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ABSTRACT: Wireless sensor networks can facilitate the acquisition of useful data for the 

assessment and retrofitting of existing structures and infrastructures. In this perspective, recent 

studies have presented numerical and experimental results about self-powered wireless nodes 

for structural monitoring applications in the event of earthquake, wherein the energy is 

scavenged from seismic accelerations. A general computational approach for the analysis and 

design of energy harvesters under seismic loading, however, has not yet been presented. 

Therefore, this paper proposes a rational method that relies on the random vibrations theory for 

the electromechanical analysis of piezoelectric energy harvesters under seismic ground motion. 

In doing so, the ground acceleration is simulated by means of the Clough-Penzien filter. The 

considered piezoelectric harvester is a cantilever bimorph modeled as Euler-Bernoulli beam 

with concentrated mass at the free-end, and its global behavior is approximated by the dynamic 

response of the fundamental vibration mode only (which is tuned with the dominant frequency 

of the site soil). Once the Lyapunov equation of the coupled electromechanical problem has 

been formulated, mean and standard deviation of the generated electric energy are calculated. 

Numerical results for a cantilever bimorph which piezoelectric layers made of electrospun 

PVDF nanofibers are discussed in order to understand issues and perspectives about the use of 

wireless sensor nodes powered by earthquakes. A smart monitoring strategy for the 

experimental assessment of structures in areas struck by seismic events is finally illustrated. 

 

 

1 INTRODUCTION 

Efficient power consumption, management and generation are essential in order to facilitate the 

large-scale implementation of wireless arrays of sensors for structural monitoring applications. 

In this context, common solutions for producing the required electric power are based on solar 

panels and small wind turbines, but the generation of energy from alternative sources is 

nowadays a very popular research topic. Within this framework, harnessing the energy from 

vibrations (see for instance Maruccio et al., 2016) is probably the most promising approach. 

However, vibration-powered wireless sensor nodes are not yet a mature technology and further 

studies are still needed. To this end, the random vibrations theory can be a powerful 

methodology to analyze the electromechanical response of energy harvesters under uncertain 



  

 

  

vibrations. For instance, a single-degree-of-freedom (SDOF) electromechanical system under 

stationary white Gaussian noise is considered in (Adhikari et al., 2009). The case of non-

stationary random vibrations has been addressed recently, see for instance (Yoon and Youn, 

2014). Amongst the potential practical applications of energy harvesting devices under non-

stationary random vibrations, those regarding seismic events have received several attentions 

recently. To date, existing scientific literature is basically focused on the use of the energy 

harvested from seismic vibrations in order to supply the power required for driving a wireless 

node in the event of earthquake, see for instance (Elvin et al., 2006; Tomicek et al., 2013; Cheng 

et al., 2013). So doing, a designated wireless node harvests and accumulates the energy from 

earthquake-induced vibrations in its capacitors and, once sufficient energy is obtained, it turns 

on microprocessor and transceiver to perform the scheduled operations (Cheng et al., 2013). 

Although existing researches provide numerical and experimental evidences about self-powered 

wireless sensor nodes in the event of earthquake, a general computational approach has not yet 

been proposed. Hence, this paper develops a rational methodology based on the random 

vibrations theory for the analysis of piezoelectric energy harvesters under modulated and 

filtered white Gaussian noise. A smart monitoring strategy for the experimental assessment of 

structures in areas struck by seismic events is finally illustrated.  

2 DYNAMIC RESPONSE OF PIEZOELECTRIC ENERGY HARVESTER 

2.1 Stochastic model of the dynamic excitation 

The Clough-Penzien filter is adopted to model the base acceleration (Figure 1a). Thus, the base 

acceleration 
bx  is given as:  

2 22 2b f f f f f f g g g g gx x x x x x           , (1) 

where xg and xf are the solutions of the following coupled stochastic oscillators: 
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under zero initial conditions. Here, ωg, ωf, ξg and ξf are the filter parameters.  

 

Figure 1. Numerical models of a) dynamic loading and b) piezoelectric cantilever bimorph. 



  

 

  

Specifically, ωg and ξg are dominant frequency and damping ratio, respectively. On the other 

hand, ωf and ξf denote the parameters of the filter hindering the low-frequency components. In 

Eq. (2), φ is a time-dependent function that modulates the intensity of the zero-mean white 

Gaussian noise w. 

2.2 Electromechanical model of the piezoelectric energy harvester 

A bimorph energy harvester is considered, made up with series connection of piezoelectric 

layers (Figure 1b). The piezoelectric energy harvester is modeled as a continuous linear elastic 

Euler-Bernoulli beam following (Erturk and Inman, 2009). The electrode pairs on the top and on 

the bottom are assumed to be perfectly conductive and a resistive electrical load  is 

considered in the circuit. Moreover, it is assumed that the dynamic response of the piezoelectric 

bimorph is dominated by its fundamental mode, which will be tuned with the dominant 

frequency of the dynamic excitation ωg (modal excitation condition).  The bimorph is subjected 

to transverse accelerations 
bx  at the base (Figure 1b). Moreover, it is assumed that the tip mass 

Mt can be modeled as a point mass, which implies that its rotary inertia can be neglected. Under 

such assumptions, the equation of motion related to the considered mode is: 

22 bx x x v x       , (3) 

where x is the transverse modal mechanical response along the longitudinal axis η, v is the 

voltage across the resistive load , ξ is the modal mechanical damping ratio, ω is the 

undamped natural frequency of the fundamental mode in short circuit conditions (i.e., 0 ) 

and Λ is the modal participation factor. The parameter χ is the modal electromechanical 

coupling term (Erturk and Inman, 2009). The electric equation for the series connection of the 

piezoelectric layers is: 

2 2
0v v x


   , (4) 

where  and κ are capacitance and modal coupling term, respectively (Erturk and Inman, 

2009).  

3 STOCHASTIC ANALYSIS OF THE OUTPUT ENERGY 

3.1 Covariance analysis 

By introducing the state-space vector  
T

g f g fx x x v x x xz , the motion equation 

of the cantilever bimorph can be rearranged as  z Az f . The time-dependent system 

covariance matrix R of the state-space vector z is calculated by solving the Lyapunov equation 

in non-stationary condition: 

T  AR RA B R . (5) 

All matrices in Eq. (5) have size n×n, where n is the length of the state-space vector z (namely, 

n=7). The matrix B has all zero elements except B6,6=2πS0φ
2
, where S0 is the constant power 

spectral density function. Equation (5) is solved numerically in order to calculate the covariance 

matrix R. In doing so, the time window [0,T] is first divided into equal intervals by adopting a 

constant time step ΔT between two consecutive instants (i–1) and i, with i≥1. A linear variation 

of R  within each time interval is considered (the initial conditions are assumed equal to zero).  



  

 

  

3.2 Statistical moments of the harvested energy 

Following (Elvin et al., 2006; Maruccio et al., 2016), the electrical energy is herein considered 

instead of the electrical power because the loading event lasts a finite time length. By making 

explicit the time dependence through the introduction of the time variable t, the energy 

harvested within the time window [0,T] is calculated as follows (Elvin et al., 2006; Adhikari et 

al., 2009): 

 2

0

1
d

T

v t t  . (6) 

The first-order moment of the harvested energy is: 
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where E[·] is the expected value operator and 
2

v  indicates the variance of the output voltage. 

The second-order statistical moment is: 
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A sequence of Nt time instants ti is considered to evaluate Eq. (8). In fact, it can be demonstrated 

that Eq. (8) is well approximated using the following semi-analytical result: 
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where Σv indicates the autocorrelation function of the output voltage. Moreover, γi=1/2 if i=1 or 

i=Nt while γi=1 otherwise. Once the second-order statistical moment is determined, the 

variability of the harvested energy can be measured by means of the coefficient of variation: 

     
22       . (10) 

4 NUMERICAL ANALYSIS 

4.1 Numerical data 

Numerical values adopted for the filter parameters are ωg=23 rad/s, ξg=0.43, ωf=2.80 rad/s and 

ξf=0.97. The parameter S0 is given as function of the peak ground acceleration (PGA) 
max

bx  

following (Liu et al., 2016). The modulating function is: 
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where [0,tA] is the rise time, [tA,tB] is the strong motion phase whereas the decay time starts at 

t=tB (Jennings et al., 1969). The values proposed in (Zaharia and Taucer, 2008) for high-

magnitude earthquakes are considered as reference data for tA, tB and and T. Therefore, it is 

assumed tA=4 s, T = 50 s and (tB–tA)[10,25] s. The parameter μ is taken equal to 0.4 while PGA 

values between 0.20g and 0.40g are assumed. The time step for the numerical analysis is 

ΔT=T/500. The energy harvester tested by Elvin et al. (2006) is considered, with minor 

modifications regarding the value of Mt and the adopted polymeric piezoelectric material. 

Materials data used in this numerical study are listed in Table 1. The substructure is made of 

mylar while the piezoelectric layers are made of electrospun PVDF nanofibers (Persano et al., 

2013).  

Table 1. Electromechanical data (ε0: permittivity of the free space) 

Parameter Piezoelectric layers Substructure 

Mass density [kg/m
3
] 1500 1390 

Young's modulus [GPa] 1.8 3.79 

Piezoelectric constant d31 [pm/V] 32 - 

Permittivity ε33
T
 [F/m] 9ε0 - 

Length and width of the cantilever are equal to 31.7 mm and 16 mm, respectively. The 

thicknesses of substructure and piezoelectric layers are equal to 172 μm and 28 μm, 

respectively. The value of  is 1×10
7
 Ω. Moreover, it is assumed ξ=0.03. The tip mass is 

defined in such a way that ω=ωg, thus obtaining Mt=7.425 g. In order to preserve the integrity of 

the device, it is also required that 
 

 
0,

3max 3
t T

xσ  mm. 

4.2 Results 

Standard deviation values of tip displacement and output voltage are shown in Figure 2 for a 

PGA equal to 0.40g and duration of the strong motion phase equal to 25 s.  

 

Figure 2. Standard deviation values of tip displacement and output voltage for a PGA equal to 0.40g and a 
duration of the strong motion phase equal to 25 s. 



  

 

  

Mean and coefficient of variation of the generated energy for different values of PGA and 

strong motion phase duration are given in Figure 3.  

 

Figure 3. Mean and coefficient of variation of the generated energy for different values of PGA and 
strong motion phase duration (solid line: (tB–tA) = 25 s, dashed line: (tB–tA) = 20 s, dash-dot line: (tB–tA) = 
15 s, dotted line: (tB–tA) = 10 s).  

The mean value of the energy generated by the considered piezoelectric device  is ~10
–1

 mJ. 

Besides the short duration of the loading event, Figure 3 demonstrates that another important 

issue for earthquake-powered sensors is the rather large uncertainty level due to the intrinsic 

randomness of the seismic events (the highest coefficient of variation in this case-study is close 

to 35%). Nonetheless, Figure 3 also highlights some positive aspects. First, the uncertainty level 

of the generated energy does not depend on the PGA value. Moreover, the larger is the strong 

motion phase duration, the lower is the uncertainty level of the generated energy. The 

perspectives for earthquake-powered sensors can be inferred from these results taking into 

account the typical power consumptions. According to Elvin et al. (2006), a minimum energy 

equal to 0.05 mJ is required for a significant data transmission (0.01 mJ for circuit start-up, 0.02 

mJ for data transmission, 0.01 mJ for sensor operation, and 0.01 mJ for microcontroller energy). 

In average, therefore, the considered harvester might be able to generate the energy required for 

a significant data transmission when the PGA is larger than 0.20g and the strong motion phase 

duration is larger than 10 s. Because of the uncertainty level, however, the minimum required 

energy might be not generated in some cases adopting this device. The use of an array of 

harvesters is a simple way to increment the chances of generating a sufficient amount of energy 

from an earthquake (Tomicek et al., 2013).  

5 ENERGY HARVESTING-BASED WIRELESS SENSING IN SEISMIC AREAS 

A possible implementation of earthquake-powered wireless sensor nodes for post-seismic 

assessment of structures and emergency management is devised in Figure 4. Generally, the 

urban areas comprise strategic and ordinary structures. Strategic structures are those structures 

that are essential for post-seismic emergency management. Because of their importance, these 

structures should be equipped with continuous dynamic monitoring systems and backup energy 

generators. Hence, the aftershock assessment based on experimental data should be always 



  

 

  

ensured for strategic structures. It is highlighted that the sensor networks of strategic structures 

can be designed using standard technologies.    

 

Figure 4 Smart monitoring strategy for post-seismic assessment and emergency management. 

On the other hand, ordinary structures cover the largest part of urban areas, the most 

representative examples being low-rise residential buildings. The lack of a continuous 

monitoring system on ordinary buildings complicates the post-seismic assessment of largest part 

of the built environment and makes difficult the organization of emergency operations. While 

the installation of a continuous dynamic monitoring system for each ordinary structure is too 

prohibitive and unrealistic, the placement of one or few earthquake-powered wireless nodes 

would be a more feasible and cheap option. Each smart wireless node should be designed to 

perform a single (static) measurement after an earthquake, so as to consume a minimum amount 

of electrical energy. For instance, such measure can be the residual displacement because it is 

able to provide a preliminary overview about the extent of the damage due to an earthquake and 

can support informed decisions about usability and repairability (Yazgan and Dazio, 2011). 

Moreover, information about the spatial distribution of damaged buildings can facilitate the 

preliminary identification of roads that can be inaccessible for emergency operations because of 

the presence of debris. Hence, the proposed smart monitoring strategy works as follows. First, 

the measurements performed by the earthquake-powered sensor nodes are transmitted to the 

nearest collecting point by means of the wireless technology after the seismic event. Then, the 

data collected from a cluster of buildings are transmitted to support post-seismic assessment and 

emergency management. Candidate collecting points can be the nearest strategic buildings or 

the closest utility poles.  



  

 

  

6 CONCLUSIONS 

This paper has proposed a computational approach based on the random vibrations theory for 

the analysis of piezoelectric energy harvesters under modulated and filtered white Gaussian 

noise. Numerical results for seismic energy harvesting applications are discussed and a possible 

strategy to enhance the resilience of urban areas by means of smart wireless sensor nodes is 

illustrated. This contribution should be considered as a first step towards the understanding of 

the feasibility of earthquake-powered sensing systems, and a long deal of researches is still 

needed in this regard. Within this framework, the authors are also exploring alternative 

technological solutions to generate a larger amount of energy.     
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