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Abstract

The endocannabinoid system (ECS) is an endogenous signalling pathway involved in the control of several gastrointestinal (GI) functions at
both peripheral and central levels. In recent years, it has become apparent that the ECS is pivotal in the regulation of GI motility, secretion and
sensitivity, but endocannabinoids (ECs) are also involved in the regulation of intestinal inflammation and mucosal barrier permeability, suggest-
ing their role in the pathophysiology of both functional and organic GI disorders. Genetic studies in patients with irritable bowel syndrome (IBS)
or inflammatory bowel disease have indeed shown significant associations with polymorphisms or mutation in genes encoding for cannabinoid
receptor or enzyme responsible for their catabolism, respectively. Furthermore, ongoing clinical trials are testing EC agonists/antagonists in the
achievement of symptomatic relief from a number of GI symptoms. Despite this evidence, there is a lack of supportive RCTs and relevant data
in human beings, and hence, the possible therapeutic application of these compounds is raising ethical, political and economic concerns. More
recently, the identification of several EC-like compounds able to modulate ECS function without the typical central side effects of cannabino-
mimetics has paved the way for emerging peripherally acting drugs. This review summarizes the possible mechanisms linking the ECS to GI
disorders and describes the most recent advances in the manipulation of the ECS in the treatment of GI diseases.
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Introduction

Cannabis sativa plant is the most commonly used illicit drug for
recreational purposes worldwide, with estimated 16 million users in
the United States [1, 2]. At present, many patients use cannabis

anecdotally to achieve symptomatic relief from a wide variety of
symptoms, commonly of GI origin, particularly nausea and pain
[3–5]. The therapeutic efficacy of cannabis in the treatment of GI
dysfunction relies on the fact that the GI tract is endowed with
cannabinoid receptors and N-arachidonoylethanolamine (anan-
damide, AEA) and 2-arachidonoylglycerol (2-AG), their best-charac-
terized endogenous ligands [6, 7]. Together with their synthetizing
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and degrading enzymes, they embody the endocannabinoid system
(ECS), a ubiquitous and complex system involved in the control of
gut homoeostasis. Since first coined in 1995 [8], the term ‘endo-
cannabinoids’ (ECs) has been enlarged to a number of recently, yet
only partially, identified endogenous ligands, such as 2-arachido-
noylglycerol ether (noladin ether), N-arachidonoyl-dopamine (NADA)
and O-arachidonoylethanolamine (virodhamine) [9]. In recent years,
several lipid-derived mediators, closely resembling typical ECs, have
been described, raising questions on the different pathophysiologi-
cal role of these compounds [10–13]. These analogues [namely N-
linoleylethanolamine (LEA), N-oleoylethanolamine (OEA), N-palmi-
toylethanolamine (PEA) and N-stearoylethanolamine (SEA)] are
structurally related to classical ECs and have been shown to act
synergistically, either enhancing the effects of prototypic ECs (the

so-called entourage effect) or displaying unique effects (seethe
‘Endocannabinoid-related compounds’ section). An overview of the
principal ECs and of the enzymes responsible for their metabolism
is proposed in Figure 1. Different from other transmitters, the ECs
and their congeners are not stored in intracytoplasmic vesicles, but
synthetized from membrane precursors in an ‘on-demand’ fashion
[13]. After their release into the extracellular space, these short-
lived compounds are rapidly removed from membrane transporters
and degraded by specific enzymes (Fig. 1) [14]. The ECs are able
to exert their multifaceted activities by binding a large number of
receptors that have not been fully identified, so far. The best-char-
acterized receptors are cannabinoid receptors 1 and 2 (CB1 and
CB2), two G-protein-coupled receptors expressed in both peripheral
and central nervous systems, as well as by a number of non-neural

Fig. 1 Schematic overview of the enzymes involved in EC metabolism. Anandamide (AEA) and 2-acylglycerol (2-AG) are the two best-recognized
stereotypical ECs. Both are synthetized by hydrolysis from membrane lipid precursors, namely N-arachidonoyl-phosphatidylethanolamine (NArPE)

and phosphatidylinositol-4,5-bisphosphate (PIP2) for AEA and 2-AG, respectively. Both AEA and 2-AG, after the binding with CB receptors, are

rapidly removed by membrane transporters and converted into arachidonic acid by fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase

(MAGL), respectively.
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cells [6, 15, 16]. CB1 is responsible for the classical psychotropic
effects of marijuana and is mainly expressed in the CNS [17]. In
the GI tract, CB1 is expressed in both myenteric and submucosal
plexuses of the enteric nervous system (ENS), mostly by motoneu-
rons, interneurons and primary afferent neurons but also by epithe-
lial cells [18]. Conversely, CB2 predominantly shows a peripheral
distribution, with the highest rate of expression on immune cells
[19, 20], but it is also found on enteric neurons [21]. In rodent
models, CB2 appears to be expressed by intestinal epithelial cells;
however, this evidence has not been confirmed in both other ani-
mal models and human beings [22–24]. As mentioned above, ECs
and their related compounds exhibit several non-CB1/CB2-mediated
effects by binding other receptors with different affinity. The orphan
G-protein-coupled receptor 55 (GPR55), identified in 1999, has
been proposed as the third CB receptor, and although it has been
found in the jejunum, ileum and colon, its distribution has not been
extensively studied [25]. One of the best-characterized non-CB
receptors for ECs is the transient receptor potential vanilloid type 1
(TRPV1), mainly located on the primary afferent nerve fibres [26].
Originally identified as receptors for the capsaicin [27], TRPV1
receptors are known for being activated by NADA and AEA as
effectively as capsaicin [28]. AEA is a full agonist on TRPV1 recep-
tors, but it also exerts indirect effects by binding CB1 [29]. Further-
more, a number of ECs have been shown to bind peroxisome
proliferator-activated receptors (PPARs). In vitro studies showed
that AEA, noladin and virodhamine are receptor agonists to PPARa,
while 2-AG binds to PPARb/d [30]. Taken together, the bewildering
redundancy of the ECS and the different sites of action of the ECs
account for the great variety of actions exhibited by these com-
pounds in vivo.

Endocannabinoid-related compounds

EC-like compounds, such as N-acylethanolamides (NAEs), have a
close structural resemblance with classical ECs, but display no
activity on CB receptors [10, 31, 32]. However, these compounds
share some biological activities and similar biosynthetic pathways
of those of typical ECs, particularly AEA. AEA synthesis is, indeed,
coupled with the formation of PEA, OEA and LEA [10, 33, 34].
Although OEA and PEA do not directly activate cannabinoid recep-
tors, they are thought to indirectly potentiate ECS signalling via the
‘entourage effect’ by either competing with stereotypical ECs for
enzymatic degradation or increasing their receptor binding affinity
[10] (Fig. 2). PEA and OEA are, indeed, both substrates of FAAH, the
enzyme responsible for AEA degradation. By either competing with
AEA for FAAH or inducing FAAH down-regulation [35, 36], PEA and
OEA could reduce AEA catabolism and ultimately increase AEA con-
centrations. Furthermore, independently of FAAH, PEA and OEA are
able to enhance AEA effects at TRPV1 receptors [37, 38]. OEA and
PEA can activate, even if with different receptor affinity, PPARa, the
G-protein-coupled receptor GPR119 and the TRPV1 [39–42]. A
growing body of evidence has shown that these compounds are
involved in the control of a wide variety of functions, including the
control of food intake [43, 44], neuroprotection [45] and inhibition
of pain and inflammation [46, 47]. PEA levels increase in inflamed
tissues, possibly as a protective effect to exert its well-recognized
anti-inflammatory and analgesic properties [46]. In biopsies from
patients with coeliac disease, levels of both PEA and AEA were
increased [48]. It has been shown that by selectively binding PPARa
receptors, PEA is able to down-regulate iNOS expression and
nuclear factor-jB (NFjB) activation, and in turn the inflammation in

Fig. 2 Biosynthesis and degradation of N-acylethanolamides (NAEs) and possible points of interaction between AEA and its related compounds. Sim-

ilar to AEA, N-palmitoylethanolamine (PEA) and N-oleoylethanolamine (OEA) are synthesized by N-acylphosphatidylethanolamine-specific phospholi-
pase D (NAPE-PLD) from membrane precursors. Unlike AEA, PEA and OEA exhibit no binding affinity on CB1/CB2 receptors, but they can enhance

AEA activity at TRPV1 receptors. PEA and OEA are degraded by either fatty acid amide hydrolase (FAAH) or N-acetylethanolamine-hydrolysing acid

amidase (NAAA). By competing with AEA for FAAH (mainly OEA) or by down-regulating FAAH expression (predominantly PEA), they can increase

AEA levels.
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a number of chronic inflammatory conditions, including experimen-
tal and human models of inflammatory bowel disease (IBD) [49–
51]. PEA is indeed able to significantly inhibit the expression of
S100B and Toll-like receptor 4 on enteric glial cells, thus reducing
inflammation induced by nuclear factor-jB (NFjB) by selectively
binding PPARa receptors [51]. On the contrary, OEA was able to
display antinociceptive properties in a PPAR-a-insensitive manner in
mice [47].

The endocannabinoid system and the control of
gastrointestinal motility

In both animal and human GI tract, the ECs exert marked
antipropulsive effects. This result is mainly mediated by the reduc-
tion in the release of acetylcholine via the activation of presynaptic
CB1 [18, 52–54]. However, recent evidence suggests that along
with the inhibition of acetylcholine release, the effects of the ECs
on GI motility are likely to be related to the inhibition of all the
components of the peristaltic reflex. In parallel with the inhibition
of the release of acetylcholine, in rat models CB1 agonists were
indeed able to significantly inhibit the release of both substance P
and VIP, inhibiting, respectively, both the ascending contraction
and the descending relaxation of the peristaltic reflex [55–58]. Fur-
thermore, both the deletion of the CB1 gene [55–57] and the phar-
macological blockade of these receptors [59–61] displayed
prokinetic effects. Altogether, these lines of evidence seem to sug-
gest that ECs are able to significantly reduce smooth muscle con-
tractility, mainly by binding CB1. CB2 does not appear to play a
major role in the control of intestinal motility under physiological
conditions. However, studies on rodents have shown that intestinal
hypermotility due to lipopolysaccharide (LPS) administration was
abolished by CB2, but not by CB1 agonists [62]. Hence, in animal
models, CB2 agonism is more likely to inhibit intestinal motility in
pathophysiological conditions associated with intestinal inflamma-
tion and immune activation.

The endocannabinoid system and the control of
visceral sensitivity

Undoubtedly, the most documented effect of the ECS is the con-
trol of visceral sensitivity and, although empirically grounded,
phytocannabinoid-based treatments have been used for centuries
in a number of conditions featured by chronic pain. In recent
years, several studies have elucidated the molecular mechanism
by which ECs are able to reduce visceral sensation and pain.
The reduction in visceral sensitivity threshold to colorectal disten-
sion was found to be dependent on both CB1 activation and CB2
activation [63–67]. Rousseaux et al. have shown that after col-
orectal distension, orally administered probiotics were able to
reduce visceral sensation in rats in a CB2-dependent fashion
[68]. Moreover, in pro-inflammatory conditions, AM124 was able
to reduce the bradykinin-induced activation of primary afferents

in wild-type but not in CB2-deficient mice [69], further support-
ing the evidence that CB2 is probably involved in the control of
visceral hypersensitivity in inflammatory conditions. In rodents,
visceral hypersensitivity due to water avoidance stress was signif-
icantly associated with a decreased expression and function of
CB1, while a reciprocal increase in TRPV1 expression was found
in dorsal root ganglion (DRG) neurons [70]. CB1 and TRPV1
receptors are intimately connected, and CB1 is able to inhibit
TRPV1 activity either directly or indirectly through the cyclic
AMP–protein kinase A [71]. The treatment of DRG neurons with
anandamide, whose levels are increased in psychological stress,
was able to reproduce the changes in TRPV1 and CB1 expres-
sions, while administration of CB1 agonist and/or TRPV1 receptor
antagonist was able to prevent these effects [70]. Furthermore,
injections of corticosteroids were able to increase anandamide
expression and to reproduce the reciprocal changes in the
expression of CB1 and TRPV1 receptors [70]. Although not com-
pletely elucidated, the mechanism underlying the reduced expres-
sion of CB1 in chronic stress conditions might rely on increased
methylation of the Cnr1 gene promoter by DNMT1, which results
in epigenetic modifications of CB1 expression [72]. Collectively,
these findings indicate that the interplay between the cannabinoid
and vanilloid signalling pathways may play an important role in
stress-induced visceral hyperalgesia [73, 74]. In summary, both
CB1 activation and CB2 activation have been linked to the control
visceral sensitivity and stress-induced hyperalgesia in animal
models. The antinociceptive effects of CB1 are probably intimately
connected to a reciprocal down-regulation of TRPV1 receptors,
while CB2 is likely able to counteract the sensitizing effects of
inflammatory mediators, such as bradykinin, on peripheral end-
ings of visceral afferents.

The endocannabinoid system and the control of
intestinal inflammation

Over the past decade, many lines of evidence highlighting the
role of the ECS in intestinal inflammation have been produced in
both animal and pre-clinical models [18, 75, 76]. Although
genetic studies failed to find any significant association between
the polymorphisms in the gene encoding for FAAH and the risk
of developing Crohn’s disease (CD), homozygosis for the muta-
tion Pro129Thr in FAAH gene was significantly associated with
development of fistulas and extra-intestinal manifestations in
patients with CD [77]. Also, in patients with ulcerative colitis
(UC), the same FAAH genetic variant led to an earlier average
onset of the inflammatory disease [77]. Furthermore, in a recent
case–control association analysis from a paediatric IBD popula-
tion, the functional CB2-R63 variant was significantly associated
with the risk of developing IBDs and also linked to a more
aggressive phenotype in both patients with CD and patients with
UC [78]. The pivotal role of the ECS in regulating intestinal
inflammation has been confirmed by the evidence that both
genetic ablation of FAAH and the pharmacological treatment with
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FAAH inhibitors prevented the development of colitis in rodents
[79]. In animal models, these effects are dependent on both CB1
and CB2. CB1 and CB2 agonists are indeed able to significantly
reduce experimental colitis, while CB2 antagonists and CB1
knockout mice developed a more severe TNBS-induced colitis
[80, 81]. Finally, it has been shown that an increase in AEA
levels, induced by inhibitors of the catabolic or reuptake
enzymes, significantly attenuates colitis in wild-type mice, but not
in CB1- and CB2-deficient mice [82]. In human beings, ex vivo
studies have demonstrated a significantly increased expression of
CB and EC levels in chronic inflammatory conditions, including
IBDs, diverticulitis and coeliac disease [48, 74, 75]. An overview
of the reciprocal changes in CB receptors and EC level is
reported in Table 1. However, both FAAH expression and levels
of AEA have been reported to be decreased or increased in coli-
tis from different studies, pointing towards the need for further
studies to fully address the role of ECS in the modulation of
intestinal inflammation.

The endocannabinoid system in gut
pathophysiology

The homoeostatic role of ECS, able to regulate GI functions
peripherally and centrally, represents both a blessing and a
curse, making it an appealing therapeutic target and, at the same
time, a challenge in selectively modulating GI functions without
altering the functionality of other organs. We will now discuss in
detail the evidence produced on the role of the ECS in GI disor-
ders, namely functional dyspepsia (FD) and irritable bowel syn-
drome (IBS), two of the main functional gastrointestinal disorders
(FGIDs), IBDs and non-alcoholic fatty liver disease (NAFLD). We

will also review the most recent advances in the possible thera-
peutic exploitation of manipulating ECS in the treatment of these
GI disorders.

The endocannabinoid system and functional
dyspepsia

Although only few studies have investigated the potential effects of
ECS in FD, there is evidence suggesting that the ECS might be an
intriguing target in FD treatment, as it is involved in the modulation
of some of the proposed mechanisms underlying FD pathophysiol-
ogy [83, 84]. In a recent study in patients with FD, Ly et al. have
demonstrated a sustained increase in CB1 receptor availability in
cerebral regions involved in the control of food intake and visceral
sensitivity, suggesting for the first time a long-term dysfunction in
ECS signalling pathways in FD [85]. However, whether this effect
is a consequence of altered visceral sensitivity or of dysregulation
in food intake still needs to be clarified. Impaired gastric accom-
modation, delayed gastric emptying and visceral hypersensitivity
have been suggested as the underlying pathophysiological
mechanisms of some FD symptoms, such as nausea, early satiety,
post-prandial fullness and pain [84, 86, 87]. In experimental ani-
mals, CB receptor agonists have been shown to significantly reduce
gastric emptying [88, 89]. Similarly, oral administration of dronabi-
nol (D9-THC) was able to significantly reduce gastric emptying in
human beings [90, 91]. Furthermore, in healthy individuals, admin-
istration of a CB1 antagonist (rimonabant) was able to inhibit gas-
tric accommodation, but not affecting gastric sensitivity,
suggesting a role of ECS in the control of gastric accommodation
[92]. Although further studies are required to fully address the
putative role of ECS in FD pathophysiology, the well-recognized
orexigenic and antiemetic effects of cannabino-mimetics make the

Table 1 Reported altered expression profile of endocannabinoid system (ECS) in intestinal disease

Clinical condition AEA PEA FAAH CB1 CB2 Ref.

Ileitis Mouse + = = + + [54, 74]

Coeliac-like atrophy Rat + + nd nd nd [48]

Colitis Mouse +/� nd +/� nd nd [82]

IBD Human +/� * +/= +/� + [24,62]

Diverticulitis Human + = nd = nd [75]

FD Human nd nd nd +/* nd [85]

IBS Human nd * nd * + [105]

NAFLD/NASH Human + nd nd + * [116, 117, 120, 121]

+: increase; �: decrease; =: no significant change; nd: not determined; +/�: conflicting results; *: indirect evidence from administration of ago-
nists/antagonists. IBD: inflammatory bowel disease; FD: functional dyspepsia; IBS: irritable bowel syndrome; NAFLD: non-alcoholic fatty liver
disease; NASH: non-alcoholic steatohepatitis.

710 ª 2017 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.



manipulation of ECS signalling pathway a promising strategy in FD
treatment.

The endocannabinoid system in irritable bowel
syndrome

Although the pathophysiology of IBS is still not completely under-
stood, gut motility impairment, visceral hyperalgesia, low-grade
inflammation and gut–brain axis alterations have all been associated
with symptoms onset [93]; hence, the ECS may represent a new ther-
apeutic target. As ECs are known to decrease GI motility [94, 95],
dronabinol, a derivative of THC, has been tested in patients affected
by diarrhoea-predominant IBS (IBS-D) showing variable results. It
has been shown that this compound was effective in decreasing the
colonic transit but not colonic sensitivity, and this effect was limited
to those patients carrying CB1 receptor polymorphism rs806378 [96,
97]. Moreover, as the activation of CB1 may reduce GI transit, the use
of its antagonist may be used to increase stool frequency in constipa-
tion-predominant IBS (IBS-C). Actually, a selective CB1 antagonist,
namely rimonabant (SR141716A), was able to increase colonic motil-
ity in mice [61]. Interestingly, also the inhibition of the 2-AG synthe-
sizer DAGL using orlistat was found to normalize stool frequency in a
mouse model of chronic constipation, without affecting basal
motility [98]. In addition, several lines of evidence suggested that the
increase in CB1 activity might lead to a reduction in visceral sensitivity
[66, 99–101]. Esfandyari et al. have tested the efficacy of dronabinol
in visceral sensitivity in a randomized, double-blind, placebo-con-
trolled trial showing its ability to increase colonic compliance and
relaxation in vivo [90]. However, a further study failed to find signifi-
cant difference in terms of rectal compliance between dronabinol and
placebo [97]. This discrepancy may be due to a different expression of
CB1 in colon and rectum. Finally, several studies revealed that the ECS
also participates in immune response, mainly reducing the production
of inflammatory cytokines. Given the evidence for a role of low-grade
inflammation in IBS, ECs may also improve IBS symptoms by
decreasing the inflammatory response [102–104]. All these lines of
evidence confirm that the ECS may represent a new therapeutic
target in IBS; however, the risk of adverse effect still limits the
use of ECs in treating FGIDs. Therefore, EC-like compounds able
to modulate ECS signalling with a good safety profile and, more
importantly, without central side effects appear as promising can-
didates in IBS treatment. Recently, a multi-centre randomized,
double-blind, placebo-controlled study has shown the efficacy of
orally administered PEA in decreasing the pain severity in
patients with IBS. The authors found a significantly increased
expression of mast cells and CB2 in IBS, while the levels of OEA
were significantly reduced. Furthermore, orally administered PEA
significantly improved the pain severity in these patients; how-
ever, the authors concluded that it was less obvious whether this
effect was dependent on the ECS-induced modulation of visceral
hyperalgesia or on mast cell stabilization; hence, further studies
evaluating the relation between ECs, inflammation and IBS are
needed [105].

The endocannabinoid system in inflammatory
bowel disease

The lines of evidence showing the involvement of ECs in the regu-
lation of inflammatory and immune response in the digestive tract
inevitably promoted research on the role of ECs in IBD. The first
evidence came from CB1 and CB2 knockout mice that showed a
higher susceptibility to chemically induced colitis, suggesting that
ECs play a key protective role against chronic inflammation [81,
106]. Moreover, in vitro studies showed that AEA and other CB1
agonists promote wound closure in human colonic epithelium and
hence might improve mucosal healing in patients with IBD [22].
Furthermore, in vitro experiments showed that anandamide and 2-
AG increased intestinal permeability when apically administered on
Caco-2 cells, and an in vivo study in obese mice, a model of leaky
gut, showed that the CB1 antagonist rimonabant was able to
reduce plasmatic LPS level, confirming the role of ECs in regulat-
ing gut permeability [107–109]. Interestingly, further studies have
revealed that while CB1 mainly mediates the effects of ECs in a
physiological setting, CB2 seems to assume a prevalent role dur-
ing inflammatory process. Indeed, immunohistochemical studies
showed that during inflammatory flares, the expression of CB2,
but not of CB1, is modified and amplified [24, 62]. This evidence
is very intriguing as CB2 agonists may represent a new therapeu-
tic strategy in IBD, acting directly and specifically on inflamed tis-
sue, thus reducing central adverse effects. Finally, a protective
effect of PEA has been demonstrated in human biopsies from
patients with active UC, suggesting that exogenous administration
of EC-like amides may improve mucosal healing in patients with
IBD [51]. As NAEs are already available for treating neuropathic
pain, showing a good efficacy and safety profile, further clinical
trials to evaluate the therapeutic role of these compounds are
clearly required.

The endocannabinoid system in liver disease

Liver plays a major role in human homoeostasis with numerous
functions, including regulation of lipid and carbohydrate metabo-
lism, plasma protein synthesis, hormone production and detoxifi-
cation. The emerging role of ECs in homoeostasis and lipid
metabolism led several authors to investigate the interactions
between the ECS and liver functions in normal and pathological
conditions. The cannabinoid receptors are widely distributed on
both hepatocytes and cholangiocytes, as on Kupffer and stellate
cells, and their expression is modified during liver injury [110–
113]. In particular, it was found that the ECS is involved in hep-
atic haemodynamic, cellular regeneration, liver fibrosis and lipid
metabolism. As known, liver haemodynamic dysregulation plays a
central role in cirrhosis, indeed portal hypertension and systemic
vasodilation are involved in all major cirrhotic complications, such
as ascites, variceal bleeding, liver-related cardiomyopathy and
increased risk of cardiovascular events [114, 115]. Remarkably,
the hypotensive effects of ECs, mainly mediated via CB1 activation,
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have been associated with cirrhosis-induced vasodilation, and
increased levels of AEA have been found in peripheral blood of
patients with cirrhosis [116, 117]. In rodent models of cirrhosis,
the administration of CB1 antagonist was found to decrease
ascites and ameliorate sodium balance, and CB1 was shown to
contribute to cardiac contractility alterations related to liver car-
diomyopathy, suggesting that CB1 antagonists might be used to
improve cardiovascular activity in cirrhosis [118, 119]. ECs have
also been associated with fibrosis progression in HCV-infected
patients, suggesting a profibrotic activity of ECs. Indeed, CB1
stimulation promotes the activity of myofibroblasts and stellate
cells, likely via an increased TGF-b production [120, 121]. On the
contrary, CB2 activation seems to play a protective role against
fibrosis, promoting regeneration of liver cells after acute injury.
Indeed, selective CB2 agonists have been found to slow fibrosis in
a rat model of cirrhosis, and CB2�/� knockout mice are more sen-
sitive to acute liver injury, showing a low regenerative response
[122, 123]. In summary, although ECs may worse cirrhosis pro-
gression and complications mainly via CB1 activation, specific CB2
agonists might slow liver fibrotic evolution.

Endocannabinoids in non-alcoholic fatty liver disease

The emblematic role of ECS in metabolic syndrome and obesity is
already known; indeed, the CB1 antagonist rimonabant has been pro-
posed in obesity treatment due to its beneficial effects on both body-
weight and lipid profile. However, the neuropsychiatric adverse effects
have limited the clinical use of this compound. Non-alcoholic fatty liver
disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are strongly
associated with metabolic syndrome, representing the ‘liver response’
to obesity, dyslipidaemia and altered carbohydrate metabolism. As ECs
play a key role in liver lipid metabolism, a great interest is raised on
effects of ECs on fatty liver diseases [124]. Cannabinoid receptors are
involved in hepatic lipogenesis, inducing specific transcriptional factors,
such as SREBPs (sterol regulatory element-binding proteins). Indeed in

a mouse model with a selective deletion of hepatic CB1, a significant
reduction in lipid storage during high-fat diet has been observed [125].
Intriguingly, also lipid profile and insulin resistance were improved;
however, no effects on BMI have been registered in this murine model,
suggesting that other mechanisms are involved in bodyweight regula-
tion [125]. Altogether, these lines of evidence support the role of ECs in
hepatic steatosis and fibrotic progression, opening the possibility of
new therapeutic options in treatment of NAFLD and NASH; in particular,
the efficacy and safety of the CB1 antagonist rimonabant are currently
under investigation in a phase III clinical trial for treatment of NASH.

Conclusions

In the last years, accumulating lines of evidence have pointed out
the homoeostatic role of the ECS in regulating intestinal motility,
sensitivity and inflammation. An impairment of ECS signalling has
been suggested to play a key role in several gastrointestinal disor-
ders, such as FGIDs, IBDs and liver diseases. Even if conflicting
results have been produced in vivo, convincing evidence suggests
that pharmacological manipulation of this multifaceted system
might provide new therapeutic options in treating GI diseases. The
complexity and the redundancy of ECS make the manipulation of
this complex system an appealing target for therapeutic purposes,
although the possibility of central side effects strongly limited the
current use of these compounds in clinical settings. Using periph-
erally acting drugs with no affinity on central cannabinoid recep-
tors is an intriguing strategy, and as PEA formulations are already
available for the treatment of chronic pain, further in vivo studies
to test the clinical efficacy of these compounds are strongly
warranted.
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