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The characterization of quantum features in large Hilbert spaces is a crucial requirement for testing
quantum protocols. In the continuous variable encoding, quantum homodyne tomography requires an
amount of measurement that increases exponentially with the number of involved modes, which practically
makes the protocol intractable even with few modes. Here, we introduce a new technique, based on a
machine learning protocol with artificial neural networks, that allows us to directly detect negativity of the
Wigner function for multimode quantum states. We test the procedure on a whole class of numerically
simulated multimode quantum states for which the Wigner function is known analytically. We demonstrate
that the method is fast, accurate, and more robust than conventional methods when limited amounts of data
are available. Moreover, the method is applied to an experimental multimode quantum state, for which an
additional test of resilience to losses is carried out.
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The ability to engineer large and scalable multiparty
quantum states is at the core of future quantum techno-
logies. In particular, large entangled structures are essential
for measurement-based quantum computing protocols
[1,2]. Multimode quantum optics represents a powerful
platform for generating large entangled networks in the
continuous variables (CV) regime. Over the last decade the
generation of up to thousands of multimode entangled
states has been experimentally demonstrated [3–7] in
optical parametric processes. These quantum states, which
are characterized by Gaussian statistics, are necessary but
not sufficient alone to perform quantum computing
protocols, as they can be efficiently simulated via classical
resources. The implementation of unconditional non-
Gaussian operations is a much more demanding task, as
it requires strong nonlinear interactions. In the perspective
of investigating intermediate-scale systems in the near term,
de-Gaussification via heralded photon subtraction or addi-
tion operations has been demonstrated [8–22]. If the
generation of non-Gaussian multimode entangled states
is within reach of state-of-the-art experimental platforms,
the full characterization of their quantum state remains a
hard task.
In the CV picture Gaussian quantum states are com-

pletely characterized by the mean values of two conjugated
quadratures per mode, plus their covariance matrix. Beyond
Gaussian statistics, the complete quantum description of
the optical system in terms of the density matrix or its
equivalent Wigner representation, may be recovered via
quantum homodyne tomography. In usual maximum
likelihood (MaxLik) procedures [23,24] good accuracy in
the state reconstruction requires a large number of

measurements, which scales exponentially with the number
of involved optical modes. This implies that the setup
should be stable until the whole set of measurements is
taken, and that the algorithm for reconstructing the state
becomes computationally too heavy.
A particular feature that we are interested to recover for

non-Gaussian quantum states is the negativity of their
Wigner representation, as it is accounted to be a pivotal
quantum resource [25–27]. This can be tested after its
tomographic reconstruction via the usual MaxLik procedure,
but this is not a viable option in the multimode scenario.
Moreover, when interested in a particular quantum feature,
like the Wigner negativity, and not in the complete knowl-
edge of the Wigner function, it is worth finding a more
direct approach to link the measurements and the specific
property we are interested in.
In this Letter, we discuss an alternative approach, easily

scalable with the number of optical modes of the system,
that aims to specifically identify the presence of Wigner
negativity, given a set of quadrature data. Our method relies
on machine learning algorithms [28], which have been
demonstrated to be particularly powerful for characteriza-
tion and optimization of quantum systems in different
contexts [29–39]. In particular, artificial neural networks
(NNs) already offer an alternative and efficient strategy to
represent quantum many-body states, enabling us to per-
form quantum state tomography for high dimensional states
from a limited number of experimental data [40,41]. Most
of the protocols have been implemented in a discrete
variables framework, one approach for quantum homodyne
tomography has been proposed [42], and experimentally
tested in the single-mode configuration. Our algorithm
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allows, in a supervised learning approach, the discrimina-
tion between multimode optical states presenting negative
or positive Wigner function and it is the first application of
a machine learning algorithm to CV multimode optical
states.
Compared to standard quantum homodyne tomography

protocols, our method is more robust when limited data are
available. Furthermore, it allows us to identify the Wigner
negativity for states up to ten modes, a task too hard to
accomplish with current MaxLik procedures. In this Letter,
we first test the method with simulated data and then we
apply it to classify the Wigner negativity of experimental
quantum states.
Testing the negativity of the Wigner function, namely

study if the function is either always positive or shows
some negative regions, can be seen as a binary classifica-
tion problem [43]. This is a very common use case of
machine learning algorithms, which are daily used to solve
tasks like email spam filtering, document categorization, as
well as speech, image, and handwriting recognition. The
use of NNs is in fact suitable in problems where the
outcomes of the observed variables span in a large space.
This is the case for the measurement of optical quadratures
whose continuous values span, in principle, over an infinite
phase space. Indeed, thanks to the network’s ability to
dynamically create complex prediction functions, there is
no need for modeling [44–47]. Also, in standard tomo-
graphic methods a considerable number of data have to be
collected for every new instance to be classified and the
algorithm is run with no memory of previous samples. On
the contrary in the NN approach, after a first stage of
training (learning) on simulated quadrature measurements
of hundreds of different states, the network is able to give a
fast classification of new samples. The performance of this
new method is then compared to the Wigner negativities
that are found when applying the MaxLik protocol to the
same quadrature data for few-mode states.
The success of the NN approach in classifying states

with Wigner negativity relies on our ability to generate
training data, i.e., to simulate quadrature outcomes of
various states. Therefore, we limit ourselves to the actual
operations that are at hand in the experiments of interest:
the ability to prepare an arbitrary m-mode Gaussian state,
the ability to act with a non-Gaussian operation on these
states through either photon addition or photon subtraction,
and the occurrence of losses. To generate the quadrature
data, we use the Wigner function that can be obtained
analytically [48–50]. We simulate squeezed states over
m ¼ 3, 5, or 10 modes (with randomly chosen squeezing
between 0 and 8 dB for each mode), we randomly choose
whether or not to add or subtract a photon, and we add a
randomly chosen percentage of losses and thermal noise
(see Supplemental Material for details [51]). We generate
4000 of these states, with approximately the same number
of positive and negative Wigner functions. For each we

choose a random mode basis in which we perform
k ¼ 1000 repetitions of joint quadrature measurements.
Each of them contains three detectors outcome per mode
associated with three different phases, chosen randomly
within three fixed phase intervals. This leads to a total of
3000 ×m quadrature measurements per state.
Because the training data are simulated starting from an

analytical Wigner function, we know its minimal value
Wmin. This value can be converted to a binary classifier: the
target outputW0 is set toW0 ¼ 0 ifWmin ≥ C, whileW0 ¼
1 if Wmin < C. The constant C < 0 represents a cutoff
allowing us to exclude limiting cases where the Wigner
negativity is too close to zero to be considered significant or
to look specifically for highly negative Wigner functions.
Thus, for every simulated measurement we add the label
W0 to highlight whether or not the data correspond to a
nonpositive Wigner function.
Feeding in the complete set of joint homodyne detection

events would require a NN of thousands of nodes. Instead,
in order to pass the information contained in the quadrature
distribution to the input layer, we binned the data for each
individual mode and choice of phase, and evaluate the
occurrence frequencies in each bin, normalized to the total
number of measurements. In practice, we process the data
with five bins relative to the three different phase values for
each mode, which corresponds to having an input layer
with only 15 ×m nodes. We feed the network with a matrix
of all combined training data with 15 ×m columns and as
many rows as the different states that we use for the
training. With this method of data processing, we do not
require joint quadrature measurements. The correlations
between the different modes are effectively integrated out,
thus the method scales linearly with the number of modes
rather than exponentially. This also makes the generation of
training data less demanding.
To identify the Wigner negativity of an m-mode optical

state we use a feed-forward NN with three hidden layers,
with, respectively, 30, 20, and 10 nodes, all activated by a
rectified linear unit function. This architecture of the NN
has been selected among the different tested configurations
as the one yielding the least means squared error on the
validation set. The output layer consists of one node
activated by sigmoid function. The tuning of all the
hyperparameters of the network, namely, all those para-
meters that are set before the learning process begins, is
done using a grid search in order to determine the optimal
values for a given model. The training is performed
minimizing the loss function, that in our case is a simple
mean squared error between the target value W0 and the
network output. The latter, that corresponds to the prob-
ability of having a negative minimum value of the Wigner
function, is then used to classify the state as negative if it
exceeds the threshold Pth ¼ 50%.
As is customary in evaluating the NN performance, we

use a cross-validation procedure, in which we split the data
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into two parts—the training set (80% of total data), and the
validation set (20% of total data). The training set is used to
train the model, while the validation set is used to evaluate
the model’s performance on a different sample of data and
it is used to stop the network training as soon as the loss
function evaluated for this set stops decreasing in a
sufficiently long interval, in order to avoid overfitting.
This is referred to as early stopping.
In Fig. 1 we show how the model performs, after it has

been trained, on the independent validation set. To this
purpose, we evaluate the NN accuracy defined as the
fraction of instances in the validation set which are
correctly identified. The correct identification of states
with a negative Wigner function happens with good
accuracy for all the tested cases. The accuracy for the
m ¼ 3 modes case is particularly high, exceeding 95% of
correct identifications, however, even for the m ¼ 10
modes states, our method correctly identifies more
than 85% of the states in the validation set. We found
that the discrimination is optimized using the cutoff
C ¼ −0.1=ð2πÞm, where −1=ð2πÞm is the maximal neg-
ativity attained by an m-mode state. We refer the reader to
the Supplemental Material [51] for further details on the
algorithm and its appraisal.
We remark that even starting with the same batch of

training data, the optimization of the NN will end up in
slightly different configurations, since the weights of the

connections are randomly initialized. In addition, there is
an element of potential variability in using different training
sets taken from the same class of states. However, we have
checked that this level of accuracy is reproducible and
independent on the choice of the training set.
We investigated the comparison between the NN per-

formance in identifying the Wigner negativity with the one
of the standard state tomography, based on the MaxLik

algorithm. This is carried out only for m ¼ 3, for which
this procedure is computationally feasible. Even with a
limited amount of data, this method will provide a density
matrix ρ� for the state, represented in the Fock basis. It is
reasonable to assume that ρ� already manifests Wigner
negativity long before the full tomography has converged.
When we limit ourselves to photon-added or -subtracted
Gaussian states that do not have any initial mean field, it
can be proven that the Wigner function achieves its most
negative value in the origin of phase space [48]. This value
can be calculated [54] via the parity operator:

Wmin ¼
XNph

n1;n2;n3¼0

ð−1Þn1þn2þn3

8π3
hn1;n2;n3jρ�jn1;n2;n3i; ð1Þ

where jn1; n2; n3i denotes the state of the three-mode Fock
basis, and Nph is the maximal photon number that is chosen
as a trade-off between accuracy and computing time for the
MaxLik procedure. Here, we set Nph ¼ 5 and run 15
iterations of the algorithm. In Fig. 2, the performance of
the NN approach is compared to that of MaxLik for the same
number of measurements k ¼ 1000; 100; 30; 10, on 100
different states. The uncertainties correspond to the vari-
ability observed over 6 different batches. As expected, the
MaxLik estimation improves its performance with the
number of measurements and its variability improves as
well. The adoption of NN results in a twofold advantage
when a reduced number of measurements is available:

FIG. 1. NN performances on the validation set. Top: accuracy
of the model as a function of the epoch, i.e., each iteration of the
training. Bottom: loss function as a function of the epoch. In both
panels, the orange, red and cyan curves refer, respectively, to the
performances on m ¼ 3, 5, and 10 mode states.

FIG. 2. Comparison between MaxLik and NN performance as a
function of the input data size. In both approaches, this is
quantified as the fraction of states correctly classified. Error bars
reflect the variability over six repetitions.
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the value of the performance is more robust and also its
variability remains more confined, with an improvement of
a factor of about 40% in standard deviation. We propose
that the same method can also be applied with similar
success on actual experimental data. The key ability is then
to know a sensible approximation of the main character-
istics of the experimental setup such as losses, the maxi-
mum level of squeezing, and the noise present in the state.
By these, it becomes possible to train the NN using
simulated data, and still obtain good accuracy in identifying
the interesting feature of the experimental state.
We test these ideas with an experimental single-photon

subtracted two-mode entangled state whose generation has
been reported in [55]. The initial state before subtraction
shows the entanglement correlations of an EPR state [56]
between quadratures of two given frequency modes. The
single-photon subtraction takes place on one of the two-
given frequency modes, so that, in case of high purity and
low losses, the first mode is left in a vacuum state while the
second mode is left in a state with a negative Wigner
function (see Supplemental Material [51] for more details).
We train the network using 1000 simulated quadrature
measurements, calibrated with the known imperfections of
our experimental setup, namely thermal noise equal to 1.11
(directly linked with the purity of the initial Gaussian state),
a factor of 12% of losses, and a maximum level of
squeezing of 3 dB. The data are binned as before in order
to build the input to the NN. Using the actual experimental
data we can compute the complete Wigner function and the
density matrix of the state using a maximal photon number
of only Nph ¼ 3, giving Wmin ¼ −0.03 (see Supplemental
Material [51]). We now take 15 000 experimental quad-
ratures, arranged in 15 × 2 histograms, and we feed them to
the NN. Our algorithm is able to detect the negativity
present in the experimental state. Since imperfections limit
the minimum of the Wigner function, no cutoff, i.e., C ¼ 0,
is used in this case.
The characteristics of the experiment can be obtained

within a certain accuracy and precision. Misrepresentation
of the experimental parameters may lead to a failure of the
NN classification. On the other hand, these networks are
known to be able to work reliably even in the presence of
noise. This suggests that discrepancies between actual and
simulation parameters can be tolerated.
We gathered evidence of such resilience by testing the

consistency of the network as we introduce extra losses in
the experimental data. We monitored the transition to a
positive minimum value of the Wigner function as the
losses increase. This can be simulated replacing a fraction
of the quadrature data with data sampled from the vacuum
state. We used the MaxLik method as a benchmark: it gives
the results in Fig. 3, that shows Wmin as a function of the
introduced losses. Each point represents the average over
100 sets of 1000 quadratures, extracted at random from the
same state. The error bar is the standard deviation on these

replicas. As expected the negativity decreases from the
initial value, reaching positive values above ∼5%.
We studied the same problem with the use of the NN

algorithm. The training is operated generating the training
data as before. Since we now underestimate the level of
losses, the NN will not be optimized for this task, but we
can rely on some robustness on its part. However, this
property will strongly depend on the actual configuration
reached with the training, hence on the random initial
conditions. This implies that the test should be run over
many instances of the training, so that one can assess the
typical behavior of the NN.
For each value of the loss, we carry out our analysis by

feeding quadrature binned histograms derived from 100
different repetitions of the lossy state to the NN (the same
one as for MaxLik benchmark). We then record the fraction
of states fp withWmin ≥ 0, and fn withWmin < 0 out of the
100 attempts. To account for the variability of the training,

FIG. 3. Effect of extra losses. Top: ð2πÞ2Wmin for different
percentages of introduced losses as estimated by the MaxLik
algorithm. Error bars are computed over 100 repetitions. Bottom:
Percentage of training sets identifying a negative state (blue
circles) or a positive state (orange triangles) for at least 95 out of
100 inputs. Error bars are computed over 50 runs of the
whole process. In both panels diamonds correspond to the
experimental state, the circles (triangles) refer to states with
Wmin < 0 (Wmin ≥ 0).
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we feed the same input data to 30 differently trained NNs,
and register the corresponding values of fp and fn. In
Fig. 3, we report the percentage of training instances for
which fn ≥ 0.95, and the same for fp ≥ 0.95. These
percentages do not sum to one, due to the presence of
inconclusive results (see Supplemental Material [51]). The
NN method is thus able to identify reliably state with a
negative Wigner function even when the actual amount of
loss does not correspond exactly to that in the simulated
data used for its training. Negativity is witnessed up to
approximately 5%: remarkably, this is the threshold value
at which the MaxLik shows the transition to a positive
Wigner function.
In conclusion, we have found that machine learning

techniques can provide meaningful information on the
Wigner negativity even when limited data are available.
The routine adoption of this method on large quantum

cluster states is conditioned on the reliability of the data
used for the training. We have shown that there exist
specific instances in which the NN enjoys a given degree of
flexibility. The described method relies in fact on numerical
simulations, since no encompassing analytical description
is possible. Investigation of more generic states is the scope
of future works, as the use of NN appears as a promising
avenue for studying the behavior of large quantum states
for which state tomography becomes impractical. In
particular, NN seem to be particularly useful to directly
test specific quantum features of large multipartite systems
without requiring the full reconstruction of the quantum
states. This unleashes the potential of NN in quantum
enabled technologies.
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