potential to provide a significant reduction in Operating
Expenses (OPEX) and Capital Expenses (CAPEX) [3], [4]
as well as widening Telco’s service portfolios with novel
added-value software network offerings.

Software appliances in the form of Virtualized Network
Functions (VNFs) run on standard high-volume (SHV) servers,
which consolidate the operation and management of various
network devices on a common infrastructure. VNFs provide
the ability to be dynamically initiated, reconfigured and even
reallocated at different locations within the network, without
the requirement of installing new hardware. NFV aims at deliv-
ering a more open and extensible network environment, where
the deployment of new network services becomes easier and
faster.

However, in order to deliver on these expectations, various
fundamental developments have to be realized, many of which
are still in a state of implementation and continuous evolution.
The deployment of NFV and its adoption into Telco grade
systems still subsumes various open issues identified in [5].
NFV will significantly challenge current network manage-
ment systems, and will require additional levels of complexity
over currently deployed systems. One of the key features
in this transition is the management layer, which must be
capable of supporting the unique features of an NFV-enabled
system. Similar works have addressed the management layer,
as the Management and Orchestration system (MANO) [6].
The primary aim of MANO is to coordinate NFV
Infrastructure (NFVI) resources and map them efficiently to
various VNFs. In turn, VNFs can then be interconnected
into chains to realize more complex Network Services (NS).
A NFV NS can be seen as the evolution of a traditional telco
connectivity service, as it is augmented by chains of VNFs
which are dynamically inserted into network traffic paths.

The first critical challenge to be tackled by a MANO
system is automated deployment. Network functions are no
longer bound to a physical machine; instead they reside in

1

a shared resource environment. As a consequence, various
considerations arise when it comes to the deployment (VNF
“placement”) decision, such as performance optimization,
topology, resilience etc. [7]. Most of the current MANO
approaches are based on the use of pre-planned configura-
tions for the node(s) hosting the VNF workload [8]. This
can limit VNF performance, as the features of the host node
do not necessarily match the characteristics of the workload
(e.g., data plane, control plane, heavy processing etc.). As the
hosting computing infrastructures become more heterogeneous
with various add-on features enabling hardware acceleration
(i.e., PCIe, GPU) which can support various system enhance-
ments and capabilities, this increases the complexity of the
VNF placement decision significantly. Automated placement
intelligence at deployment time increases the complexity of
the MANO orchestration service. However, it results in more
optimal resource allocations and increased VNF performance.
A number of approaches to MANO VNF scheduling poli-
cies have been reported in [9]. Nevertheless, they generally
adopt an abstracted approach to VNF placement within an
NFVI in order to achieve specific goals, such as reduction
of intra data center traffic [9]. These studies do not necessar-
ily address the particular issue of mapping resources to the
specific characteristics and the needs of an individual VNF
workload.

In this paper, we present a tangible approach to meet this
requirement, jointly addressing the challenges of resource dis-
covery and service mapping, based on the identification of
the quantity and types of resources to be allocated to a VNF
at deployment time. In this respect, we generate a prototype
model which expresses the allocation of resources in rela-
tion to specific levels of performance. Furthermore, specific
rules are generated which can be utilized by an Orchestrator
to add intelligence to a VNF deployment request in a cloud
environment such as OpenStack.

In addition, a key element of service provisioning and
orchestration is monitoring. Monitoring not only covers
NFVI resources, but also the status of VNF services.
Comprehensive monitoring also facilitates service mapping
and billing/charging. It also enables fault resilience and avail-
ability, which are also critical issues, since the malfunction
of a VNF will likely affect an entire network service. For
all the aforementioned reasons, the development of an inte-
grated monitoring framework for NFV, collecting metrics from
physical infrastructure resources as well as specific virtualized
services metrics is considered crucial for any NFV infrastruc-
ture. An effective NFV monitoring framework should expose
a holistic awareness of the status and performance of the
deployed services as well as the underlying infrastructure to all
management entities in order to allow the latter to take proper
and timely decisions. In this context, we also propose an inte-
grated NFV monitoring solution, as a crucial component of
the MANO stack.

In summary, this paper presents a novel MANO solution
for NFV infrastructures, currently being developed by the EC
FP7 project T-NOVA [10] and released as an open-source
contribution [11]. The MANO stack is built around a novel
NFV Orchestrator platform (“TeNOR”) and its currently

Fig. 1. T-NOVA Architecture.

implemented modules support the management – in an auto-
mated manner – of four critical phases of the NFV service
lifecycle, namely resource discovery, service mapping, service
deployment and monitoring.

The remainder of the paper is organized as follows. We ini-
tially describe the overall T-NOVA system architecture, which
covers all the layers of an NFV system, also beyond MANO
scope. Subsequently, we provide a detailed description and the
evaluation of each component in the MANO stack. Finally,
we present a proof-of-concept deployment and the evaluation
of a virtualized Traffic Classifier VNF aiming to demonstrate
the benefits of acceleration technologies in a NFV-enabled
environment.

II. T-NOVA OVERALL VIEW

A. T-NOVA System Architecture

The T-NOVA system architecture [12] inherits the majority
of its concepts from the generic ETSI NFV ISG architec-
tural model [5] and expands it with specific add-on features.
The T-NOVA architecture encompasses four key architectural
layers (as shown in Figure 1):

• The NFV Infrastructure (NFVI) layer consists of both
physical and virtual nodes (high-volume servers, Virtual
Machines (VMs), storage systems, switches, routers etc.)
on which the network services are deployed;

• The NFVI Infrastructure (NFVI) Management layer
includes the infrastructure management entities: the
Virtualized Infrastructure Management (VIM) and the
WAN Infrastructure Connection Management (WICM).
T-NOVA adopts an OpenStack [18] cloud operating
system for control of the compute and data-center assets
and OpenDaylight [13] for the control of the network
infrastructure (most of which is SDN-based);

2

• The Orchestration layer is based on the T-NOVA TeNOR
Orchestrator and also includes a “Network Function
Store” which is a repository for all published VNFs. The
Orchestrator, along with the NFVI Management layers
comprise the T-NOVA MANO stack;

• Finally, the Marketplace layer contains all the
customer-facing interfaces and modules, which facilitate
multi-role involvement and implement business-related
functionalities.

T-NOVA introduces the concept of a Marketplace in an
NFV framework. The aim of the Marketplace is to promote
VNF service offerings and facilitating commercial activity
and seamless interaction among the various business stake-
holders interacting with the T-NOVA system. The T-NOVA
Marketplace provides an intuitive interface to the underly-
ing MANO stack and allows Telcos and VNF developers to
publish and describe service offerings, as well as enabling
customers to browse and select services, deploy and man-
age/monitor them. A more in-depth description of the T-NOVA
Marketplace can be found in [12].

The T-NOVA Orchestrator (“TeNOR”) is the core compo-
nent of the T-NOVA architectural framework. Its key aim is to
address NSs and VNFs lifecycle management operations over
distributed and virtualized network/IT infrastructures.

Currently, there is a trend for various implementations of
ETSI NFV MANO Architecture [5]. The most notable are
OSM [13] and ONAP 0.

The first one is an open source project that provides a prac-
tical implementation of the reference architecture for MANO
under standardization at ETSI’s NFV ISG. In relation to
TeNOR, both platforms provision End-to-End services but
with some differences from an architecture perspective – for
instance, OSM has an explicit architectural split between
Resource Orchestrator and Service Orchestrator. Another
aspect that sets them apart is their origin; T-NOVA imple-
mented their components from scratch as micro-services using
generic interfaces. This gives the ability to develop or replace
any of TeNOR’s components freely without loss of func-
tionality, which is not possible in OSM at the moment.
Moreover, TeNOR’s has a specific module, Gatekeeper, which
provides a common security mechanism to the interfaces
between components while OSM is dependent on each compo-
nent security features. Lastly, the greatest distinction between
these two platforms is that TeNOR also addresses the busi-
ness aspects of NFV in the VNF and NS data models,
while OSM is only focused on the operationalization of NSs.
With that in mind, OSM GUI and T-NOVA Marketplace
also share some functionality in a graphical interface, e.g.,
they use a similar approach to on-board VNFs and to
compose NSDs.

The latter is an offspring of the merge of the code base of
Open-O [16] and ECOMP1 [17], focusing more into bring-
ing the gap between NFV and SDN, offering E2E service
orchestration and automation. From a T-NOVA point of
view, the integrated platform may be seen as an approach
for a real-time, policy-driven software automation of virtual

1AT&T Project.

network functions that will enable software, network, IT and
cloud providers and developers to rapidly create new ser-
vices. In order to compare something so extensive as ONAP
wants to be, we need to decompose the ONAP to it two
main frameworks. One is design-time framework mostly sup-
ported by ECOMP used for the design and composition
of network services, policies and VNFs. In comparison to
T-NOVA this is handled by the T-NOVA Marketplace and it
goes beyond the Orchestration discussion. The other frame-
work of ONAP is Run-time execution framework, which,
based on Open-O, implements all the orchestration func-
tionalities of ONAP like TeNOR. In this context Open-O
and consequently ONAP is optimized to deliver an open
management platform for defining, operating and managing
a wide range of products and services based upon vir-
tualized network and infrastructure resources and software
applications, whereas T-NOVA is mainly focused on VNFaaS
environments and address VNFaaS-specific requirements and
challenges. Hence TeNOR does not implement any type of
Service Orchestration beyond the basic lifecycle operations.
Additionally TeNOR supports only VIMs based on Openstack,
however it could easily be extended to support other VIM
technologies too.

Other approaches include the OpenBaton [15] which is
a result of a synergy between Fraunhofer Fokus and TUB
for implementing and ETSI compliant MANO solution.
Compared to TeNOR, both platforms share the common
features of: Automated Scaling, Multi-PoP deployment of
a virtual Network Service, a VNF and Service store cata-
log, and a functional dashboard. However, in T-NOVA the
orchestrator dashboard is more feature rich, and a rich mar-
ketplace including accounting, billing as well as brokerage
are included. Additionally, T-NOVA orchestrator supports
Transport Network management between POPs and sup-
ports advanced service function chaining capabilities (through
NetFloc). Open Baton acquiesce SDN management to exter-
nal modules not influenced by the orchestrator itself. Open
Baton’s external module Network-Slicing-Engine performs
network slicing and ensuring QoS. TeNOR has a more
extensive Service life-cycle management support built into
the framework, whereas till the point of writing, Open
Baton has extensive support for VNF life-cycle management
only.

A thorough comparison with the above orchestration
solutions was not possible due to the different matu-
rity level of each solution. However, distinguishable fea-
tures of TeNOR include microservices architecture, the
multi-pop/multi-administration domain support and the sup-
port for modular service mapping and placement algorithms.

TeNOR interacts with the Marketplace, which is the
external-endpoint responsible for establishing the business and
operational management of T-NOVA. Besides the Marketplace,
TeNOR also interfaces with the VIM for managing the
data center network/IT infrastructure resources, as well as with
the WAN Infrastructure Connection Management (WICM) for
the WAN elements connectivity management. Finally, TeNOR
interacts with the VNF itself to provide appropriate lifecycle
management.

3

To support NFV lifecycle management operations, the fol-
lowing categories are defined, most of which are inherited
from the ETSI NFV ISG recommendations:

• NS Catalogue: represents the repository of all the on-
boarded NSs (already deployed NSs) in order to support
NS lifecycle management;

• NS Descriptor (NSD): contains the service descrip-
tion, including Service Level Agreements, deployment
flavors, references to the virtual links (VLs) and the
constituent VNFs, Virtual Network Function Forwarding
Graph (VNFFG);

• Virtual Link Descriptor (VLD): contains the description
of the virtual network links that compose the service
(interconnecting the VNFs);

• VNF Forwarding Graph Descriptor (VNFFG): contains
the NS constituent VNFs, as well as their deployment in
terms of network connectivity;

• VNF Catalogue: represents the repository of all the
on-boarded VNFs in order to support their lifecycle
management;

• VNF Descriptor (VNFD): contains the VNF description,
including its internal decomposition based on Virtual
Network Function Components (VNFCs), deployment
flavors and references to the virtual links (VLDs);

• Software images of the VMs located in the NFVI layer;
• NS and VNF Instances: represents the repository

of all the instantiated NSs and VNFs, which can
be updated/released during the lifecycle management
operations;

• Infrastructure Resources: represents the repository of the
available/reserved/allocated NFVI resources as abstracted
by the VIM across operator’s infrastructure domains.
Furthermore, it also includes the resources avail-
able/reserved/allocated in the WAN segment.

B. TeNOR – the T-NOVA NFV Orchestrator

Network Service lifecycle provisioning is managed by
the T-NOVA orchestration platform, TeNOR, whose NFV
Orchestrator functionality module is split into two main
core submodules: Network Service Orchestrator (NSO) and
Virtualized Resource Orchestrator (VRO) as shown in
Figure 2.

The NSO responsibility is for the management of the NS
lifecycle and associated procedures, including:

NSes and VNFs on-boarding: management of Network
Services deployment templates, also known as NS Descriptors
and VNF Packages, as well as of the NSs instances topology
(e.g., create, update, query, delete VNF Forwarding Graphs).
On-boarding of a NS includes registration in the NS catalogue,
therefore ensuring that all the templates (NSDs) are stored.

NS instantiation: trigger instantiation of NS and VNF
instances, according to triggers and actions captured in the
on-boarded NS and VNF deployment templates. In addi-
tion, management of VNF instantiation, in coordination with
Virtualized Network Function Managers (VNFMs) as well as
validation of NFVI resource requests from VNFMs, as they
may impact NSs, e.g., scaling process.

Fig. 2. TeNOR NS Orchestrator (Internal & External) Interactions.

NS update: supports NS configuration changes of varying
complexity such as changing inter-VNF connectivity or the
constituent VNFs;

NS supervision: monitoring and measurement of the NS
performance and correlation of the acquired metrics for
each service instance. Data is obtained from the IVM layer
(performance metrics related with the virtual network links
interconnecting the network functions) and from the VNFM
(aggregated performance metrics related with the VNF;

NS scaling: increases or decreases the capacity of a NS
according to per-instance and per-service auto-scaling policies.
NS scaling can imply either increase/decrease of a specific
VNF capacity, creation/termination of new/old VNF instances
and/or increase/decrease of the number of connectivity links
between the network functions;

NS termination: release of a specific NS instance by remov-
ing the associated VNFs and associated connectivity links, as
well as the virtualized infrastructure resources.

The VRO is responsible for the management of the underly-
ing physical computing and network resources. In this context,
the VRO interfaces with: (i) the Virtualized Infrastructure
Manager(s) that are managing the resources in each NFVI’s
Points-of-Presence (NFVI-PoP) where the VNFs are deployed;
(ii) the WAN Infrastructure Managers (WIM) that manage the
WAN resource allocation. The VRO also tracks all of the
underlying infrastructure via the infrastructure repository. In
the case of a NS deployment request, the VRO is respon-
sible for allocating the resources required according to the
requirements imposed by each NS.

From an external perspective, the key NSO interactions
with the Marketplace for operational and business management
purposes are as follows:

• Exchange of provisioning information (e.g., requests,
modifications/ updates, acknowledgements) with respect
to NSes (through the T-Da-Or interface);

• Providing the Orchestrator with information on each NS
instance SLA agreement. In turn the Orchestrator sends
SLA-related metrics to the Marketplace (through the
T-Sl-Or interface);

• Delivery of usage accounting information to the
Marketplace with respect to VNFs and NSs (through the
T-Ac-Or interface);

• Providing the Orchestrator with information regarding
NS composition. The Orchestrator sends the Marketplace

4

information on the available VNFs (through the T-Br-Or
interface).

Internally, the NSO has the following communication
points:

• NS Catalogue: collects information about the NSs (NSD),
including the set of constituent VNFs, interconnecting
network links (VLD) and network topology informa-
tion (VNFFGD);

• VNF Catalogue: stores the Virtual Network Function
Descriptor document during the on-boarding procedures;

• NS and VNF Instances: stores information about the NS
instances status;

• VRO: exchanges management actions in relation to vir-
tualized resources and/or connections, either within the
data center scope (e.g., compute, storage and network)
and/or on the transport network segment;

• VNFM: exchanges lifecycle management actions related
with the VNFs.

The next sections discuss in detail the specific components
of the T-NOVA MANO stack which enable the management
of the critical phases of an NFV service lifecycle.

III. RESOURCE DISCOVERY, SELECTION, MATCHING

IT Cloud computing environments aim to maximize the uti-
lization (efficiency) of compute resources and employ highly
automated operations to schedule and manage workloads. To
achieve these goals significant flexibility is required, which
is realized through the abstraction of the underlying infras-
tructure environment. By hiding the heterogeneity of the
underlying compute, storage and network resources, work-
loads can be placed or migrated more easily. As a result,
application performance is generally delivered on a best effort
basis.

In contrast, Telco cloud applications have a unique set
of characteristics, such as requirements for low latency,
high packet throughput, low jitter, network setup, and tear-
down constraints. In addition, these workloads may have key
performance indicators (KPIs) defined in SLAs which must
be met within an operational context. The underlying infras-
tructure hosting the network workloads plays an important
role in helping to achieve these KPIs. This is particularly
true in the context of NFV, where, the goal is to achieve
near line rate performance in a virtualized infrastructure
environment.

These requirements result in a number of key challenges
which must be addressed in a Telco cloud environment. First,
the resources available within the cloud must be discover-
able and their associated descriptions stored in an accessible
repository. Second, it is necessary to understand and map
the characteristics of the workload (e.g., data plane work-
loads versus control plane workloads) and their affinities to
resources types (e.g., Open vSwitch (OVS), SR-IOV, DPDK
capable network interface card) and the quantity of allocated
resources (e.g., number of vCPU, amount of RAM, etc.).
This is necessary to prevent the over allocation of resources
which have no tangible benefit on workload performance.
When allocating resources where more than one option is

Fig. 3. T-NOVA resource repository sub-system.

available (e.g., type of network connection for a VM), it is
important to allocate resources which deliver a quantifiable
benefit to workload performance. This allows Telco service
providers to better monetize their infrastructure by ensuring
that workloads are deployed on platforms where they will
benefit from the specific resource available and to improve
workload consolidation. Finally, the platform configuration is
also an important consideration. For example, when deploy-
ing a workload with high packet throughput characteristics
using PCIe aware Non-Uniform Memory Access (NUMA)
pinning can have a significant impact on VNF performance.
NUMA is a multiprocessing memory design which provides
separate memory for each processor, enabling the processor to
bind to the memory resource and gain faster access to it.

A. NFVI Resource Discovery and Awareness

In order for the VNFs to achieve a performance which is
close or similar to a counterpart dedicated hardware imple-
mentation, appropriate exploitation of platform features, in
terms of both hardware and software, within the NFVI envi-
ronment is critical. T-NOVA accomplished this through the
development of an infrastructure repository subsystem which
is part of the TeNOR developed by the project. The design of
the repository subsystem addresses the challenges of assimi-
lating infrastructure related information from sources within
the NFVI / VIM layers, namely the cloud infrastructure and
data center network environments within the T-NOVA system.
This subsystem comprises a number of key elements includ-
ing a data model, resource information repositories and access
mechanisms to the information repositories. The subsystem
also augments the information provided by cloud and SDN
environments through a resource discovery mechanism.

Enhanced Platform Awareness (EPA) enables fine-grained
matching of resources available in the NFVI to VNFs in order
to better optimize the network services being provided. To
enable EPA, the available platform features must be identified
and exposed. As shown in Figure 3 a subsystem comprising
of EPA agents running on the compute nodes in the NFVI
collect and report the required platform information. When
platform updates are available from the EPA agents, notifica-
tion messages are sent to a controller via a specific listener
service. Upon receipt of messages from the EPA listener ser-
vice, data files sent by the EPA agents to a storage directory
are processed by the controller and used to update the central
repository database. A listener service is also used to inter-
cept and pipeline infrastructure related messages in OpenStack

5

and to update the repository database via the controller. The
infrastructure repository database is implemented as a graph
database. The database provides a hierarchical relationship in
the form of semantically relevant connections between the
nodes stored as a link. The use of a graph conveniently
maps to the hierarchical structure of the compute, storage and
network elements within the NFVI. An Open Cloud Compute
Interface (OCCI) [20] compliant middleware layer provides
a common interface to the resource information stored in the
graph databases. Additionally, the middleware API provides
an abstracted single access point to physical network infor-
mation available from OpenDaylight through its REST API’s.
The middleware layer also features a graph database which is
used to store the endpoint information of OpenStack services
for each NFV-PoP under the control of TeNOR.

B. Characterization of VNF Affinities With
Infrastructure Resources

For any VNF type workload it is necessary to build a pic-
ture of the VNF’s affinities for compute resource allocations
and platform specific features. It is also important to contex-
tualize the Telco performance aspects as they are generally
multi-faceted in nature. Key influencing factors such as packet
sizes and network connection type were identified together
with key measures for determining performance, such as
packet throughput, etc. Various deployment configurations
were investigated including key network technologies (vir-
tualized packet switching and packet acceleration), storage
and compute (core pinning, NUMA pinning, heterogeneous
compute resources BIOS configurations etc.).

For example, the effect of noisy neighbors was inves-
tigated on a virtualized traffic classifier deployment, when
exploiting different types of resources. A noisy neighbor is
a term commonly used in cloud computing environments
to describe a co-tenant workload that can negatively impact
the performance of other workloads through heavy utiliza-
tion of specific resources such as network bandwidth, CPU,
memory etc. As a result, the noisy neighbor effect causes
other workloads such as VNFs that share the cloud infrastruc-
ture to suffer from unpredictable performance. To investigate
the impact of different configurations on the performance
of the virtualized traffic classifier VNF both test cases fol-
lowed the standard benchmarking methodology proposed by
RFC 2544 [21] to measure network throughput. The test cases
used seven different packet sizes (64, 128, 256, 512, 1024,
1280 and 1518 bytes) with trial duration of 60 seconds for the
throughput measurements. In the first test case, the deployment
did not include noisy neighbors, whereas in the second one the
throughput was measured in the presence of noisy neighbors
who added additional overhead to the CPU of the node hosting
the VNF. Figure 4 shows the throughput results obtained using
a packet size of 1280 bytes. In this case a throughput rate of
3.5Gbps corresponds to ∼ 2.7 million frames per second.

In the first test case, the results show that huge pages
(memory, e.g., 1GB) [22] have no measurable impact on the
performance, whereas core pinning improved performance,
especially if used in conjunction with the “isolcpus”

Fig. 4. Packet throughput performance of a VNF with different compute
configurations.

Grub option, by up to 24%. The isolcpus option pro-
vides CPU isolation from the general kernel symmetric
multi-processing (SMP) balancing and scheduler algorithms.
This has the effect of isolating the cores from user-space
tasks. In the second test case (with noisy neighbors) the base
line performance with the default configuration is 2.7Gbps,
which is lower than the first test case scenario. The reason
for the reduction in throughput is the additional computation
overhead placed on the CPU servicing requests from the addi-
tional VM’s. In this test case the impact of the huge pages
on performance is clearly visible (up to 14% improvement in
throughput). With the use of core pinning it is possible to fur-
ther improve the performance up to an additional 23% increase
in throughput.

C. Discovery of Optimal Resource Allocations for VNFs

As outlined earlier once the infrastructure resources are
discoverable and have been characterized, the final element
is workload characterization. The goal of the characteriza-
tion process is to match the appropriate resource types and
quantities in order to achieve the required KPIs for a given
deployment. The current approach to deploying workloads
such as VNFs in cloud computing environments is based
on a static predefined allocation of resources. These allo-
cation are typically defined in an abstract manner, i.e., the
resource request is generically defined simply as a quantity
of vCPUs, memory, storage and network connections with-
out reference to specific characteristic or attributes of these
resource types. These characteristics could include support for
specific instruction sets such as AES-NI by a CPU or intelli-
gent offload support in a network card etc. This results in the
over allocation of resources and secondly does not match the
types of resources available effectively for each type of work-
load. To address this issue, a VNF workload characterization
framework was developed which can be used to interro-
gate all potential configuration permutations for a defined set
of configuration variables and associated value ranges. The
framework collects the metrics data for each permutation and
processes the data using a machine learning environment to
generate a set of deployment rules. The generalized process
for workload characterization and deployment rule generation
is shown in Figure 5. To support the process a framework was

6

Fig. 5. VNF deployment rule generation process.

developed which takes as its input a configuration that defines
the resources and quantity ranges of interest, e.g., from 1 to
10 vCPUs, from 1 to 8GB of RAM, etc. The configuration file
then translates the configuration options into a set of deploy-
ment templates for the target virtualization environment, e.g.,
OpenStack. The workload under test is automatically deployed
using the deployment templates. Test cases are automatically
executed for each configuration, e.g., measurement of network
throughput (RFC2544) and corresponding telemetry data are
collected and stored. The test cases focus on the quantification
of VNF performance indicators. When all deployments tem-
plates have been deployed the data collected is then aggregated
and used by a machine learning algorithm (e.g., C4.5 [23]) to
generate a model which relates performance indicators (e.g.,
throughput) for a VNF with respect to different allocations
of resources. These relationships can then be expressed in
the form of deployment rules (e.g., throughput = 5Gbps can
be achieved with an allocation of vCPU = 4, RAM = 8GB,
network connection = SR-IOV, etc.). Additional details on the
methodology and application can be found in [24].

The set of rules automatically generated by the framework
can be exploited to generate deployment recipes, (e.g., Heat
Orchestration Templates (HOT) [25] for OpenStack where
parameters are derived according to the target KPIs for the
workload or service being deployed. An example of HOT syn-
tax to implement automatic generation of Heat templates is
shown in Figure 6. A Heat template with generic parameters
is created which are replaced at run time with the values calcu-
lated by applying the rules generated through the framework,
according to the workloads target KPIs.

Collectively, resource discovery, workload and technology
characterization, automated deployment rule and recipe gener-
ation for VNF deployment provide a unique capability within
the T-NOVA system.

IV. SERVICE MAPPING

The term Service Mapping (SM) refers to the problem
of dynamically mapping virtualized infrastructure resources
to NSes, respecting the constraints posed by: (i) the cur-
rent availability of network infrastructure resources, (ii) the
type and amount of resources demanded by the services to
be mapped and (iii) SLA specific needs. This problem has

Fig. 6. Code extract from a generic heat template to be manipulated before
submission to Heat.

been attracting increasing attention over the last number of
years. Early research approaches described in the literature,
such as [26]–[28], have presented cloud platform implemen-
tations that allow NSes to be arbitrarily integrated into VMs,
without considering the functionalities of a service chain.
Other research efforts [29], [30] provide heuristics for map-
ping chains of NS inside Data Center (DC) networks, with
the aim of maximizing KPIs such as inter-rack traffic. Several
approaches in the literature are devoted to the theme of service
mapping modelling. Among them, [31] developed a graph-
based technique, called Tenant Application Graph (TAG), to
accurately capture bandwidth requirements for VMs being
deployed, avoiding overprovisioning inefficiencies associated
with previous methodologies. The same work proposes a min-
cut and knapsack algorithm for SM, whose driving rationale is
to maximize co-location of VMs linked by edges with stringent
link bandwidth requirements.

The deployment of NSes over multiple DCs, i.e., map-
ping NS chains over inter-DC networks finally enables the
wide-area deployment of NSs. This type of problem is often
compared to the virtual network embedding problem [32],
which has inspired several service mapping formulations.
However, the rich variety of proposed embedding algorithms
cannot be directly applied to service chains due to the differ-
ent NS types, policies exercised by the middlebox operators,
and the changing traffic rates caused by some NSs. Among
the advanced service mapping algorithms, [33] proposes NS
node and virtual link mapping based on cost metric optimiza-
tion (aimed at node/link load balancing) and shortest path
computation. Guerzoni et al. [34] propose an Integer Linear
Programming (ILP) algorithm based on undirected graph mod-
elling of the infrastructure and services. Interestingly, the
authors implement and discuss the so called “lookahead”
property, i.e., the simultaneous mapping of bunches of NSes.
Similarly, in [35] a mixed ILP strategy is presented, which is
aimed at minimizing path latencies, number of used resources
and maximizing the remaining node/link resource availability.
Also soft-computing techniques have been proposed, such as
the approach outlined in [36]. Other SM approaches similar to
the ones presented above can be found in [8], [32], and [37].

7

Fig. 7. Illustrative example of SM problem (a) and its solution (b).

The service mapping problem addressed in T-NOVA focuses
on the assignment, based on optimization techniques of the
VNFs composing each NS request to the interconnected DCs
composing the Network Infrastructure (NI). The requests for
NSs arrive to the system dynamically: they are not known
in advance and the SM algorithm has to identify an optimal
assignment for each request, or discard it, on demand. As for
any online optimization problem, the objective function which
is optimized when solving each mapping request has to implic-
itly model the true overall target function, i.e., maximize the
number of accepted requests.

In this paper, we present an ILP-based approach for the
SM problem, and particularly for the assignment of VNFs to
NFV-PoPs. In this respect, the objective of the proposed ILP is
the maximization of accepted NS requests. The particular SM
method has been implemented and integrated into the T-NOVA
orchestrator. Our SM method is different from the ILP-based
methods proposed in [38] and [39]. Specifically, in our system
the service mapping module is entirely executed by the infras-
tructure provider and the optimization objective is tailored to
its policy (i.e., maximization of request acceptance and hence
revenue). In [38] and [39], the assignment of VNFs to PoPs
is carried out by a broker which primarily aims at minimiz-
ing the client’s expenditure. T-NOVA investigated three SM
approaches, two based on ILP and one based on reinforcement
learning. This paper will focus on the ILP approach that is
currently fully integrated in the T-NOVA system. This choice
depends mainly on the fact that a solution based on a ILP
model is more flexible than one based on a tailored heuris-
tic, especially if T-NOVA will be further elaborated in future
projects. Our aims were threefold: (a) to have a model able to
consider as much as possible resources and kinds of resource
constraints, (b) to take into account more than one objective
function and (c) to give a scalable solution even when non
commercial solvers were used.

A. Problem Modeling

The SM problem addressed in T-NOVA is outlined in
Figure 7(a) which shows a NS composed by two VNFs, a NI
composed by four interconnected DCs and their corresponding
graphs. Figure 7(b) shows a possible solution of the corre-
sponding SM problem. VNF1 has been assigned to DC1, VNF2

Fig. 8. Reference SM sequence diagram.

has been assigned to DC4 and the arc connecting VNF1 and
VNF2 has been assigned to the blue path from DC1 to DC4,
through DC3.

As shown in Figure 7, each NS is modeled as a directed
graph G(NS) = (V, A) in which each vertex in the set V , say
h, represents a VNF, and each arc in A, say (h, k), represents
a link connecting two VNFs. Similarly, the NI is modeled
as a directed graph G(NI) = (VI, AI) in which each ver-
tex, say p, in the set VI represents a PoP, and each arc in
AI , say (p, q), represents the network connection between two
PoPs. To each NS, a set P of paths is associated connecting
all the pairs of VNFs (each path π ∈ P being a sequence of
arcs in the graph G(NS)). Each path in P is associated with
a maximum allowed delay �π, to account for service latency
requirements. On the other hand, an actual delay value δpq is
associated to each arc (p, q) in G(NI). Finally, NT (respec-
tively, LT) denotes the set of all available node (link) resource
types. In this regard, RRt

h denotes the resource requirement of
VNF h with respect to resource type t, and RAt

p the amount of
resources of type t available at PoP p. Link resource require-
ments RRt

hk and availabilities RAt
uv are defined similarly. At

the beginning of each mapping event, G(NI), NT , LT , RAt
p

and RAt
uv are updated through the NI API Middleware Layer,

while G(NS), P, �π, RRt
h and RRt

hk are populated according to
the information included in the NSD and VNFD of the service
to be mapped.

Based on the modelling above, the ILP-based mapping
approach implemented in the T-NOVA system is outlined in
the following sections. Before that, the next section briefly
explains the reference architecture and sequence diagrams
governing on the SM module functions in according to the
T-NOVA architecture.

B. Reference Architecture and SM Sequence Diagram

Figure 8 shows the basic sequence diagram governing SM
operations. A SM microservice for hosting the SM algo-
rithms has been developed based on RESTful Web services.
The microservice primarily interfaces with the Infrastructure
Repository and the VNF/NS Service Catalogues, which are
the database sources for populating, at each mapping time, the
graph-based SM models detailed in the previous paragraphs.

8

Each time a NS must be mapped, a request is made to the
SM micro-service, which, in turn, queries the infrastructure
repository and the service catalogue for the input information
needed to build and solve the SM problem.

C. ILP-Based Network Service Mapping

In this section, we discuss the ILP-based service mapping
approach proposed and developed in T-NOVA. To facilitate
network service mapping, we decompose the problem into two
levels: (i) the assignment of VNFs to DCs (referred to in the
following as first level SM) and (ii) the placement of VNFs
onto servers in the selected DC, as well as the assignment of
the NF-graph edges onto physical paths within the NI. This
approach significantly reduces the complexity of the service
mapping problem.

In the following, we present the ILP formulation for the first
level service SM problem. For the second level, T-NOVA relies
directly on OpenStack primitives. We use binary variables yh

p
to express the assignment of VNF h to the DC p, whereas the
binary variables xhk

pq indicate whether the link (h, k) in graph
G(NS) = (V, A) has been mapped onto a path among DCs in
graph G(NI) = (VI, AI) which uses the link (p, q).

The ILP for first level mapping is formulated as follows:

Problem (ILP based Service mapping)

Minimize

α
∑

h∈V

∑

p∈VI

ch
pyh

p + β
∑

π∈P

∑

(h,k)∈π

∑

(p,q)∈AI

δpqxhk
pq

+ γ
∑

t∈LT

∑

(h,k)∈A

∑

(p,q)∈AI

RRt
hkxhk

pq (1)

Subject to∑

p∈VI

yh
p = 1 ∀h ∈ V (2)

∑

q∈VI

xhk
pq −

∑

q∈VI

xhk
qp =yh

p − yk
p ∀(h, k) ∈ A, ∀p ∈ VI (3)

∑

(h,k)∈π

∑

(p,q)∈AI

δpqxhk
pq ≤ �π ∀π ∈ P (4)

∑

(h,k)∈A

RRt
hkxhk

pq ≤ RAt
pq ∀(p, q) ∈ AI, ∀t ∈ LT (5)

∑

h∈V

RRt
hyh

p ≤ RAt
p ∀p ∈ NI, ∀t ∈ NT (6)

yh
p ∈ {0, 1} ∀h ∈ V, ∀p ∈ VI (7)

xhk
pq ∈ {0, 1} ∀(h, k) ∈ A, ∀(p, q) ∈ AI (8)

The objective function (1) aims at implicitly modelling the
actual service mapping target that is the maximization of the
number of accepted NS requests. It is a weighted sum of
three components: (i) the cost of assigning VNFs to DCs, (ii)
the overall delay and (iii) the overall resource link usage, as
derived by assigning the links among VNFs to path among
DCs. In particular, given a service request and a network
infrastructure, for each VNF h composing the service, and for
each DC p composing the network infrastructure, we intro-
duce a virtual cost (mapping a VNF to a DC) ch

p which is

used to weight the cost of assigning h to p in terms of maxi-
mization of accepted requests. The weighting parameters , and
have been tuned according to the results of an experimental
campaign.

Constraints (2) ensure that each VNF h is mapped exactly to
one DC. Constraints (3) ensure that for a given pair of VNFs
h and k assigned to DCs p and q, respectively, there is a path
in the network infrastructure graph G(NI) connecting p to q to
which the edge (h, k) has been mapped. Constraints (4) impose
the satisfiability of a SLA based on the delay thresholds for
each path in the P set. Constraints (5) impose the link resource
limit of the inter DC connections for each link resource type
t in the resource type set LT . Constraints (6) impose the node
resource limit of the DC for each node resource type t in the
resource type set NT . Constraints (7) and (8) enforce binary
domain for the variables.

Our ILP formulation contains a polynomial number of vari-
ables and constraints, and is therefore suitable for optimization
by general-purpose solvers. Hence, we performed a compu-
tational evaluation of the method. For this task a synthetic
simulator was built, which works as follows. First, the simula-
tor is populated with the network infrastructures and the NSes
included in the dataset [40] described in Error! Reference
source not found., a popular reference in the literature of map-
ping algorithms. The dataset consists of 210 base instances,
partitioned in 7 classes of increasing size networks, each
one including 30 instances. Any instance contains a graph
describing the NI and a number of smaller graphs describ-
ing the NSes. NS graphs belong to a limited number of
topologies, representing different service types. NI (respec-
tively, NS) graph nodes are annotated with data representing
available (respectively, required) nodes and links resources.
Furthermore, for each NS node a vector of compatibilities to
NI nodes is given, indicating which mappings are feasible due
to specific resources needed by the NS. We considered each
arc in the NS graph (and only them) as critical paths, whose
delay constraints have to be respected.

We model the arrival of NS requests as a Poisson2 pro-
cess, whose average inter-arrival time is denoted as λ. We
also assume the duration of NS allocation requests to be ran-
dom, following a normal distribution whose mean is denoted
as μ and whose standard deviation is denoted as σ . A sim-
ulation run consists of selecting a particular base instance
(that is, a NI and the corresponding pool of possible NSs),
and then (a) iteratively and randomly selecting one NS, an
inter-arrival time and a duration for the corresponding allo-
cation request, (b) asking the mapping algorithm to find
a suitable allocation of the drawn NS to the NI, (c) eventu-
ally updating NI resources either according to the mapping
provided by the algorithm or because of expired services.
The simulation ends as soon as the sum of inter-arrival times
exceeds a given time horizon τ , that represents the time length
of the simulation.

2We model the arrival of NS requests as a Poisson process, based on the
assumption that requests come from independent sources (i.e., when these
independent requests are aggregated, they form a Poisson process). Modeling
the arrival rate of virtual network and NS requests is an established assumption
in [31], [32], and [54].

9

1) Tuning of Model Parameters: In a preliminary round
of tests, we tried to assess the behavior of the service map-
ping algorithm as the parameters of the corresponding model
change. We considered only instances whose NI span 20 NFV-
PoPs,3 whereas the number of NS was set to 40. We considered
eight configurations, one for each possible choice of either
value 1.0 or value 0.0 for each of the model parameters α, β
and γ . We considered for a given base instance all NS alloca-
tion requests to arrive following the order in which they appear
in the instance file, with a negligible fixed interarrival time, and
a duration equal to τ . That is, all NS allocation requests arrive
one after another, they are either rejected or allocated, and in
the second case the assigned resources are never released. We
always set the simulation length τ = 168 hours (that is, one
week), the average allocation request duration μ = 24 hours,
and the corresponding standard deviation σ = 2 hours. The
first 20 allocation requests were always accepted in all config-
urations. In the following 20 ones we registered that moving
from β = 0.0 to β = 1.0 substantially improves the accep-
tance rate; the same applies moving from γ = 0.0 to γ = 1.0.
Moving from α = 0.0 to α = 1.0 has still some impact, when
combined with settings β = 1.0 and γ = 1.0. This matches
our modelling aim, in which objective terms related to β and
γ directly affect allocation feasibility, while that related to α is
useful only for diversification, and therefore inter PoP balanc-
ing. Overall, setting all parameters to 1.0 generated the best
results.

2) Evaluating Solvers Scalability as the NI Size
Increases: First, we verified that the approach is computa-
tionally effective enough to be embedded in TeNOR’s service
mapping module. We considered using either the open source
solver GNU GLPK or IBM’s commercial CPLEX solver.
A time limit of 60s was given to each solver run. The
simulations were ran with instances with up to 100 NI nodes.

We analyzed two scenarios: mild and high average NI load,
setting in the former case λ = μ / (0.50 * (L / l)), and in the
latter case λ = μ / (0.75 * (L / l)), where L is the overall avail-
able CPU resources in the NI, and l is the average amount of
CPU resource required by each NS in the corresponding pool.
That is, if CPU’s were the only scarce resource, and NS node
fragmentation was possible, in the mild (respectively, high)
average NI load scenario we would expect to have about 50%
(respectively, 75%) of overall CPU resources always allocated.
We considered two performance measures: the percentage of
accepted NS allocation requests, and the average computing
time per allocation request.

We first observe that computing time is not a critical issue:
the commercial solver CPLEX never exceeds the time limit,
and the average response times is as low as 0.3s even for
large NIs. The open-source solver GLPK yields computing
times that are one order of magnitude larger than those of
CPLEX; this was expected, giving the benchmarking results
from the literature. Still, the average query time is always
less than 3s. Allocation rejection is almost always produced

3We consider that an NFV infrastructure spanning 20 PoPs provides suf-
ficient scale for most NSes, as it can meet NS geolocation requirements
(i.e., PoPs will be deployed at different locations) and offer large computing
capacity for the deployment of VNFs.

as the result of the solver detecting infeasibility (timeout is
observed on average in 0.3% of the runs, and only for GLPK);
rejections are on average faster to report than allocations.
In summary, both solvers scale well in terms of computing
time: embedding either with CPLEX or GLPK would likely
yield systems whose performance bottleneck is not the service
mapping algorithm.

At the same time, GLPK and CPLEX provide almost iden-
tical results, even if GLPK incurs more often (0.3% of the
runs) in timeouts. To further check the efficiency of the solvers
when very fast response is required, we repeated the tests by
setting a time limit of 3s instead of 60s in the computing time.
The reduction of the time limit did not yield any notable inef-
ficiency. Therefore, efficient mappings can be generated on
relatively short timescales.

Also in terms of acceptance rate, embedding either CPLEX
or GLPK, even by imposing tight time limits, has no signifi-
cant impact on the overall performance of the system.

3) Solvers Scalability as Datacenters Load Increases:
Second, we analyzed the performances of our ILP based
approach as the average DC load changes. In particular, we
restricted our tests to instances whose NIs containing 20 nodes.
Simulations were considered where the average CPU load
(ratio of the requested CPU resource over the available one)
of the NI nodes, denoted as δ, ranges from 0.1 to 1.2, consid-
ering each step of 0.1 points, and setting λ = μ/(δ ∗ (L / l))
for each node.

The acceptance rate drops almost linearly from 100% to
50% as the average load increases, with robust system stability
even under high levels of stress. Average load seems to have
very little effect on the solvers’ computing time requirements.
The reduction of the time limit does not yield any notable
inefficiency in terms of mapping between the two solvers.

V. SERVICE DEPLOYMENT

Provisioning and instantiation represent the major lifecy-
cle management activities within the T-NOVA system, both
for network services and the VNFs composing them. Once
the Service Mapping, as described in Section IV, has been
completed, the TeNOR system has visibility to the PoPs
where the service and functions must be provisioned. Apart
from instantiation, lifecycle management also includes termi-
nation of VNFs. Figure 9 shows the sequence diagram for
NS Provisioning from the TeNOR perspective, including the
high-level interactions of the workflow.

From a general perspective, NS Provisioning is composed of
the following phases (refer to Figures 1 and 2 for the T-NOVA
architecture components):

• If required, TeNOR creates a connectivity resource in
the WICM, by sending the required information, such as
the identifier, the Network Access Point, or a descriptor.
It receives back the corresponding VLAN identifiers for
both the ingress and egress network points created.

• TeNOR starts the provisioning process, which is realized
by means of a HEAT [25] orchestration template which is
sent to the VIM. The VIM is responsible for instantiating
the different components described in the template.

10

Fig. 9. High-level TeNOR NS Provisioning Sequence Diagram.

• TeNOR updates the connectivity resource (i.e., WICM)
created to adapt the traffic redirections to the instances
created (both VMs and virtual networks) by the previous
call.

This process enables complete automation of the end-to-
end service provisioning including one or more NFVI-PoPs
and the transport network managed by the WICM.

A. NS Creation Process

The creation of an NS instance, i.e., cre-
ate_ns_instance (HOT) as shown in Figure 9, requires specific
actions for various micro-services within TeNOR. First, it
is worth noting that provisioning one NS comprehends the
deployment of all the VNFs composing it, and as a conse-
quence it may become a complex process to automate. In
essence, the activity inside step 2 of the previous workflow
can be summarized as follows: (i) whenever a new NS instan-
tiation request reaches TeNOR from the Marketplace, the NS
Provisioning micro-service retrieves the information from the
NS Descriptor; (ii) with that information the Service Mapping
returns an ordered list of feasible PoPs where to allocate the
VNFs composing the service; (iii) with the PoP and inter-PoP
connectivity information, a loop is started and each VNF that
is part of the NS is then forwarded to the corresponding VNF
Manager, who is responsible for the deployment of the VNF
at the VIM layer (i.e., creation of the HEAT template and
communication with the corresponding VIM service); and (iv)
finally, upon each successful NS instantiation request, an
SLA is created and the necessary parameters are subscribed
for monitoring (refer to Section VII).

B. Performance Evaluation of NS Provisioning

In terms of evaluating the performance of NS Provisioning
within T-NOVA the most important metrics to be assessed is
the overall NS Provisioning time. This is the total time from
receipt of the request, the time required to complete process-
ing, the Service Mapping time and VNF instantiation in the
NFVI. Thus, the first analyzed time is the mapping algorithm,
which calculates the best available location in the NFVI. Then,
the VNF instantiation time, which includes parsing infor-
mation from the VNFD, generation of the HEAT template,
and sending the request to the OpenStack Heat service to
instantiation the VMs in the NFVI.

Fig. 10. Mapping and instantiation time for multiple network services
instantiation.

The graph shown in Figure 10 depicts the time required
for multiple (1, 2, 5, 10, 15 and 20 requests simultaneously)
instantiations of a network service (consisting of only one
Virtual Machine that requires 2vCPUs, 2GB RAM and 20GB
of disk space). The mapping time is the total time required
for the mapping algorithm to define the resource allocation.
The instantiation time starts when the NS provisioning knows
where to allocate the VNFs until the instance is available in
OpenStack. This time consists of the tenant and user creation,
the creation of the Heat template, and downloading the VNF
image from Glance.

As we can see, the mapping time varies insignificantly in
all simultaneous instantiations because the REST call/response
to the Mapping module requires less than 100ms. However,
the instantiation time increases as the number of simultane-
ous instantiations increments through time, as a result of the
orchestrator sending a unique request to OpenStack to deploy
network resources and the VNF image for each instance.
In the next step, OpenStack deploys each instance simulta-
neously resulting in a demanding request for OpenStack to
allocate the resources simultaneously. The OpenStack allo-
cation operations become the bottleneck, and as a result
given 5 simultaneous instantiation requests, the final time
required for deployment is doubled. Additionally, regarding
the statistical significance of the aforementioned graph the
standard deviation values were calculated for the correspond-
ing times series. The results were: 0.01544 for the Mapping
time, 341.4665 for the Instantiation time, and 351.334 for the
Total time.

VI. INFRASTRUCTURE AND SERVICE MONITORING

In an NFV environment, proper infrastructure and service
monitoring is crucial for a number of reasons: i) to maintain an
integrated picture of NFVI status and resources, ii) to enable
proper service mapping, iii) to facilitate accounting/billing and
SLA management and iv) to trigger (proactive or reactive)
actions in fault scenarios.

IT and network monitoring has been an area of active
research area for more than three decades. As a result, a wide
variety of tools and concepts are available which can be

11

Fig. 11. Functional architecture of the T-NOVA VIM Monitoring Manager.

exploited and/or adapted for use in an NFV environment.
However, not all of them can be used as-is. A monitoring
framework especially tailored for an NFV environment should
fulfil specific requirements, such as:

• Interfacing with VIM control modules (e.g., OpenStack,
OpenDaylight etc.)

• Interfacing with VNFs and/or the VNFM to retrieve VNF-
specific (application) metrics

• Scalability. The scalability requirement is crucial, since,
in a large-scale NFV environment, the MANO stack could
be overloaded with millions of measurements per sec-
ond, coming from all parts of the NFV infrastructure and
services. The monitoring framework needs to be able to
filter out unnecessary data and to identify specific events
(and, if needed, alarms) to be communicated to high-level
orchestrating entities.

In order to fulfil these requirements, in T-NOVA, we
followed the approach of designing and developing a ded-
icated lightweight monitoring framework tailored to the
needs of an operational NFV environment. For its design
and implementation, we studied and exploited some of the
features and concepts of existing state-of-the-art monitor-
ing and support frameworks for virtualized environments,
such as Monasca [42] and Gnocchi [43]. We also examined
emerging OPNFV projects on NFV monitoring, such as
Doctor [44] and Prediction [45].

Our approach is based on a dedicated monitoring entity
within the VIM layer, the VIM Monitoring Manager
(VIM MM), whose functional architecture is shown in
Figure 11.

The VIM MM collects, aggregates and processes data from
various sources, namely:

• The physical and virtual infrastructure, including com-
pute nodes, storage servers, as well as network
switches and routers. For this purpose, the VIM MM
directly interfaces with the infrastructure controllers
(OpenStack and OpenDaylight), polling their monitor-
ing APIs (Ceilometer/Telemetry API [46] and Statistics
respectively).

• The VMs on which the VNFs are running. The aim
here is to augment the monitoring capabilities of the
system, compared with the limited set of metrics which
Ceilometer natively provides. For this purpose, we intro-
duce a monitoring agent in each VM. The agent is
based on the popular collected-core module [47] which
can be directly installed with minimal overhead. The
use of the collected agent provides access to a much
wider set of metrics from the guest OS compared to
OpenStack’s Ceilometer data collection service, such
as detailed memory and network usage metrics, load
information and process statistics. It also collects met-
rics at a significantly higher resolution, improving the
response time of the monitoring system. The agent can
be either preinstalled in the VNF image or installed
upon deployment via the Heat template; both options
are supported. However, in the case where inclusion of
a monitoring agent in the VNF is not desirable (e.g., not
allowed/supported by the VNF developer), the system can
also work in agent-less mode, solely relying on data from
Ceilometer.

• The VNF applications themselves. VNFs are expected to
provide application-specific metrics, such as the number
of sessions, number of flows, response latency etc. In
order to facilitate the exposure of these metrics to the
monitoring system, we created a lightweight SDK which
can be used by VNF developers to communicate metrics
directly to the VIM MM (in addition to the information
exchanged with the VNFM).

All collected metric are stored in a time-series database,
which is more appropriate for time-series data than a stan-
dard relational database (DB). We selected InfluxDB [48] for
this purpose. By aggregating all data into a performant DB
and relying on periodical feeds, we can simplify workflows,
reduce inter-component signaling and thus eliminate the need
for a message queue, which is commonly used in monitoring
frameworks.

A back-end processing engine processes the data in real-
time in order to generate events and alarms. Events/alarms
are generated either via pre-defined thresholds (set by the
Orchestrator) or by dynamically detecting deviations from
“normal” VNF operations. This is achieved using anomaly
detection algorithms. The anomaly detection functionality
remains in development.

All information is exposed to the Orchestrator via a REST-
based API, which supports the following operations:

• Standard GET request for on-demand retrieval of a spe-
cific metric or groups of metrics.

• Subscribe operation for periodic “pushing” of specific
metrics.

• Subscription to alarms using pre-defined thresholds.
In all cases, the values communicated or used as alarm

thresholds may refer to either instantaneous samples, or statis-
tical aggregates (min, max, average, median etc.) apart from
the programmatic interface (API), the metrics are also visual-
ized in an intuitive, Web-based graphical user interface (GUI),
which is based on Grafana [49]. A screenshot of the GUI, is
shown in Figure 12. In this case, information from a virtual

12

Fig. 12. GUI screenshot aggregating metrics from various sources to monitor
a vTC VNF.

Fig. 13. VIM Monitoring Manager performance.

Traffic Classifier (vTC) VNF (see next section) is displayed.
The following metrics are integrated into a single view:

• VNF CPU utilization, retrieved from OpenStack
Ceilometer

• VNF memory usage and network traffic (cumulative
packet count), as reported by the guest OS via the
collected agent.

• VNF-specific metrics (packet rate of different appli-
cations detected by the vTC, e.g., Skype, Bittorrent,
Dropbox, Google, Viber etc.), as reported by the vTC
service.

We also evaluated the scalability and behavior of the VIM
MM’s northbound API. To emulate frequent data exchange
with the Orchestrator, we used a number of concurrent GET
requests, specifying a single metric (CPU load) from the vTC
VNF. We used the httperf software [50] to generate synthetic
HTTP GET requests at various rates and measured the rate
of responses received. Then, we repeated the procedure, this
time directly polling Ceilometer for the same metric.

The two sets of measurements were carried on platforms
with similar hardware capabilities. The results are depicted in
Figure 13.

From the results obtained it is clear that the VIM MM can
expose metrics with a performance level which is comparable
to native Ceilometer. It also appears to exhibit better stability
when in overload situations (at more than 160 requests/sec for
the given hardware configuration). It should be noted that this
relatively low saturation point is due to the restricted hard-
ware resources of the platform; in any case, the results are
comparative to Ceilometer and are not absolute.

All components of the T-NOVA VIM monitoring frame-
work, along with the appropriate documentation, have been

released as open-source [51] under a GPL license, as part of
the T-NOVA MANO stack. The released version has been inte-
grated in Docker containers, in order to facilitate deployment
in heterogeneous environments.

VII. USE CASE: DEPLOYING

A HARDWARE-ACCELERATED VIRTUAL

TRAFFIC CLASSIFIER (VTC)

A. vTC Architecture and Acceleration Techniques

In this last section, we consider as an indicative use case
of the T-NOVA MANO stack the deployment of an NFV ser-
vice comprising a virtual Traffic Classifier (vTC) which takes
advantage of specific hardware acceleration features com-
monly available in an NFVI. The vTC was also developed
in the context of the T-NOVA project and is being currently
used as part of the OPNFV Yardstick [52] project which is
focused on NFV workload characterization.

The vTC is designed to analyze in real-time network traf-
fic, to recognize specific applications and to prioritize each
traffic flow according to application priority policies. As this
operation generates significant workload, it is highly recom-
mended to employ specific hardware acceleration features for
efficient traffic processing. In the following paragraphs we
briefly describe the techniques which were employed.

The Linux network stack, on which the vTC has been
developed is commonly used as a basis for cloud networking
solutions. Its primary goal is the provisioning of a general
purpose network stack for a fully functional operating system
rather than a stack that is specifically designed for high packet
throughput performance. Therefore, a standard Linux network
stack cannot scale to the performance level often required for
a software network appliance.

As I/O performance is critical in cloud infrastructures, vir-
tualization optimizations are required in order to maximize
the utilization of computer system resources. Single Root I/O
Virtualization (SR-IOV) [53] is a specification released by the
PCI-SIG, which defines hardware enhancements that reduce
hypervisor’s interactions with a VM, in order to improve its
data processing performance. An SR-IOV enabled device is
capable of spawning various “light” instances of PCI func-
tions, named Virtual Functions (VFs). Each VF can be pinned
to a VM, granting direct access to its physical resources.
Exploiting this feature, multiple VMs can share the same phys-
ical PCI device resources, thus achieving higher performance
with no significant additional CPU overhead. As SR-IOV
provides direct access and control to the system’s hard-
ware resources, it enables the efficient allocation of low-level
network resources.

The vTC VNF is used as a use-case in T-NOVA to demon-
strate the performance enhancements provided by the SR-IOV
specification and the packet processing acceleration frame-
work DPDK. The vTC comprises of two Virtual Network
Function Components (VNFCs), namely the Traffic Inspection
engine and Classification and Forwarding function. The two
VNFCs are implemented in respective VMs. The proposed
Traffic Classification solution is based upon a Deep Packet
Inspection (DPI) approach, which is used to analyze a small

13

Fig. 14. Virtual Traffic Classifier VNF component architecture.

number of initial packets from a flow in order to identify the
flow type. After the flow identification step no further packets
are inspected. The Traffic Classifier follows the Packet Based
per Flow State (PBFS) in order to track the respective flows.
This method uses a table to track each session based on the
5-tuples (source address, destination address, source port, des-
tination port, and the transport protocol) that is maintained
for each flow. The architectural overview of the vTC VNF is
shown in Figure 14.

The vTC utilized various technologies in order to offer
a stable and highly performant VNF. The vTC implementa-
tion is based upon the open source nDPI library [54]. The
packet capturing mechanism is implemented using a num-
ber of technologies in order to investigate the respective
trade-offs between performance and modularity. The packet
handling/forwarding technologies evaluated were:

PF_RING [55]: PF_RING is a set of library drivers and
kernel modules, which enable high-throughput, packet cap-
ture and sampling. For the vTC the PF_RING kernel module
library was used, which polls the packets through the LINUX
NAPI. The packets are copied from the kernel to the PF_RING
buffer and then analyzed using the nDPI library.

Docker [56]: Docker is a form of Linux container which
provides a self-contained execution environment, that pro-
vides isolated CPU, memory, block I/O, and network resources
based on sharing the kernel of a host operating system. In
order to investigate the pros and cons of the container technol-
ogy, the vTC was developed also as an independent container
application. The forwarding and the inspecting of the traffic
are also performed using PF_RING and nDPI, and they are
modified accordingly to function properly in a containerized
environment.

DPDK: In order to fully exploit the system’s resources,
both in the network and computational domains, and at the
same time enhance and facilitate the implementation of inten-
sive network applications, Intel has developed the Data Plane
Development Kit (Intel�DPDK) [57]. DPDK comprises of
a set of libraries that support efficient implementations of
network functions through access to the system’s network
interface card (NIC). DPDK offers network function develop-
ers a set of tools to build high speed data plane applications.
DPDK operates in polling mode for packet processing, instead
of the default interrupt mode. The polling mode opera-
tion adopts the busy-wait technique, continuously checking
for state changes in the network interface. This mitigates
interruption in packet processing, as it bypasses the kernel,
efficiently consuming CPU cycles, which leads to increased

Fig. 15. Comparative results for the vTC VNF in various setup environments.

packet throughput [58]. Using DPDK network packet ingress
and egress is faster in comparison to the standard Linux kernel
network stack as applications are supported in userspace, thus
bypassing kernel network stack bottlenecks. A DPDK-enabled
version of the vTC has been implemented in order to optimize
the packet-handling and processing for the inspected and for-
warded traffic, by bypassing the kernel space. The analyzing
and forwarding functions are performed entirely in user-space
which enhances the vTC performance.

B. Validation and Assessment Using the
T-NOVA MANO Components

As a validation test, we used the T-NOVA MANO compo-
nents described in the previous sections to discover resources
for the vTC, assigned the appropriate resources, deployed the
service and monitored it under load conditions. During each
iteration, the hardware acceleration capabilities of the vTC
were properly detected (via the corresponding entries in the
VNF Descriptor (VNFD) document) and correctly matched to
the compute nodes which had these specific capabilities.

A series of comparison tests between the DPDK, PF_RING,
and Docker versions of the vTC in physical and virtualized
environments were carried out. Traffic for the tests was gener-
ated using the open source PktGen traffic generator [59] which
can generate up to 10Gbps of network traffic. The results col-
lected illustrated the behavior of each implementation based
on linear scaling network traffic load up to 10Gbps at line
rate. Traffic statistics were collected from the VNF at one
second intervals and were post processed for performance
evaluation.

The results in Figure 15 show a clear improvement in
the vTCs’ performance when DPDK is utilized. The gap in
performance between the physical and the virtualized solution
shows further optimization is required in order for to achieve
line rate. Additionally, it is clear that despite the use of SR-IOV
the network kernel stack remains the bottleneck in the packet
processing path.

As shown in Figure 14 the SR-IOV/DPDK version achieves
approximately 81% of the physical DPDK testbed packet
transmission performance. The PF_RING kernel version dis-
played saturation effects at 500Mbps with an 87.5% through-
put reduction in comparison to the DPDK version. The results
also indicate that DPDK’s performance in the virtualized

14

scenario is degraded, approximately 19% in comparison to
the corresponding tests performed on non-virtualized hard-
ware. This performance degradation is a result of the addi-
tional hypervisor overhead in the virtualized environment with
respect to the packet processing overhead.

VIII. CONCLUSION

We presented the components of an operational NFV
MANO stack being developed by the T-NOVA project and
released as an open-source project [11]. The current version
of the T-NOVA MANO system facilitates the automation of
the key NFV service lifecycle steps, specifically resource dis-
covery and matching, service mapping, service deployment
and monitoring. Of particular significance are the capabili-
ties within the system to discover, map and exploit hardware
platform-specific features to optimize performance, as demon-
strated in the vTC assessment activities. The complete MANO
stack has been designed in a fully modular manner under
a service-oriented architecture, so that each of the components
described in this paper can also be individually exploited on
an individual basis, if necessary.

Additional functional capabilities to be implemented include
service auto-scaling (scaling in/out), SLA monitoring, fully
automated traffic steering/service function chaining (SFC) and
anomaly detection.

REFERENCES

[1] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtual-
ization: Challenges and opportunities for innovations,” IEEE Commun.
Mag., vol. 53, no. 2, pp. 90–97, Feb. 2015.

[2] R. Guerzoni, “Network functions virtualisation: An introduction, bene-
fits, enablers, challenges and call for action, introductory white paper,”
in Proc. SDN OpenFlow World Congr., Jun. 2012, pp. 1–16.

[3] J. Wu, Z. Zhang, Y. Hong, and Y. Wen, “Cloud radio access
network (C-RAN): A primer,” IEEE Netw., vol. 29, no. 1, pp. 35–41,
Jan./Feb. 2015.

[4] C-RAN: The Road Towards Green RAN. White Paper. Version 2.5,
China Mobile Res. Inst., Beijing, China, Oct. 2011.

[5] ETSI GS NFV 002 V1.2.1: Network Functions Virtualisation (NFV);
Architectural Framework, ETSI Ind. Specification Group (ISG)
NFV, Sophia Antipolis, France, Dec. 2014. [Online]. Available:
http://www.etsi.org/deliver/etsigs/NFV/001099/002/01.02.0160/
gsNFV002v010201p.pdf

[6] ETSI GS NFV 003 V1.2.1: Network Functions Virtualisation (NFV);
Terminology for Main Concepts in NFV, ETSI Ind. Specification
Group (ISG) NFV, Sophia Antipolis, France, Dec. 2014.
[Online]. Available: http://www.etsi.org/deliver/etsigs/NFV/001099/
003/01.02.0160/gsNFV003v010201p.pdf

[7] S. Oechsner and A. Ripke, “Flexible support of VNF place-
ment functions in OpenStack,” in Proc. 1st IEEE Conf. Netw.
Softwarization (NetSoft), London, U.K., 2015, pp. 1–6.

[8] K. Giotis, Y. Kryftis, and V. Maglaris, “Policy-based orchestration of
NFV services in software-defined networks,” in Proc. 1st IEEE Conf.
Netw. Softwarization (NetSoft), London, U.K., 2015, pp. 1–5.

[9] M. Yoshida, W. Shen, T. Kawabata, K. Minato, and W. Imajuku,
“MORSA: A multi-objective resource scheduling algorithm for
NFV infrastructure,” in Proc. 16th Asia–Pac. Netw. Oper. Manag.
Symp. (APNOMS), 2014, pp. 1–6.

[10] Accessed on Aug. 4, 2017. [Online]. Available: http://www.t-nova.eu/
[11] Accessed on Aug. 4, 2017. [Online]. Available:

https://github.com/T-NOVA
[12] G. Xilouris et al., “T-NOVA: A marketplace for virtualized network

functions,” in Proc. Eur. Conf. Netw. Commun. (EuCNC), Bologna, Italy,
Jun. 2014, pp. 1–5.

[13] Accessed on Aug. 4, 2017. [Online]. Available: https://osm.etsi.org/
wikipub/index.php/Main_Page

[14] Open Network Automation Platform (ONAP). Accessed on Aug. 4, 2017.
[Online]. Available: https://www.onap.org

[15] Accessed on Aug. 4, 2017. [Online]. Available:
http://openbaton.github.io/

[16] Accessed on Aug. 4, 2017. [Online]. Available: https://www.open-o.org/
[17] Accessed on Aug. 4, 2017. [Online]. Available: http://about.att.com/

content/dam/snrdocs/ecomp.pdf
[18] Accessed on Aug. 4, 2017. [Online]. Available:

https://www.openstack.org/
[19] Accessed on Aug. 4, 2017. [Online]. Available:

https://www.opendaylight.org/
[20] Accessed on Aug. 4, 2017. [Online]. Available: http://occi-wg.org/
[21] S. Bradner and J. McQuaid, “Benchmarking methodology for network

interconnect devices,” Internet Eng. Task Force, Fremont, CA, USA,
RFC 2544, Mar. 1999.

[22] Accessed on Aug. 4, 2017. [Online]. Available: https://www.kernel.org/
doc/Documentation/vm/hugetlbpage.txt

[23] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann, 1993.

[24] V. Riccobene, M. J. McGrath, M.-A. Kourtis, G. Xilouris, and
H. Koumaras, “Automated generation of VNF deployment rules using
infrastructure affinity characterization,” in Proc. 2nd IEEE Conf. Netw.
Softwarization (NetSoft), Seoul, South Korea, Jun. 2016, pp. 226–233.

[25] OpenStack. (2015). Heat Orchestration Template (HOT) Guide.
[Online]. Available: http://docs.openstack.org/developer/heat/template_
guide/hot_guide.html

[26] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” ACM SIGCOMM Comput. Commun.
Rev., vol. 41, no. 4, pp. 242–253, 2011.

[27] J. Lee et al., “CloudMirror: Application-aware bandwidth reservations in
the cloud,” in Proc. 5th USENIX Workshop Hot Topics Cloud Comput.,
San Jose, CA, USA, 2013, pp. 1–6.

[28] C. Guo et al., “SecondNet: A data center network virtualization archi-
tecture with bandwidth guarantees,” in Proc. ACM Conf. Emerg. Netw.
Exp. Technol. (CoNEXT), Philadelphia, PA, USA, 2010, pp. 1–12.

[29] A. Gember, R. Grandl, A. Anand, T. Benson, and A. Akella,
“Stratos: Virtual middleboxes as first-class entities,” Dept. Comput.
Sci., Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep. 1771,
2012.

[30] S. Oechsner and A. Ripke, “Flexible support of VNF place-
ment functions in OpenStack,” in Proc. 1st IEEE Conf. Netw.
Softwarization (NetSoft), London, U.K., 2015, pp. 1–6.

[31] J. Lee et al., “CloudMirror: Application-aware bandwidth reservations in
the cloud,” in Proc. 5th USENIX Workshop Hot Topics Cloud Comput.,
San Jose, CA, USA, 2013, pp. 1–6.

[32] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Commun. Surveys Tuts.,
vol. 15, no. 4, pp. 1888–1906, 4th Quart., 2013.

[33] R. Riggio, T. Rasheed, and R. Narayanan, “Virtual network functions
orchestration in enterprise WLANs,” in Proc. IFIP/IEEE Int. Symp.
Integr. Netw. Manag. (IM), Ottawa, ON, Canada, 2015, pp. 1220–1225.

[34] R. Guerzoni et al., “A novel approach to virtual networks embedding
for SDN management and orchestration,” in Proc. Netw. Oper. Manag.
Symp. (NOMS), Kraków, Poland, 2014, pp. 1–7.

[35] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Proc. IEEE 3rd Int. Conf. Cloud
Netw. (CloudNet), 2014, pp. 7–13.

[36] V. Abedifar, M. Eshghi, S. Mirjalili, and S. M. Mirjalili, “An optimized
virtual network mapping using PSO in cloud computing,” in Proc. 21st
Iran. Conf. Elect. Eng. (ICEE), 2013, pp. 1–6.

[37] R. Mijumbi et al., “Network function virtualization: State-of-the-art
and research challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236–262, 1st Quart., 2016.

[38] D. Dietrich, A. Abujoda, and P. Papadimitriou, “Network service embed-
ding across multiple providers with nestor,” in Proc. IFIP Netw.,
Toulouse, France, May 2015, pp. 1–9.

[39] D. Dietrich, A. Rizk, and P. Papadimitriou, “Multi-provider virtual
network embedding with limited information disclosure,” IEEE Trans.
Netw. Service Manag., vol. 12, no. 2, pp. 188–201, Jun. 2015.

[40] Algorithms and Complexity Group. (2015). Virtual Network Mapping
Problem Instances. Accessed on Dec. 15, 2015. [Online]. Available:
https://www.ac.tuwien.ac.at/research/problem-instances/

[41] J. Inführ and G. R. Raidl, Introducing the Virtual Network Mapping
Problem With Delay, Routing and Location Constraints. Heidelberg,
Germany: Springer, 2011, pp. 105–117.

15

[42] Monasca Monitoring-As-a Service for OpenStack. Accessed on
Aug. 4, 2017. [Online]. Available: https://wiki.openstack.org/
wiki/Monasca

[43] Gnocchi: TDBaaS for OpenStack. Accessed on Aug. 4, 2017. [Online].
Available: https:// wiki.openstack.org/wiki/Gnocchi

[44] OPNFV Doctor Project (Fault Management). Accessed on Aug. 4, 2017.
[Online]. Available: https://wiki.opnfv.org/doctor

[45] OPNFV Prediction Project (Data Collection for Failure
Prediction). Accessed on Aug. 4, 2017. [Online]. Available:
https://wiki.opnfv.org/prediction

[46] OpenStack Telemetry API v2 (CURRENT). Accessed on
Aug. 4, 2017. [Online]. Available: http://developer.OpenStack.org/
api-ref-telemetry-v2.html

[47] Collectd, the System Statistics Collection Daemon. Accessed on
Aug. 4, 2017. [Online]. Available: https://collectd.org/

[48] InfluxDB: An Open-Source, Distributed, Time Series Database With No
External Dependencies. Accessed on Aug. 4, 2017. [Online]. Available:
http://influxdb.com/

[49] Grafana: An Open Source, Feature Rich Metrics Dashboard and Graph
Editor for Graphite, InfluxDB & OpenTSDB. Accessed on Aug. 4, 2017.
[Online]. Available: http://grafana.org/

[50] Accessed on Aug. 4, 2017. [Online]. Available: https://github.com/
httperf/httperf

[51] Accessed on Aug. 4, 2017. [Online]. Available: https://github.com/
T-NOVA/vim-monitoring

[52] Accessed on Aug. 4, 2017. [Online]. Available: https://wiki.opnfv.org/
yardstick

[53] SR-IOV. PCI Special Interest Group. Accessed on Aug. 4, 2017.
[Online]. Available: http:// www.pcisig.com/home

[54] L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “nDPI: Open-
source high-speed deep packet inspection,” in Proc. Int. Wireless
Commun. Mobile Comput. Conf. (IWCMC), Nicosia, Cyprus, Aug. 2014,
pp. 617–622.

[55] A. Cardigliano, L. Deri, J. Gasparakis, and F. Fusco, “vPF_RING:
Towards wire-speed network monitoring using virtual machines,” in
Proc. IMC, Nov. 2011, pp. 533–548.

[56] Docker. Accessed on Aug. 4, 2017. [Online]. Available:
https://www.docker.com/

[57] DPDK Organization. (2015). DPDK: Data Plane Development Kit.
Accessed on Aug. 4, 2017. [Online]. Available: http://dpdk.org/

[58] K. Salah and A. Qahtan, “Implementation and experimental performance
evaluation of a hybrid interrupt-handling scheme,” Comput. Commun.,
vol. 32, no. 1, pp. 179–188, Jan. 2009.

[59] PktGen, Pktgen Version 2.7.7 Using DPDK-1.7.1. Accessed on
Aug. 4, 2017. [Online]. Available: https://github.com/Pktgen/
Pktgen-DPDK/

Michail-Alexandros Kourtis received the Diploma
and master’s degrees in computer science from
the Athens University of Economics and Business
in 2011 and 2014, respectively. He is currently
pursuing the Ph.D. degree with the Department
of Communications Engineering, University of the
Basque Country (UPV/EHU), Bilbao, Spain. Since
2010, he has been with NCSR “Demokritos,” in var-
ious research projects. His research interests include
video processing, video quality assessment, image
processing, network function virtualization, software
defined networks, and quality of service.

Michael J. McGrath received the B.Sc. degree
in analytical science, the Ph.D. degree in sen-
sors and instrumentation, and the Graduate Diploma
degree in information technology from Dublin City
University, Dublin, Ireland, in 1992, 1995, and 1999,
respectively, and the Graduate Diploma degree in
computing and the M.S. degree in computing from
the Institute of Technology Blanchardstown, Dublin,
in 2004 and 2007, respectively. He is a Senior
Researcher with Intel Labs Europe. He has been with
Intel for 15 years, holding a variety of operational
and research roles.

Georgios Gardikis received the Diploma degree
in electrical and computer engineering and the
Ph.D. degree from the National Technical University
of Athens in 2000 and 2004, respectively. His
expertise lies in the fields of digital terrestrial
and satellite broadcasting, distribution networks for
multimedia service provisioning, quality of experi-
ence assessment and novel mechanisms for applica-
tion/network coupling. He is currently a Research
and Development Manager with Space Hellas S.A.

Georgios Xilouris received the B.Sc. degree in
physics from the University of Ioannina in 1999 and
the M.Sc. degree in automation systems from the
National Technical University of Athens in 2001.
Since 2000, he has been a fellow researcher with
the Institute of Informatics and Telecommunications,
NCSR “Demokritos.” He has participated in numer-
ous EU-funded projects and was the Technical
Coordinator of T-NOVA (FP7). He is currently
a member of the Organising Committee for IEEE
NFV-SDN.

Vincenzo Riccobene received the Diploma degree
in computer engineering and the master’s and
Ph.D. degrees from the University of Catania in
2007, 2011, and 2016, respectively. He is currently
a Research Engineer with Intel Labs Europe on
research activities related to the orchestration of
cloud computing environments, with a special focus
on network function virtualization workloads. He
was also involved in the activity of Intel Labs within
the T-NOVA European FP7 project.

Panagiotis Papadimitriou received the Ph.D.
degree in electrical and computer engineering from
the Democritus University of Thrace, Greece, in
2008. He is currently on the faculty with the
Department of Applied Informatics, University of
Macedonia, Greece. From 2011 to 2016, he was
an Assistant Professor with the Communications
Technology Institute, Leibniz University Hannover,
Germany. His research activities currently span next-
generation Internet architectures, NFV, SDN, cloud
networking, and mobile edge computing.

Eleni Trouva received the Diploma degree in com-
puter engineering from the University of Patras,
Greece, in 2006 and the Master of Science
degree in computer science from the Department
of Informatics, Athens University of Economics
and Business in 2009. In 2013, she joined the
Institute of Informatics and Telecommunications,
NCSR “Demokritos.” Her current research interests
include future network architectures, NFV orchestra-
tion and management, and SDN and NFV security
challenges.

Francesco Liberati received the master’s degree
in control engineering and the Ph.D. degree in
systems engineering from the University of Rome
“La Sapienza,” Rome, Italy, in 2011 and 2015,
respectively. From 2015 to 2017, he has been
an Assistant Professor with eCampus University,
Novedrate, Italy. His main research interests include
smart grids, control of virtualized network infras-
tructures, and critical infrastructure protection.

16

Marco Trubian received the Ph.D. degree in elec-
tronic engineering in 1992, from the Politecnico
di Milano, Italy. Since December 2002 he is an
Associate Professor of Operational Research at the
Computer Science Department of Universita’ degli
Studi di Milano. He has published in interna-
tional journals such as Networks, Discrete Applied
Mathematics, Informs Journal on Computing, the
European Journal of Operational Research, the
Journal of Parallel and Distributed Computing, and
others.

Josep Batallé received the degree in telecommu-
nications science from Universitat Rovira I Virgili
and the Master of Science degree from Universitat
Politecnica de Catalunya. Since 2012, he has been
a Research and Development Engineer with i2CAT
Foundation.

Harilaos Koumaras received the B.Sc. degree in
physics from the Physics Department, University
of Athens, in 2002, the M.Sc. degree in elec-
tronic automation and information systems in
2004, and the Ph.D. degree in computer science
from the Computer Science Department, University
of Athens, in 2007. He has been an active
Research Associate with the Media Net Laboratory,
National Centre of Scientific Research “Demokritos”
since 2003.

David Dietrich (S’14–M’15) is a Post-Doctoral
Researcher with the Institute of Communications
Technology, Leibniz University Hannover, Germany.
He participated in several research projects, e.g., the
EU-funded T-NOVA project and the national project
G-Lab. His research interests include network vir-
tualization and network management with focus
on algorithms and optimization. He is a member
of ACM.

Aurora Ramos received the master’s degree
in telecommunication engineering in 2004 and
Research Sufficiency in network engineering in
2007. She has been involved for over ten years
in networks related research and development and
innovation international projects for both academic
and industry entities, having a deep knowledge of
integration solutions for heterogeneous networks.
Her current research work is focused in software
networks. She has led the design and implementa-
tion of a novel NFV Marketplace within T-NOVA
project.

Jordi Ferrer Riera received the degree in com-
puter science from the Facultat d’Informàtica de
Barcelona, Technical University of Catalonia (UPC)
and the Ph.D. degree from the Design and Evaluation
of Broadband Networks and Services Group,
Telematics Engineering Department, UPC. He
achieved the Telematic Networks and Operating
Systems profile.

José Bonnet is a Senior Technology Consultant
with AlticeLabs, where he has been applying
his knowledge and expertise in developing car-
rier grade systems, gathered over a career of over
20 years, to NFV/SDN projects, preferably using
Agile/DevOps methodologies and tools. He led the
Orchestrator implementation work package in the
EU FP7 T-NOVA project, as well as the equiva-
lent work package in the EU Horizon2020/5GPPP
SONATA Service Platform and Orchestration work
package. He is currently part of the EU H2020
5Gtango Team.

Antonio Pietrabissa received the degree in elec-
tronic engineering and the Ph.D. degree in system
engineering from the “Sapienza” University of Rome
in 2000 and 2004, respectively, where he was a
Post-Doctoral Researcher with the Department of
System and Computer Science from 2004 to 2009
and has been an Assistant Professor since 2010 and
currently holds the courses. He is scientific respon-
sible for the research unit in two projects funded by
the European Union (FP7 SWIPE, FP7 T-NOVA).

Alberto Ceselli is currently an Associate Professor
with the Department of Computer Science,
Università degli Studi di Milano. His activities
include mathematical programming, design, and
experimental analysis of algorithms for combi-
natorial optimization problems and prescriptive
data analytics.

Alessandro Petrini received the undergraduation
degree in applied mathematics from the University
of Milan with a thesis on GPU-accelerated com-
putation of PageRank, where he is currently pur-
suing the degree in computer science, involved in
several parallel/high performance and GPU accel-
erated computing research projects in the field of
bioinformatics. He is a full time collaborator of
T-Nova project in both VNF mapping algorithms and
VNF development.

17

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

