
A Lipschitzian Global Optimization Algorithm and
Machine Learning for Fluid Dynamics

Department of Computer, Control and Management Engineering

PhD degree in Operations Research - XXXIII Cycle

Candidate

Danny D’Agostino
ID number 1247958

Thesis Advisor

Prof. Stefano Lucidi

Co-Advisor

Dr. Matteo Diez

A thesis submitted in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Operations Research

January 2021

Thesis defended on 19 May 2021
in front of a Board of Examiners composed by:

Prof. Fabio Tardella (chairman)
Prof. Giuseppe Baselli
Prof. Stefano Panzieri

A Lipschitzian Global Optimization Algorithm and Machine Learning for Fluid
Dynamics
Ph.D. thesis. Sapienza – University of Rome

© 2021 Danny D’Agostino. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: danny.dagostino@uniroma1.it

mailto:danny.dagostino@uniroma1.it

To Hideo.

v

Abstract

The research conducted and resumed in this thesis covers two different topics.
In chapter 1, I focused my research on the development of a new Global Op-

timization algorithm informed with an estimate of the Lipschitz constant of the
objective function. Estimation of the Lipschitz constant is obtained using the tools
from the Extreme Value Theory. To extract the information of the local behavior of
the objective function, I proposed a clustering strategy to enlighten the algorithm of
the local Lipschitz constants.

In chapters 2, 3, and 4, I show my research by developing and applying Machine
Learning methodologies to three Fluid Dynamics phenomena of different nature.

Specifically, in chapter 2, I propose a new framework for design space dimen-
sionality reduction for shape optimization based on Probabilistic Linear Latent
Variable models. The new framework performs the classical reduction of the number
of the design variables, which is crucial to speed up the convergence of the opti-
mization process. Furthermore, It provides the uncertainty of the new geometrical
parametrization by introducing a constraint in the optimization problem based on
the Mahalanobis distance.

In chapter 3, my research is concentrated on the extraction and the interpreta-
tion of highly nonlinear turbulent phenomena measured with the Particle Image
Velocimetry technique. Data-driven analysis is carried out for two high Reynolds
number vortices flows namely for a uniform and buoyant jets and 4- and 7-bladed
propeller wakes.

In chapter 4, I focused on the prediction of the ship motion at a high sea state
level. For this application, Deep Learning methods for sequential data such as
Recurrent-type Neural Networks have very desirable properties due to the high non
linearities present inside the system. Besides the model’s predictive performance, the
uncertainty information is retrieved from a Bayesian perspective through Variational
Inference.

vii

Acknowledgments

Firstly, I would like to thank my supervisors, Prof. Stefano Lucidi and Dr. Matteo
Diez, whose support and knowledge were precious in formulating the research questions
and methodology.

I would also like to thank all my colleagues of the Multidisciplinary Analysis and
Optimization group at the Institute of Marine Engineering of the Italian National
Research Council, for their helpful contributions and insightful suggestions during
my journey.

I am also grateful to all my Professors of the Department of Computer, Control
and Management Engineering at the Sapienza University of Rome for allowing me
with their expertise to grow as a research scientist.

Finally, I could not have completed this dissertation without the unconditional
love of my family, friends and my beautiful Nicole...I kindly hold you in my heart.

ix

Contents

1 Lipschitzian Optimization with a Statistical Estimate of the Lips-
chitz Constant 1
1.1 Introduction . 1
1.2 A Brief Introduction to Lipschitzian Optimization 3

1.2.1 Partition Based Strategies for Global Optimization 4
1.3 The DIRECT Algorithm . 6

1.3.1 Potentially Optimal Hyperrectangles 6
1.3.2 Dividing Strategy . 7
1.3.3 Convergences Properties of DIRECT 7
1.3.4 Convergences Properties of DIRECT with an Overestimate of

the Lipschitz Constant . 8
1.4 A Statistical Estimate of the Lipschitz Constant 9

1.4.1 A Note to Extreme Value Theory 9
1.4.2 Lipschitz Constant Estimation through the EVT 11
1.4.3 Multiple Lipschitz Constants Estimates using Clustering . . . 12

1.5 A New Proposed Algorithm . 13
1.6 Numerical Results . 17

1.6.1 Numerical Results on Bi-dimensional Test Functions 17
1.6.2 Numerical Results on the CEC 2014 Benchmark Functions . 18

1.7 Conclusions and Future Work . 19

2 Probabilistic Linear Latent Variable Models for Shape Optimiza-
tion 27
2.1 Introduction . 27
2.2 The Simulation Based Design Optimization Framework 30

2.2.1 The Optimization Problem 30
2.2.2 Shape Parametrization: The Free Form Deformation 30
2.2.3 Physical Solver . 32

2.3 Design Space Dimensionality Reduction for SBDO 32
2.3.1 Dataset Generation . 33
2.3.2 The Principal Component Analysis 33
2.3.3 Optimization in the Latent Space 35
2.3.4 Decoding from the Latent Space 35

2.4 Probabilistic Linear Latent Variable Models 36
2.4.1 Statistical Properties of the Shape Parametrization Method . 36
2.4.2 Factor Analysis . 38

x Contents

2.4.3 Probabilistic Principal Component Analysis 40
2.4.4 Exploiting the Uncertainty in the Optimization Model 42

2.5 Application: Shape Optimization of a Naval Destroyer DTMB 5415 . 44
2.5.1 Design Space Parameterization and Sampling 45
2.5.2 Dimensionality Reduction . 46
2.5.3 Fixing the Threshold for the Mahalanobis Distance 47
2.5.4 Optimization Problem . 48
2.5.5 Hydrodynamic Solver . 49
2.5.6 Numerical Results . 49
2.5.7 Conclusions and Future Works 52

3 Data-driven Analysis of Turbulent Flows 57
3.1 Introduction . 57
3.2 Data-driven methods for Physical Experimental Data Analysis . . . 59

3.2.1 Proper Orthogonal Decomposition 59
3.2.2 Dynamic Mode Decomposition 60
3.2.3 k-Means Clustering . 61
3.2.4 t-Distributed Stochastic Neighbor Embedding 61
3.2.5 Multivariate Kernel Density Estimation 62

3.3 Application . 62
3.3.1 High-Reynolds Number Uniform and Buoyant Jets 63
3.3.2 Propeller Wake . 64

3.4 Clustering Analysis for Turbulent PIV Data 65
3.4.1 Spatial Clustering Approach 65
3.4.2 Snapshot Clustering Approach 67
3.4.3 Data analysis Metrics . 67

3.5 Numerical Results and Physical Interpretation 68
3.5.1 Global Flow Analysis: POD and DMD 68
3.5.2 Spatial Clustering Results . 72
3.5.3 Snapshot Clustering: Propeller Wake Results 75

3.6 Conclusions and future work . 84

4 Variational Recurrent-Type Deep Neural Networks
for Ship Motion Prediction 85
4.1 Introduction . 85
4.2 A Brief Introduction to Deep Neural Networks 86

4.2.1 Model Definition . 87
4.2.2 The Error Backpropagation Algorithm 88
4.2.3 Optimization and Regularization 89
4.2.4 Uncertainty Estimation in Neural Networks 92

4.3 Recurrent-Type Neural Networks . 94
4.3.1 Recurrent Neural Networks 95
4.3.2 Error Backpropagation in Time 95

4.4 Long Short Term Memory and Gated Recurrent Units 96
4.4.1 Long Short Term Memory . 97
4.4.2 Gated Recurrent Units . 97
4.4.3 Sequence Modeling in Recurrent-Type Neural Networks . . . 98

Contents xi

4.5 Application: Ship Motion Prediction in High Sea State Level 99
4.5.1 Problem Definition . 99
4.5.2 Numerical Results . 100
4.5.3 Conclusions and Future Work 102

1

Chapter 1

Lipschitzian Optimization with
a Statistical Estimate of the
Lipschitz Constant

In this first chapter, we propose a new Lipschitz optimization algorithm for Global
Optimization using a statistical estimate of the Lipschitz constant. The Lipschitz
constant estimation procedure is based on the well developed Extreme Value Theory
of Statistics. The evaluation of the Lipschitz constant is carried out using the
maximum likelihood estimation method for the three parameters reversed Weibull
distribution, where the location parameter represents our estimate of the Lipschitz
constant. Our contribution is to explore and evaluate the possibility to integrate a
statistical estimation of the Lipschitz constant inside a global optimization procedure.
This procedure is performed inside a popular deterministic partition-based algorithm
for Global Optimization, namely the DIRECT algorithm. Furthermore, to model
the local behavior of the objective function, we propose a clustering strategy. In this
way, we also provide the optimizer the information of the local Lipschitz constants,
exploiting the local trend of the objective function. A new definition for potentially
optimal hyperrectangles is provided. The new proposed algorithm is compared
against DIRECT with respect to a set of 14 bi-dimensional functions and the high
dimensional CEC2014 Benchmark.

1.1 Introduction

In every field of the science, researchers and engineers encounter every day decision
processes with the objective to take the action that will maximize/minimize the
output of some process. Sometimes, some decisions are not available because there
is an underlying reason for which they are not admissible. In mathematics this can
be translated in following way

min
x

f(x) (1.1)

subject to: x ∈ F (1.2)

2
1. Lipschitzian Optimization with a Statistical Estimate of the Lipschitz

Constant

The function f represents the objective or the quantity of interest that we want to
optimize. Depending on the nature of the problem this could be a maximization or
a minimization problem. The set F is where all the admissible decision variables x
’live’. Unfortunately, there are situations where there is not a unique best optimal
solution. This because of the particular form of f (e.g convexity) or because we
cannot obtain any information from f (e.g. derivatives) to understand if the problem
has a unique global solution or not. This happens when a closed form of the objective
function f is not available. For this reasons problems of this kind are called black box.

Global Optimization (GO) is the field of Operations Research where methodolo-
gies and algorithms are developed to find the global solution. During the last 40
years of intense academic research many approaches have been proposed. Basically,
GO methodologies divide in two kind of procedures: stochastic and deterministic.
Stochastic algorithms are characterized by the introduction of source of randomness,
mainly to allow diversity and exploration of the entire feasible set of solutions during
the iterations. Among them we recall the Controlled Random Search [99], Genetic
Algorithms [26] and Evolutionary Algorithms like Simulated Annealing [68], Particle
Swarm Optimization [72] and Covariance Matrix Adaptation Evolutionary Strategy
[58] are known to have been effective in many engineering applications. As part of
the deterministic approaches, Lipschitz Optimization is based based on a strong
mathematical foundation and convergence properties for find the global minimum
of a function. Diagonal based strategies [123] and partition based [125, 87, 82]
have been proposed. Among them, the DIRECT (DIviding RECTangles) algorithm
[69] is one of the most attractive and developed during the recent years due to
its effectiveness and simplicity. Many different versions of the DIRECT algorithm
have been proposed as [46, 81, 88, 92, 89, 80, 79, 124]. The DIRECT algorithm
performs the GO process without the knowledge of the Lipschitz constant. This
approach is attractive because the estimate of the Lipschitz constant L is usually
very hard to perform and still nowadays an open problem in Mathematics. The
knowledge of L, permits inside a GO scheme to compute valid lower bounds on f
and consequently drive the exploration based on this information. In this work we
try to tackle this challenging problem integrating a statistical procedure proposed in
[146] for the estimation of the Lipschitz constant with a partition based strategy
for GO. More in detail we integrate the procedure inside the DIRECT algorithm.
Our approach use the current information obtained by the DIRECT algorithm to
compute the absolute slopes. For definition, the slopes represent a lower bound
on the Lipschitz constant of f . From the well developed Extreme Value Theory of
Statistics, in case of independent and identically distributed random variables the
distribution of the maximum slopes converges asymptotically to the Reverse Weibull
distribution. The location parameter or the maximum of the support of the reversed
Weibull distribution is our estimate of the Lipschitz constant. The parameters of the
reversed Weibull distribution are found using the Maximum Likelihood Estimation
procedure. This is demonstrated for univariate function in [146]. The objective is to
obtain a good estimate of the Lipschitz constant during the optimization to drive the
DIRECT algorithm to a more effective exploration and exploitation of the feasible
set of candidate solutions.

Unfortunately, even with the knowledge of the global Lipschitz constant could
lead to a slow convergence optimization procedure. For example, the global Lipschitz

1.2 A Brief Introduction to Lipschitzian Optimization 3

constant could represent a bad approximation of the maximum norm of the gradient
in regions where f has gentler behavior. In this work we will try to solve this
problem through a clustering phase. Our procedure will provide multiple Lipschitz
constants estimates. At the end we propose a new definition for the potentially
optimal hyperrectangles defining a new sampling criteria in the algorithm.

Finally to assess the numerical capability, we tested our algorithm respect
to DIRECT using 14 bi-dimensional functions and a set of 30 challenging high
dimensional problems taken from the CEC2014 [78] competition.

1.2 A Brief Introduction to Lipschitzian Optimization
In this work we consider the following GO problem

min
x

f(x) (1.3)

subject to: x ∈ F (1.4)

where f : RN → R, x ∈ RN and F is the feasible region of RN . The objective
function f is supposed to be multiextremal on F and treated as black box.
A first important result is given by the Weierstrass Theorem that gives a sufficient
condition for the existence of the global optimum requiring only the continuity of f
and that F is closed and bounded.

Theorem 1.2.1 (Weierstrass Theorem). If F is a non empty closed and bounded
set and f is continuous, then a global minimum of f in F exist.

Even if the Weierstrass theorem gives to us a first existence condition on the
global optimality, this result is not practical from an algorithmic point of view. In
order to start to characterize the mathematical properties of the global optima we
require the feasible set F to be robust.

Definition 1. Given F ⊂ RN nonempty and bounded, then if F = Cl(Int(F)) then
the set F is robust.

It follows that F represents the closure of its nonempty interior. The first
characterization of the global minima can be obtained introducing the notion of
level set, L = {x ∈ D : f(x) < c} for c ∈ R.

Theorem 1.2.2. Given F ⊂ RN robust and f continuous on F . The vector x? is
the global minimizer of f if and only if

meas(L?) = 0 (1.5)

with L? = {x ∈ F : f(x) < f(x?)})

Where meas(L) can represents a volume or more in general a Lebesgue measure.
From now on we consider the feasible region to be an hyperrectangle or a box
D = {x ∈ RN : l ≤ x ≤ u}. The N -dimensional vectors l and u represent the lower
and upper bound on x.

To describe efficient procedures for find the solution of a global optimization
problem, we require a further condition respect to the function f . More in particular
we require f to be Lipschitz continuous on D.

4
1. Lipschitzian Optimization with a Statistical Estimate of the Lipschitz

Constant

Definition 2. Let D ⊂ RN and f : F → R. The function is Lipschitz-continuous
on D if

|f(x)− f(x̄)| ≤ L||x− x̄|| ∀x, x̄ ∈ D (1.6)

with Lipschitz constant L of f .

where || · || is the Euclidean norm but it could be any norm of RN .
The Lipschitz continuity of f is an important assumption because we can obtain

a valid lower-bound for the global optimum f(x?). In fact knowing the function
value at the point f(x̄) then for any x ∈ D the following relation is valid

f(x̄)− Lh ≤ f(x̄)− L||x− x̄|| ≤ f(x) h ≥ max
∀l,u∈D

||u− l|| (1.7)

which means that if f is Lipschitz-continuous with Lipschitz constant L, then is also
Lipschitz continuous with an overestimate of the Lipschitz constant L̄ > L.

Now we show that the requirement for f to be Lipschitz-continuous is not
particularly restrictive, indeed this class of functions is very general.

Theorem 1.2.3. If f is continuously differentiable on a open convex set D0 and D
be a bounded, closed set such that D ⊆ D0. Then f is Lipschitz continuous on D.

Proof. Writing a first order Taylor expansion with θ ∈ [0, 1]

f(x̄) = f(x) +∇f(x + θ(x̄− x))>(x̄− x) (1.8)

from which we have
|f(x)− f(x̄)| ≤ L||x− x̄|| (1.9)

where L is given by
max
x∈D
||∇f(x)|| (1.10)

The maximum norm of the gradient of f can be used as valid Lipschitz constant.
The constant L is in general unknown. Computing L maximizing the norm of the
gradient of f will be as complex as find the global solution of f and consequently
not a viable option.

With the mathematical tools exposed until now is possible to characterize
procedures for find global optima of a function. In the next chapter we introduce
briefly a general class of global optimization algorithms that sequentially produce
partitions of the feasible set D.

1.2.1 Partition Based Strategies for Global Optimization

In this chapter we describe the main properties of a particular kind of deterministic
GO algorithms where in each iteration the feasible set F is divided into partitions.
Assuming that the feasible set is given by the box D we introduce the following
definition.

1.2 A Brief Introduction to Lipschitzian Optimization 5

Definition 3. Given D ⊂ RN nonempty and robust and I a finite set of indices. A
collection of sets {Di : i ∈ I} is called a robust partition of D, if Di is a robust set
∀i ∈ I. Furthermore

D =
⋃
i∈I
Di (1.11)

Di
⋂
Dj = δDi

⋂
δDj ∀i, j ∈ I, i 6= j (1.12)

where δDi represents the boundary of Di.

From Def. 3 we can conclude that the feasible set D is divided in non-overlapping
subsets. Below we describe the main steps of a partition-type scheme for GO.

General Partition Algorithm

Step 1 Set k = 0 and the set of indices I = {∅} and the initial partition
D0 = D

Step 2 Select a finite number of sample points xik ∈ Dik with ik ∈ Ik and
obtain objective function value f for every ik ∈ Ik

Step 3 Select a subset of indices I? ⊂ Ik

Step 4 For every i?k ∈ I? the relative Di?k is divided such that

Di?k =
⋃
j∈Ii

?
k

Di
?
k
j Di

?
k
j ⊂ D

i?k (1.13)

For every i?k ∈ I? the new set of indices is given by Ik+1 = Ik ∪ {j : j ∈
I?} \ i?k.

Step 5 Set k = k + 1 and return to Step 1

In the first step we initialize the set of indices to an empty set whereas the initial
partition to the whole feasible set. Then, we perform for each partition a finite
number of function evaluations (not yet defined in which location). In the third step
(with a non defined criteria) we select a subset of indices where the relative subset is
considered of ’interest’. In the last steps those subsets are further divided and the set
of indices updated. This kind of scheme for GO has been object of intense studies
as in [122, 82]. To highlight the convergence properties of this kind of procedures
is important to highlight the characteristic of the partitions generated during the
iterations. A particularly relevant property is the following.

Definition 4. For each nested sequence of partitions subsets {Dik}, then is called
strictly nested if

Dik+1 ⊂ Dik k → +∞ (1.14)

Another important definition is given by the everywhere dense property of a
subset

Definition 5. Let D ⊂ RN . Then a subset D0 ⊂ D is everywhere dense in D if for
every ε > 0 and for every point x ∈ D a point x̃ ∈ D0 exist and such that x̃ ∈ B(x̃, ε).

6
1. Lipschitzian Optimization with a Statistical Estimate of the Lipschitz

Constant

This implies the following definition.

Definition 6. Given a nested sequence Dik produced by the partition algorithm,
then it is strictly nested if and only if

∞⋂
k=0
Dik = {x̃} (1.15)

An advisable property is that a partition type algorithm should produce dense
sets only around the global minimizer of f .

In the next section we will introduce a partition based algorithm that has the
everywhere dense property. For its simplicity and also its effectiveness in many
applications, became during the last years one of the most popular methods of this
kind.

1.3 The DIRECT Algorithm

In the previous section we described a general partition scheme for GO. On purpose
we did not described where we should sample the points x ∈ Di and neither what
kind of criteria we can use in order to judge a particular partition ’interesting’. The
DIRECT algorithm proposed by [69] is a popular approach in order to find the
global minimizers x? of f . First of all the DIRECT algorithm divides the search
space D = {x ∈ RN : l ≤ x ≤ u} in hyperrectangles and hypercubes and sample a
new point exactly at the center of them. More important is how DIRECT judge
a particular interval ’interesting’. This is described in the definition of potentially
optimal hyperrectangles.

1.3.1 Potentially Optimal Hyperrectangles

The selected partitions for further exploration are called potentially optimal and
their definition is given below.

Definition 7. Given the partition {Di : i ∈ I} of the feasible set Di, where Di =
{x ∈ RN : li ≤ xi ≤ ui} with

xi = ui − li

2 (1.16)

and given
fmin = min

i∈I
f(xi) (1.17)

then a subset Dh, with h ∈ Dh is called potentially optimal if given ε > 0 exist a
constant L̄ such that

f(xh)− L̄dh ≤ f(xi)− L̄di ∀i ∈ Ik (1.18)
f(xh)− L̄dh ≤ fmin − ε|fmin| (1.19)

where di represents the distance from the center xi to the vertices of Di.

1.3 The DIRECT Algorithm 7

From Def. 7 is possible to interpret how the DIRECT algorithm ’filters’ the
potentially optimal rectangles from the other subsets. In fact DIRECT can be
seen as a Lipschizian optimization algorithm even if it does not ever try during the
iterations to obtain an estimate of the Lipschitz constant. The selection is based on
the existence of a Lipschitz constant value that makes a particular interval interesting
or not. Following Def. 7 candidates to be potentially optimal hyperrectangles are
obtained taking for each di, ∀i ∈ I the hyperrectangle with the lowest function
value. Potentially optimal hyperrectangles can be simply obtained by computing
the vertices of the lower convex hull defined in R2 where for each centers x, in the
x-axis there is the distance from its vertices and on the y-axis its objective function
value. Once we selected the set of potentially optimal hyperrectangles we need to
discuss how DIRECT perform the sampling of new points inside them.

1.3.2 Dividing Strategy

We will explain now how is performed the division in case Di is an hypercube. The
first iteration of DIRECT consist to perform 2N + 1 function evaluations on the
feasible region D0 which is properly normalized into a unit hypercube. The first
point to sample is the center x0 of the hypercube D0. Given the N -dimensional
euclidean normal basis e ∈ RN we sample the new points at x0

j ± δej , ∀j = 1, . . . , N .
Where δ is 1

3 the side length of the hypercube. We define

rj = min{x0
j − δej , x0

j + δej}, ∀j = 1, . . . , N (1.20)

we start to divide D0 in the order given by rj and perpendicular to direction ej . If
rj? = minj=1,...,N{x0

j − δej , x0
j + δej} we perform the first division perpendicular to

the direction of e?i . Consequently x0
j? = arg minj=1,...,N{x0

j−δej , x0
j +δej} will be the

center of an hyperrectangle of one side δ and the other remaining N−1 sides of size 3δ.
This means that the sample with the lowest objective function value will be always
the center of an hyperrectangle. The procedure ends producing hyperrectangles and
hypercubes in the feasible set D0. In case Di is an hyperrectangle this is divided
only respect to its longest side j and sampling at xij ± δej .

1.3.3 Convergences Properties of DIRECT

The properties of DIRECT, given the sequences Dik = {x ∈ RN : ik ∈ Ik}, can be
summarized in the following proposition.

Proposition 1. The DIRECT algorithm has the following properties

1. The partitions {Dik} produced are strictly nested

2. For every x̃ ∈ D, the partitions {Dik} are everywhere dense for k →∞
∞⋂
k=0
Dik = {x̃} (1.21)

Those asymptotic properties are satisfied by the DIRECT algorithm because at
each iteration the subset of maximum distance from its vertex is always potentially

8
1. Lipschitzian Optimization with a Statistical Estimate of the Lipschitz

Constant

optimal, even if the objective function value is arbitrary high. The DIRECT algorithm
in general performs well. The strengths are in the simplicity of the implementation
which also allows parallel computation quite naturally since the sampling process
can be performed independently for each potentially optimal hyperrectangle. The
main weakness here is that DIRECT as described in [70] is that sometimes get stuck
in local minima for many iterations before it starts to sample in other part of the
search space for find the global minimizers.

1.3.4 Convergences Properties of DIRECT with an Overestimate
of the Lipschitz Constant

In case an upper bound of the Lipschitz constant is available, the convergences
properties of DIRECT become stronger. Following the results showed in [32] is
possible to redefine the concept of potentially optimal hyperrectangles in strongly
potentially optimal hyperrectangles.

Definition 8. Given the partition {Di : i ∈ I} of the feasible set Di and a constant
L̄ > 0, then a subset Dh, with h ∈ Dh is called strongly potentially optimal if given
ε > 0

1. exist a constant L̄h ∈ (0, L̄) such that

f(xh)− L̄hdh ≤ f(xi)− L̄hdi ∀i ∈ Ik (1.22)
f(xh)− L̄hdh ≤ fmin − ε|fmin| (1.23)

2. The constant L̄ satisfies

f(xh)− L̄dh ≤ f(xi)− L̄di ∀i ∈ Ik (1.24)

where fmin is given in Def. 7.

From the Def. 8, only potentially optimal hyperrectangles can be candidates to
be strongly potentially optimal hyperrectangles. In this case the procedure shows a
strong convergence properties.

Proposition 2. Given the constant L̄ in Def. 8 and I? the indices of potentially
optimal hyperrectangles. Then

1. The algorithm produces at least a strictly nested sequence of sets {Dik}

2. If for a global minimum x? ∈ X ?, exist an index k̄ such that if the subset Djk ,
with jk ∈ Ik is the subset where x? ∈ Djk , then ∀k ≥ k̄

f(xjk)− Ldjk ≤ f(x?) (1.25)

then every strictly nested partitions {Djk} produced satisfies

∞⋂
k=0
Djk ⊆ X ? (1.26)

1.4 A Statistical Estimate of the Lipschitz Constant 9

3. If for every global minimum x? ∈ X ?, exist a constant α > 0 and an index k̄
such that if the subset Djk , with jk ∈ Ik is the subset where x? ∈ Djk , then
∀k ≥ k̄

f(xjk)− Ldjk < f(x?)− αdjk (1.27)
then for every x? ∈ X ? a partition {Djk} exists and such that is strictly nested
and ∞⋂

k=0
Djk = {x?} (1.28)

The proofs are given in [32] where also a stopping a criteria for the algorithm is
provided. Is crucial to understand how we can obtain an estimate of the Lipschitz
constant in the DIRECT algorithm. A simple estimate for L could be, ∀ik, jk ∈ Ik

max
k=1,...,k̄

{
|f(xik)− f(xjk)|
||xik − xjk ||

}
= L̄ ≤ L ik 6= jk, ∀k = 1, . . . , k̄ (1.29)

the estimate of the Lipschitz constant is the maximum value of the absolute slopes
computed across all the sampled points obtained from DIRECT until iteration k̄.
In general this can represent just a lower bound of the true value of the Lipschitz
constant L. Unfortunately, if the value of L̄ is far from the true Lipschitz constant will
affect negatively the convergence properties of the algorithm because the procedure
becomes more aggressive towards exploitation with the risk that the optimization
algorithm could find only a local minima. On the other hand an upper bound of
L exaggeratedly high would mean obtain a procedure similar or identical to the
DIRECT algorithm. The problem to find an estimate of the Lipschitz constant is in
general very challenging, even more if we have only partial informations about the
the objective function f (e.g no derivatives) and that should be carried out inside
an optimization routine. In the following section we exploit a different method for
the estimate of L based the Extreme Value Theory developed in Statistics.

1.4 A Statistical Estimate of the Lipschitz Constant
In the last part of the previous section we highlighted that a possible estimate for
the Lipschitz constant L of a function f could be the maximum of all the absolute
slopes. This in general represents a lower bound on the true Lipschitz constant L (i.e
the maximum norm of the gradient of f). If we see the slopes as a random variables
could be interesting to analyse the statistical properties of their maxima.

1.4.1 A Note to Extreme Value Theory

Extreme Value Theory (EVT) is the theory of modeling and quantifying the uncer-
tainty of extreme events namely those events which occur with very small probability.
Probabilistic EVT is important for modeling an high variety of applications from
finance to natural phenomena like rainfall and pollution.

The framework is developed considering a sequence of independent random
variables Y1, . . . , YM and we are interested in the asymptotic behavior of the
max{Y1, . . . , YM} for M → ∞. In this setting three main important probability
distributions are defined.

10
1. Lipschitzian Optimization with a Statistical Estimate of the Lipschitz

Constant

Type 1 Gumbel-Type Distribution

G(y) = exp{e(y−u)w/v)} (1.30)

Type 2 Frechet-Type Distribution

G(y) =
{

0 y ≤ u
exp{(−(y−uv)−w)} y > u

(1.31)

Type 3 Reversed Weibull-Type Distribution

G(y) =
{

exp{(−(u−yv)w)} y < u

1 y ≥ u
(1.32)

where the u ∈ R, v > 0 and w > 0 are the location, scale and shape parameters
respectively. The classical Weibull distribution can be obtained from the distribution
of Y . Those distributions are called Extreme Distributions because can be obtained
asymptotically for M → ∞ of the greatest value among M independent random
variables identically distributed. More formally [144]

Proposition 3. Given a sequence of independent random variables Y1, . . . , YM with
cumulative distribution function F and suppose that exist two sequence vn > 0 and
un ∈ R such that the following limit converges

lim
M→∞

p

(max{Y1, . . . , YM} − un
vn

≤ y
)

= FM (vny + un) = G(y) (1.33)

If the limit converges then G(y) is called Generalized Extreme Value Distribution
and has the following distributional form

G(y) = exp
{
− (1 + wy)−

1
w

}
(1.34)

To obtain a non degenerate limiting distribution is necessary to perform a linear
transformation. A further development is given by the work of Gnedenko [52].

Proposition 4. Given a sequence of independent random variables Y1, . . . , YM with
y? = sup{y : F (y) < 1} be the population maxima, then the normalized distribution
G(y) assumes the following forms

Type 1 (w=0) Gumbel-Type Distribution if and only if

lim
β→0−

1− F (β − yh(β))
1− F (β) = e−y (1.35)

with h(β) =
∫ y?
β

1−F (r)dr
1−F (β)

Type 2 (w>0) Frechet-Type Distribution if and only if y? =∞ and for all y > 0

lim
β→∞

1− F (βy)
1− F (y) = yw (1.36)

1.4 A Statistical Estimate of the Lipschitz Constant 11

Type 3 (w<0) Reversed Weibull-Type Distribution if and only if y? is finite and
for all y > 0

lim
β→0+

1− F (y? − βy)
1− F (y? − y) = yw (1.37)

Gnedenko also showed that these conditions are necessary, as well as sufficient,
and that there are no other distributions satisfying the stability postulate [76]. Given
the basic theoretical properties of the EVT we can discuss how to use these tools for
the estimation of the Lipschitz constant.

1.4.2 Lipschitz Constant Estimation through the EVT

In this section we explain how to use tools from the EVT theory to obtain an
estimate of the Lipschitz constant inside the DIRECT algorithm. We showed that
using Eq. 1.29 could be a first estimate of the Lipschitz constant. Following our
discussion, we can interpret the absolute slope as a random variable Y and we are
interested in the statistical properties of the maximum slope, max{Y1, . . . , YM}. If
we suppose that the slopes are independent and identically distributed we have the
following relation

p(max{Y1, . . . , YM} ≤ y) = p(Y1 ≤ y, Y2 ≤ y, . . . , YM ≤ y)
= p(Y1 ≤ y)p(Y2 ≤ y) . . . p(YM ≤ y)
= FM (y)

(1.38)

which cannot be used in practice since we don’t know the distribution F . The EVT
gives to us asymptotic conditions on the limiting distribution of max{Y1, . . . , YM}
for M → ∞. Since the slopes are bounded above (by the maximum norm of the
gradient) the distribution of the maximum slopes can be modeled by a reversed
Weibull distribution. The reversed Weibull distribution is given below

p(y|u, v, w) = w

v

(
u− y
v

)w−1
e−(u−yv)w (1.39)

defined for y ≤ u and w, v > 0. The maximum of its support, which is represented
by the location parameter u is our estimate of the Lipschitz constant L. The usage
of the EVT for the estimation of the Lipschitz constant for univariate functions in
[146] where the points from which the slopes are computed are chosen uniformly at
random. Some numerical assessment of the same methodology is also showed for
multivariate function in [151]. Here we are interested to use this approach inside
an optimization algorithm and then the sampling scheme is necessarily different.
A simple way to produce an estimate for the Lipschitz constant is to save at each
iteration k the maximum of the slopes computed across the points sampled from
DIRECT. Once we have enough data, at some iteration k̄ we can fit the reversed
Weibull distribution to find the location parameter u. Successively we evaluate the
strongly potentially optimal hyperrectangles defined in Def. 8. The location u, scale
v and shape w parameters of the reversed Weibull distribution can be found through
a maximum likelihood estimation (MLE) procedure. The log-likelihood function is

12
1. Lipschitzian Optimization with a Statistical Estimate of the Lipschitz

Constant

given by

ln p(y|u, v, w) = N [log(w)− w log(v)] +
k̄∑
k=1

(w − 1) ln(u− yi)−
(
u− yi
v

)w
(1.40)

where y = (y1, . . . , yk̄). Then the following nonconvex bound constrained optimiza-
tion problem should be solved

max
u,v,w

ln p(y|u, v, w) (1.41)

subject to: vlb ≤ v ≤ vub (1.42)
wlb ≤ w ≤ wub (1.43)
ulb ≤ u ≤ uub (1.44)

where the bounds for the three parameters are fixed as follows: the scale parameter
v must be greater than zero and the upper bound can be fixed to a value arbitrarily
large, the location parameter u should be grater than the maximum observation
max(y) and as the scale parameter the upper bound can be fixed to an high value
and the shape parameter w a more carefully treatment of its bounds should be
performed. In fact, for w < 1 the likelihood function approach +∞ as the location
parameter u reach the maximum of the observations max(y). Since a solution of this
kind it does not seems to be reasonable, the lower bound for w is wlb = 1. An upper
bound wub = 10 gives enough flexibility on the shape of the estimated probability
distribution.

1.4.3 Multiple Lipschitz Constants Estimates using Clustering

Until now we focused our discussion on the estimate of the global Lipschitz constant.
Now we want consider that in general a function f could have a very different
behavior across its domain. The value of the global Lipschitz constant is given
mainly by the slopes sampled in regions where the objective function has an high rate
of change. Consequently could represents a bad overestimate of the local Lipschitz
constant function in regions where f shows a ’flatter’ behavior.

To solve this problem we propose a clustering strategy applied to the absolute
slopes. To give local information on the rate of change of the objective function,
the slope associated to the partition Di, it is given by the maximum of the slopes
computed across the nearest neighbor of xi ∈ Di. The univariate clustering procedure
will drive the assignment of the estimated Lipschitz constant across the different
partitions generated by DIRECT.

Let’s define s = (s1, . . . , sM) where

si = |f(xi)− f(xj)|
||xi − xj || ∀i, j ∈ I (1.45)

where xj is the nearest point (in Euclidean distance terms) of xi. In case multiple
points have the same minimum Euclidean distance from xi then we take the maximum
of the slopes. Then a clustering algorithm is applied on s noticing that we are solving
a univariate problem. Many clustering approaches are available in literature but

1.5 A New Proposed Algorithm 13

because we are solving a univariate clustering problem we can take advantage
of this aspect in order to solve the clustering phase more efficiently. A widely
adopted method for divide the data in different partitions is given by solving the
k-means problem. In our case we want to find the C centroids µc, such that∑M
m

∑C
c zmc(sm − µc)2 is minimum, where zmc ∈ {0, 1} is the indicator variable.

This problem is in general NP-hard [3] and then usually solved using heuristics [83].
In the one-dimensional case the k-means problem can be solved to the optimality in
polynomial time through Dynamic Programming [145, 149] in O(M2C) which can
be further improved in O(M logM +MC) as described in [56].

After the clustering procedure is performed we need to extract information about
the maximum slopes and the Lipschitz constant representative of each cluster. This
is explained in depth the next section.

1.5 A New Proposed Algorithm

Now we will describe step by step our proposed procedure for the estimation of
multiple Lipschitz constants Lc, ∀c = 1 . . . , C as summarized Alg. 1. The first
iteration (k = 0) we produce the first M partitions with defined by the DIRECT
algorithm. At k = 1 we perform the clustering respect to the slopes obtaining as
output the slopes partitioned into C different sets skc , the indices belonging into
each cluster Ik,c and the centroids µkc . We don’t have enough data to perform the
MLE procedure and then our first estimate of the Lipschitz constants is given by
the maximum of each cluster of slopes as shown in line 6. Successively, given our C
estimates Lkc we evaluate Def. 9. In line 10, our algorithm sampled P points which
they have satisfied Def. 9. We compute, in line 11 the slopes respect to this new
P points and then assigned to the clusters conditionally to the minimum distance
respect to the clusters centroids µc, ∀c = 1, . . . , C. This procedure divide as before
the set sk = (s1, . . . , sP) in partitions skc , ∀c = 1, . . . , C. The maximum of each set
skc is added into the set ykc as defined by the operator ’_’ in line 12. The set ykc is
composed by all the maximum slopes that are computed along the iterations of our
procedure so that its cardinality will increase as k increase. Then a loop respect to

(a) Clustering the slopes (b) Fitting the reversed Weibull distribu-
tion

Figure 1.1. Graphical resume of Alg. 1

the number of clusters is performed in line 13. If we have enough data inside the

14
1. Lipschitzian Optimization with a Statistical Estimate of the Lipschitz

Constant

set ykc we perform the maximum likelihood estimation fitting a reversed Weibull
distribution. Notice that in this particular work we will perform the MLE procedure
only for the cluster composed by the highest slopes (namely for c = C) to obtain
an estimate of the global Lipschitz constant. Otherwise, for the index c < C we fix
the estimate for the lower Lipschitz constants respect to the maximum slope (line
18) as before (line 6 and 7). Once the for loop is finished, we update the location
of the centroids performing the clustering procedure. Inside the set ykc we always
include the maximum of each new updated cluster (line 20). The number of clusters
C is chosen respect to the silhouette metric [105] and it is allowed only to increase
during the iterations and never to decrease. In the following definition we provide a
new selection criteria for the hyperrectangles.

Definition 9. Given the partition {Di : i ∈ I} of the feasible set D, where Di =
{x ∈ RN : li ≤ xi ≤ ui} and given

fmin = min
i∈I

f(xi) (1.46)

given the clustering assignment c, a scalar ε > 0, and α ∈ (0, 1) the partition Dj is
selected if at least one of the following conditions is satisfied

1. For j ∈ Im,k where Im,k = {ik ∈ Ik : dik = dkmax} then

f(xjc)− Ljcdj ≤ f(xpc)− Lpcdp ∀p ∈ Im (1.47)

where dkmax is the distance from the vertices of the largest hyperrectangle at
iteration k.

2. For j ∈ Ik then

f(xjc)− Ljcdj ≤ f(xpc)− Lpcdp ∀p ∈ Ik (1.48)
f(xjc)− Ljcdj ≤ fmin − εfmin (1.49)

3. For j ∈ Ik then

f(xjc) ≤ f(xpc) ∀p ∈ Ik (1.50)
f(xjc)− Ljcdj ≤ fmin − εfmin (1.51)

The estimate of the Lipschitz constant for every i ∈ Ik with α ∈ (0, 1), is given by

Lic = L̄cα
i + si(1− αi) (1.52)

where L̄c represents the estimate of the Lipschitz constant for all the partitions with
clustering assignment c produced from Alg. 1, αi = di/dmax with dmax the overall
largest distance from the vertices of the hyperrectangle and si as given in Eq. 1.45.

From Def. 9 an hyperrectangle is selected for further exploration if satisfies at
least one of three conditions. In the first condition, among the hyperrectangles of
maximum size at current iteration k we select the one of minimum lower bound as
showed in Eq. 1.47. Consequently, in every iteration an hyperrectangle of maximum

1.5 A New Proposed Algorithm 15

Figure 1.2. Graphical interpretation of Def. 9

size is always selected such that the everywhere dense property of our procedure
holds. In the second condition, we select the hyperrectangle that obtains the lowest
lower bound respect to all the other partitions Eq. 1.48. The Eq. 1.49 says that
the lower bound must allow a minimum improvement. With the last condition we
assure that the hyperrectangle with the lowest objective function value for which
the Eq. 1.51 holds is selected.

In order to evaluate these conditions we need an estimate the Lipschitz constant.
This is given in Eq. 1.52 through a convex combination of the estimate of the
Lipschitz constant in its cluster c and slope associated to point xi as shown in Eq.
1.45. The coefficient αi = di/dmax where dmax = d0, ensure that when di << dmax
the slope si can provide a good estimate of the behavior of f in the neighbor of
xi. Otherwise, if di u dmax, the slope could provide a inexact information and in
this case the Lipschitz constant associated with the cluster c will dominate the sum.
Consequently, at each iteration at most three hyperrectangles are selected as shown
in Fig. 1.2. Observing Fig. 1.2, is interesting that the hyperrectangle with the
lowest lower bound is quite far from the potentially optimal hyperrectangles defined
by DIRECT. This means that our algorithm can take quite different trajectories in
the domain during the optimization respect to the DIRECT algorithm.

16
1. Lipschitzian Optimization with a Statistical Estimate of the Lipschitz

Constant

Algorithm 1: Lipschitz Constants Estimation Procedure
Input: M = 0, k = 0, I0 = {∅}

1 if k = 0 then
2 Perform the iteration with DIRECT and k = k + 1;
3 else if k = 1 then
4 For every ik 6= jk compute si = |f(xik)−f(xjk)|

||xik−xjk || where xjk is the nearest
neighbor of xik ;

5 Fix the number of clusters C and perform the clustering respect to the
slopes sk = (s1, . . . , s

k
M) obtaining the assignment set

Ic,k = {i ∈ Ik : si ∈ skc}, the clusters sets skc and the centroids µkc ,
∀c = 1, . . . , C;

6 For each cluster skc , take the maximum ykc = max(skc);
7 Fix the Lipschitz constant L̄kc = ykc , ∀c = 1, . . . , C and evaluate Def. 9;
8 Fix k = k + 1;
9 else

10 Across the new P points sampled based on Def. 9 compute the slopes
respect to their nearest point obtaining P slopes, sk = (s1, . . . , sP);

11 Assign the slopes respect to the nearest centroid µc, ∀c = 1, . . . , C
obtaining new clusters skc ;

12 For every subset of slopes skc assigned to the cluster c take its maximum
ykc = max(sc) and append it to the set ykc _ max(skc), ∀c = 1, . . . , C ;

13 for c← 1 to C do
14 if |ykc | ≥ 10 then
15 Perform the MLE procedure respect to p(ykc |u, v, w) described in

Eq. 1.40 and solve the optimization problem;
16 Obtain the estimate u? of the Lipschitz constant for the cluster c

namely L̄kc ;
17 else
18 Fix the estimate of the Lipschitz constant for the cluster c with

L̄kc = max(skc) ;

19 Fix the number of clusters C and perform the clustering respect to all
Mk + P the slopes sk+1 = (s1, . . . , sMk+P) updating the assignment set
Ic,k = {ik ∈ Ik : si ∈ skc}, the clusters skc and the centroids µc,
∀c = 1, . . . , C;

20 For each cluster skc , append the maximum inside the set of maxima
ykc _ max(skc);

21 Evaluate Def. 9 ;
22 Fix k = k + 1 and Mk = Mk−1 + P ;

1.6 Numerical Results 17

1.6 Numerical Results
In this section we present a first numerical evaluation of our approach that we simply
call ALG. The algorithm ALG will confronted respect to the classical DIRECT
algorithm with the objective to interpret better its behavior. The set-up for the
parameters ALG are the following: the maximum number of cluster allowed is C = 8,
the optimization process for the MLE of the reversed Weibull distribution is carry
out using a multi-start Quasi-Newton method for bound constrained optimization
[17] using 125 start points defined using a evenly spaced grid inside the domain. To
evaluate the possibility to increase the number of clusters we evaluate the silhouette
metric [105].

1.6.1 Numerical Results on Bi-dimensional Test Functions

The first numerical experiment is performed respect to well known bi-dimensional
functions. The stopping criteria is fixed when the distance from the global minimum
is less than 1e − 04. In Tab. 1.1 we reported the results obtained for ALG and
DIRECT. In general the numeric performance of ALG is acceptable respect to

Table 1.1. Resume of the numerical results obtained on simple test functions N = 2. The
letter F means that the algorithm exceed 1000 function evaluation without reaching
the global minimum. Numerical values are the function evaluation needed to reach the
global minimum satisfying the predefined accuracy.

Test Functions ALG DIRECT

Rosenbrock F F
Beale F 125

Tsi. Tang 97 165
Branin 121 179

Six Hump Camel 87 123
Keane 113 129

McCormick 107 197
Schwefel n.2 201 279
Michalewicz 95 103
Rastrigin 77 103
Eggholder 960 F
Matyas 401 89
Sphere 73 117

Drop-Wave 583 F

DIRECT. The algorithm ALG shows a quite faster performance on the identification
of the basin of attraction of the global minimum respect to DIRECT. On the Beale,
Rosenbrock and the Matyas functions, ALG spends many function evaluations near
the global minimum but in a region where the Hessian is ill-conditioned. For this
set of functions, this seems the major drawback of ALG. The Eggholder and the
Drop-Wave functions are the most challenging to optimize because the first has a
large number of local minima and the latter for the highly chaotic behavior. For this
two functions DIRECT fails while ALG successfully reach the global minimum. In
general, this big difference in the performance between DIRECT and ALG happens
the selected hyperrectangle from Def. 9 are not potentially optimal for Def. 7. In
ALG, we give high priority to the selection hyperrectangles that have the minimum

18
1. Lipschitzian Optimization with a Statistical Estimate of the Lipschitz

Constant

lower bound at its vertices among the others even if it is not potentially optimal
for DIRECT. In Fig. 1.3 and 1.4 the are sampled points generated by ALG and
DIRECT inside the domain of each function considered. For bi-dimensional functions,
is possible to visualize the cluster assignments of every point sampled by ALG. A
lighter color is associated with low value of slopes while a darker color means that
the point belongs in a cluster where the slopes are higher.

1.6.2 Numerical Results on the CEC 2014 Benchmark Functions

In this section, we test our algorithm ALG together with DIRECT using challenging
set of functions defined in [78] for the special session and competition on single
objective real-parameter numerical optimization CEC 2014. Due to the limited
computational resources the maximum number of function evaluations is fixed to
500 ∗N where N is the dimensionality of the problem which (the maximum number
of function evaluation allowed in the CEC 2014 competition where it is fixed to
10000 ∗ N). In Tab. 1.2 the results obtained for N = 10 and N = 30. The
algorithm’s performance is assessed respect to the logarithm of the absolute distance
from the global minimum, log (|f − f∗|). To summarize the results, the algorithm

Table 1.2. Resume of the numerical results obtained from the CEC 2014 benchmark
functions].

N = 10 N = 30

Test function DIRECT ALG DIRECT ALG

F1 16.198684 16.197484 20.315485 18.239063
F2 19.171719 19.166686 24.196359 13.421720
F3 8.472994 9.718675 16.101067 16.101067
F4 2.102766 2.102766 5.543248 4.457505
F5 3.020435 3.022501 3.034615 3.034615
F6 1.218654 1.301020 3.028976 2.849214
F7 -0.049974 −0.119645 3.138123 0.794640
F8 2.832221 3.396261 4.794331 4.455406
F9 -2.912076 −3.626542 -0.144042 −1.561879
F10 6.593762 6.595137 8.103852 8.075270
F11 7.134420 7.134420 8.453546 8.298118
F12 0.351366 0.479983 0.094866 0.466494
F13 -0.918999 -0.918999 0.034501 −0.276188
F14 −0.984985 -0.691434 0.279046 0.078249
F15 0.546084 0.343636 3.396552 4.134187
F16 1.320170 1.364323 2.513360 2.517890
F17 14.540135 14.540135 17.702782 17.702782
F18 19.171787 17.966430 21.323664 21.323656
F19 16.277759 16.277759 17.819702 17.819702
F20 27.960897 27.960897 28.914176 29.614788
F21 16.782134 11.247926 19.082994 19.212062
F22 27.563391 27.563391 21.214213 22.139225
F23 5.555192 5.555192 5.373590 5.373590
F24 5.301019 5.301019 5.301418 5.301418
F25 5.298593 5.298580 5.299440 5.299440
F26 5.298317 3.892529 5.298317 5.298317
F27 5.298442 5.298442 5.298481 5.298481
F28 5.299119 5.299081 5.300983 5.300983
F29 10.237105 8.240411 20.594835 17.680589
F30 16.330736 15.224995 20.877168 19.509255

https://www.researchgate.net/publication/271646935_Problem_definitions_and_evaluation_criteria_for_the_CEC_2014_special_session_and_competition_on_single_objective_real-parameter_numerical_optimization
https://www.researchgate.net/publication/271646935_Problem_definitions_and_evaluation_criteria_for_the_CEC_2014_special_session_and_competition_on_single_objective_real-parameter_numerical_optimization

1.7 Conclusions and Future Work 19

ALG performs better than DIRECT on 33% and 46% for N = 10 and N = 30
respectively. The DIRECT algorithm performs better than ALG for the 23% and
20% for N = 10 and N = 30 respectively. The remaining percentages no differences
at the end of the optimization routine is reported, even if in general by looking at
Fig. 1.5, 1.6, 1.7,1.8 ALG shows a better convergence speed.

1.7 Conclusions and Future Work
In this chapter we presented a first tentative to explore the possibility to use the
Extreme Value Theory tools from Statistics to estimate global Lipschitz together
with a clustering approach to exploit the local variation of the objective function,
during the iteration of a GO algorithm. The clustering phase provides, depending
on the number of clusters, multiple Lipschitz constants estimates. At the end, we
provided a new criteria for the selection of the partitions to sample.

At the end we compared our approach respect to the DIRECT algorithm on
simple bi-dimensional functions and on a more challenging and high dimensional
test case. The numerical results obtained from our algorithm are encouraging
but still some modifications are required and addressed in the future work. For
example, as discussed in [151] find conditions on the objective function f for which
the Gnedenko condition is satisfied is still an open problem. More in particular,
the function defined by the difference between its global Lipschitz constant and the
absolute slopes function must to be a regularly varying function [116]. Furthermore,
our approach based on k-means provides an hard assignment of the slopes into a
particular cluster. Could be interesting to explore the possibility to obtain a soft
assignment in terms of probability. This could be achieved using for example a
Gaussian Mixture Model (GMM) at cost of a more expensive procedure.

20
1. Lipschitzian Optimization with a Statistical Estimate of the Lipschitz

Constant

Function Type ALG DIRECT

Rosenbrock

Beale

Tsi. Tang

Branin

Six Hump Camel

Keane

McCormick

Figure 1.3. Behavior of DIRECT and ALG for the simple test functions.

1.7 Conclusions and Future Work 21

Function Type ALG DIRECT

Schwefel n.2

Michalewicz

Rastrigin

Eggholder

Matyas

Sphere

Drop-Wave

Figure 1.4. Behavior of DIRECT and ALG for the simple test functions.

22
1. Lipschitzian Optimization with a Statistical Estimate of the Lipschitz

Constant

(a) F1 (b) F2 (c) F3

(d) F4 (e) F5 (f) F6

(g) F7 (h) F8 (i) F9

(j) F10 (k) F11 (l) F12

(m) F13 (n) F14 (o) F15

Figure 1.5. Convergence for the first 15 CEC 2014 benchmark functions with N = 10

1.7 Conclusions and Future Work 23

(a) F16 (b) F17 (c) F18

(d) F19 (e) F20 (f) F21

(g) F22 (h) F23 (i) F24

(j) F25 (k) F26 (l) F27

(m) F28 (n) F29 (o) F30

Figure 1.6. Convergence for the last 15 CEC 2014 benchmark functions with N = 10

24
1. Lipschitzian Optimization with a Statistical Estimate of the Lipschitz

Constant

(a) F1 (b) F2 (c) F3

(d) F4 (e) F5 (f) F6

(g) F7 (h) F8 (i) F9

(j) F10 (k) F11 (l) F12

(m) F13 (n) F14 (o) F15

Figure 1.7. Convergence for the first 15 CEC 2014 benchmark functions with N = 30

1.7 Conclusions and Future Work 25

(a) F16 (b) F17 (c) F18

(d) F19 (e) F20 (f) F21

(g) F22 (h) F23 (i) F24

(j) F25 (k) F26 (l) F27

(m) F28 (n) F29 (o) F30

Figure 1.8. Convergence for the last 15 CEC 2014 benchmark functions with N = 30

27

Chapter 2

Probabilistic Linear Latent
Variable Models for Shape
Optimization

In this chapter, we propose a new framework for design space dimensionality reduction
for shape optimization. Our approach produces a new reduced representation of the
full original design space assessing the geometrical variance of the shape modification.
At the same time, we assure that the reduced parameterization is invariant with
respect to the original design space. This is achieved by learning the probability
distribution of the data and adding a new constraint inside the optimization model.
This constraint is based on the computation of the Mahalanobis distance where the
inverse of the covariance is estimated by the probabilistic latent variable models:
Factor Analysis and Probabilistic PCA. The procedure is demonstrated for hull
shape optimization of the DTMB 5415 model an early and open to a public version
of the USS Arleigh Burke destroyer DDG 51, extensively used as an international
benchmark for shape optimization problems.

2.1 Introduction

Optimization, thanks to the contribution of decades of academic research became
nowadays is one of the most important and precious tool for engineers in industry.
In engineering, Multidisciplinary Design Optimization (MDO) focuses on the em-
ployment of numerical optimization to perform the design of systems that involve a
number of disciplines or subsystems [131]. The crucial aspect in MDO is the full
interaction across disciplines in order to find the best design which is relevant in
many different fields as: aerospace, naval, automotive, mechanical, civil engineering.

One of the first historical example comes around the mid-1970s, where for a
structural design problem [113] they combined finite elements and mathematical
programming routines for two and three dimensional structural systems as truss,
triangular membrane and shear panel elements considering static loading conditions
as stress, displacement and member size constraints designing the beginning of new
era in engineering design processes.

In the last decades we obtained an incredible progress of the computational power

28 2. Probabilistic Linear Latent Variable Models for Shape Optimization

and mathematical tools, but the complexity of the engineering design processes
have also reached an high level of complexity that makes the design optimization
process still challenging. This is especially prominent in Simulation Based Design
Optimization (SBDO) when time consuming high-fidelity simulators are considered.

Furthermore, one of the most complex challenge is how to deal with high-
dimensional large design spaces, when computationally-expensive black-box functions
are used for the performance analysis and a global optimum is sought after. Potential
design improvements significantly depend on dimension and extension of the design
space. Even if efficient Global Optimization algorithms have been proposed [69,
72, 90] and applied with success to SBDO, finding a potentially global optimal
solution within reasonable computational time/cost remains a critical issue and a
technological challenge. Additionally, Uncertainty Quantification (UQ) of complex
applications is computationally very demanding, especially if high-order statistical
moments and/or quantiles need to be assessed as in robust and reliability-based
design optimization. Both global optimization and UQ are affected by the curse
of dimensionality as the algorithms’ complexity and computational cost rapidly
increase with the problem dimension. In this context, shape optimization research
has traditionally focused on shape and topology parameterization, as critical factors
to achieve the desired level of design variability [108, 13, 110].

The choice of the shape parameterization technique has a large impact on
the practical implementation and the success of the optimization process. Shape
deformation methods have been an area of continuous and extensive research within
the fields of computer graphics and geometry modeling. Consequently, a wide variety
of techniques has been proposed during recent years [127]. Several techniques have
been developed and applied [110], such as: basis vector methods [94], domain element
and discrete approaches [77], partial differential equation [14], CAD-based [150],
analytical [59], polynomials [57] and the popular free-form deformation (FFD) [115].
In order for the SBDO to avoid the curse of dimensionality and be successful, the
parameterization method must efficiently describe the design variability with as few
variables as possible.

A Linear dimensionality reduction model based on the Principal Component Anal-
ysis (PCA) (also known as Proper Orthogonal Decomposition (POD) or Karhunen
Loeve Expansion (KLE)) have been applied for local reduced-dimensionality repre-
sentations of feasible design regions [100, 101]. Linear models have been developed
with focus on design-space variability and dimensionality reduction for efficient
optimization procedures. A method based on the KLE and POD has been for-
mulated in [33], and similarly in [50] for the assessment of the shape modification
variability and the definition of a reduced-dimensionality global model of the shape
modification vector, for arbitrary modification methods. No objective function
evaluation nor gradient is required by the method, as this is entirely based on
the concept of geometric variance. KLE/PCA methods have been successfully
applied for deterministic [18, 38, 121, 30, 42, 86] and stochastic [34, 35] hull form
optimization of mono-hulls and catamarans in calm water and waves, respectively.
Similarly, [97] have applied POD to airfoil shape optimization via singular value
decomposition (SVD) of an airfoil geometric-data library. Those methods improve
the shape optimization efficiency by reparametrization and dimensionality reduction,
providing the assessment of the design space and the shape parameterization before

2.1 Introduction 29

optimization and/or performance analysis are carried out. The assessment is based
on the geometric variability associated to the design space, making the method
fully off-line and computationally very efficient and attractive, as no simulations
are required. The methodology has been extended allowing effective dimensionality
reduction in presence of high non linearities for shape optimization in [23, 25, 22]
and for a physics informed formulation in [24, 117, 118].

In this work we want to extend the current methodology such that the uncertainty
related to the new reduced parameterization is taken into account during the opti-
mization process. This is a crucial aspect because the new reduced representations of
the original design variable could sometimes produce shape modifications completely
different respect to the original design space parameterization. Also, this could
indicate that the reduced design space is indeed ’larger’ than the original design
space. We propose a new optimization model where the uncertainty of the geometries
produced from the new reduced representation (or latent space) is estimated through
the computation of the Mahalanobis distance [85]. This is achieved coupling the
dimensionality reduction process with a density estimation procedure that learns
the probability distribution of the data and consequently the uncertainty associated.
In this setting, we propose a new SBDO framework based on Probabilistic linear
latent variable models such as Factor Analysis (FA) [7, 132] and Probabilistic PCA
[106, 138]. The main assumption here, is that the data is generated by a Gaussian
distribution since the two models are part of the Linear Gaussian Models family
[107]. The Gaussian assumption is satisfied when the geometrical modification is
linear respect to the design variables such in Free Form Deformation [115], NURBS
[95, 96] or Radial Basis Function [126]. In this case, the geometries are generated
by a linear combinations of uniform distributed design variables so that the design
space follows approximately a Gaussian distribution as a direct application of the
Central Limit Theorem (CLT) [114].

To assess the performance of this approach, two global optimization algorithm
namely DIRECT and Bayesian Optimization are applied for a hull shape optimization
of the DTMB 5415 model an early and open to public version of the USS Arleigh
Burke destroyer DDG 51, extensively used as an international benchmark for shape
optimization problems (e.g., [36, 37]).

Optimization Shape parametrization

Physics Simulator

Figure 2.1. Scheme for the SBDO framework.

30 2. Probabilistic Linear Latent Variable Models for Shape Optimization

2.2 The Simulation Based Design Optimization Frame-
work

In the following sections we’ll describe the main components of the SBDO framework
as shown in Fig. 2.1.

2.2.1 The Optimization Problem

The first block of the SBDO framework is the optimization process. Generally the
underlying optimization model that we want to solve, given the design variable
v ∈ RM is the following

min
v

f(x(v)) (2.1)

gj(x(v)) ≤ aj ∀j = 1, . . . , J (2.2)
vlb
m ≤ vm ≤ vub

m ∀m = 1, . . . ,M (2.3)

here the objective function Eq. 2.1 represents the quantity that we want to minimize.
With the vector x(v) we represent a geometry x ∈ RD where its modification
depends on the design variable vector v. The optimization is performed respect
to the design variable v since it’s responsible of the geometrical modification. The
function evaluation is usually performed by a physical simulator because a closed
form of the objective function is not available. Usually, black box optimization
problems are solved with global optimization algorithms. Also, the time required to
perform a single function evaluation could be in the order of hours and consequently
the computation of the gradient could be exaggeratedly computationally demanding.
In this case global derivative-free optimization methods are usually more attractive.
We’ll talk in more details about the simulator in the coming sections.

The Eq. 2.18 and Eq. 2.3 represents the constraints. The function g(x(v))
represents a geometrical constraint that force the optimizer to produce admissible
shape modifications. The geometrical constraints are evaluated before the function
evaluation is performed. Constraints of this kind are called hidden constraints,
because they are not specified to the simulator [39].

Finally, we have to define the upper bound and the lower bound for the design
variable v. The bounds are very important for the overall SBDO process because an
eventually large value of the lower and upper bounds allows the optimizer to search
on a larger space, making the optimization more challenging with the possibility to
produce undesired geometries (i.e that don’t satisfy the geometrical constraints). On
the other side, a larger design space we could obtain more different configurations
of the design variables with the chance to produce a larger improvement in the
objective function.

2.2.2 Shape Parametrization: The Free Form Deformation

The second block of the SBDO framework is the shape parameterization. This
comes after the optimization block because the shape parameterization method will
receive the design variable vector v from the optimizer and will produce the relative
shape modification to the geometry x(v). The choice of the shape parameterization

2.2 The Simulation Based Design Optimization Framework 31

technique has a large impact on the practical implementation and the success of the
optimization process.

Here, we show one of the most method for shape modifications, namely the Free
Form Deformation (FFD). The idea is to embed an object within a trapezoidal (or
other topology) lattice and modify the object within the trapezoid as the lattice is
modified. A local coordinate system is assumed, with origin x0 ∈ R3 at one of the
trapezoid vertices. Any point within the trapezoid has α, β, and γ coordinates such
that

x = x0 + αT̂1 + βT̂2 + γT̂3 (2.4)

with α, β, and γ bounded by [0, 1] and given by

α = T̂2 × T̂3 · (x − x0)
T̂2 × T̂3 · T̂1

,

β = T̂1 × T̂3 · (x − x0)
T̂1 × T̂3 · T̂2

,

γ = T̂1 × T̂2 · (x − x0)
T̂1 × T̂2 · T̂3

(2.5)

Control points (CPs) cijk ∈ R3 are defined as lattice nodes. The number of CPs
used in T̂1, T̂2, and T̂3 directions are t1, t2, and t3, respectively with a total number
of CP’s equals to ttot = t1 + t2 + t3. The coordinates of modified CPs depend on
the imposed original-lattice nodes and in order to perform a modification to the
geometry the coordinates of the CPs are perturbed by the relative design variable
vector vijk ∈ R3, as

cijk(vijk) = ξ0 + i

t1
T̂1 + j

t2
T̂2 + k

t3
T̂3 + vijk (2.6)

The shape modification is achieved by interpolating the CPs’ modification over the
embedding space. The interpolation can be performed using different polynomial
bases. Herein, to generated a geometry a tensor product of trivariate Bernstein
polynomial is used [115]

x(v) = g0 +
t1∑
i=0

t2∑
j=0

t3∑
k=0

bi(α)bj(β)bk(γ)cijk(vijk)

= g0 +
t1∑
i=0

t2∑
j=0

t3∑
k=0

cijk(vijk)Bi,j,k(α, β, γ)
(2.7)

where x(v) is a vector containing the Cartesian coordinates of the displaced point,
where the generic Bernstein basis polynomials is defined as

bv,r(χ) =
(
r

v

)
χv(1− χ)r−v (2.8)

The design variable vector v is then reshaped in M -dimensional vector where
M = 3ttot.

32 2. Probabilistic Linear Latent Variable Models for Shape Optimization

2.2.3 Physical Solver

In general a physical solver is a computer program that provide an approximation
about the behavior of a physical system determined by its governing equations and
boundary conditions. Computer simulations are crucial nowadays for carry out
scientific research in many domains from fluid dynamics, material science, chemistry
and biology. Especially when direct experimentation is too economically expensive,
dangerous or even impossible to perform. In fluid dynamics the governing equations
are given by the Navier-Stokes equations that we going to briefly introduce in this
section. Without considering the energy in the system, the continuity equations and
the Cauchy momentum equation are

∂ρ

∂t
+∇ · (ρu) = 0 (2.9)

ρ
Du
Dt

= ∇ ·T + ρf (2.10)

where is the velocity vector, ρ is the density, T the second order Cauchy stress
tensor, and ρf is the volume forces vector. With T = pI + τ , for a Newtonian and
incompressible fluid the Navier-Stokes equation are given by

ρ
∂u
∂t

+ ρ(u · ∇)u = ∇ · [−pI + η[∇u + (∇u)>]] + ρf (2.11)

assuming that the stress tensor is a linear function of the strain tensor, the fluid is
isotropic, ∇· τ = 0 for a fluid at rest and η and p is the dynamic viscosity of the fluid
and the pressure respectively. The Navier-Stokes completely describe the dynamics
of a fluid as the turbulence described by the nonlinear term. In many real world
applications, the turbulence effects must to be considered in order to provide an
accurate description of the physical process. Still nowadays, the computational effort
required for the direct numerical simulation (DNS) of the Navier-Stokes equations is
intractable. Most of time a simplified numerical model is considered as the Large
Eddy Simulation (LES), Reynolds Averaged Navier-Stokes Equations (RANS).

2.3 Design Space Dimensionality Reduction for SBDO
The curse of dimensionality is one of the major drawback when global optimization
algorithms are employed in order to find an optimal solution. In the following
sections we show how to reduce the dimensionality of the design vector v by learning
a new parameterization for the shape modification. More precisely the objective
that we want like to achieve is to perform the optimization respect a new design
variable vector z ∈ RK with K < M in order to improve the convergence speed of
the global optimization routine to an optimal solution.

The process is highlighted in Fig. 2.3. The first phase is to generate the dataset
X and this is done by randomly sampling the design variable vector v from a uniform
distribution. As support for the uniform distribution we use the upper bounds and
lower bounds for each design variable component. The second phase is to apply a
dimensionality reduction model which learns the new parameterization given by the
new design variable vector z and a matrix U. Here the matrix U is responsible to

2.3 Design Space Dimensionality Reduction for SBDO 33

Dimensionality Reduction

Shape Parametrization
(Dataset Generation)

Optimization Shape Modification

Physics Simulator

Figure 2.2. SBDO framework with design-space dimensionality reduction phase.

transform (or decode) the design variable z in a new geometry x(z). The matrix
U replaces the shape parameterization method (e.g the FFD method) during the
SBDO loop.

2.3.1 Dataset Generation

The first step in the DR-SBDO is to generate the dataset that will be used in the
next block to train the dimensionality reduction model. This can be simply achieved
by sampling from a uniform distribution the full dimensional design variable vector
vm ∼ U(vlb

m, v
ub
m)∀m = 1, . . . ,M and using the sampled vector as input for Eq. 2.7

to produce a random geometry. If we repeat the process N times we can collect all
the geometries inside a dataset X of size (N ×D), where D is the number of nodes L
where the geometry is discretized times the number of Cartesian coordinate (x, y, z)
considered in the application. In this step, is crucial that the designer carefully
selects the value for the upper and lower bounds for the design variables. The first
reason is that a restricted range for the design variables will not allow diversity but
redundancy (i.e low variance) in the generated dataset. A large range for the design
variables, produces many undesired geometries as many of them will not satisfy the
geometrical constraints. Once the dataset is generated we are ready to perform the
next step as described in the next section.

2.3.2 The Principal Component Analysis

Principal Component Analysis (PCA) becomes during the last decades one of the
most famous statistical tool for feature extraction and dimensionality reduction. It
appeared for the first time in a paper [93] published by Karl Pearson in 1901 and
then independently developed from a different point of view by Harold Hotelling
in early ’30’s [64]. PCA finds a new optimal basis of dimension K such that the
variance of the projected points is maximized and the mean squared error between
the original data and their projection is minimized. The first step in the PCA is
the computation of the sample mean vector x̄ = 1

N

∑N
n=1 xn and the computation of

the sample covariance matrix S = 1
N

∑N
n=1(xn − x̄)(xn − x̄)>. The second step is to

solve an eigendecomposition problem respect to the matrix S

Su = λu (2.12)

of size (D ×D). To reduce the dimensionality of our dataset we should choose a
subset of K eigenvectors which corresponds to the top-K largest variance eigen-
values. Then we can project a data vector x into the subspace defined by top-K

34 2. Probabilistic Linear Latent Variable Models for Shape Optimization

orthonormal eigenvectors of the covariance matrix U (of size D ×K) also called
principal components

zn = U>(xn − x̄) (2.13)

the matrix zn of size K represents the reduced representation of the original data xn.
Usually the random variable z is called latent variable because they are not directly
observed but they explain or extract some useful patterns of the observed data x.
In case is needed, the reconstruction of the relative data point can be obtained by
projecting back to data space RD as following

x̃n = Uzn + x̄ = UU>xn + x̄ = Pxn + x̄ (2.14)

where P = UU> is the symmetric orthogonal projection matrix for the subspace
spanned by the first top-K eigenvectors U. Practical implementations of the PCA
perform the Singular Value Decomposition [53] of the data matrix X = VΞU>, where
V, Ξ and U are (N ×K), (K ×K) and (K ×D) respectively, with K ≤ min(N,D).
In this case X must be centered before the SVD computation to obtain the correct
results. The sample covariance matrix in this setting is given by S = 1

NX>X and
consequently

S = 1
N

X>X = 1
N

UΞV>VΞU> = 1
N

UΞ2U> = UΛU> (2.15)

the eigenvalues of the covariance matrix are given by λi = ξ2
i
N . One important

property in PCA is that the projection of the data matrix X in the latent space
given by Z are uncorrelated

Lemma 2.3.1. Suppose that the data matrix X is already centered and its projection
in the subspace spanned by the first k principal components is given by Z = XU.
Then the correlation between zi and zj for i, j = 1, . . . ,K with i 6= j is zero.

Proof. By computing the covariance of Z and using the SVD decomposition

1
N

Z>Z = 1
N

U>X>XU = 1
N

U>UΞU>U = Λ (2.16)

we obtain that the covariance of Z is diagonal and consequently the columns of Z
are uncorrelated and the variance given by the eigenvalues of S.

Another important property of PCA is that using as new basis the principal
components for the reduced subspace of RK , the variance along the projections z
is maximized and the euclidean distance from the reconstructed data x̃ and the
original representations x is minimized

Lemma 2.3.2. Given the eigenvectors of the covariance matrix U, then the squared
euclidean distance between x̃ and the original data x is minimized if and only if the
variance of the projections z is maximized.

2.3 Design Space Dimensionality Reduction for SBDO 35

Proof. Writing the sum of the euclidean distance between x and x̃

N∑
n=1
||xn − x̃n||2 =

N∑
i=1
||xn −UU>xn||2

=
N∑
i=1
||xn||2 − 2x>nUU>xn + (UU>xn)>(UU>xn)

=
N∑
i=1
||xn||2 −

N∑
i=1

x>nUU>xn

=
N∑
i=1
||xn||2 −

N∑
i=1

z>n zn

= N(Tr(S)− Tr(Λ))

Thus the in order to minimize the euclidean distance the variance of the projection
must to be maximized.

Finally a simple and widely used criterion for choose the number components K
to retain is given by computing the fraction explained variance respect to the total
variance given by

∑K

k=1 λk
Tr (S) and fix K to the desired level.

2.3.3 Optimization in the Latent Space

Once we trained the PCA model respect to the dataset X, we can formulate the
new optimization model. Given the latent variable z

min
z

f(x(z)) (2.17)

gj(x(z)) ≤ aj ∀j = 1, . . . , J (2.18)
zlb
k ≤ zk ≤ zub

k ∀k = 1, . . . ,K (2.19)

where the modification of the geometry x is performed by the variable z ∈ RK .
Also the bounds for the latent variable are computed taking the maximum and
the minimum of each column component zk of Z. Now the optimizer performs its
update in the latent space respect to the variable z and the dimensionality of this
subspace is smaller respect to the full dimensionality space defined by v ∈ RM . This
fact should increase the capability and the performance of the global optimization
algorithm to find the basin of attraction of the global minimum more efficiently.

2.3.4 Decoding from the Latent Space

Once the optimizer perform a new iteration on the reduced dimensionality space it
returns as output a new design variable z, that hopefully, will produce a decreased
value in the objective function f(x(z)). To obtain the objective function value the
design variable vector z must be projected back in the data space to obtain its
relative modified geometry x(z) as input for the physical solver. This can be easily
achieved by performing a matrix multiplication with the principal components of the
data U, namely x = Uz + x̄ where to maintain the notation uncluttered we suppose

36 2. Probabilistic Linear Latent Variable Models for Shape Optimization

that x(z) = x. The eigenvectors U represents spatial geometrical components and
are responsible to decode back the design variable z in the space RD. Once we
obtained the geometry from the latent space x, this will entry in the physical solver
that computes the objective function as shown in Fig. 2.3.

2.4 Probabilistic Linear Latent Variable Models

In this section we will introduce some important modifications in the framework
described before. The SBDO framework with a dimensionality reduction phase
performed before the optimization routine allows the optimizer to iterate in subspace
of lower dimensionality of RK respect to the full dimensionality space of RM with
K < M . An important property that could be highly desiderable when performing
the optimization in the latent space is that the shape modification should be invariant
respect the full dimensionality design space RM . This means that the design variable
vector z should not produce geometries that the original full dimensional design
variable vector v is not able to compute. This is possible in case the latent space
define a subspace that is larger respect to the full dimensionality space. Suppose
for a moment that the data x ∈ X is confined inside an hypersphere. The bounds
constraint of the optimization model in the latent space in Eq. 2.19 defines an
hyperrectangle in data space. Consequently, a decoded geometry in the data space
RD could be arbitrarily far from the center of the hypersphere. Also, the performance
of the optimizer could be weaken because must to explore in a larger space. In the
next sections we will describe more in details the problematics and how to solve
them using the new framework for shape optimization, precisely we will discuss

• In section 2.4.1 we show that in case the design variables are sampled from a
uniform distribution, the geometries produced with the shape parameterization
method (e.g. FFD) produce a design space that approximately follows a
Gaussian distribution x ∼ N (x|µ,C) as a direct application of the Central
Limit Theorem (CLT).

• In section 2.4.2 and 2.4.3 we introduce two probabilistic latent variable models
as Probabilistic PCA and Factor Analysis for dimensionality reduction and
density estimation for the new SBDO framework. In particular for the density
estimation we are interested on the estimate of the inverse of the covariance
matrix in order to define the uncertainty.

• In section 2.4.4 we propose a new optimization model which take into account
the uncertainty in terms of Mahalanobis distance. Also, we show the effect
when the uncertainty is not considered, analyzing the geometrical properties
of our new proposed methodology.

2.4.1 Statistical Properties of the Shape Parametrization Method

As we already seen the shape parameterization method as the FFD is used in
the DR-SBDO for generate the dataset composed by N geometries which design
variables are sampled from a uniform distribution vm ∼ U(vlb

m, v
ub
m),∀m = 1, . . . ,M .

2.4 Probabilistic Linear Latent Variable Models 37

Dimensionality Reduction

Uncertainty Estimation

Shape Parametrization
(Dataset Generation)

Optimization Shape Modification

Physics Simulator

Figure 2.3. SBDO framework with design-space dimensionality reduction and uncertainty
estimation phase.

As shown in section 2.3.1, the sampled design variable will produce a uniform random
perturbation in the positions of the control point so that the interpolant function
will produce a modified geometry x. Looking at Eq. 2.7 the shape parameterization
method performs a linear combination of a fixed function of the cartesian coordinates
r(x, y, z) and a coefficient that represent the design variable responsible for the random
perturbation of the geometry around these cartesian coordinates. Consequently,
they are a sum of random vectors h ∈ RD

x(v) = g0 +
M∑
m=1

r(x, y, z)vm = g0 +
M∑
m=1

h(r, vm) (2.20)

where x(v) is a vector containing the Cartesian coordinates of the geometry. Could
be interesting to exploit some statistical properties of x(v). The most interesting
one would be understand from which probability distribution the data x(v) is
generated from. The central limit theorem (CLT) [136] shows that under some certain
conditions, the probability distribution of the sum of a large number independently
and identical distributed random variables converge to a Gaussian distribution. More
formally

Theorem 2.4.1. For a sequence of D dimensional random vectors h(r, vm) with
finite mean and covariance µ and Σ respectively, we have that

√
M

(
1
M

M∑
m=1

h(r, vm)− µ
)

d−→ N (0,Σ) (2.21)

as M →∞.

which implies that
∑M
m=1 h(r, vm) d−→ N (Mµ,MΣ) for M →∞. For the proof

see for example [142]. When the random variables h are generated by a uniform
distribution, their sum converges to a Gaussian distribution very fast (i.e for M <<
∞). This is an important result because if the probability distribution of data X is
approximately Gaussian we can use this information to force the optimizer to ’stay’
in the region confined by the hyperellipsoid defined by the Gaussian distribution.
A final observation and important observation is that the geometries x ∈ RD are
produced from a design variable vector of much lower dimensionality v ∈ RM .
Consequently, we can expect that the degrees of freedom of the data x is not D but
much lower. We can imagine in this case that the data x lives in lower dimensional

38 2. Probabilistic Linear Latent Variable Models for Shape Optimization

linear manifold. This means that the sample covariance matrix S has many zero
eigenvalues and then not invertible. In the next section we describe two probabilistic
latent variables models that we can use for dimensionality reduction and density
estimation. From these two models, we can obtain the inverse of the covariance
matrix in order to compute the uncertainty for the new SBDO framework.

2.4.2 Factor Analysis

Factor Analysis [6] is one of the most famous probabilistic latent variable model that
during its long history has been applied in many different fields. We start from the
assumption that the variable x can be written as a linear combination of a latent
variable z

x = Wz + µ+ ε (2.22)

and a factor loading matrix W of size (D ×K). The latent variable is generated
by a standard Gaussian distribution z ∼ N (0, I) like the noise term ε ∼ N (0,Ψ),
independent from z. We can write that the conditional distribution is given by

p(x|z) = N (x|Wz + µ,Ψ) (2.23)

a Gaussian distribution with conditional mean E[x|z] = Wz + µ and a diagonal
conditional covariance (D × D) matrix Ψ. The FA model is described by the
parameters Θ = {W,Ψ} for a total of (D × K + D) parameters. We find the
expression for the marginal distribution p(x) solving the following integral

p(x) =
∫

z
p(x|z)p(z) dz (2.24)

where Eq. 2.24 can be computed in closed form because it represents a convolution
of two Gaussian distributions. The marginal is again Gaussian, p(x) = N (x|µ,C)
with the covariance matrix equal to

C = WW> + Ψ (2.25)

The diagonal elements of C are given by a sum of two terms. The first term, ||wi||2,
∀i = 1, . . . , D is called communality because it represents the variance explained by
the K factors W respect to the feature xi. The second term, is the variance relative
to the feature xi that is not explained by the factors and is called uniqueness. Given
those results we can write down the expression for the posterior distribution p(z|x)

p(z|x) = N (z|W>C−1(x− µ),G) (2.26)

with with G = (W>ΨW + I)−1 so that the posterior mean is given by

E[z|x] = W>C−1(x− µ) (2.27)

that is a linear function of x while the posterior covariance G is independent from x.
We can find the set of parameters Θ = {W,Ψ} via the classical Maximum Likelihood
Estimation (MLE) respect to the marginal likelihood using the information in our
observed data xn ∈ X. Unfortunately, for the FA model a closed form solution of

2.4 Probabilistic Linear Latent Variable Models 39

the marginal likelihood is not available and then numerical optimization methods
should be employed in order to find the parameters. A viable and efficient option
for find parameters in latent variable models is using the Expectation Maximization
(EM) algorithm [31]. The EM algorithm tries to maximize the expectation of the
joint log-likelihood ln p(X,Z) respect to the posterior p(z|x). We can compute

ln p(X,Z) =
N∑
n=1

ln p(xn|zn) + ln p(zn) (2.28)

then taking the expectation respect to the posterior p(z|x) we obtain

Ez|x[ln p(X,Z|Θ)] =
N∑
n=1

Ez|x[ln p(xn|zn,Θ) + ln p(zn)]

=
N∑
n=1

Ez|x

[
− D

2 ln(2π)− 1
2 ln |Ψ|−

1
2(xn −Wzn − µ)>Ψ−1(xn −Wzn − µ)

]
(2.29)

where we omitted the prior distribution since it does not depend on Θ. In the EM
algorithm the following two steps are repeated until convergence

• Expectation step (E-step) where we compute the sufficient statistics of the
posterior distribution respect to the old parameters p(zn|xn,Θold)

Ez|x[zn] = GW>Ψ−1(xn − x̄) (2.30)
Ez|x[znz>n] = G + Ez|x[zn]Ez|x[zn]> (2.31)

• Then given the statistics from the E-step, in the new Maximization step (M-
step) we evaluate the parameters maximizing Ez|x[ln p(X,Z|Θold)] setting its
derivatives respect to the parameters Θ to zero

Wnew =
[N∑
n=1

(xn − x̄)Ez|x[zn]>
][N∑

n=1
Ez|x[znz>n]

]−1
(2.32)

Ψnew = diag
{

S−Wnew
1
N

N∑
n=1

Ez|x[zn](xn − x̄)>
}

(2.33)

This iterative procedure described above, efficiently produces at the end of the
iterations, a stationary solution.

Suppose now that R is a (D×D) orthogonal matrix, if we define the new rotated
factor loadings W̃ = WR is possible to notice that the marginal covariance 2.25
with this new reparametrization is given by

C = W̃W̃> + Ψ = WRR>W + Ψ = WW> + Ψ (2.34)

which means that performing a rotation of the latent space achieves the same
value for the marginal distribution. Consequently, the matrix W is not uniquely
identifiable.

In the next section we are going to discuss a special case of FA where the
conditional covariance matrix Ψ is restricted to be isotropic. This will allow to
compute the MLE solution of the marginal distribution in closed form.

40 2. Probabilistic Linear Latent Variable Models for Shape Optimization

2.4.3 Probabilistic Principal Component Analysis

Probabilistic PCA (PPCA) introduced independently by [138] and [106] is a proba-
bilistic formulation of classical PCA which assumes a linear relationship between
the observed variable x and the K-dimensional latent variable z plus a Gaussian
noise term ε ∼ N (0, σ2I)

x = Wz + µ+ ε (2.35)

where W is a matrix of size (D × K) and µ is a D-dimensional vector mean.
Assuming a zero mean and uncorrelated Gaussian latent variable z ∼ N (0, I), the
value of x conditioned on z is given by

p(x|z) = N (x|Wz + µ, σ2I) (2.36)

where the conditional mean equals to E[x|z] = Wz +µ and the conditional isotropic
covariance (D ×D) matrix given by σ2I. The PPCA model is described by a set of
parameters Θ = {W, σ2I} for a total of (D ×K + 1) parameters. We can compute
the marginal distribution p(x) solving the following integral

p(x) =
∫

z
p(x|z)p(z) dz (2.37)

that can be compute in closed form since it represents again a convolution of two
Gaussian distributions with p(x) = N (x|µ,C) and a covariance matrix given by

C = WW> + σ2I (2.38)

The marginal distribution depends from the parameters Θ that can be determined
maximizing the marginal likelihood

ln p(X|Θ) =
N∑
n=1

ln p(xn|W,µ, σ2)

= −ND2 − N

2 ln(2π)− N

2

N∑
n=1

(xn − µ)>C−1(xn − µ)
(2.39)

Setting the derivatives to zero, the likelihood is maximized at

µ = 1
N

N∑
i=1

xi (2.40)

σ2 = 1
D −K

D∑
i=K+1

λi (2.41)

W = U(Λ− σ2I)1/2R (2.42)

The marginal likelihood in Eq. 2.39 is a non convex function but all stable stationary
points are global minima [138].

The maximum likelihood solution is obtained in closed form, where µ is the
sample mean, Λ is a (K × K) diagonal matrix composed by the top-K largest
eigenvalues of the sample covariance matrix S, U the relative PCA eigenvectors and

2.4 Probabilistic Linear Latent Variable Models 41

σ2 is the expected value of the residual variance of the discarded N −K principal
components. The orthogonal (K ×K) matrix R can be set to I. In this case, the
matrix W is composed by the principal components U scaled by a factor of

√
λi − σ2.

In case a numerical optimization algorithm is used for find the maximum likelihood
solution, the matrix R could be arbitrary and the matrix W not orthogonal at the
optimal solution.

To define a projection of a point x in the latent space we can compute the
posterior distribution of p(z|x) using the Bayes theorem as

p(z|x) = N (z|M−1W>(x− µ), σ2M−1) (2.43)

with M = W>W + σ2I. The latent representation of a data point x in the latent
space is given by the posterior mean

E[z|x] = M−1W>(x− µ) (2.44)

and can be reconstructed in data space with WE[z|x] + µ. Differently from PCA,
in PPCA and FA we are not performing an orthogonal projection of the data in the
latent space. In fact, if we take the limit σ2 → 0 with W given by the MLE solution
we recover the classical PCA, (W>W)−1W>(x− µ). But for σ2 → 0 the posterior
covariance is zero and the density becomes singular and then not defined. Even if
an exact closed form solution of the likelihood is provided, could be advantageous
to use an iterative procedure to compute the parameters instead to perform the
eigenvalue decomposition of the (D ×D) sample covariance matrix S. This can be
expensive and not viable option in case of very large D. As for the FA model the
EM algorithm involves in the maximization of the expectation of the complete data
log-likelihood ln p(X,Z|Θ) respect to the posterior p(z|x). In case of the PPCA
model this corresponds to compute

Ez|x[ln p(X,Z|Θ)] =
N∑
n=1

Ez|x[ln p(x|z,Θ) + ln p(z)]

=
N∑
n=1

Ez|x

[
− D

2 ln(2π)− 1
2 ln |σ2I|−

1
2(xn −Wzn − µ)>σ2I−1(xn −Wzn − µ)

]
(2.45)

where we omitted the prior distribution since it does not depend on Θ. Setting µ as
the sample mean, in the EM algorithm the following two steps are repeated until
convergence

• Expectation step (E-step) where we compute the statistics of the posterior
distribution given the old parameters p(z|x,Θold) :

Ez|x[zn] = M−1W(x− µ) (2.46)
Ez|x[znz>i] = σ2M−1 + Ez|x[zn]Ez|x[zn]> (2.47)

Then given the new value of the new Maximization step (M-step) based
on the posterior distribution we evaluate the parameters by maximizing

42 2. Probabilistic Linear Latent Variable Models for Shape Optimization

Ez|x[ln p(X,Z|Θold)] setting its derivatives respect to the parameters Θ to
zero

Wnew =
[N∑
n=1

(xn − µ)Ez|x[zn]>
][N∑

n=1
Ez|x[znz>n]

]−1
(2.48)

σ2
new = 1

ND

N∑
n=1

(||xn − µ||2)− 2Ez|x[zn]>W>
new(xn − µ) (2.49)

+ Tr(Ez|x[znzn]>W>
newWnew) (2.50)

There is a great computational advantage in computing the model parameters Θ
with EM algorithm especially when K << D and when the dimensionality of the
observed data D and the number of observation N are large. This because the
covariance is never computed explicitly which has complexity O(ND2) and its
eigenvalue decomposition with complexity O(D3). The snapshot method [130] for
the computing the eigenvalues of the covariance is O(N3) which scales poorly in
case of large datasets.

A remark regards in the computation of inverse of the covariance matrix C.
Instead of directly take the inverse of C, we can use the Woodbury matrix inver-
sion formula [147] obtaining, C−1 = σ−2I − σ−2WM−1W>. Using the previous
transformation we only need to compute the inverse of M which is (K ×K) rather
than find directly the inverse of C with cost O(D3); the same transformation can
be applied to the FA model.

Finally, the PPCA as the FA, is invariant to rotations in latent space which
means that there exist a set of matrices W giving the same marginal distribution.

2.4.4 Exploiting the Uncertainty in the Optimization Model

Once we trained our model (either a PPCA or FA) on the data matrix X we can
start the SBDO process. In this case the optimization problem is given by

min
z

f(x(z)) (2.51)

subject to: gj(x(z)) ≤ aj ∀j = 1, . . . , J (2.52)
ϕ(x(z)) ≤ ϕmax (2.53)
zlb
k ≤ zk ≤ zub

k ∀k = 1 . . .K (2.54)

where we added a new constraint in Eq. 2.53. The term ϕ(x(z)) represents the
uncertainty associated to the geometry x(z). Given the inverse of the covariance
matrix C−1 this is given by (with x(z) = x)

N (x|µ,C) = 1
2πD/2|C1/2|

exp
{
−1

2(x− µ)>C−1(x− µ)
}

(2.55)

the marginal distribution estimated through the probabilistic latent variable models,
FA and PPCA. A more interpretable metric is given by the exponent of 2.55, namely
the squared Mahalanobis distance d2

M (x). The Mahalanobis distance [85] is defined
a as follow

dM (x) =
√

(x− µ)>C−1(x− µ) (2.56)

2.4 Probabilistic Linear Latent Variable Models 43

The Mahalanobis distance introduced by P.C Mahalanobis in 1936, it’s an extension
of the Euclidean distance that takes into account the correlation between vectors
since for C = I Eq. 2.56 reduces to the Euclidean distance. The scalar ϕmax
represents a threshold for the maximum level of uncertainty that the generated
shape from the optimizer cannot exceed. The value of the scalar ϕmax is computed
respect to the reconstructed dataset X̃. For each data point we encode it in the
latent space using Eq. 2.27 or Eq. 2.44 and then projected back in data space using
the conditional mean in 2.23 or Eq. 2.36 respectively for FA and PPCA. Successively,
we can evaluate the uncertainty (for example using Eq. 2.56) respect to every x̃ ∈ X̃
and fix ϕmax to the maximum value obtained.

Could be also interesting at this point to explore what kind of distribution can
have in general the random variable defined by the squared Mahalanobis distance
d2
M (x). Now we will show that under some condition the squared Mahalanobis

distance follows a Chi-Squared distribution d2
M (x) ∼ χ2

D.

Lemma 2.4.2. Given a D-dimensional random variable vector x, then if x ∼
N (x|µ,Σ) then the distribution of the squared Mahalanobis distance follows a Chi-
Squared distribution d2

M (x) ∼ χ2
d.

Proof. For the random variable x the Gaussian distribution is given by

N (x|µ,Σ) = 1
2πD/2|Σ1/2|

exp
{
−1

2(x− µ)>Σ−1(x− µ)
}

(2.57)

consequently the functional dependence respect to x is given only respect to the
squared Mahalanobis distance d2

M (x) inside the exponent of the Gaussian distribution.
Using the eigenvalue decomposition for the covariance matrix Σui = uiλi, ∀i =
1, . . . , D, its inverse can be written as follows

Σ−1 =
D∑
i=1

1
λ i

uiu>i (2.58)

and the squared Mahalanobis distance becomes

d2
M (x) =

D∑
i=1

1
λ i

(x− µ)>uiu>i (x− µ) =
D∑
i=1

y2
i

λi
(2.59)

where yi = u>i (x − µ) represents the i-th component of the vector y in the new
coordinate system defined by the eigenvectors U. The random variable x is Gaussian
and its the affine transformation y is again Gaussian, consequently since for definition
the sum of squared value of normal random variables follow a Chi squared distribution
then d2

M (x) ∼ χ2
d.

This an important result in our setting because we could use that as an additional
proof that random geometries xn ∈ X, ∀n = 1, . . . , N produced by the shape
parameterization are Gaussian distributed. Finally, we’d like to conclude this section
what is the effect in case the constraint in Eq. 2.53 inside the SBDO process. The
constraints in Eq. 2.53 and 2.54 define an hyperellipsoid and a hyperrectangle
in the data space RD. To simplify the analysis, we can consider instead of an

44 2. Probabilistic Linear Latent Variable Models for Shape Optimization

hyperellipsoid for constraint Eq. 2.53 an hypersphere which corresponds to an
isotropic covariance matrix for the Gaussian distribution. Also, let’s consider an
hypercube for constraint 2.54 always for make the analysis more general. We can
derive an expression for the volume of the hypersphere and for the hypercube, using
simple tools from geometry of RD [71]. The volume of the hypersphere of radius r
is given by VD = πD/2rD(Γ(D2 + 1))−1 (where Γ(α) =

∫∞
0 tα−1e−tdt). The volume

of the hypercube of length l = 2r is given by H(D) = lD = 2rD. The asymptotic
behavior for the ratio of the volume of the hypersphere inscribed in an hypercube is
given by

lim
D→+∞

VD
HD

= πD/2rD

2rDΓ(D2 + 1)
= 0 (2.60)

with

Γ
(
D

2 + 1
)

=
{

(D2)! if D is even
√
π(D!!

2d+1/2) if D is odd
(2.61)

for D = 2 the limit in Eq. 2.60 is equal to 78.5%, meaning that the circle covers
the 78.5% of the space defined by the hypercube. The limit converges very fast to
zero. For D = 6, the hypersphere covers only the ' 8% of the entire hypercube!
This shows that as the dimensionality increase, the majority of the volume of the
hypercube is concentrated in its 2D corners. Don’t consider the constraint in Eq.
2.53 could allow the optimizer to search into a arbitrarily large design space, with
a high probability to prduce geometries which are very far from the center of the
distribution (i.e the mean).

2.5 Application: Shape Optimization of a Naval De-
stroyer DTMB 5415

In this section section we will apply the new proposed framework for the optimization
of a US naval Destroyer DTMB 5415.

Table 2.1. DTMB 5415 model scale main particulars and test condition.

Description Unit Value

Displacement tonnes 0.549
Length between perpendiculars m 5.720
Beam m 0.760
Draft m 0.248
Longitudinal center of gravity m 2.884
Vertical center of gravity m 0.056
Water density kg/m3 998.5
Kinematic viscosity m2/s 1.09E-06
Gravity acceleration m/s2 9.803
Froude number – 0.280

2.5 Application: Shape Optimization of a Naval Destroyer DTMB 5415 45

2.5.1 Design Space Parameterization and Sampling

The number of design variables is chosen based on the quality of the shape mod-
ification obtained. The number of the design variables should be minimized as
much as possible but at the same time allowing for large variability across the
shapes generated. Moreover, designs not satisfying the geometrical constraints

Table 2.2. Hull shape modification, FFD control points and variables setup.

Layer Layer x-plane No. CPs No. active CPs Variable range

1 x = 0.00 12 1 −1.0 ≤ v(1,2)
y ≤ 1.0

2 x = 18.21 12 2 −1.0 ≤ v(3,4)
y ≤ 1.0

3 x = 36.42 12 2 −1.0 ≤ v(5,6)
y ≤ 1.0

4 x = 54.63 12 2 −1.0 ≤ v(7,8)
y ≤ 1.0

5 x = 72.85 12 2 −1.0 ≤ v(9,10)
y ≤ 1.0

6 x = 91.06 12 2 −1.0 ≤ v(11,12)
y ≤ 1.0

7 x = 109.27 12 1 −1.0 ≤ v13
y ≤ 1.0

7 x = 109.27 12 1 −2.0 ≤ v14
y ≤ 2.0

8 x = 127.49 12 1 −2.0 ≤ v15
y ≤ 2.0

9 x = 145.70 12 1 −2.0 ≤ v16
y ≤ 2.0

Table 2.3. Bulb shape modification, FFD control points and variables setup.

Layer Layer x-plane No. CPs No. active CPs Variable range

1 x = 127.20 9 0 (-)
2, 3 x = 133.20 ∧ x = 139.20 18 1 −1.0 ≤ v17

y ≤ 1.0
2, 3 x = 133.20 ∧ x = 139.20 18 1 −1.0 ≤ v18

z ≤ 1.0
2, 3 x = 133.20 ∧ x = 139.20 18 1 −0.3 ≤ v19

x ≤ 0.3
4 x = 139.20 9 1 −1.0 ≤ v20

z ≤ 1.0
4 x = 139.20 9 1 0.0 ≤ v21

x ≤ 0.5

are not included in the data matrix. As a results, all designs processed by the
dimensionality reduction models are feasible. The idea is to define an optimal basis
for the representation of the feasible domain. Nevertheless, in case of PCA there
are no guarantees that all geometries are feasible during the optimization while
with the formulation that we are proposing based on the satisfaction of the Maha-
lanobis distance constraint this can be accommodated. The design spaces is sampled
following a uniform random distribution obtaining N = 10000 hull-form feasible
design. The data matrix X collects a L = 7, 200 grids points from hull discretization
consequently since the design modifications for this application are allowed in all
the three cartesian components (only for the bulb shape modification) x, y and z the
resulting dimensionality in the data space D is equal to D = L× 3 = 21600. In Tab.
2.2 and in Tab. 2.3 there are the configurations of the FFD’s control points for the
hull and bulb respectively, is possible to see that the total number of design variable
used are M = 21 with the relative support for the uniform distribution. The lattices
for the hull and the bulb are shown in Fig. 2.4 and in Fig. 2.5 respectively.

46 2. Probabilistic Linear Latent Variable Models for Shape Optimization

Figure 2.4. FFD control points over the hull.

Figure 2.5. FFD control points over the bulb.

2.5.2 Dimensionality Reduction

The first step is to find the right dimensionality of the latent space K. This can
be easily assessed respect to the variance that the reparametrization should resolve
respect to the original design space representing the explained variance of the model.
For this application we fix a threshold of 99% for the explained variance by the
PPCA and FA. In Fig. 2.13 and in Fig. 2.14 we show the components W for the
PPCA and FA model directly on the hull form and helps to understand what kind
of shape modification we obtain during the transformation given by Wz + x̄.

In Fig. 2.6 there is the convergence of the explained variance for the two
dimensionality reduction models considered in the current analysis namely PPCA
and FA. For the PPCA the components are computed using the closed for solution
of the marginal likelihood in Eq. 2.42. In this case the explained variance is given
by the PCA eigenvalues since W and U span the same subspace.

For the FA model we use the EM algorithm to find model parameters. In the FA
model the variance explained by each component is given by ||wk||2, ∀k = 1, . . . ,K.
As we can see in Fig. 2.6 the PPCA reach the threshold of 99% with K = 12
components while the FA with K = 16.

2.5 Application: Shape Optimization of a Naval Destroyer DTMB 5415 47

Figure 2.6. Design-space variability retained as a function of the number K-components.

Since the the PPCA components are just scaled PCA eigenvectors, in terms of
variance explained is superior respect to FA.

2.5.3 Fixing the Threshold for the Mahalanobis Distance

Before starting the SBDO process we need to fix the constraint for the Maha-
lanobis distance. The first step is to compute for the K found in the previous
section the reconstructed data X̃. Which means that for all the xn ∈ X we
compute the conditional latent mean for PPCA and FA in Eq. 2.43 and Eq.
2.26 and projecting back all the zn in the data space by computing the con-
ditional mean in Eq. 2.36 and Eq. 2.23 for the PPCA and FA respectively.

Table 2.4. Dimensionality reduc-
tion and density estimation re-
sults.

Method K ϕmax

PPCA 12 21.74
FA 16 27.13

Once we found the matrix X̃ for the two models
we compute the uncertainty associated to each
reconstructed geometry x̃ ∈ X̃ as the squared
Mahalanobis distance. At the end of this pro-
cess we have a vector of size N , d2

M (x̃) In this
application the threshold ϕmax is fixed respect to
1.5 times the interquantile range IQR = q3 − q1,
where q1 and q3 are the first and the third quartile
of d2

M (x̃). We don’t choose for ϕmax as the maxi-
mum value of d2

M (x̃) because during the random
sampling procedure could produce outliers. In
Tab. 2.4 we summarized the values of the threshold. Finally we performed a simple
empirical experiment to show and understand the effect of the density estimation
procedure. More precisely we sampled uniformly at random 10000 latent variables
z where as support for the uniform distribution we used the bounds described in
Eq. 2.54. Then projected back in data space denoted byE[x|z]. This process can
be interpreted as performing an optimization procedure using a uniform random
sampling as a optimization algorithm. But in this experiment we are only inter-
ested in the effect of the constraint in Eq. 2.53. Then we computed the squared
Mahalanobis distance denoted by d2

M (E[x|z]) and compared their properties respect
to d2

M (x̃). The procedure is performed both for PPCA and FA and reported in
Fig. 2.7. We can notice is that the center of mass of the distribution of d2

M (E[x|z])
is shifted towards an high value of the Squared Mahalanobis distance respect to

48 2. Probabilistic Linear Latent Variable Models for Shape Optimization

d2
M (x̃). When a latent variable z is uniformly sampled at random, seems that with

(a) PPCA (K = 12) (b) PPCA (K = 12)

(c) FA (K = 16) (d) FA (K = 16)

Figure 2.7. Behavior in terms of the empirical PDF of the squared Mahalanobis distance
(left column) and relative box plots (right column).

high probability that this will produce a shape modification far from the mean x̄ of
the marginal distribution. Is possible to quantify this effect computing the value
of p(d2

M (E[x|z]) < ϕmax) and p(d2
M (E[x|z]) >= ϕmax) as shown in Fig. 2.7. The

probability that a latent variable sample uniformly at random will be greater than
our threshold ϕmax is ≈ 0.99 and ≈ 0.98 in case of FA and PPCA respectively.

Finally from Fig. 2.7 is possible to notice that the empirical PDF of p(d2
M (x̃)) is

very similar to a Chi-Square distribution with K degrees of freedom.

2.5.4 Optimization Problem

The problem formulation for the shape optimization of the DTMB 5415 reads

min
v

RT(x(v)) with v ∈ RM

Lpp(x(v)) = Lpp0

∇(x(v)) = ∇0,
|∆B(x(v))| ≤ 0.05B0,
|∆T (x(v))| ≤ 0.05T0,
V (x(v)) ≥ V0,
vlb
i ≤ ui ≤ vub

i ∀i = 1, . . . ,M

(2.62)

where RT is the calm-water resistance at Fr = 0.28 (equivalent to 20 kn for the full-
scale ship). Equality constraints are defined for the length between perpendiculars
(Lpp) and for the displacement (∇). Inequality constraints include 5% of maximum
variation of beam (B) and the drought (T) and dedicated volume for the sonar
dome (V), corresponding to 4.9 m diameter and 1.7 m length (cylinder). Subscript
‘0’ indicates original-geometry values. Equality and inequality constraints on the
geometry deformations are based on [36] Using the reduced-dimensionality design
space with probabilistic linear latent variable models PPCA and FA, the optimization

2.5 Application: Shape Optimization of a Naval Destroyer DTMB 5415 49

problem (Eq. 2.63) is recast as

min
z

RT(x(z)) with z ∈ RK

Lpp(x(z)) = Lpp0

∇(x(z)) = ∇0,
|∆B(x(z))| ≤ 0.05B0,
|∆T (x(z))| ≤ 0.05T0,
V (x(z)) ≥ V0,
d2
M (x(z)) ≤ ϕmax
zlb
i ≤ zi ≤ zub

i ∀i = 1, . . . ,K

(2.63)

Where the bounds for the latent variable are computed by taking the maximum and
the minimum of each column component zk of Z and the value of ϕmax given in Tab.
2.4.

2.5.5 Hydrodynamic Solver

The calm-water total resistance is evaluated using the linear potential flow code
WARP (Wave Resistance Program), developed at CNR-INM. Wave resistance com-
putations are based on the Dawson (double-model) linearization [27]. The frictional
resistance is estimated using a flat-plate approximation, based on the local Reynolds
number [111]. The ship balance (sinkage and trim) is fixed. Details of equations,
numerical implementations, and validation of the numerical solver are given in [9].
Simulations are performed for the right demi-hull, taking advantage of symmetry
about the ξ1ξ3-plane. The computational domain for the free-surface is defined
within 1Lpp upstream, 3Lpp downstream, and 1.5Lpp sideways, for a total of 150×44
grid nodes. The associated hull grid if formed by 180× 40 nodes.

2.5.6 Numerical Results

The global optimization process is performed using the DIRECT algorithm [69]
and Bayesian Global Optimization [90] based on Gaussian Process (GP) [102]. The
stopping criteria is the maximum number of function evaluations fixed at Imax = 500.
For the GP, we used the lower confidence bound (GP-LCB) [133] as utility function,
with the parameter that balance the exploitation/exploration is fixed to one. The
LCB is optimized with a multi-start Quasi-Newton method BFGS [16]. In this
work, a Matérn kernel function [49] with a parameter ν = 3/2 has been used for the
GP, while its length scale is optimized during the Maximum Likelihood Estimation
(MLE) procedure.

The hidden constraints are treated as following: in case one or more constraints
are not satisfied, the geometry will not enter the simulator to obtain the function
evaluation, instead the following pseudo value for the objective function is returned
back to the optimizer as

f(x) = h+ ψ ∗
J∑
j=1

max{0, gj(x)− aj} (2.64)

where h = 50 and ψ = 1000. In Tab. 2.5 the numerical results for each optimization
algorithm and for the three design spaces produced by PPCA (K = 12), FA (K = 16)

50 2. Probabilistic Linear Latent Variable Models for Shape Optimization

and the full dimensional design space FDS (M = 21) in terms of the water resistance
RT (N). The overall best function value obtained is given by the DIRECT algorithm
iterating in the subspace produced by the PPCA. In Fig. 2.8 we could evaluate the
converge speed to the achieved optimal function value. We can notice from these
figures that optimizing in the latent space shows a better convergence speed respect
to the FDS.

In Fig. 2.9 is possible to evaluate the quality of the optimal geometries (especially
the bulb region) produced through FA and PPCA and their relative Mahalanobis
distance. In general is possible to notice a good regularity of the shape modification
across all the optimal solutions

Table 2.5. Numerical results at the end of the SBDO process.

Method K DIRECT RT (N) GP-LCB RT (N)

PPCA 12 34.04 36.81
FA 16 35.35 38.77
FDS 21 40.10 40.91

(a) DIRECT (b) GP-LCB

Figure 2.8. Convergence of DIRECT and GP-LCB during the optimization in FA, PPCA
and FDS spaces.

Finally the SBDO process is applied also for the PCA with K = 12. In Fig. 2.10 we
can see the convergence of the two optimizers used in this application.

In order to understand if the geometries produced by the PCA during the SBDO
process are out of distribution respect to the training data, we evaluated the squared
Mahalanobis distance using the inverse of the covariance matrix C−1 estimated
by the PPCA model since the eigenvectors U and the matrix W span the same
subspace. Most of the latent variable produced by the optimization algorithms
when projected back by the PCA for function evaluation don’t satisfy the PPCA
Mahalanobis distance constraint.

In Fig. 2.11 there is the distribution for the squared Mahalanobis distance
computed respect to the geometries sample with PCA during the optimization
with DIRECT and GP-LCB. For the GP-LCB the geometrically feasible geometries
produced by the PCA that don’t satisfy the PPCA Mahalanobis distance constraint

2.5 Application: Shape Optimization of a Naval Destroyer DTMB 5415 51

(a) d2
M (x̄) = 0

(b) d2
M (x) = 21.73 (c) d2

M (x?) = 15.05 (d) d2
M (x?) = 15.14 (e) d2

M (x?) = 27.12

Figure 2.9. Optimal solutions x? and relative (squared) Mahalanobis distance for
PPCA/DIRECT (b), PPCA/GP-LCB (c), FA/DIRECT (d) and FA/GP-LCB (e).
The mean geometry x̄ in (a).

(a) DIRECT (b) GP-LCB

Figure 2.10. Convergence of DIRECT and GP-LCB during the optimization in PCA space.
In red a geometry which does not satisfy constraint based on the Mahalanobis distance.

Figure 2.11. Empirical PDF for the squared Mahalanobis distance for the geometries
sampled in PCA subspace from DIRECT and GP-LCB.

are the ≈ 67.4% while with the DIRECT algorithm this fraction is approximately
≈ 81.6% of the total number of function evaluations performed.

52 2. Probabilistic Linear Latent Variable Models for Shape Optimization

(a) d2
M (x̄) = 0 (b) d2

M (x?) = 31.21 (c) d2
M (x?) = 26.41

(d) d2
M (x) = 54.32 (e) d2

M (x) = 40.24 (f) d2
M (x) = 36.22

Figure 2.12. Optimal solutions x? and relative (squared) Mahalanobis distance for
PCA/DIRECT (b) and PCA/GP-LCB (c). Examples of three geometries (geometrically
feasible) sampled during the optimization routine in (d) (e) and (f). The mean geometry
x̄ in (a).

In Fig. 2.12 there are the optimal solutions and the three examples of geometries
obtained during the SBDO process. In general, from Fig. 2.12 we obtain a front
part of bulb squashed towards the symmetry axis as in 2.12(b), 2.12(c), 2.12(d).
This the main reason why geometry 2.12(b) reaches a low value of RT (N) = 33.3. A
similar behavior can be noticed in the optimal solution obtained with DIRECT with
the PPCA in Fig. 2.9(b), but in this case the constraint based on the Mahalanobis
distance forces the shape of the bulb to be more regular and similar to the mean
geometry. Let’s notice also, that in 2.12(f) the bulb tends towards a negative value
of the z coordinate together with a curious depression obtained over the hull.

To conclude, don’t consider the uncertainty of the reduced parametrization could
lead to the big disadvantage to waist expensive time consuming function evaluations
for meaningless geometries that are far from the original design space carefully
defined in our data X.

2.5.7 Conclusions and Future Works

In this chapter we proposed a new framework for SBDO in shape optimization. This
is based on coupling a dimensionality reduction of the original design variables with
a density estimation of the probability distribution of the data. This is achieved
by adding a constraint which measure the uncertainty (in data space) of the shape
modification defined in the latent space. The uncertainty is measured in terms of the
Mahalanobis distance. Also we showed that when the shape modification method is
linear and the design variables are sample uniformly at random, the generated data
follows approximately a Gaussian distribution. This is a consequence of the central
limit theorem (CLT).

2.5 Application: Shape Optimization of a Naval Destroyer DTMB 5415 53

The inverse of the covariance, that is needed to compute the uncertainty, is
estimated by using two linear probabilistic latent variable models: Factor Analysis
and Probabilistic PCA. These methods, provide also the construction of the latent
space, namely the reduced dimensionality space. The new proposed framework is
demonstrated at the end for the shape optimization of naval military US destroyer.
From the optimization results carried out with two global optimization algorithm
DIRECT and GP-LCB, showed that reduce the dimensionality allows a greater
reduction in the objective function respect to the full-dimensionality space. At
the end we also performed the optimization using the PCA. Most of the time are
generated geometries that are ’far’ from the original parameterization with the great
penalty to have wasted many function evaluations.

In the future work, the possibility to use a finer grid for the hull discretization
can be considered since through the EM algorithm is possible to learn the reduced
parametrization and the relative uncertainty without storing the covariance matrix
in the main memory. Also, high fidelity simulators together and a physics informed
formulation could be considered.

54 2. Probabilistic Linear Latent Variable Models for Shape Optimization

wk PPCA FA

k = 1

k = 2

k = 3

k = 4

k = 5

Figure 2.13. Module of the first five PPCA and FA components.

2.5 Application: Shape Optimization of a Naval Destroyer DTMB 5415 55

wk PPCA FA

k = 6

k = 7

k = 8

k = 9

k = 10

Figure 2.14. Module of the last five PPCA and FA components.

57

Chapter 3

Data-driven Analysis of
Turbulent Flows

In this chapter, we will show a data-driven analysis carried out for two high Reynolds
number vortices flows namely for uniform and buoyant jets and 4- and 7-bladed
propeller wakes. The methodology is based on the global flow analysis using the
Projection Orthogonal Decomposition (POD) and Dynamic Mode Decomposition
(DMD) for the Uniform and Buoyant Jet. Also Spatial and snapshot clustering
approaches are presented and discussed for particle image velocimetry (PIV) Data
clustering is based on the k-means algorithm, along with the identification of the
optimal number of clusters based on the energy retained by the dominant POD mode.
Spatial clustering for jets flow is based on three sets of clustering variables, namely
cross-section velocity profiles, point-wise energy spectra, and point-wise Reynolds
stress tensor components. Snapshot clustering of phase-locked propellers wake data
is based on the vorticity with a focus on tip vortices regions. POD and t-distributed
stochastic neighbor embedding along with kernel density estimation are used to
provide a two-dimensional visualization of data clusters for assessment and discussion.
The objective of this work is to lay the ground for a systematic data-clustering
analysis of PIV data. The examples discussed show how clustering methods can
help in achieving physical insights into complex fluid dynamics problems. Most of
the results presented in this chapter are based on [41, 120], the experiments for the
Buoyant and uniform jet were conducted at George Washington University and for
the propeller wakes at the Institute of Marine Engineering of the Italian National
Research Council (CNR-INM).

3.1 Introduction

Turbulent flows are very common and simple to observe phenomena from everyday
life to many areas of engineering, but at the same time are incredibly difficult
to describe and explain. In nature, turbulence are defined as a manifestation of
the spatio-temporal chaotic behavior of fluid flows at large Reynolds numbers,
i. e. of a strongly nonlinear dissipative system with extremely large number of
degrees of freedom (most probably) described by the Navier-Stokes equations [139].
Following [137] and [139] the main characteristics for turbulent phenomena are

58 3. Data-driven Analysis of Turbulent Flows

briefly summarized in

• Intrinsic spatio-temporal randomness: turbulent flows show randomness in
the characteristics of the vortices in position and orientation. However this
is usually expressed as deterministic chaos since the Navier Stokes equations
completely provide a deterministic description of flows.

• Wide range of strongly interacting scales: the vortex structures, besides the
intrinsical randomness are distinguished by a wide scale of length measuring
units

• Loss of predictability: this is due to the fact that small perturbations/ distur-
bances could be be highly amplified over time due to the high nonlinearities.

• Turbulent flows are highly dissipative: since turbulences are dissipative pro-
cesses a source of energy is needed in order to conserve the phenomena over
time. This is performed in the main stream and then transferred towards
smaller scales

• Turbulent flows are three-dimensional and rotational: Vortex structures occur
in the space of a turbulent flow field in random locations and with random
orientation. The 3D structure of the vector field of velocity fluctuations
originates from this situation.

• Strongly diffusive: turbulent flows show strongly enhanced transport processes
of momentum, energy and passive objects.

As already mentioned above, turbulent flows can be deterministically described
by the Navier-Stokes equations. However is important to point out that direct
numerical simulation (DNS) of the Navier Stokes equations are usually only possible
to be performed in case of simple geometries and a moderate Reynolds number due
to the high computational power required. Also the difference in the scale resolution
between an experiment ran in the laboratory and a numerical experiment could
lead to erroneous results [139]. For these reasons the study and the investigation
of turbulent flows are also performed by physical experiments. During the years
researchers provided many ways to measure turbulence from nuclear magnetic
resonance to the particle image velocimetry. Those methodologies provides data (or
snapshots) in space and in time about the quantity of interests (e.g. vorticity).

In the last years the Data Science field has emerged as a cutting-edge research
field that develops and applies rigorous methods and algorithms to gain knowledge
from data. In recent years, data science methods have been applied in the context of
more traditional disciplines to accelerate the experimental/computational analysis
process and extract insights from experiments and simulations data. Unsupervised
machine learning methods (such as proper orthogonal decomposition formulations,
POD, along with linear/nonlinear principal component analysis, PCA) have been
used to reduce the problem dimensionality, plan more efficient design- and/or
operational-space explorations, and gain insights of complex physical phenomena.
POD has been widely used for the identification of coherent structures in turbulent
flows [11] and applied to steady/transient uniform/buoyant jets [55, 152] [83]and

3.2 Data-driven methods for Physical Experimental Data Analysis 59

marine propeller wakes [43]. In the discrete form, POD is equivalent to PCA and
allows to decompose the flow into a linear combination of a subset of orthogonal
eigenfunctions, capable of highlighting its spatial/temporal structure and providing
a reduced-order/dimensionality model for the flow dynamics. Although POD is a
widely used and has well-established global optimality properties, it is based on
the linearity, stationarity, and ergodicity assumptions and may not be effective
when nonlinear, transient, non-stationary, non-ergodic dynamics are investigated.
For this reason nonlinear dimensionality reduction (NLDR) methods have been
developed and applied to provide with a deeper understanding of data structures
and physical phenomena. A straightforward approach to NLDR with POD/PCA
is to use data clustering methods and perform POD/PCA within each cluster.
Cluster-based reduced-order and/or dimensionality modeling by POD/PCA can
provide with physical insight of complex phenomena and is achieved by local PCA
(LPCA), where the data set is divided into clusters and POD/PCA is applied to each
cluster, assuming therefore an approximate linear structure within each cluster. The
cluster centroids along with the associated modes are used to extract relevant flow
feature in the spatial/temporal domains. Applications of spatial clustering via the k-
means method with POD/PCA have been presented in [120] for a transient buoyant
jet. POD/PCA approaches based on temporal and spatial k-means clustering
have been presented in [8] for a swirl-stabilized combustor flow. In general, the
number of clusters and the similarity metrics used for data clustering highly affect
the quality of the resulting reduced-order/dimensionality model, and therefore
the possibility to gain valuable physical knowledge from the clustering analysis.
Rigorous data-clustering methods can assist in achieving a deeper understanding
of experiments/simulations data and have been proposed in different fields, such
as computer vision and speech recognition. A further step towards fully nonlinear
dimensionality reduction of data sets has been proposed via t-distributed stochastic
neighbor embedding (t-SNE) by [141]. The method provides with the capability of
embedding and visualizing high-dimensional data in a low-dimensional space and
has been applied to turbulence data sets from simulations in [148]. Data analysis
methods are outlined in the following. Specifically, the k-means clustering method
is briefly recalled. POD/PCA implementation is described and used both as metric
for identifying an optimal number of clusters and a visualization technique. For
the same purpose, the t-SNE method is used as visualization technique and briefly
discussed along with KDE.

3.2 Data-driven methods for Physical Experimental Data
Analysis

In this section we will describe various methodologies for the analysis of turbulent
flows used in this work.

3.2.1 Proper Orthogonal Decomposition

The Projection Orthogonal Decomposition[11] is Fluid Dynamics is appllied respect
to the Reynolds decomposition of the velocity vector, with

u = u+ u′ v = v + v′ (3.1)

60 3. Data-driven Analysis of Turbulent Flows

where u and v indicate x (axial/vertical) and y (horizontal) components, respectively.
Overbar and prime characters indicate time average and fluctuations, respectively.
The POD then follows the same procedure as classical PCA. The (L × T) data
matrix X is defined as

X =
[

x1 . . . xT
]

(3.2)

where x = {u′(x1), . . . , u′(xP), v′(x1), . . . , v′(xP)}> collects the discretized velocity
fluctuations, xi represents the i-th node of the spatial discretization, P is the
spatial discretization size, superscript (t), with t = 1, . . . , T , indicates the t-th
time realization (snapshot), and finally L = 2P . The data matrix X is reduced
in dimensionality through projection of the snapshots into a new linear subspace,
formed by the eigenvectors of the (L× L) sample covariance matrix

S = 1
T

X XT (3.3)

evaluated by
SW = WΛ (3.4)

where W and Λ collect the L eigenvectors (wi) and eigenvalues (λi) of S, respec-
tively. This corresponds to performing the PCA of the matrix X. The problem of
Eq. 3.4 may be alternatively solved using the singular value decomposition, SVD
[53]. Furthermore, if L > T the dual problem may be solved via the so-called
snapshot-POD (equivalent) formulation, see e.g. [20].
POD/PCA eigenvalues represent the variance (under proper assumptions this repre-
sents the turbulent kinetic energy) resolved along the corresponding eigenvectors.
The linear subspace formed by the M eigenvectors (POD/PCA modes, collected
in Ŵ) associated to the largest M eigenvalues resolves (globally) the largest vari-
ance/energy, compared to any other linear subspace of dimension M [12, 62]. The
cumulative sum of the eigenvalues is used to assess the variance resolved by the
linear subspace of dimension M . Finally, the associated reconstruction of X is given
by X̂ = WW>X, where by definition the coefficient or latent variable zi = z>i X is
the projection of the data matrix onto the i-th mode.

3.2.2 Dynamic Mode Decomposition

The Dynamic Mode Decomposition DMD introduced by [112], becomes together
with POD one of the most useful technique for fluid flows analysis. The DMD
provide a modal decomposition highlighting the information about the temporal
dynamics of the phenomena. As the POD, the eigenvectors are spatial fields, but
in the case of the DMD the relatives eigenvalues give the information about the
decay/grow and oscillatory frequencies of each mode.

The core idea of the DMD is to find an approximation of the eigenvectors and
eigenvalues of the unknown matrix A which describe the dynamics xt+1 = Axt.
There are mainly two approaches that can be used to find the DMD modes: one using
the companion matrix and the Arnoldi Algorithm the other, more numerically stable
using the SVD. Following the latter approach the procedure starts by computing the
matrices X1 = [xt=1 . . .xk=T−1] and X2 = [xt=2 . . .xt=T] then using Singular Value
Decomposition (SVD)

A = X2X†1 = X2HΣ−1W>

3.2 Data-driven methods for Physical Experimental Data Analysis 61

Where X†1 is the pseudo-inverse of X1 and is decomposed with its SVD decompo-
sition. A compressed representation of A could be obtained using the following
decomposition

Ã = WTAW = WTX2HΣ−1

The matrix Ã is similar to the matrix A so that they have the same eigenvalues
which we compute using

ÃZ = ZΛ

In order to compute the DMD modes we project back in the original space the
eigenvectors Z

Φ = WZ

The matrix Φ is composed by the DMD modes. The DMD modes represents coherent
spatial components of the flow while their growth/decay rate and the frequency is
given by the relative real and imaginary part of the eigenvalues respectively, therefore
the temporal dynamic of each dynamic mode is highlighted.

3.2.3 k-Means Clustering

The k-means is a widely used clustering method [67], which allows to build partitions
of the original data collected in an (L× T) matrix X in k different sets (clusters),
defined by representative points (centroids). The Euclidean distance is used to
measure both the similarity between data points xj and evaluate the associated
cluster centroids µi, the latter by averaging all data points within the i-th cluster
Xi. The assignment of data points to k clusters is achieved by the minimization of
the squared Euclidean distance between ξj and µi (within-cluster sum of squares,
WCSS)

WCSS =
k∑
i=1

∑
xj∈Xi

‖xj − µi‖2 (3.5)

The k-means problem is NP-hard [40]. Therefore, the heuristic approach pre-
sented in [83] is used. Results are highly sensitive to centroids initialization. Here,
the initialization strategy proposed in [4] is used.

3.2.4 t-Distributed Stochastic Neighbor Embedding

The t-SNE is a machine learning algorithm proposed by [141], which is found very
effective for embedding high-dimensional data for visualization in a low-dimensional
space of two or three dimensions. The t-SNE first constructs joint probability densi-
ties pij that reflect pairwise similarly among data points x(i) and x(j) parameterized
by a Gaussian distribution

pij =
pj|i + pi|j

2N (3.6)

with

pj|i = exp (−||xi − xj ||2/2ς2
i)∑N

k 6=i exp (−||xi − xj ||2/2ς2
i)

(3.7)

62 3. Data-driven Analysis of Turbulent Flows

In a similar manner the joint probability densities qij are defined for the low-
dimensional representations zi and zj , parameterized by a t-student distribution

qij = (1 + ||zi − zj ||2)−1∑T
k 6=i(1 + ||zi − zk||2)−1

(3.8)

The points (or coefficients) zi are determined by minimizing the Kullback-Leibler
divergence of the distribution q from the distribution p as

KL(p||q) =
T∑
i 6=j

pij log
(
pij
qij

)
(3.9)

The minimization of Eq. 3.9 with respect to the points zi is performed using
gradient descent. The parameter ςi is set in such that the perplexity of the conditional
distribution Pi =

∑
j pji over all data points given x(i) equals a predefined perplexity

Perp(Pi),

Perp(Pi) = 2
(∑T

j
pj|i log2 pj|i

)
(3.10)

which is solved with a bisection method. The perplexity can be interpreted as a
smooth measure of the effective number of neighbors, with typical values ranging
from 5 and 50 [141].

3.2.5 Multivariate Kernel Density Estimation

The kernel density estimation (KDE, [128]) is a non-parametric method to estimate
the probability density function (PDF) of a random variable, introduced for univariate
data. Extending the concept to multivariate data [129], let {α}Ti=1 be a d-variate
random vector whose PDF is estimated as

PDF(x) = 1
N

N∑
n=1

KH (x− xi) (3.11)

H is the bandwidth (or smoothing) [d× d] matrix which is symmetric and positive
definite, and K is the kernel function which is a symmetric multivariate density
defined as

KH(x) = |H|−1/2K(H−1/2x) (3.12)

3.3 Application
The objective of the present work is to lay the ground for a systematic data-clustering
analysis of particle image velocimetry (PIV) data with the aim of achieving physical
insights of complex fluid dynamics problems. Examples are provided for high-
Reynolds number uniform/buoyant transient jets along with 4- and 7-bladed propeller
wakes.

The velocity fields under investigation (both for jets and propellers) are obtained
from experimental tests with large scale, time/phase-resolved, PIV measurements.
GWU provided data for the jets, whereas data for the propeller wake were collected
at CNR-INM.

3.3 Application 63

Table 3.1. Summary of test cases and clustering approaches.

Test case Uniform/buoyant jets 4/7-bladed propeller wakes

Data dimension 73,678 × 4,600 / 3,141 6,000 × 1,000 / 10,000 × 500

Data analysis type Global flow and clustering analysis Clutering analysis

Clustering domain Spatial Snapshots

Clustering variables Cross-section velocity profiles Vorticity
Point-wise energy spectra
Point-wise Reynolds stress

Clustering of PIV data is based on the k-means algorithm. Three clustering
approaches are applied to the jet in the spatial domain to identify coherent/self-
similar spatial regions using the following clustering variables: (a) cross-section
velocity profiles, (b) point-wise energy spectra, and (c) point-wise Reynolds stress
tensor components. The resulting clusters and centroids are representative of the
local flow, in terms of cross-section profiles and turbulence variables. Data clustering
for the propeller wake is applied to phase-locked snapshots to gain knowledge on
the topology of wake-instability and its stochastic realizations. The vorticity is used
as clustering variable. The resulting cluster centroids identify the topology of the
instability, where two or more tip vortices interact and coalesce.

Three metrics are proposed for the identification and assessment of clustering
methods, including the selection of the proper number of clusters, namely: (a) within-
cluster sum of squares, (b) average silhouette, and (c) within-cluster number of POD
modes required to resolve prescribed levels of total variance/energy. Additionally,
embedding of data via POD/PCA and t-SNE is used to define and visualize data
clusters in a reduced dimensionality space. Finally the kernel density estimation
(KDE) is applied to POD/PCA and t-SNE representations to provide with continuous
data distributions for assessment and discussion. A summary of test cases and
clustering approaches used is presented in Table 3.1.

3.3.1 High-Reynolds Number Uniform and Buoyant Jets

The experiment is conducted at GWU and is the vertical discharge of high-Reynolds
number uniform and buoyant transient jets. The latter is discharged in a linearly
stratified environment. To enable optical diagnostic deployment, two refractive
index matched solutions of different densities are employed; their density difference
is 3.00%. Additionally, the dynamic viscosity of the solutions are within 0.7% of
each other at 20◦C. Details on the refractive index and dynamic viscosity matching,
as well as on the linear stratification formation, are reported in [21]. The facility
produces a round vertical jet inside a clear acrylic tank (cube of 914 mm-side), Figure
3.1. A linear motor drives a piston in a 203 mm-diameter cylinder, which pushes
the fluid through a first contraction section followed by a contoured nozzle with a
D = 6.35 mm exit diameter.

The fluid in the cylinder is initially at rest and the jet has no initial disturbances.
The piston-cylinder and contraction sections lead to a jet with a top-hat velocity
profile. The jet Reynolds number is ReD = U◦D/ν is 2.00 × 104. The run time,
limited by the stroke of the piston, is 39 s. The change in height in the tank from

64 3. Data-driven Analysis of Turbulent Flows

each run is 5.4 mm or about 0.8D.
During the discharge of the buoyant jet, the stratified environment evolves

continuously; the flow might not reach statistical stationarity. Therefore, the whole
time history of the velocity fields is recorded in a time-resolved manner: initial
circulations in the tank, the entire run, and the settling down after the jet ends.
Additionally, the velocity field is recorded from the jet centerline to the wall of the
tank. The recorded flow area is nearly 0.7 m horizontally by 0.5 m vertically. The
spatial and temporal scales vary greatly over the field of view and to optimize the
acquisition system, a multi-camera array is employed. Cameras 1 to 9 are 1.3 MPixel
CMOS cameras and record the off-center and far field of the jet. They record either
at 64 or 128 Hz depending on their radial location. Camera 10 is a CMOS camera
with CoaXpress transfer protocol. It records on the centerline of the jet at 512 Hz
at 4 MPixels. The spatial resolution for those cameras is on the order of the Taylor
scale. Finally, two other cameras are recording at higher resolution, but the data are
not treated here. Three large laser sheets illuminate the fields of view the cameras.
They are split from a single cavity of a dual cavity Nd:YLF laser (Photonics DM
527) operated at nearly 30 mJ/pulse. The intensity of each laser sheet is controlled
individually by a set of beam splitters. Each laser is configured as a telescope, with a
nearly constant 3 mm thickness. Data are processed with Davis 8.4.0 from LaVision.
The velocity fields recorded at 64 Hz are first up-sampled to 128 Hz using Davis
super-time-sampling function, and data at 512 Hz are down-sampled at 128 Hz.
Once all velocity fields are sampled at the same rate, they are spatially stitched
together, applying a sliding average over the areas where cameras overlap.

Figure 3.1. Experimental facility for the jets with the location of the PIV whole field of
view.

3.3.2 Propeller Wake

The study is based on a comprehensive database of detailed flow measurements
of the notional E1658 submarine propeller wake in open water using 2D-PIV (see
[43, 98]). The database covers an extensive set of propeller conditions in terms
of advance coefficients and blade number configurations providing a wide range of
vortex instability and interaction mechanisms that are crucial for the objectives

3.4 Clustering Analysis for Turbulent PIV Data 65

of the present study. In particular, the present study focuses on two propeller
configurations with 4 and 7 blades and one value of the advance ratio, corresponding
to a high propeller loading (i.e. J = 0.56).

The survey was carried out at the CNR-INM cavitation tunnel (i.e. 2.7 m long
by 0.6 m width by 0.6 m height test section, 2% highest free-stream turbulence,
mean velocity uniformity within % for the axial component and 3% for the vertical
component), measuring the propeller wake flow at the vertical centerplane by a
system of multiple, side-by-side, synchronous cameras, 2560×2160 pixels each, and
two 200 mJ/pulse Nd-YAG lasers. This arrangement, already adopted in other
similar experiments [45, 44, 43] of the propeller wake, allowed the simultaneous
reconstruction of a long portion of the wake flow (i.e. from the propeller plane
to 3.3D downstream, where D is the propeller diameter) without jeopardizing the
spatial resolution. More detailed information on the experimental set up are reported
in [43].

Camera acquisition was conditioned upon the passage of the propeller reference
blade for a selected angular position. This was achieved by synchronizing the four
cameras and the two lasers to a TTL OPR (i.e. Once Per Revolution) signal,
supplied by a 3600 pulse/sec rotary incremental encoder mounted on the propeller
dynamometer.

3.4 Clustering Analysis for Turbulent PIV Data

3.4.1 Spatial Clustering Approach

Clustering approaches in the spatial domain are proposed for the turbulent transient
jets, using as clustering variables (1) cross-section velocity profiles, (2) point-wise
energy spectra, and (3) point-wise Reynolds stress tensor components, whereas
propellers wakes are clusterized in the snapshot domain based on the vorticity only.
Here, the original data in X is rearranged as per the clustering approach and criterion
used. In general, we refer to xj as one realization (point) of the rearranged data.
Note that, generally, xj ∈ RQ with j = 1, ...,H, where Q 6= L and H 6= T . The
formulation underlying each approach is described in the following.

Cross-Section Velocity Profiles

Cross-sections are clustered together, based on their velocity profiles. Firstly, cross-
section (x-constant) velocity profiles are scaled and secondly used as variables in the
clustering process. Specifically, the profiles of the following variables are stitched
together to form clustering arrays in Eq. 3.5:

u

uc
,

(
u′u′

)1/2

uc,l
,

(
v′v′

)1/2

uc,l
,

u′v′

u2
c,l

(3.13)

where uc is the mean axial velocity at the center line; uc,l is the the mean axial
velocity at the center line, assuming idealized profiles from the fully developed region
where 1/uc is linear [120]. Profile abscissa are scaled assuming that the velocity

66 3. Data-driven Analysis of Turbulent Flows

(positive mean axial component) profile follows a Gaussian distribution and using
its standard deviation b, evaluated numerically as

b(x) =

√√√√√√√√
ymax∫
ymin

(y − yc)2 max[u(x), 0] dy

ymax∫
ymin

max[u(x), 0] dy
(3.14)

where yc is the horizontal coordinate of the center line. It may be noted that, under
the Gaussian distribution assumption, the 95% of the (positive) flux is contained
within ±2b. Similarly to uc, abscissa scaling for turbulence variables in Eq. 3.13 is
performed using idealized linearly increasing values of b from the fully developed
region, referred to as bl. Accordingly, xi (with i = 1, ...,H) arrays are formed as

xi =



u(ŷ, xi) [uc(xi)]−1

[
u′(ŷ, xi) ◦ u′(ŷ, xi)

]1/2
[uc,l(xi)]−1

[
v′(ŷ, xi) ◦ v′(ŷ, xi)

]1/2
[uc,l(xi)]−1

u′(ŷ, xi) ◦ v′(ŷ, xi) [uc,l(xi)]−2


∈ RQ (3.15)

where ŷ collects discretized scaled abscissa and ‘◦’ indicates entry-wise product.
Here, Q equals four times the size of ŷ and H equals the number of cross sections
considered. Variables values at positions ŷ are evaluated by linear interpolation.

Point-Wise Spectra

Spatial points are clustered together based on their energy spectra. Each point is
provided with the energy spectrum [51, 10], namely E(f), where f is the frequency.
This is used in logarithmic scale to form clustering arrays in Eq. 3.5:

xi =
{

log [E(f)]
}
∈ RQ i = 1, ...,H (3.16)

where f is the vector collecting discretized frequencies, Q equals the size of f , and
H = J .

Point-Wise Reynolds Stress Tensor Components

Spatial points are clustered together based on their Reynolds stress tensor compo-
nents. Specifically, each point is provided with Reynolds stress tensor components,
which are combined together to form clustering arrays in Eq. 3.5:(

u′u′
)β
,

(
v′v′

)β
,

∣∣∣u′v′∣∣∣β (3.17)

where the exponent β is used as a tuning parameter for the clustering process, and
assumed equal to 1/2. Accordingly, clustering variables collected in xi are organized

3.4 Clustering Analysis for Turbulent PIV Data 67

as

xi =



[
u′(xi)u′(xi)

]1/2
[
v′(xi)v′(xi)

]1/2
∣∣∣u′(xi)v′(xi)∣∣∣1/2


∈ RQ i = 1, ...,H (3.18)

where Q = 3 and H = P .

3.4.2 Snapshot Clustering Approach

Snapshot clustering is performed for the propeller wake using vorticity snapshots
following clustering variables as

xi = ω(i) i = 1, ...,H (3.19)

Data sets are organized in phase-locked snapshots where each phase is typically
observed hundreds of times. In this case Q equals the size of the spatial discretization
and H = T . The POD implementation for the propeller wake follows the same
procedure, with

ω = ω + ω′ (3.20)

where ω = ∂v/∂x − ∂u/∂y is the vorticity z-component (out of plane) and x and
y are the axial/horizontal and vertical coordinates respectively. The (L× T) data
matrix X is defined in this case as

X =
[
ω(1) . . . ω(T)

]
(3.21)

where ω = {ω′(x̂1), . . . , ω′(x̂P)}> collects the discretized vorticity fluctuations, xi
represents the i-th node of the spatial discretization, P is the spatial discretization
size, superscript (t), with t = 1, . . . , T , indicates the t-th time realization (snapshot),
and finally L = P .

3.4.3 Data analysis Metrics

Three metrics are used for the assessment of clustering approaches and identification
of the optimal number of clusters k, namely: (1) within-cluster sum of squares, (2)
average silhouette, and (3) local variation of the kinetic energy. The first and the
second metric is used for the propeller wake while latter is used only for buoyant
jets. Their definition is included in the following.

Within-Cluster Sum of Squares

The WCSS in Eq. 3.5 is used as evaluation metrics to identify the optimal number
of clusters k. Specifically, the elbow method [74] is used with the WCSS metrics.

68 3. Data-driven Analysis of Turbulent Flows

Average Silhouette

The silhouette method provides a metrics of consistency of data within clusters [105].
Assume ai as the average Euclidean distance between xi and any other data point
within the cluster xi belongs to. Assume then ci as the smallest average Euclidean
distance of xi to all data points in any other cluster xi does not belong to. The
silhouette associated to xi is defined as

si = ai − ci
max[ai, ci]

(3.22)

and is a measure of how similar the data point is to points in its own cluster as
opposed to other clusters. It may be noted that si ranges from −1 to 1, where 1
indicates maximum similarity. The average silhouette of all data points is used as a
metrics for proper data clustering:

savg =
T∑
i=1

si (3.23)

Note that for k = 1 the silhouette is not defined. By convention, for k = 1 it is
savg = 0.

Local Variation of Kinetic Energy

In order to define the number of clusters k, we use the information of the vari-
ance/energy resolved by the dominant POD mode performed for each cluster. In
particular we define the local variation of kinetic energy (LVKE) as

LVKEk =
k∑
i=1

λi −
k−1∑
j=1

λj (3.24)

which measure the difference in the kinetic energy resolved by the k dominant
POD modes minus the kinetic energy resolved by k − 1 dominant POD modes.
Consequently, an high value of the LVKE means that increasing the number of
clusters of unit there is a great advantage in terms of variance resolved.

3.5 Numerical Results and Physical Interpretation

In the following sections we will present the numerical results and a physical inter-
pretation for fluid dynamics experiments considered in this work.

3.5.1 Global Flow Analysis: POD and DMD

In this section the POD and the DMD techniques for the buoyant and uniform jet
are discussed. In Fig. 3.2 there are the first five POD modes sorted respect to their
energy content given by their relative eigenvalues. Interestingly in case of the POD
the buoyant and the uniform jets show a quite different behavior in terms of spatial
structure which explain most of the energy content inside the physical experiment.

3.5 Numerical Results and Physical Interpretation 69

wk
POD

(buoyant)
POD

(uniform)

k = 1

k = 2

k = 3

k = 4

k = 5

Figure 3.2. Top five most energetic content POD
modes for buoyant (left column) and uniform
(right column) jets.

In fact, the first POD mode of
the buoyant jet mainly describe
the laminar region while in the
uniform case seems to highlight
the components of the flow near
the top of the wall. For the re-
maining modes the main differ-
ence between the two jets is that
in the buoyant case the modes
they seem to characterize more
the reverse component of the flow
(especially mode k = 4) while in
the uniform jet most of the en-
ergetic content of the modes is
shown always in the same region.
In Fig. 3.3 is showed the conver-
gence of the explained variance
explained from each POD mode
for buoyant and uniform jet. It is
possible to observe that the POD
in general requires an high num-
ber of modes in order to explain
a relevant amount of energy in-
side the system which is mainly
due to the fact that high nonlin-
earities are strongly dominant in
both cases.

For the DMD methodology,
identify the modes with the high-
est energetic content is non trivial as in the POD case, because the eigenvalues
relative to the DMD modes don’t explain the kinetic energy content but they describe
their temporal dynamics. The spectrum of the DMD eigenvalues for the buoyant
and the uniform is shown in Fig. 3.4. In this work, in order to provide a sorting

Figure 3.3. Explained variance convergence for the uniform and buoyant jet.

70 3. Data-driven Analysis of Turbulent Flows

(a) Buoyant (b) Uniform

Figure 3.4. Spectrum DMD eigenvalues.

respect to energetic content of the DMD modes we follow the method proposed in
[140] where the DMD modes are scaled by their eigenvalues raised to their n − 1
power. Then the top five DMD modes respect to their energy content are shown in
Fig. 3.6 for the real part and the imaginary part. From the DMD modes, we can
notice that for the buoyant jet, the real part of the modes highlight the entry region
of the flow while for the uniform jet, the modes span all the y-axis. This is less
visible for the imaginary part of the DMD mode where the flow is also highlighted.
More physical insights can be investigated by computing the temporal dynamics of

(a) Buoyant (real part) (b) Uniform (real part)

(c) Buoyant (imaginary part) (d) Uniform (imaginary part)

Figure 3.5. DMD Time dynamics.

those DMD modes, as shown in Fig. 3.5 for the real and imaginary part respectively.
The time dynamics relative to the mode i is defined by cieωit with ω the continuous
DMD eigenvalue is given by the relation log(λi)/∆t.

3.5 Numerical Results and Physical Interpretation 71

φk
Re(φk)

(buoyant)
Re(φk)

(uniform)
Im(φk)

(buoyant)
Im(φk)

(uniform)

k = 1

k = 2

k = 3

k = 4

k = 5

Figure 3.6. Top five energy content DMD modes for buoyant (left column) and uniform
(right column) jets (imaginary part).

(a) Buoyant (real) (b) Uniform (real)

(c) Buoyant (imaginary) (d) Uniform (imaginary)

Figure 3.7. DMD Coefficients.

72 3. Data-driven Analysis of Turbulent Flows

3.5.2 Spatial Clustering Results

The whole field of view is discretized with 197 × 187 points. Data rates of 128
and 64 Hz are used for the uniform and buoyant jet respectively. A total of 4,600
snapshots are used for the uniform jet, whereas 3,141 are used for the buoyant jet.
For the purpose of current study, a spatial subsampling by a factor of 2 along each
spatial direction is used. Coordinates x and y are relative to the jet virtual origin
and reported as ratio with respect to the nozzle diameter D.

Clustering by Cross-Section Velocity Profiles

Clustering of velocity profiles produces the LVKE metric presented in Fig. 3.8 for
the uniform and buoyant jet. Overall, two clusters may be identified for the uniform
jet since the LVKE has a reasonably large value for k = 2. For the buoyant jet the
situation is totally different, here the maximum of the LVKE is for k = 5.

Figure 3.9 shows the uniform-jet cluster centroids for the mean axial velocity (a)
and the profiles of Reynolds stress quantities (b–d). The corresponding cross-section
clustering is presented in Figure 3.9e. Self-similarity of mean axial velocity profiles is
reflected in the centroids (e). Significant differences emerge for the Reynolds stress,
where the uu component (normal/axial) presents noticeable differences between the
bottom and the top cluster (c), suggesting the turbulence fully develops transitioning
from the bottom to the top cluster. The vv component (normal/horizontal) has
almost identical profiles for the bottom and middle clusters, whereas it presents a
bi-modal shape for the top cluster where impingement occurs (d).

Finally the uv component (shear) produces cluster centroids with significant
larger values for the top cluster (e). We may conclude that two regions are identified
via k-means clustering, namely bottom (developing), and middle-top (fully developed
and impingement) regions. Fig. 3.10 shows the buoyant-jet cluster centroids for the
mean axial velocity (a) and the profiles of Reynolds stress quantities (b–d). The
corresponding cross-section clustering is presented in Figure 3.10e. Self-similarity
of mean axial velocity profiles can be noticed only for the first three clusters (from
bottom to top), whereas the top two clusters present not only a remarkable reverse
flow but also a different scaling properties with respect to b (a), which may be due
to the presence of instabilities and very low velocity values. The uu component
(normal/axial) presents noticeable differences between the bottom/middle clusters
and the top three clusters (c). The vv component (normal/horizontal) has similar
profiles for the bottom and middle clusters, whereas it presents a mild bi-modal shape
for the top clusters, which also show reduced values (d). Finally the uv component
(shear) produces cluster centroids with very small values for the two top clusters
(e). We may conclude that five regions are identified via k-means clustering, namely
first from bottom (developed, with almost no reverse flow), second (developed, with
significant reverse flow and associated shear stress), third (flow reversing), fourth
(jet dome), fifth (top wall) regions.

Clustering by Point-Wise Energy Spectra

Clustering by point-wise energy spectra produces the metrics presented in Fig. 3.11
for the uniform and buoyant jet respectively. The number of clusters selected for the

3.5 Numerical Results and Physical Interpretation 73

(a) Uniform (b) Buoyant

Figure 3.8. Clustering by cross-section velocity profiles, LVKE uniform (a) LVKE buoyant
(b).

(a) (b) (c) (d)

(e)

Figure 3.9. Clustering by cross-section velocity profiles – Uniform jet – Cluster centroids
for scaled mean velocity (a) Reynolds stress quantities (b,c,d); cross sections labeled by
cluster (e).

uniform jet is 2 since for k = 2 (a) the LVKE shows its maximum value. Differently,
the number of clusters for the buoyant jet is 4 since he LVKE shows its maximum
value at k = 4.
Clustering results also emphasizes the differences between uniform and buoyant
jets, where the former experiences a reverse flow with associated shear layer due to
impingement with the top and left walls, whereas for the latest the reverse flow and
shear layer are closer to the jet axis.

Clustering by Point-Wise Reynolds Stress Tensor Components

Clustering by point-wise Reynolds stress tensor components gives the metrics pre-
sented in Fig. 3.13 for the uniform and buoyant jet.
A number of clusters equal to 3 is selected for the uniform jet, while a number of 5
clusters is selected for the buoyant jet. The spatial decomposition of the domain
associated to each cluster are shown in Figure 3.14. It may be observed how the
clustering method defines spatial regions mainly by turbulence intensity, highlighting

74 3. Data-driven Analysis of Turbulent Flows

(a) (b) (c) (d)

(e)

Figure 3.10. Clustering by cross-section velocity profiles – Buoyant jet – Cluster centroids
for scaled mean velocity (a) Reynolds stress quantities (b,c,d); cross sections labeled by
cluster (e).

(a) Uniform (b) Buoyant

Figure 3.11. Clustering by point-wise energy spectra, LVKE uniform (a) LVKE buoyant
(b).

(a) Uniform (b) Buoyant

Figure 3.12. Clustering by point-wise energy spectra – Spatial points labeled by cluster
for uniform (a) and buoyant (b) jets.

the differences between the two jets.

3.5 Numerical Results and Physical Interpretation 75

(a) Uniform (b) Buoyant

Figure 3.13. point-wise Reynolds stress tensor components, LVKE uniform (a) LVKE
buoyant (b).

(a) Uniform (b) Buoyant

Figure 3.14. Clustering by point-wise Reynolds stress tensor components – Spatial points
labeled by cluster for transient uniform (a) and buoyant (b) jets.

3.5.3 Snapshot Clustering: Propeller Wake Results

4-Bladed Propeller

Four phase-locked vorticity data sets (0, 90, 180, and 270 deg) are used, where
each phase is observed 250 times for a total of 1, 000 snapshots. The snapshots are
organized (subsampled) in a 200× 30 array, ranging axially from 0 to 3.3 D, and
radially from 0.3 to 0.8 D, focusing on the tip vortex only (see Fig. 3.15). The data
matrix has a dimension equal to 6,000 × 1,000. It may be noted that once the data
matrix is formed, the information on the phase is lost (as this information is not
included in the data matrix).

First, the k-means is applied to the whole field of view (see Fig. 3.16). Fig. 3.17
shows that 4 clusters emerge from the data set. Specifically, WCSS shows a clear
elbow corresponding to k = 4. The average silhouette exhibits a clear maximum
corresponding to k = 4. Fig. 3.18a shows the projection of the data set onto the
first two POD/PCA modes. Data is labeled both by cluster and phase, showing
that the method is able to recover phase information and the data set is clearly
clustered by phase. A similar analysis and visualization is shown using t-SNE in
Fig. 3.18b, confirming the POD/PCA result. Finally, Fig.3.18c provides joint and
marginal probability density functions of POD/PCA and t-SNE coefficients α given
by KDE, confirming the data has four clusters of equal size. The corresponding
cluster centroids are presented in Fig. 3.19, showing that the mechanism of vortex
coupling and convection downstream is globally (for the large scale) deterministic

76 3. Data-driven Analysis of Turbulent Flows

depending mainly on the phase.

Figure 3.15. 4-bladed propeller – Windows used for clustering of vorticity snapshots.

0.4

0.6

y
/D

[−
]

−400

−200

0

200

400

E
(ω

)
[1
/s

]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

x/D [−]

0.4

0.6

y
/D

[−
]

0

10000

20000

30000

40000

50000

V
ar

(ω
)

[1
/
s2

]

Figure 3.16. Vorticity mean value (top) and variance (bottom) for the 4-bladed propeller.

Figure 3.17. Clustering of vorticity snapshots – 4-bladed propeller, whole field of view –
Within cluster sum of squares (left) and average silhouette (right).

A second analysis is performed, dividing the filed of view in several windows,
based on the vorticity mean and variance associated to each cross section. Fig. 3.20
shows the maximum mean and variance of cross sections along the propeller axis.
Four windows are selected, as shown in Fig. 3.15: (1) 0 ≤ x/D < 0.4, where the
maximum variance is low and the wake is stable; (2) 0.4 ≤ x/D < 0.8, where the
maximum variance starts increasing and the wake destabilizing; (3) 0.8 ≤ x/D < 2,
where the maximum variance reaches its own maximum and starts decreasing along
with the maximum mean and the wake experiences a fully developed tip vortex
interaction; (4) 2 ≤ x/D ≤ 3.3 where variance and mean are almost constant and a
fully turbulent wake is observed.

Fig. 3.21, first column, shows the WCSS and silhouette for window 1. Fig. 3.22,
first column, shows the POD/PCA and t-SNE coefficients labeled by cluster and
phase for the same window. Fig. 3.23, fist column, shows the density functions of
the coefficients. As expected, no significant structures are observed. The t-SNE
highlights some structure and hints of data clustering. Nevertheless, these are not
significant and the data can be interpreted as a single cluster.

Similarly, the second column of Fig. 3.21, 3.22, and 3.23 provides the results for
window 2. Clustering results are ambiguous since 4 and 3 clusters are identified by

3.5 Numerical Results and Physical Interpretation 77

(a) POD/PCA labeled by cluster (left) and
phase (right)

(b) t-SNE labeled by cluster (left) and phase
(right)

(c) KDE for POD/PCA (left) and t-SNE (right) coefficients

Figure 3.18. Clustering of vorticity snapshots – 4-bladed propeller, whole field of view –
Data-projection on the first two POD/PCA modes (a) and embedding via t-SNE (b),
along with joint and marginal probability density functions by KDE (c).

0.4

0.6

y
/
D

[−
]

−400

−200

0

200

400

ω
[1
/
s]

0.4

0.6

y
/D

[−
]

0.4

0.6

y
/
D

[−
]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

x/D [−]

0.4

0.6

y
/D

[−
]

Figure 3.19. Clustering of vorticity snapshots – 4-bladed propeller, whole field of view –
Cluster centroids corresponding to phases 0, 90, 180, 270 deg.

0

100

200

m
ax

(E
[ω

])
[1
/s

]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

x/D [−]

0

50

100

m
ax

(V
a
r[
ω

])
×

10
3

[1
/s

2
]

Figure 3.20. 4-bladed propeller, whole field of view – Maximum value of mean (top) and
variance (bottom) of the vorticity along cross sections.

78 3. Data-driven Analysis of Turbulent Flows

WCSS and silhouette, respectively. POD/PCA coefficients show 2 or 3 main clusters
whereas the t-SNE clearly identifies 4 clusters associated to the propeller phases.

Results for window 3 and 4 are presented in the third and fourth column of
Fig. 3.21, 3.22, and 3.23, respectively where 4 clusters are clearly identified with
a one-by-one association to the phase. It may be noted how an high degree of
determinism is still present far downstream the propeller. It may be also noted
how window 4 t-SNE analysis presents some hints of transition towards a different
clustering structure.

Fig. 3.24 shows the cluster centroids associated to windows 2, 3, and 4, where
rows represent clusters and columns represent windows. As discussed earlier, these
centroids also represent phase-locked averages. The unsupervised association of
clusters to phases by k-means indicates that the destabilization (and coupling) of tip
vortices progresses following mechanisms governed by deterministic chaos. Finally,
the same analysis is performed for window 5, which bounds more closely a single
vortex (see Fig. 3.15). Clustering results are ambiguous in this region (see Fig.
3.25), even if some patterns are identified by both POD/PCA and t-SNE coefficients,
where a pairwise mixture of phases 0− 90 and 180− 270 is present (see Fig. 3.26).
Cluster centroids are shown in Fig. 3.27.

Figure 3.21. Clustering of vorticity snapshots – 4-bladed propeller – Within cluster sum
of squares (top) and average silhouette (bottom). From left to right: windows 1, 2, 3,
and 4.

7-Bladed Propeller

A similar analysis is performed for the 7-bladed propeller. In this case, the data set
is composed by 500 snapshots coming from a single phase (0 deg). The snapshots
are organized (subsampled) in a 200 × 50 array, ranging axially from 0 to 3.3 D,
and radially from 0 to 0.8 D (Fig. 3.28). The data matrix has a dimension equal to
10,000 × 500.

Applying the clustering method to the whole field of view does not reveal any
clusters, as shown by WCSS, silhouette (see Fig. 3.29), and POD/PCA and t-SNE
coefficients (Fig. 3.30). This is due to the fact that the data set is composed by one
phase only and it is consistent with what we found for the 4-bladed propeller, i.e.,
that overall the data clustering follows the phase. Also window 1 (bounding one
vortex) does not show hints of clustering as Fig. 3.31 and 3.32 show.

3.5 Numerical Results and Physical Interpretation 79

(a) POD/PCA labeled by cluster

(b) POD/PCA labeled by phase

(c) t-SNE labeled by cluster

(d) t-SNE labeled by phase

Figure 3.22. Clustering of vorticity snapshots – 4-bladed propeller – Data-projection on
the first two POD/PCA modes (a,b) and embedding via t-SNE (c,d). From left to right:
windows from 1 to 4.

80 3. Data-driven Analysis of Turbulent Flows

(a) POD/PCA coefficients

(b) t-SNE coefficients

Figure 3.23. Clustering of vorticity snapshots – 4-bladed propeller – Joint and marginal
probability density functions of POD/PCA (a) and t-SNE (b) coefficients by KDE. From
left to right: windows from 1 to 4.

0.4

0.6

y
/
D

[−
]

0.4

0.6

y
/D

[−
]

0.4

0.6

y
/
D

[−
]

0.6 0.8

x/D [−]

0.4

0.6

y
/D

[−
]

1.0 1.2 1.4 1.6 1.8 2.0

x/D [−]

−400

−200

0

200

400

ω
[1
/
s]

2.2 2.4 2.6 2.8 3.0 3.2

x/D [−]

Figure 3.24. Clustering of vorticity snapshots – 4-bladed propeller – Cluster centroids
corresponding to phases 0, 90, 180, 270 deg. From left to right: windows 2, 3, and 4.

Figure 3.25. Clustering of vorticity snapshots – 4-bladed propeller, window 5 – Within
cluster sum of squares (left) and average silhouette (right).

3.5 Numerical Results and Physical Interpretation 81

(a) POD/PCA labeled by cluster (left) and
phase (right)

(b) t-SNE labeled by cluster (left) and phase
(right)

(c) KDE for POD/PCA (left) and t-SNE (right) coefficients

Figure 3.26. Clustering of vorticity snapshots – 4-bladed propeller, window 5 – Data-
projection on the first two POD/PCA modes (a) and embedding via t-SNE (b), along
with joint and marginal probability density functions by KDE (c).

3.1 3.2

x/D [−]

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

y
/D

[−
]

3.1 3.2

x/D [−]

3.1 3.2

x/D [−]

−200

−150

−100

−50

0

50

100

150

200

ω
[1
/s

]

Figure 3.27. Clustering of vorticity snapshots – 4-bladed propeller, window 5 – Cluster
centroids.

Figure 3.28. 7-bladed propeller – Windows used for clustering of vorticity snapshots.

82 3. Data-driven Analysis of Turbulent Flows

Figure 3.29. Clustering of vorticity snapshots – 7-bladed propeller, whole field of view –
Within cluster sum of squares (left) and average silhouette (right).

(a) POD/PCA (b) t-SNE

(c) KDE for POD/PCA (left) and t-SNE (right) coefficients

Figure 3.30. Clustering of vorticity snapshots – 7-bladed propeller, whole field of view –
Data-projection on the first two POD/PCA modes (a) and embedding via t-SNE (b),
along with joint and marginal probability density functions by KDE (c).

3.5 Numerical Results and Physical Interpretation 83

Figure 3.31. Clustering of vorticity snapshots – 7-bladed propeller, window 1 – Within
cluster sum of squares (left) and average silhouette (right).

(a) POD/PCA (b) t-SNE

(c) KDE for POD/PCA (left) and t-SNE (right) coefficients

Figure 3.32. Clustering of vorticity snapshots – 7-bladed propeller, window 1 – Data-
projection on the first two POD/PCA modes (a) and embedding via t-SNE (b), along
with joint and marginal probability density functions by KDE (c).

84 3. Data-driven Analysis of Turbulent Flows

3.6 Conclusions and future work
A global flow analysis, spatial and snapshot clustering approaches have been presented
and discussed for PIV data of high-Reynolds number uniform and buoyant jets and 4-
and 7-bladed propeller wakes respectively. Data clustering was based on the k-means
algorithm. In order to define the number of clusters, we proposed a metric which
measure the energy resolved respect to a particular clustering configuration. Spatial
clustering for jet flows was based on three sets of clustering variables, namely the
cross-section velocity profiles, point-wise energy spectra, and point-wise Reynolds
stress tensor components. Snapshot clustering of phase-locked propellers wake data
was based on the vorticity field with focus on the tip vortices. POD/PCA and t-SNE
embedding along with KDE were used to provide a two-dimensional visualization of
data clusters for assessment and discussion.

Clustering of jet cross-section velocity profiles helped identifying uniform and
buoyant jet zones. The analysis of clustering variables allowed to propose new
self-similarity laws for the jet, based on (i) actual center velocity and jet width for
the velocity profiles and (ii) their idealized linear representation for Reynolds-stress
quantities. Two zones were identified for the uniform jet flow, namely bottom
(developing) and middle-top (fully developed and impingement) regions. Five zones
where identified for the buoyant jet, namely first from bottom (developed, with almost
no reverse flow), second (developed, with significant reverse flow and associated shear
stress), third (flow reversing), fourth (jet dome), fifth (top wall) regions. Clustering
results by point-wise energy spectra emphasized the differences between uniform and
buoyant jets, with significantly different clusters topologies. Finally, clustering by
point-wise Reynolds stress tensor components produced spatial zones driven mainly
by the turbulence intensity.

In conclusion, for a effective characterization, the buoyant jet needs a number of
clusters that is greater respect to the uniform flow.

4-bladed propeller wake clustering of phase-locked snapshots produced no clusters
(meaning only one cluster) for the near-field data window. Clusters with a one-to-one
association to the phase were found for other data windows. Specifically, this was
clearly observed for the whole field of view as well as for windows covering the
region where the wake transitions to a unstable regimes and windows in the far field.
Clustering results suggested that the wake instability and subsequent progression
of tip vortices is characterized by mechanisms governed by deterministic chaos also
in the far field. Results were confirmed by clustering of a single phase from the
7-bladed propeller data sets, where only a mild clusterization was found.

Ongoing and future work includes extending the analysis of clustering methods
and results covering both spatial and temporal clustering for all jet and propeller
wake cases with comparison and discussion of the results. The idea is to combine
spatial/temporal clustering to fully exploits data reduction and visualization tech-
niques to provide physical characterization of zones and intervals in space and time
domain respectively.

85

Chapter 4

Variational Recurrent-Type
Deep Neural Networks
for Ship Motion Prediction

Time series forecasting problems arise in many applications. In Fluid Dynamics,
the prediction of the dynamics of the ship motion, especially at high sea state level
is severely challenging due to the high non-linearities present inside the system.
In this chapter, we propose to tackle this hard real-world problem through Deep
Learning. We briefly discuss the basic theory of Neural Networks (NN’s), from
gradient computation and optimization to regularization and uncertainty estimation
which is crucial in time series problems. Then we describe Recurrent-type NN’s
and Encoder-Decoder architectures for sequence modeling and multi-step ahead
forecasting. Performance is assessed and compared on a data set formed by com-
putational fluid dynamics simulations of a self-propelled destroyer-type vessel in
stern-quartering sea state 7. Incident wave, ship motions, rudder angle, as well
as immersion probes time series, are the variables used for multiple time series
now-casting problems. The objective is to obtain about 20 seconds ahead prediction.

4.1 Introduction

The prediction of the seakeeping and maneuverability performance of naval ships
constitutes one of the most challenging problems in naval hydrodynamics and is
important from both an operational and safety point of views, specially in heavy
weather conditions. Heavy weather seakeeping of naval ships has traditionally been
investigated by means of scale model testing in large seakeeping basins. From a safety
point of view a large number of conditions needs to be investigated. Furthermore,
in order to reduce the statistical uncertainty in the results a large number of wave
encounters has to be met during the tests, including so-called rare events. This
makes scale model testing time consuming and expensive. During the last decades
low- to high-fidelity simulation methods have been developed for investigating ships
seakeeping and maneuvering. Nevertheless, a complete solution of the seakeeping and
maneuverability problem involves resolving complex nonlinear wave-body interactions
that may require hundreds of computational CPU hours, especially if statistical

86
4. Variational Recurrent-Type Deep Neural Networks

for Ship Motion Prediction

indicators are sought after. For this reasons, to alleviate the computational burden
associated with numerical simulations, machine learning methods, such as neural
networks (NNs) could provide decision support to captains in choosing route, heading,
and speed, contributing to the safety of vessels, cargo, and crews, by using both
historical and computational fluid dynamic (CFD) data, up to real-time data.

Classical NNs treat each observation or data point in the same way. This means
that the NN does not take into account the correlation across the data points,
assuming that they are independent and identically distributed (i.i.d.). Nevertheless,
in several application, such as in time series fore- and nowcasting, the value of
the target variable is usually strongly correlated to the past values of the target
variable at the previous time step. This correlation is lost in a classical NN model.
In order to solve this limitation, recurrent NNs (RNNs) have been developed with
the objective to learn the dependencies of the data across time and to improve the
prediction accuracy in case of sequential data. Nevertheless, RNN model presents
some difficulties in the computation of the gradients. To overcame this issue, different
mathematical models have been developed creating gates along the time steps where
the derivatives information could flow without numerical issues. Among them the
long-short term memory (LSTM)[61] and the gated recurrent unit (GRU) [19] have
shown quite effective performance for modeling sequences in several research fields.

In the ship hydrodynamics context, the development and the assessment of
machine learning methods in fore- and nowcasting of ship motions and (possibly)
loads have become of certain interest and a cutting-edge topic in the ocean engineering
community. Short-term prediction based on radial basis NN has been presented in
[28]. LSTM and GRU have been investigated for the prediction of 2 and 3 degrees
of freedom (DoF) of a catamaran in sea state 1 and the DTMB model in sea state 8,
based on CFD computations in [29].

The objective of the present work is to assess the sequence modeling capability of
recurrent-type NNs for real-time short-term prediction (nowcasting) of ship motions
in high sea state. Specifically the performance of RNN, LSTM, and GRU models
are assessed for the nowcasting of a self-propelled destroyer-type vessel, sailing in
stern-quartering sea state 7.

The data set is formed by free-running CFD simulations of a destroyer-type
vessel with appendages (skeg, twin split bilge keels, twin rudders and rudder seats
slanted outwards, shafts, and struts), that have been assessed for course keeping
in irregular stern-quartering waves (sea state 7) at target Froude number equal to
0.33 in [143]. RNN, LSTM, and GRU are assessed and compared in predicting wave
elevation, ship motions, rudder angle, and immersion probes time histories.

4.2 A Brief Introduction to Deep Neural Networks

Neural Networks are a very popular Machine Learning models used for long time in
many tasks (e.g., classification, regression) achieving generally good results.

In the last 15 years, with the rising of the computer computational power and
the amount of data available, many improvements have been made by researchers.
Nowadays NN’s became one of the most powerful tool in Machine Learning.

In this section we highlight briefly the main components of Neural Networks.

4.2 A Brief Introduction to Deep Neural Networks 87

4.2.1 Model Definition

The most simple architecture for a Neural Network is given by an input layer
composed by D neurons (or nodes) and an output layer composed by one node. The
computation is performed at the output node, where a linear combination of the
data input vector x ∈ RD, the parameters w1, . . . , wd and a bias scalar value w0 is
performed, followed by the application of a nonlinear activation function h(·)

f(w,x) = h

(D∑
i=1

xiwi + w0

)
(4.1)

this architecture is called Perceptron, one of the first learning machines, developed
by Frank Rosenblatt [104].

An example of a more common (and powerful) architecture is given by a Neural
Network with an input layer followed by an hidden layer and an output layer which
(called Multilayer Perceptron). Fixing the number of hidden units to M and the
number of output units to K, the first computation is performed at the hidden layer
and the output given by

zj = h1

(D∑
i=1

wijxi

)
∀j = 1, . . .M (4.2)

we call the output of the hidden layer z1, . . . , zM hidden variables or latent variables.
The output is given by

fk(x,w) = h2

(M∑
j=1

wkjzkj

)
∀k = 1, . . .K (4.3)

by expliciting the latent variables zj we can highlight that the final functional form
is given by chaining activation functions

fk(x,w) = h2

(M∑
j=1

wjkh1

(D∑
i=1

wijxi

))
∀k = 1, . . .K ∀j = 1, . . .M (4.4)

since in the coming chapters we’ll focus on time series forecasting application, we
always suppose that the activation function applied to the output variables is linear.
Notice that, in this example since we have K outputs, so that this architecture could
be used for multi-output regression problems. The possibility to add many hidden
layers, allows to increase the representation power of the network, allowing the model
to learn more complex concepts. This is simply due to the fact the network’s output
is given by a repeated composition of nonlinear functions.

NN’s are also referred as universal function approximators, since a Multilayer
Perceptron with linear outputs and a nonlinear activation can approximate any
function, providing that the number of neurons in the hidden layer are sufficiently
large [63]. But in practice, adding many neurons could leads the network to overfit
(i.e low error on observed data and large error on unseen data). A possible solution
to this issue is that we could add layers with limited width (i.e. number of neurons)
in order to increase the capacity of the network without increasing much the number

88
4. Variational Recurrent-Type Deep Neural Networks

for Ship Motion Prediction

of parameters. This is one of the main underlying motivation of the power of Deep
Neural Networks [1]. In the next section we introduce the main ingredients used for
train NN’s, namely the definition of the loss function and how the gradient, respect
to the network parameters can be computed in an efficient way.

4.2.2 The Error Backpropagation Algorithm

Given a dataset of input matrix X = {x}Nn=1 with the random variable x ∈ RD and
a target matrix Y = {y}Nn=1 with the output vector is y ∈ RK , we are interested to
learn a function f(x,w) such that the squared loss is minimized

e(w) = 1
2

N∑
n=1
||yn − f(xn,w)||2 (4.5)

From a probabilistic point of view, the squared error objective function can be
obtained also by minimizing the negative log-likelihood of the conditional distribution
of the output variables supposing that p(y|x,w) = N (y|f(x,w), σ2I) follows a
Gaussian distribution.

In regression setting we average the squared loss in Eq. 4.5 across all data points
and we minimize the empirical risk, obtaining the Mean Squared Error (MSE).

The presence of nonlinear activation functions inside the network makes Eq.
4.5 non convex respect to the network parameters, making the whole optimization
process non banal. One positive aspect, is that the gradient of Eq. 4.5 can be
computed exactly and efficiently by applying the simple chain rule from differential
calculus through dynamic programming. This means that we could use the gradient
information in order to find a stationary point of Eq. 4.5.

The gradient vector in neural networks is computed by the error backpropagation
algorithm proposed by [109] where the name backpropagation comes from the fact
that the prediction errors are propagated backwards inside the network starting
from the output nodes.

The first stage is called the forward pass because in order to compute the objective
function Eq. 4.5, its computation starts from the input layer as we showed in the
previous chapter. The computation performed at the unit (or neuron) uj before the
activation is applied, is given by a linear combination of the weights and the outputs
from the previous layer

uj =
∑
i

ziwij (4.6)

is worth to notice that zi could an output from a particular neuron or directly a data
input xi, while uj could be hidden unit or an output unit as well. We are interested
in the partial derivative of ∂e(w)/∂wij , which can be decomposed using the chain
rule

∂e(w)
∂wij

= ∂e(w)
∂uj

∂uj
∂wij

(4.7)

Suppose that uj is an output neuron, since a linear activation function in the output
layer is used we can write

∂e(w)
∂wij

= 2
N∑
n=1

(uj − yn)zi (4.8)

4.2 A Brief Introduction to Deep Neural Networks 89

the terms given by ∂e(w)
∂uj

= 2
∑N
n=1(uj − yn) are called errors. Those terms will

propagate back through the network as we will show in the next steps. Now let’s
consider uj as an hidden layer unit, consequently in this case the term ∂e(w)

∂uj
must

to consider that a variation in uj will cause a variation also to all K units where uj
has connection with uk

∂e(w)
∂uj

=
K∑
k=1

∂e(w)
∂uk

∂uk
∂uj

(4.9)

again uk could be an hidden unit or an output unit. The second term in Eq. 4.9 is
given by

∂uk
∂uj

= z′j

K∑
k=1

wjk = h′(aj)
K∑
k=1

wjk (4.10)

then Eq. 4.9 becomes
∂e(w)
∂uj

= z′j

K∑
k=1

∂e(w)
∂uk

wjk (4.11)

where the derivative of the activation z′j can be computed exactly since is an
elementary function. We can explicit Eq. 4.11 supposing that uk is an output neuron

∂e(w)
∂wij

= ∂e(w)
∂uj

∂uj
∂wij

= ∂e(w)
∂uk

∂uk
∂uj

∂uj
∂wij

= ziz
′
j

K∑
k=1

N∑
n=1

(uk − yn)wjk (4.12)

highlighting that we start to compute derivatives from the output layer and recursively
proceeding backwards towards the input layer.

Once the gradient is computed, the natural way to proceed is to use a first order
unconstrained optimization method to find a new set of parameters such that the
loss function will decrease.

4.2.3 Optimization and Regularization

Once the gradient of Eq.4.5 respect to the parameters is computed, we are ready to
perform a step s using for example the gradient descent algorithm

ws+1 = ws + α∇e(w) = ws −
α

n

N∑
n=1
∇en(ws) (4.13)

where α ∈ (0, 1] is the step size or learning rate. Optimize the empirical error is
one the most challenging tasks in NN’s training because we facing a nonconvex
optimization problem. Since the gradient can be computed exactly and because
nowadays Deep Neural Networks could contain millions of parameters a global
optimization algorithm could be not best viable option. For those reasons usually
local first order methods for unconstrained optimization are the natural way to
attack this problem.

The particular form of Eq. 4.13, allows especially in big data setting, to compute
the gradient respect to one or a subset of data drawn independently and uniformly at
random with replacement. This is the main idea of the Stochastic Gradient Descent

90
4. Variational Recurrent-Type Deep Neural Networks

for Ship Motion Prediction

(SGD) method initially introduce by [103] which makes an update of the weight
vector respect to only one data point

ws+1 = ws − α∇en(ws) (4.14)

When every data point is used for updating the parameters the optimization algorithm
has computed one epoch. Since the gradient can be computed independently for
each data data point allows the usage of massive parallel computations which could
be not exploited from Eq.4.13. In between of stochastic and full batch Gradient
Descent there is the possibility to use a mini batch of size nb for the parameters
update

ws+1 = ws −
αs
nb

nb∑
n=1
∇en(ws) (4.15)

which is usually more used in practice.
The advantages to have an estimate of the gradient during the optimization are

analyzed in depth in [15]. Is not hard to imagine that stochastic approaches, in
case of redundancy (i.e low variance) in the dataset the update becomes much more
efficient. Also in [73] shows that using noisy estimates of the gradient improves the
generalization accuracy, in particular that using large batch sizes, the optimizer tends
to converges into sharp minima with a consequent degradation of the generalization
accuracy. However the SGD has some disadvantages, the first one is that the step size
becomes an important hyper parameter that must be estimated with cross validation
and second the loss function could be very sensitive in some directions respect to
the others (i.e ill-conditioned Hessian matrix) [54]. Recently some algorithms have
been developed with the idea to overcome this two issues. Among others there
is the Adam [75] algorithm which stands for adaptive moments estimates. Adam
estimate the first and the second moment (i.e. mean and variance) of the gradient
respectively, computing the exponential moving averages of the gradient and the
squared gradient. The parameter update rule is given by

m(1)
s+1 = ρ1m(1)

s + (1− ρs1)∇en(ws)
1− ρ1

m(2)
s+1 = ρ2m(2)

s + (1− ρ2)∇en(ws)�∇en(ws)
1− ρs2

ws+1 = ws − α
m(1)
s+1√

m(2)
s+1 + ε

where the suggested parameters for moments estimates ρ1 and ρ2 and for the step
size α are 0.9, 0.999 and 0.001 with ε chosen as a small constant. The greatest
challenging task, that is common for every Machine Learning model is that we should
obtain an accurate prediction not only on the training data but also on the unseen
data.

The overfitting problem occurs when our model achieve a low value of the loss
function at training time but when we test the model on new unseen data (i.e test
set) we obtain an high value of the loss function.

4.2 A Brief Introduction to Deep Neural Networks 91

Many aspect should be taken into account to improve the generalization behavior
of Deep Neural Networks. The first one is the number of parameters presents inside
the network. An high number of parameters usually let the model to overfit the
data very easily. Surprisingly this doesn’t happen all the time, in fact most of recent
Deep Neural Networks models especially in Computer Vision are overparametrized
which means that the number of parameters are much larger than the number of
the observations and they show a very accurate generalization performance [2].

A first simple method for improve generalization is called early stopping, where at
each epoch we evaluate the validation loss, that is the value of the objective function
computed respect another subset of the dataset (i.e validation set). The training will
be considered terminated when the loss function respect to the validation set doesn’t
improve anymore. After that the test error will be evaluated using the optimal
parameters found by the optimizer.

Another way to control the complexity of the network is to add a penalization
term to the loss function respect to the norm of the parameter vector w. A common
choice is to use an L2 for the norm obtaining

r(w) = 1
N

N∑
n=1

(yn − f(xn,w))2 + λ

2 ||w||
2
2 (4.16)

which is also called Tikhonov Regularization or weight decay. The parameter λ
controls the penalization level to inject in the objective function in Eq. 4.16 and
should be treated as another hyperparameter to estimate. The parameters update
of the SGD algorithm are given by

ws+1 = (1− αλ)ws − α∇en(ws) (4.17)

As we can see the parameters in the previous step are shrunken by a factor of
(1 − αλ). It’s interesting to notice that even if the weight decay and the early
stopping methods could seem quite different, in reality they are very similar if we
analyze a bit more in details the networks behavior using these two methodology.
Let’s write down the quadratic approximation of the unregularized objective function
around it’s minima w?

eq(w) = e(w?) + 1
2(w−w?)>H(w−w?) (4.18)

adding the regularization term in 4.18 and writing the gradient gives to us

(H + λI)w = Hw?

w = (H + λI)−1Hw?

we can see that for λ→ 0, the regularized w and unregularized w? solutions are the
same. More insights can be obtained if we use the spectral decomposition for the
real and symmetric Hessian matrix H = UΞU>

w = U(Ξ + λI)−1ΞU>w? (4.19)

each eigenvector is scaled by a factor of ξi
λ+ξi , ∀i = 1, . . . D. Consequently, for

directions where λ� ξi, the corresponding parameter dimension will be similar to

92
4. Variational Recurrent-Type Deep Neural Networks

for Ship Motion Prediction

the maximum likelihood solution w = w?. While for λ� ξi, the relative dimension
it’ll be close to zero wi ' 0.

A similar behavior can be obtained quantitatively in case of early stopping. If
we write down the gradient descent update for Eq. 4.16 denoting with ŵ parallel to
the eigenvectors of the hessian matrix H

ws+1 = ws − αH(wsw?)
U>ws+1 = U>ws − αU>H(ws −w?)

ŵs+1 = ŵs − αΞp(ŵs − ŵ?)

taking into account only the j-th dimension of ŵs and the relative eigenvalue ξj , by
induction is possible to prove that after s = N + 1 steps we have

ŵj,N+1 = (1− (1− αξj)N+1)w?j (4.20)

if |1− αξj | < 1 for s→∞ then ŵj = w?j , meaning that without early stopping we
obtain the unregularized solution. For a finite number of steps, if the eigenvalue is
much smaller than the reciprocal of sα as ξj � (sα)−1, then means that the number of
iterations s are still large, then ŵj,s+1 ' w?j supposing that |1−αξj | < 1. Otherwise,
in case ξj � (sα)−1, using the Taylor expansion for the term (1− αξj)N ' 1− sαξj
and substituting back to Eq. 4.20 we have that |ŵj,s| ' sαξj |w?j | � |w?j |. This
highlight the fact that the reciprocal of sα play a similar role as the regularization
parameter λ in weight decay.

The last regularization method that we’ll discuss is called dropout proposed in
[134]. The dropout technique allows to combine by averaging the prediction of an
exponentially number of thinned NN’s by randomly drop some of the units in the
network, simply associating to them a Bernoulli random variable, for example in the
layer l we have

rl ∼ Bernoulli(p) (4.21)
ẑl = r� zl (4.22)

where rl is a vector of independent Bernoulli random variables at the layer l,
successively a component wise multiplication is performed against the outputs
units zl. This mechanism is applied for each layer with the error backpropagation
performed respect to this subnetwork. This process of randomly drop the units in
the networks has showed a great performance in reducing the overfitting problem in
NN’s training.

4.2.4 Uncertainty Estimation in Neural Networks

In many applications we are interested in the uncertainty associated to a prediction
provided by our model. In particular the main quantity of interest is the posterior
distribution p(w|X,Y) which can be evaluated by the Bayes Theorem

p(w|X,Y) = p(Y|X,w)p(w)
p(Y|X) (4.23)

4.2 A Brief Introduction to Deep Neural Networks 93

at inference time we integrate over the parameter space to obtain the predictive
distribution for a particular test point x?

p(y?|x?,X,Y) =
∫
p(y?|x?,w)p(w|X,Y)dw (4.24)

where the prediction is averaged over all possible realizations of the parameters given
the observables. The main challenge here, is the computation of the posterior due
to the difficulty to evaluate the evidence at the denominator of 4.23. Marginalizing
out the parameters

p(Y|X) =
∫
p(Y|X,w)p(w)dw (4.25)

this integral rarely can be computed analytically especially in the case of Neu-
ral Networks, because of the nonlinear dependence of the NN’s function and the
parameters.

In the last decades many effort has been dedicated in the efficient approximation
of Eq. 4.23. A Bayesian treatment of Neural Networks has been applied and
developed by many researchers using various techniques from variational inference
[60, 5], Laplace approximation [84] and recently in [48] showing that applying the
dropout technique is the same as applying a particular form of variational inference.
Since the last approach is the one that we used in our application we will show the
main concepts.

Variational inference (VI) is a deterministic method to approximate the posterior
distribution when the integral can’t be solved in closed form. The underlying idea
about VI is to provide an analytical approximation to the posterior in terms of
factorized distributions (usually Gaussians). Let’s begin observing that the marginal
distribution can be decomposed as

ln p(Y|X) = L(q) + KL(q||p) (4.26)

where the first term is called the evidence lower bound (ELBO) and the second term
is Kullback Leibler divergence between the variational distribution q(w) and the
posterior

L(q(w)) =
∫
q(w) ln

{
p(Y,w|X)
q(w)

}
dw

KL(q(w)||p(w|X,Y)) = −
∫
q(w) ln

{
p(w|X,Y)
q(w)

}
dw

the main idea here is to minimize the KL-divergence (or maximize the ELBO)
respect to the variational distribution q(w) such that we can compute the predictive
distribution as

p(y?|x?,X,Y) ≈
∫
p(y?|x?,w)q?(w)dw (4.27)

the KL-divergence term can be further approximated taking the sum respect to size

94
4. Variational Recurrent-Type Deep Neural Networks

for Ship Motion Prediction

of dataset

KL(q(w)||p(w|X,Y)) ≈ −
∫
q(w) ln p(Y|X,w) + KL(q(w)||p(w))dw

= −
N∑
n=1

∫
q(w) ln p(yn|fn,w) + KL(q(w)||p(w))dw (4.28)

where fn = f(xn) is the n-th output of the Neural Network. The first term in Eq.
4.28 can be approximated with Monte Carlo (MC) integration sampling ŵn ∼ q(w),
giving

KL(q(w)||p(w|X,Y)) ≈ − 1
N

N∑
n=1

ln p(yn|fn, ŵn) + KL(q(w)||p(w)) (4.29)

Where for each term inside the summation we sample the the weight matrix from
its variational distribution q(w). The variational distribution is defined as mixture
of two Gaussians [48] defined respect to each row of the weight matrix wk

q(wk) = pN (0, σ2I) + (1− p)N (mk, σ
2I) (4.30)

with p ∈ [0, 1] and mk the variational parameter. In this way the second term
can be approximated in terms of L2 norms, assuming a standard Gaussian prior
distribution [47]. The procedure to optimize Eq. 4.29, can be equivalently obtained
by optimizing the parameter of the NN’s with the scalar p given by the dropout
procedure. We can obtain the uncertainty of the predictions applying dropout at
test time, where the approximated predictive distribution is given by

p(y?|x?,X,Y) ≈
∫
p(y?|x?,w)q?(w)dw ≈ 1

J

J∑
j=1

p(y?|x?, ŵj) (4.31)

where P is the number of the weight realizations using the dropout procedure. Where
the predictive mean and variance is simply given by E[p(y?|x?)] = 1

J

∑J
j=1 fj and

the model uncertainty Var[p(y?|x?)] = 1
J

∑J
j=1(fj − f̄)2.

4.3 Recurrent-Type Neural Networks

The classical Neural Network model discussed in the previous chapter treats each
observation or data point in the same way, without considering the correlation across
the data points as it assumes that they are independent and identically distributed.

In many tasks as in time series forecasting the value of the target variable yt
is usually strongly correlated to the past values of the target variable at time yt−1.
This correlation is lost in a classical NN model.

In order to solve this limitation Recurrent Neural Networks (RNN’s) have been
developed with the objective to learn the dependencies of the data across the
timestamps and to improve the prediction accuracy in case of sequential data.

4.3 Recurrent-Type Neural Networks 95

4.3.1 Recurrent Neural Networks

The main difference respect to standard NN model is that the hidden units zt
or states of the network are allowed to pass at the successive time stamps being
a function of the data xt and the state at the previous time stamp zt−1 namely
zt+1 = h(xt, zt−1). Writing down the equations for the forward propagation in case
of RNN’s we have for t = 1, . . . , T

zt = tanh(Wxzxt + Wzzzt−1) (4.32)
ft = Wzfzt (4.33)

where T is the time window and also the number of stacked RNN’s cells, the tanh
function is applied element wise as in a classical NN’s, the matrices Wxz, Wzz and
Wzf have dimension M ×D, M ×M and K×M respectively. A linear activation is
used to compute the output vector ft since we are interested in time series forecast.
The same setting of the matrices parameters are used in each time stamp despite
the states that can evolve in time. This parameter sharing characteristic allows the
network to generalize better even in case of limited number of training data [54].

4.3.2 Error Backpropagation in Time

The RNN will be trained in order to minimize the following loss

e(W) = 1
T

T∑
t=1
||yt − f(xt,W)||2 (4.34)

The set of parameters are shared across in the time window, so that the states will
play a special role in the computation of the derivatives.

To highlight the main features of the error backpropagation in RNN’s we’ll use
a matrix/vector notation for the derivatives instead of consider a particular scalar
value wij since the same set of parameters are used through the timestamps. This
will also highlight the main problematic in RNN’s parameter optimization called the
vanishing and exploding gradients problems.

Let’s writing down that

∇e =
T∑
t=1
∇et (4.35)

the gradient is given by sum of the gradients at different timestamps. The equations
that defines the updates in the RNN depends on three matrices Wxz, Wzz and
Wzf . We will focus in the computation of the derivatives respect to the matrix Wzz

because the same procedure can be obtained for Wxz while the computation of the
derivatives respect to the matrix Wzf is straightforward. In order to maintain the
notation uncluttered we’ll refer the matrix Wzz as W. The derivative of the error
term in a particular timestamp T ′ is given by

∇eT ′ =
T ′∑
t=1

∂eT ′
∂fT ′

∂fT ′
∂zT ′

∂zT ′
∂zt

∂zt
∂W (4.36)

96
4. Variational Recurrent-Type Deep Neural Networks

for Ship Motion Prediction

the parameters W occurs many times and we have to sum from the first time stamp
to the time stamp in which we are considering to compute the derivatives (i.e T ′).
This is the reason why this procedure is called backpropagation in time.

We can expand even more the right term of Eq. 4.36

∇eT ′ =
T ′∑
t=1

∂eT ′
∂fT ′

∂fT ′
∂zT ′

∂zT ′
∂zt

∂zt
∂W =

T ′∑
t=1

∂eT ′
∂fT ′

∂fT ′
∂zT ′

T ′∏
j=t+1

(
∂zj
∂zj−1

)
∂zj−1
∂W (4.37)

where is possible to notice that the derivative of ∂zT ′
∂zt is given by a consecutive

multiplications of Jacobians as

T ′∏
j=t+1

(
∂zj
∂zj−1

)
=

T ′∏
j=t+1

W>diag(tanh′(zj)) (4.38)

The derivative in Eq. 4.38, is obtained by multiplying the same matrix of parameters
W multiple times. This could lead, depending on the magnitude the largest eigenvalue
of W, to expose at the end of the computation, the gradient to vanish or to diverge.
In general, we have the following result

Lemma 4.3.1. Let A a square matrix, given ξ the largest eigenvalue of A then the
value of ||At||2 → 0 for t→∞ when ξ < 1 and the value of ||At||2 →∞ for t→∞
when ξ > 1.

Proof. Diagonalizing the matrix At = UΞtU> we have that ξ →∞ when ξ > 1 for
t→∞, also ξ → 0 when ξ < 1 for t→∞.

This problem will be much severe as the time window increase, making very
difficult for the network to learn long-term dependencies in the time series. For many
years, this was the main reason why RNN’s were difficult to train.

Is important to remind that as the classical NN’s models the RNN’s are also
universal approximators and then very powerful. Consequently, many modifications
are presents in literature in order to overcome this kind of issues are proposed like
gradient clipping [91] and batch normalization [66] or the usage of other variants of
recurrent units as we’ll show in the next sections.

4.4 Long Short Term Memory and Gated Recurrent
Units

In the following sections, we will discuss extensions to the current RNN model. The
underlying idea os these new models is to overcome the problems that with discussed
in the previous section about the computation of the gradient vector in the case
of the RNN. Those extensions have in common that they try to create, through a
different mathematical model, gates along the time stamps where the derivatives
information could flow without numerical issues.

4.4 Long Short Term Memory and Gated Recurrent Units 97

4.4.1 Long Short Term Memory

The Long Short-Term Memory (LSTM) network has been introduced for the first
time by [61] and become during the last years one of the most powerful tool for
modeling sequences in various domains. The LSTM cell or unit is composed by
three main gates called the input i, forget g, output o and the cell-state ct, all
M -dimensional vectors which each of them cover a particular role in the network.
Those are given by 

i
g
o
c

 =


sigm
sigm
sigm
tanh

W
[
xt
zt

]
(4.39)

where the matrix W is 4M × (M + D). Then the cell state ct and the state zt
update are given by

ct = g� ct−1 + i� c (4.40)
zt = o� tanh(ct) (4.41)

let’s discuss more in detail the underlying reason of those equations: the vector is
called forget g because it multiplies respect to the cell state at the previous time
stamp ct−1, and because the forget vector has values that are between 0 and 1 this
can be interpreted as the amount of information that we want allow to pass into
the next cell state. The intermediate cell state vector c is multiplied respect to the
input vector i which can be seen as what kind of new information could be relevant
for the current cell state update. Finally the state vector zt is updated filtering the
cell state vector ct with a multiplication respect to output gate o.

4.4.2 Gated Recurrent Units

Another popular RNN’s extension is the Gated Recurrent Unit (GRU) proposed by
[19]. The mathematical model describing the state updates is similar respect to the
LSTM network but in this case we have only two gates: the update gate d and the
reset gate r. In this case we have[

d
r

]
=
[
sigm
sigm

]
W1

[
xt
zt

]
(4.42)

where the matrix W1 is 2M × (M +D). Then the state zt update is given by

zt = d� zt−1 + (1− d)� tanh
(

W2

[
xt

r� zt−1

])
(4.43)

where the matrix W2 is M × (M +D) and the length of the update gate d and of
the reset gate r is M . As we can observe the reset gate decide which information we
should retain from the previous hidden state zt−1.

98
4. Variational Recurrent-Type Deep Neural Networks

for Ship Motion Prediction

4.4.3 Sequence Modeling in Recurrent-Type Neural Networks

Recurrent Neural Networks are extremely powerful models not only for their capabil-
ity to obtain an accurate prediction but also because, dependent on the application,
one can modify the inside structure in order to achieve the desired output. In this
case we are interested to predict, at each particular instant time t, multiple time
stamps T ′ of the target variable in the future. Also, we can take into account that
the length of the desired output (in this case T ′) may differ from the length of the
input T . This particular problem is called Sequence To Sequence learning where
the model is trained to map an input sequence of fixed length xt for t = 1, . . . , T
which best predicts the target variables yt for t = T, T + 1, . . . , T ′. A particular

Figure 4.1. Conceptualization of the sequence to sequence learning via encoder-decoder
model.

architecture that allows to model this kind of problems is the Encoder-Decoder [135]
model developed for machine translation. The model is composed by two parts:
the encoder network which take all the inputs vector x1, . . . ,xT and return a latent
representation of what the encoder learnt in the time window T , namely the final
hidden state zT for t = 1, . . . , T

zT = tanh(Wxzxt + W(1)
zz zt−1) (4.44)

Given the vector zT , the decoder network will map into the target space RK the
latent representations for t = T + 1, . . . , T ′

zt = tanh(WzT zzT + W(2)
zz zt−1) (4.45)

ft = Wzfzt (4.46)

in this case we are considering RNN’s cells in the model but this architecture can be
also used in the same way with LSTM or GRU cells. The objective function that we
are going to minimize at the end is

e(W) = 1
(T ′ − T)

T ′∑
t=T+1

||yt − ft(x,W)||2 (4.47)

where the summation is performed along the outputs generated by the decoder
network.

4.5 Application: Ship Motion Prediction in High Sea State Level 99

4.5 Application: Ship Motion Prediction in High Sea
State Level

In this last section we will present the numerical results for the variational RNN,
GRU and LSTM for the motion prediction of the DTMB 5415M.

4.5.1 Problem Definition

The hull form under investigation is the MARIN model 7967 which is equivalent
to 5415M [143]. This is a geosim replica of the DTMB 5415 model with different
appendages designed by MARIN. The DTMB 5415 is an open-to-public naval
combatant hull geometry. The model was self-propelled and kept on course by a
proportional-derivative (PD) controller actuating the rudders angle.

Figure 4.2. Detail of the boundary-layer computational grid (left) and a CFD snapshot
with location of the probes (right).

The code CFDShip-Iowa V4.5 [65] is used for the CFD computations. CFDShip-
Iowa is an overset, block structured CFD solver designed for ship applications using
either an absolute or a relative inertial nonorthogonal curvilinear coordinate system
for arbitrary moving but non-deforming control volumes. The free-running CFD
simulations were performed with propeller RPM fixed to the self-propulsion point of
the model for the envisaged speed. The simulations were conducted in irregular long
crested waves, following a JONSWAP spectrum. The turbulence is computed by the
isotropic Menter’s blended k − ε/k − ω (BKW) model with shear stress transport
(SST) using no wall function. The location of the free surface is given by the ”zero”
value of the level-set function, positive in the water and negative in the air. The 6
degrees of freedom rigid body equations of motion are solved to calculate linear and
angular motions of the ship. A simplified body-force model is used for the propeller,
which prescribes axisymmetric body force with axial and tangential components.
The total number of grid points is about 45M. Further details can be found in [119].

The data set collects 8 CFD runs (with different random phases) at Fr = 0.33,
with nominal peak period Tp = 9.2 s and wave heading of 300 deg. It may be noted
that the simulation conditions are close to a resonance condition for the roll. The
nominal significant wave height is equal to 7 m, corresponding to sea state 7 (high),
according to the World Meteorological Organization (WMO) definition. A total of
215 encounter waves have been recorded, with a total run length of about 3323 s
and a data rate equal to 129.2 Hz (for the current application the data set has been
down-sampled to 8.6 Hz). Wave elevation far from the ship, ship motions (the 6
DoF), rudder angle, and two immersion probes (IP3 and IP5) time series compose

100
4. Variational Recurrent-Type Deep Neural Networks

for Ship Motion Prediction

the data set. Figure 4.2 shows a detail of the computational grid (on left) and a
snapshot of the ship behavior with the location of signal probes (on right).

The main objective is to obtain an accurate real-time short-term prediction of
about 20 s (about one and an half roll periods) of the ten variables (D = 10) at the
same time.

4.5.2 Numerical Results

For the current analysis the number of cells of the decoder network are fixed in order
to produce approximately 20 s ahead prediction.

The NRMSE in this this case is normalized to the data range in order to have a
more realistic assessment of the errors obtained across the variables since most of
them lies in different ranges; the total NRMSE is given by averaging the NRMSE
accross the variables y ∈ RD. For a particular variable the NMRSE is given by

NRMSEk =

√√√√ 1
(T ′ − T)

T ′∑
t=T+1

((yt − ft)2

max(y)−min(y)

)
(4.48)

For the cross-validation procedure the entire dataset has been divided in 70% training
set, 20% validation set and 10% test set.

For the current application due to size of the dataset and the limited computa-
tional resources a non exhaustive search of the best hyperparameters for the three
forecast model has been performed. The hyperparameters are fixed using a grid
search by evaluating different: number of cells (width of the network), layers (depth
of the network), number of hidden units M , dropout percentage and batch size.
The optimization is carried out using the Adam algorithm for a maximum number
of epochs fixed at 1000. As regularizer we used the early stopping strategy. The
optimal set of hyperparameters are shown in Tab. 4.1. Interestingly, the same
optimal set of the hyperparameters are found across all the three models. In Tab.
4.2 the breakdown of NRMSE respect to each target variable is computed for the
three networks. Is possible to notice that the Sway and the IP3 are the most
challenging variables to forecast as the maximum averaged NRMSE is obtained for
those variables. The LSTM model seems to suffer some difficulties for the prediction
of the Sway since it achieves the highest overall NRMSE value. On the other side
the NRMSE of the Heave and the Pitch is the lowest obtained across the variables
where the best models in this case are the GRU and the LSTM respectively.

Table 4.1. Summary of the hyperparameters optimal set found via cross-validation.

Model M (encoder, decoder) Batch Size Dropout N. cells (encoder) N. layers

RNN (100, 100) 512 0.2 25 1
GRU (100, 100) 512 0.2 25 1
LSTM (100, 100) 512 0.2 25 1

In order to obtain more insights about the performance of the proposed method-
ologies we performed a Kernel Density Estimate (KDE) of the residuals r = yt − ft
for each variable considered into the analysis. An important property that the

4.5 Application: Ship Motion Prediction in High Sea State Level 101

Table 4.2. NRMSE breakdown for each variable for training and test sets.

Data set Training Test
Variable RNN GRU LSTM RNN GRU LSTM

WP2 0.079 0.057 0.052 0.186 0.175 0.191
Surge 0.008 0.005 0.005 0.028 0.022 0.029
Sway 0.022 0.012 0.011 0.059 0.075 0.115
Heave 0.086 0.050 0.049 0.140 0.132 0.140
Roll 0.017 0.010 0.009 0.026 0.025 0.026
Pitch 0.062 0.036 0.035 0.121 0.105 0.102
Yaw 0.046 0.031 0.028 0.146 0.135 0.151

Rudder 0.024 0.016 0.014 0.037 0.033 0.036
IP3 0.068 0.041 0.038 0.111 0.106 0.121
IP5 0.100 0.062 0.057 0.156 0.146 0.154

Average 0.051 0.032 0.030 0.101 0.095 0.107

residuals obtained from a forecasting model should satisfy is that they should have
a zero mean. In case of residuals with a mean strongly different from zero it means
that there is bias in the prediction and the forecasting model could be improved.
In Fig. 4.4(a) is possible to observe the mean of the residuals for all the predicted
features. The variables: Surge, Sway, Roll and Ra show a mean slightly different
from zero, especially from the forecast of the Sway obtained with the GRU and
LSTM. The RNN seems more robust in this case. In Fig. 4.4(b) we reported the
variance of the residuals to highlight that the variables are in a different range. Other
interesting observations can be retrieved by analyzing the kurtosis (Fig. 4.4(c) and
skewness Fig. 4.4(d)) of the residuals. A substantial high value of the kurtosis is
obtained for the residuals of the IP3 and IP5 forecasts, meaning that the relative
distribution has high tails indicating the presence of abnormal high and low values in
the residuals as shown in Fig. 4.3(i), and Fig. 4.3(j). This is mainly due to the fact
that, the IP3 and IP5 variables present a strong change from zero in some particular
instants which seems difficult to model (i.e. high absolute value of the residuals),
while for the rest of the time their values are very regular and simple to forecast (i.e.
very low value of the residuals). The skewness for univariate distribution, measure
whether there is more weight in the right tail of the distribution (i.e. positive
skewness) or in the left tail (i.e negative skewness). An high positive skewness is
obtained for the residuals of the IP5 variable indicating a systematic underestimate
of the forecast while the opposite behavior is obtained for the Sway and the IP3.
Finally, in the last figures is possible to observe the forecast obtained through the
test set for all the variables considered. Three time intervals are showed, specifically
I1 ∈ [4545, 4565], I2 ∈ [4554, 4574] and I3 ∈ [4565, 4585]. Is worth noting that the
last time instant for which all the three model have been trained on is at 3391.8 s
(i.e last time stamp on the training set). As expected the quality of the forecast
starts to deteriorate as we will try to predict time windows which are very far from
the training data (e.g I3). From the perspective of a real time scenario, means that
the model should retrained to avoid this deterioration of the performances. However,

102
4. Variational Recurrent-Type Deep Neural Networks

for Ship Motion Prediction

(a) WP2 (b) Surge (c) Sway (d) Heave (e) Roll

(f) Pitch (g) Yaw (h) Ra (i) IP3 (j) IP5

Figure 4.3. KDE residuals.

(a) Mean (b) Variance (c) Kurtosis (d) Skewness

Figure 4.4. Statistical moments for the residuals.

an overall good forecast can be observed.

WP2 Forecast
Model I1 I2 I3

RNN

GRU

LSTM

Figure 4.5. Forecast of the WP2 variable for the three chosen time intervals.

4.5.3 Conclusions and Future Work

In this chapter we present the application of three recurrent-type NN’s for ship
motion prediction. Ten variable have been considered into the analysis namely:
WP2, Surge, Sway, Heave, Roll, Pitch, Yaw, Ra, IP3, IP5. All the variables have

4.5 Application: Ship Motion Prediction in High Sea State Level 103

Surge Forecast
Model I1 I2 I3

RNN

GRU

LSTM

Figure 4.6. Forecast of the Surge variable for the three chosen time intervals.

Sway Forecast
Model I1 I2 I3

RNN

GRU

LSTM

Figure 4.7. Forecast of the Sway variable for the three chosen time intervals.

been used for the forecast defining a multiple time series forecasting problem. The
objective was to obtain a 20 sec ahead prediction.

An overall good performance is obtained across all the methodologies considered
in this work: RNN, LSTM and GRU.

The Sway and the IP3 are the variables more difficult to predict given their high
NRMSE value respect to the other variables. Some problems relative to the bias in
the forecast of the Surge and the Sway are noticed especially in GRU and LSTM.

From the current numerical experiment, the GRU model seems performing the
best, but to assess the statistical significance of this result more runs should be
performed needed. In future work, other NN’s architectures and Vector Auto-
Regressive type methodologies for time series forecasting will be considered together
with a more extensive search of the optimal hyperparameters. Also, the possibility
to use GPU architectures in order to speed up the training but also the test time
will be addressed. This is crucial in case the proposed methods will be implemented
in a real time scenario.

104
4. Variational Recurrent-Type Deep Neural Networks

for Ship Motion Prediction

Heave Forecast
Model I1 I2 I3

RNN

GRU

LSTM

Figure 4.8. Forecast of the Heave variable for the three chosen time intervals.

Roll Forecast
Model I1 I2 I3

RNN

GRU

LSTM

Figure 4.9. Forecast of the Roll variable for the three chosen time intervals.

Pitch Forecast
Model I1 I2 I3

RNN

GRU

LSTM

Figure 4.10. Forecast of the Pitch variable for the three chosen time intervals.

4.5 Application: Ship Motion Prediction in High Sea State Level 105

Yaw Forecast
Model I1 I2 I3

RNN

GRU

LSTM

Figure 4.11. Forecast of the Yaw variable for the three chosen time intervals.

Ra Forecast
Model I1 I2 I3

RNN

GRU

LSTM

Figure 4.12. Forecast of the Ra variable for the three chosen time intervals.

IP3 Forecast
Model I1 I2 I3

RNN

GRU

LSTM

Figure 4.13. Forecast of the IP3 variable for the three chosen time intervals.

106
4. Variational Recurrent-Type Deep Neural Networks

for Ship Motion Prediction

IP5 Forecast
Model I1 I2 I3

RNN

GRU

LSTM

Figure 4.14. Forecast of the IP5 variable for the three chosen time intervals.

107

Bibliography

[1] Aggarwal, C. C. et al. Neural networks and deep learning. Springer (2018).

[2] Allen-Zhu, Z., Li, Y., and Liang, Y. Learning and generalization in
overparameterized neural networks, going beyond two layers. In Advances in
neural information processing systems, pp. 6158–6169 (2019).

[3] Aloise, D., Deshpande, A., Hansen, P., and Popat, P. Np-hardness of
euclidean sum-of-squares clustering. Mach. Learn., 75 (2009), 245–248. Avail-
able from: https://doi.org/10.1007/s10994-009-5103-0, doi:10.1007/
s10994-009-5103-0.

[4] Arthur, D. and Vassilvitskii, S. k-means++: The advantages of careful
seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms, pp. 1027–1035. Society for Industrial and Applied
Mathematics (2007).

[5] Barber, D. and Bishop, C. M. Ensemble learning in bayesian neural
networks. Nato ASI Series F Computer and Systems Sciences, 168 (1998),
215.

[6] Bartholomew, D. J. The foundations of factor analysis. Biometrika, 71
(1984), 221.

[7] Bartholomew, D. J. Spearman and the origin and development of factor
analysis. British Journal of Mathematical and Statistical Psychology, 48 (1995),
211.

[8] Barwey, S., Raman, V., and Steinberg, A. M. Data-driven reduction
and decomposition via time-axis clustering. In AIAA Scitech 2020 Forum, p.
0365 (2020).

[9] Bassanini, P., Bulgarelli, U., Campana, E. F., and Lalli, F. The wave
resistance problem in a boundary integral formulation. Surveys on Mathematics
for Industry, 4 (1994), 151.

[10] Benzi, R., Paladin, G., and Vulpiani, A. Power spectra in two-dimensional
turbulence. Physical Review A, 42 (1990), 3654.

[11] Berkooz, G., Holmes, P., and Lumley, J. L. The proper orthogonal
decomposition in the analysis of turbulent flows. Annual Review of Fluid
Mechanics, 25 (1993), 539.

https://doi.org/10.1007/s10994-009-5103-0
http://dx.doi.org/10.1007/s10994-009-5103-0
http://dx.doi.org/10.1007/s10994-009-5103-0

108 Bibliography

[12] Bishop, C. M. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA
(2006). ISBN 0387310738.

[13] Bletzinger, K.-U. and Maute, K. Towards generalized shape and topology
optimization. Engineering Optimization, 29 (1997), 201.

[14] Bloor, M. I. G. and Wilson, M. J. Efficient parameterization of genetic
aircraft geometry. Journal of Aircraft, 32 (1995), 1269.

[15] Bottou, L., Curtis, F. E., and Nocedal, J. Optimization methods for
large-scale machine learning. Siam Review, 60 (2018), 223.

[16] Broyden, C. G. The convergence of a class of double-rank minimization
algorithms 1. general considerations. IMA Journal of Applied Mathematics, 6
(1970), 76.

[17] Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. A limited memory
algorithm for bound constrained optimization. SIAM Journal on scientific
computing, 16 (1995), 1190.

[18] Chen, X., Diez, M., Kandasamy, M., Zhang, Z., Campana, E. F., and
Stern, F. High-fidelity global optimization of shape design by dimension-
ality reduction, metamodels and deterministic particle swarm. Engineering
Optimization, 47 (2015), 473.

[19] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning phrase rep-
resentations using rnn encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078, (2014).

[20] Cizmas, P. G., Palacios, A., O’Brien, T., and Syamlal, M. Proper-
orthogonal decomposition of spatio-temporal patterns in fluidized beds. Chem-
ical Engineering Science, 58 (2003), 4417 .

[21] Clément, S. A., Guillemain, A., McCleney, A. B., and Bardet, P. M.
Options for refractive index and viscosity matching to study variable density
flows. Experiments in Fluids, 59 (2018).

[22] D’Agostino, D., Serani, A., Campana, E. F., and Diez, M. Deep
autoencoder for off-line design-space dimensionality reduction in shape opti-
mization. In 56th AIAA Aerospace Sciences Meeting, SciTech 2018. Gaylord
Palms, Kissimmee, Florida, USA, January 8-12 (2018).

[23] D’Agostino, D., Serani, A., Campana, E. F., and Diez, M. Nonlinear
methods for design-space dimensionality reduction in shape optimization. In
Machine Learning, Optimization, and Big Data. MOD 2017. Lecture Notes in
Computer Science, vol 10710 (edited by G. Nicosia, P. Pardalos, G. Giuffrida,
and R. Umeton), pp. 121–132. Springer International Publishing, Cham (2018).
ISBN 978-3-319-72926-8.

Bibliography 109

[24] D’Agostino, D., Serani, A., Campana, E. F., and Diez, M. Augmented
design-space exploration by nonlinear dimensionality reduction methods. In
Machine Learning, Optimization, and Data Science. LOD 2018. Lecture Notes
in Computer Science, vol 11331 (edited by G. Nicosia, P. Pardalos, G. Giuffrida,
R. Umeton, and V. Sciacca), pp. 154–165. Springer International Publishing,
Cham (2019). ISBN 978-3-030-13709-0.

[25] D’Agostino, D., Serani, A., and Diez, M. On the combined effect of
design-space dimensionality reduction and optimization methods on shape
optimization efficiency. In 19th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference (MA&O), AVIATION 2018. Atlanta, GA, USA, June
25-29 (2018).

[26] Davis, L. Handbook of genetic algorithms. (1991).

[27] Dawson, C. W. A practical computer method for solving ship-wave prob-
lems. In Proceedings of the 2nd International Conference on Numerical Ship
Hydrodynamics, pp. 30–38. Berkeley (1977).

[28] De Masi, G., Gaggiotti, F., Bruschi, R., and Venturi, M. Ship motion
prediction by radial basis neural networks. In 2011 IEEE Workshop On Hybrid
Intelligent Models And Applications, pp. 28–32. IEEE (2011).

[29] del Águila Ferrandis, J., Triantafyllou, M. S., Chryssostomidis,
C., and Karniadakis, G. E. Learning functionals via LSTM neural networks
for predicting vessel dynamics in extreme sea states. Proceedings of the Royal
Society A, 477 (2021), 20190897.

[30] Demo, N., Tezzele, M., and Rozza, G. A non-intrusive approach for the
reconstruction of pod modal coefficients through active subspaces. Comptes
Rendus Mécanique, 347 (2019), 873.

[31] Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum likelihood
from incomplete data via the em algorithm. Journal of the Royal Statistical
Society: Series B (Methodological), 39 (1977), 1.

[32] Di Pillo, G., Liuzzi, G., Lucidi, S., Piccialli, V., and Rinaldi, F.
A direct-type approach for derivative-free constrained global optimization.
(2016).

[33] Diez, M., Campana, E. F., and Stern, F. Design-space dimensionality
reduction in shape optimization by Karhunen–Loève expansion. Computer
Methods in Applied Mechanics and Engineering, 283 (2015), 1525.

[34] Diez, M., Campana, E. F., and Stern, F. Development and evaluation of
hull-form stochastic optimization methods for resistance and operability. In
Proceedings of the 13th International Conference on Fast Sea Transportation,
FAST 2015. Washington, D.C., USA (2015).

[35] Diez, M., Campana, E. F., and Stern, F. Stochastic optimization meth-
ods for ship resistance and operational efficiency via cfd. Structural and
Multidisciplinary Optimization, 57 (2018), 735.

110 Bibliography

[36] Diez, M., Serani, A., Campana, E. F., and Stern, F. Assessing the ability
to optimize hull forms of sea vehicles for best performance in a sea environment,
STO-TR-AVT-204, chapter 3: INSEAN/UI optimization approach. Tech. rep.,
NATO (2018).

[37] Diez, M., Serani, A., Campana, E. F., and Stern, F. Stochastic design
optimization for naval and aero military vehicles, STO-TR-AVT-252, chapter
7: Reliability-based robust hull-form optimization of a naval destroyer in waves.
Tech. rep., NATO (2018).

[38] Diez, M., Serani, A., Campana, E. F., Volpi, S., and Stern, F.
Design space dimensionality reduction for single- and multi-disciplinary shape
optimization. In AIAA/ISSMO Multidisciplinary Analysis and Optimization
(MA&O), AVIATION 2016. Washington D.C., USA, June 13-17 (2016).

[39] Digabel, S. L. and Wild, S. M. A taxonomy of constraints in simulation-
based optimization. arXiv preprint arXiv:1505.07881, (2015).

[40] Drineas, P., Frieze, A., Kannan, R., Vempala, S., and Vinay, V.
Clustering large graphs via the singular value decomposition. Machine learning,
56 (2004), 9.

[41] D’Agostino, D., Andre, M., Bardet, P., Serani, A., Felli, M., and
Diez, M. Observing piv measurements through the lens of data clustering.

[42] D’Agostino, D., Serani, A., and Diez, M. Design-space assessment and
dimensionality reduction: An off-line method for shape reparameterization in
simulation-based optimization. Ocean Engineering, 197 (2020), 106852.

[43] Felli, M. and Falchi, M. A parametric survey of propeller wake instability
mechanisms by detailed flow measurement and time resolved visualizations.
In Proceedings of the 32nd Symposium on Naval Hydrodynamics, Hamburg,
Germany (2018).

[44] Felli, M. and Falchi, M. Propeller wake evolution mechanisms in oblique
flow conditions. Journal of Fluid Mechanics, 845 (2018), 520.

[45] Felli, M., Falchi, M., and Pereira, F. J. A. Distance effect on the be-
havior of an impinging swirling jet by piv and flow visualizations. Experiments
in Fluids, 48 (2010), 197.

[46] Gablonsky, J. M. and Kelley, C. T. A locally-biased form of the direct
algorithm. J. of Global Optimization, 21 (2001), 27–37. Available from: https:
//doi.org/10.1023/A:1017930332101, doi:10.1023/A:1017930332101.

[47] Gal, Y. Uncertainty in deep learning.

[48] Gal, Y. and Ghahramani, Z. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international conference
on machine learning, pp. 1050–1059 (2016).

https://doi.org/10.1023/A:1017930332101
https://doi.org/10.1023/A:1017930332101
http://dx.doi.org/10.1023/A:1017930332101

Bibliography 111

[49] Genton, M. G. Classes of kernels for machine learning: a statistics perspec-
tive. Journal of machine learning research, 2 (2001), 299.

[50] Ghoman, S., Wang, Z., Chen, P., and Kapania, R. A pod-based re-
duced order design scheme for shape optimization of air vehicles. In 53rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materi-
als Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th
AIAA, p. 1808 (2012).

[51] Gibson, M. Spectra of turbulence in a round jet. Journal of Fluid Mechanics,
15 (1963), 161.

[52] Gnedenko, B. Sur la distribution limite du terme maximum d’une serie
aleatoire. Annals of Mathematics, 44 (1943), 423.

[53] Golub, G. H. and Reinsch, C. Singular value decomposition and least
squares solutions. Numerische mathematik, 14 (1970), 403.

[54] Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. Deep
learning, vol. 1. MIT press Cambridge (2016).

[55] Gordeyev, S. V. and Thomas, F. O. Coherent structure in the turbulent
planar jet. part 2. structural topology via pod eigenmode projection. Journal
of Fluid Mechanics, 460 (2002), 349. doi:10.1017/S0022112002008364.

[56] Grønlund, A., Larsen, K. G., Mathiasen, A., Nielsen, J. S., Schnei-
der, S., and Song, M. Fast exact k-means, k-medians and bregman diver-
gence clustering in 1d. arXiv preprint arXiv:1701.07204, (2017).

[57] Haftka, R. T. and Grandhi, R. V. Structural shape optimization-a survey.
Computer Methods in Applied Mechanics and Engineering, 57 (1986), 91.

[58] Hansen, N. and Ostermeier, A. Completely derandomized self-adaptation
in evolution strategies. Evolutionary computation, 9 (2001), 159.

[59] Hicks, R. M. and Henne, P. A. Wing design by numerical optimization.
Journal of Aircraft, 15 (1978), 407.

[60] Hinton, G. E. and Van Camp, D. Keeping the neural networks simple by
minimizing the description length of the weights. In Proceedings of the sixth
annual conference on Computational learning theory, pp. 5–13 (1993).

[61] Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural
computation, 9 (1997), 1735.

[62] Holmes, P., Lumley, J. L., Berkooz, G., and Rowley, C. W. Tur-
bulence, coherent structures, dynamical systems and symmetry. Cambridge
university press (2012).

[63] Hornik, K., Stinchcombe, M., White, H., et al. Multilayer feedforward
networks are universal approximators.

http://dx.doi.org/10.1017/S0022112002008364

112 Bibliography

[64] Hotelling, H. Analysis of a complex of statistical variables into principal
components. Journal of educational psychology, 24 (1933), 417.

[65] Huang, J., Carrica, P. M., and Stern, F. Semi-coupled air/water
immersed boundary approach for curvilinear dynamic overset grids with appli-
cation to ship hydrodynamics. International Journal for Numerical Methods
in Fluids, 58 (2008), 591.

[66] Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167,
(2015).

[67] Jain, A. K. Data clustering: 50 years beyond k-means. Pattern recognition
letters, 31 (2010), 651.

[68] Johnson, D. S., Aragon, C. R., McGeoch, L. A., and Schevon, C.
Optimization by simulated annealing: An experimental evaluation; part i,
graph partitioning. Operations research, 37 (1989), 865.

[69] Jones, D., Perttunen, C., and Stuckman, B. Lipschitzian optimiza-
tion without the Lipschitz constant. Journal of Optimization Theory and
Applications, 79 (1993), 157.

[70] Jones, D. R. and Martins, J. R. The direct algorithm: 25 years later.
Journal of Global Optimization, (2020), 1.

[71] Kendall, M. A course in the geometry of n-dimensions. The Statistician, 12
(1962), 337.

[72] Kennedy, J. and Eberhart, R. Particle swarm optimization. In Proceedings
of ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–
1948. IEEE (1995).

[73] Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and
Tang, P. T. P. On large-batch training for deep learning: Generalization
gap and sharp minima. arXiv preprint arXiv:1609.04836, (2016).

[74] Ketchen, D. J. and Shook, C. L. The application of cluster analysis in
strategic management research: an analysis and critique. Strategic Management
Journal, 17 (1996), 441.

[75] Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, (2014).

[76] Kotz, S. and Nadarajah, S. Extreme value distributions: theory and
applications. World Scientific (2000).

[77] Leiva, J. P. and Watson, B. C. Automatic generation of ba-
sis vectors for shape optimization in the GENESIS program. In 7th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization Conference Proceedings, AIAA, pp. 1115–1122 (1998).

Bibliography 113

[78] Liang, J. J., Qu, B. Y., and Suganthan, P. N. Problem definitions and
evaluation criteria for the cec 2014 special session and competition on single
objective real-parameter numerical optimization. (2013).

[79] Liu, Q., Yang, G., Zhang, Z., and Zeng, J. Improving the convergence
rate of the direct global optimization algorithm. Journal of Global Optimization,
67 (2017), 851.

[80] Liu, Q., Zeng, J., and Yang, G. Mrdirect: a multilevel robust direct
algorithm for global optimization problems. Journal of Global Optimization,
62 (2015), 205.

[81] Liuzzi, G., Lucidi, S., and Piccialli, V. A direct-based approach exploiting
local minimizations for the solution of large-scale global optimization problems.
Computational Optimization and Applications, 45 (2010), 353.

[82] Liuzzi, G., Lucidi, S., and Piccialli, V. A partition-based global opti-
mization algorithm. Journal of Global Optimization, 48 (2010), 113.

[83] Lloyd, S. Least squares quantization in PCM. IEEE transactions on infor-
mation theory, 28 (1982), 129.

[84] MacKay, D. J. A practical bayesian framework for backpropagation networks.
Neural computation, 4 (1992), 448.

[85] Mahalanobis, P. C. On the generalized distance in statistics. National
Institute of Science of India (1936).

[86] Marinò, A. and Bucci, V. Shape optimization by eans of proper orthogonal
decomposition and dynamic mode decomposition. In Technology and Science
for the Ships of the Future: Proceedings of NAV 2018: 19th International
Conference on Ship & Maritime Research, p. 212. IOS Press (2018).

[87] Mladineo, R. H. An algorithm for finding the global maximum of a multi-
modal, multivariate function. Mathematical Programming, 34 (1986), 188.

[88] Mockus, J. On the pareto optimality in the context of lipschitzian optimiza-
tion. Informatica, 22 (2011), 521. doi:10.15388/Informatica.2011.340.

[89] Mockus, J., Paulavičius, R., Rusakevičius, D., Šešok, D., and Žilin-
skas, J. Application of reduced-set pareto-lipschitzian optimization to truss
optimization. Journal of Global Optimization, 67 (2017), 425.

[90] Mockus, J., Tiesis, V., and Zilinskas, A. The application of bayesian
methods for seeking the extremum. Towards global optimization, 2 (1978), 2.

[91] Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty of training
recurrent neural networks. In International conference on machine learning,
pp. 1310–1318 (2013).

[92] Paulavičius, R., Sergeyev, Y. D., Kvasov, D. E., and Žilinskas, J.
Globally-biased birect algorithm with local accelerators for expensive global
optimization. Expert Systems with Applications, 144 (2020), 113052.

http://dx.doi.org/10.15388/Informatica.2011.340

114 Bibliography

[93] Pearson, K. On lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 2 (1901), 559.

[94] Pickett Jr., R. M., Rubistein, M. F., and Nelson, R. B. Automated
structural synthesis using a reduced number of design coordinates. AIAA
Journal, 11 (1973), 489.

[95] Piegl, L. and Tiller, W. Curve and surface constructions using rational
b-splines. Computer-aided design, 19 (1987), 485.

[96] Piegl, L. and Tiller, W. The NURBS book. Springer Science & Business
Media (1996).

[97] Poole, D. J., Allen, C. B., and Rendall, T. C. S. High-fidelity aerody-
namic shape optimization using efficient orthogonal modal design variables
with a constrained global optimizer. Computers & Fluids, 143 (2017), 1 .

[98] Posa, A., Broglia, R., Felli, M., Falchi, M., and Balaras, E. Char-
acterization of the wake of a submarine propeller via large-eddy simulation.
Computers and Fluids, 184 (2019), 138 .

[99] Price, W. L. A controlled random search procedure for global optimisation.
The Computer Journal, 20 (1977), 367.

[100] Raghavan, B., Breitkopf, P., Tourbier, Y., and Villon, P. Towards a
space reduction approach for efficient structural shape optimization. Structural
and Multidisciplinary Optimization, 48 (2013), 987–1000.

[101] Raghavan, B., Xiang, L., Breitkopf, P., Rassineux, A., and Villon,
P. Towards simultaneous reduction of both input and output spaces for
interactive simulation-based structural design. Comput. Methods Appl. Mech.
Engrg., 265 (2013), 174.

[102] Rasmussen, C. E. Gaussian processes in machine learning. In Summer school
on machine learning, pp. 63–71. Springer (2003).

[103] Robbins, H. and Monro, S. A stochastic approximation method. The
annals of mathematical statistics, (1951), 400.

[104] Rosenblatt, F. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65 (1958), 386.

[105] Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and vali-
dation of cluster analysis. Journal of Computational and Applied Mathematics,
20 (1987), 53.

[106] Roweis, S. Em algorithms for pca and spca. Advances in neural information
processing systems, 10 (1997), 626.

[107] Roweis, S. and Ghahramani, Z. A unifying review of linear gaussian
models. Neural computation, 11 (1999), 305.

Bibliography 115

[108] Rozvany, G. I., Zhou, M., and Birker, T. Generalized shape optimization
without homogenization. Structural optimization, 4 (1992), 250.

[109] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning
representations by back-propagating errors. Nature, 323 (1986), 533.

[110] Samareh, J. A. Survey of shape parameterization techniques for high-fidelity
multidisciplinary shape optimization. AIAA journal, 39 (2001), 877.

[111] Schlichting, H. and Gersten, K. Boundary-Layer Theory. Springer-Verlag,
Berlin (2000).

[112] Schmid, P. J. Dynamic mode decomposition of numerical and experimental
data. Journal of fluid mechanics, 656 (2010), 5.

[113] Schmit Jr, L. A. and Miura, H. Approximation concepts for efficient
structural synthesis. (1976).

[114] Schneider, I. Abraham de moivre, the doctrine of chances (1718, 1738, 1756).
In Landmark Writings in Western Mathematics 1640-1940, pp. 105–120.

[115] Sederberg, T. W. and Parry, S. R. Free-form deformation of solid
geometric models. ACM SIGGRAPH computer graphics, 20 (1986), 151.

[116] Seneta, E. Regularly varying functions, vol. 508. Springer (2006).

[117] Serani, A., D’Agostino, D., Campana, E. F., and Diez, M. Assessing the
interplay of shape and physical parameters by nonlinear dimensionality reduc-
tion methods. In Proceedings of the 32nd Symposium on Naval Hydrodynamics,
Hamburg, Germany (2018).

[118] Serani, A., D’Agostino, D., Campana, E. F., and Diez, M. Assessing
the interplay of shape and physical parameters by unsupervised nonlinear
dimensionality reduction methods. Journal of Ship Research, (2019), 1. In
press.

[119] Serani, A., Diez, M., van Walree, F., and Stern, F. URANS simulations
of a free-running destroyer sailing in irregular stern-quartering waves at sea
state 7. Ocean Engineering, (2021). Under review.

[120] Serani, A., Durante, D., Diez, M., D’Agostino, D., Clement, S.,
Badra, J., Andre, M., Habukawa, M., and Bardet, P. Piv data
clustering of a buoyant jet in a stratified environment. In 57th AIAA Aerospace
Sciences Meeting, SciTech 2019. Manchester Grand Hyatt San Diego, San
Diego, California, January 7-11 (2019).

[121] Serani, A., Fasano, G., Liuzzi, G., Lucidi, S., Iemma, U., Campana,
E. F., Stern, F., and Diez, M. Ship hydrodynamic optimization by local
hybridization of deterministic derivative-free global algorithms. Applied Ocean
Research, 59 (2016), 115 .

116 Bibliography

[122] Sergeyev, Y. D. On convergence of "divide the best" global optimization
algorithms. Optimization, 44 (1998), 303. doi:10.1080/02331939808844414.

[123] Sergeyev, Y. D. and Kvasov, D. E. Global search based on efficient diago-
nal partitions and a set of lipschitz constants. SIAM Journal on Optimization,
16 (2006), 910.

[124] Sergeyev, Y. D. and Kvasov, D. E. Global search based on efficient diag-
onal partitions and a set of lipschitz constants. 16 (2006), 910–937. Available
from: https://doi.org/10.1137/040621132, doi:10.1137/040621132.

[125] Shubert, B. O. A sequential method seeking the global maximum of a
function. SIAM Journal on Numerical Analysis, 9 (1972), 379.

[126] Sieger, D., Menzel, S., and Botsch, M. Rbf morphing techniques for
simulation-based design optimization. Engineering with Computers, 30 (2014),
161.

[127] Sieger, D., Menzel, S., and Botsch, M. New Challenges in Grid Gener-
ation and Adaptivity for Scientific Computing, chap. On Shape Deformation
Techniques for Simulation-Based Design Optimization, pp. 281–303. Springer
International Publishing, Cham (2015). ISBN 978-3-319-06053-8.

[128] Silverman, B. W. Density estimation for statistics and data analysis. Rout-
ledge (2018).

[129] Simonoff, J. S. Smoothing methods in statistics. Springer Science & Business
Media (2012).

[130] Sirovich, L. Turbulence and the dynamics of coherent structures. i. coherent
structures. Quarterly of applied mathematics, 45 (1987), 561.

[131] Sobieszczanski-Sobieski, J. and Haftka, R. T. Multidisciplinary
aerospace design optimization: survey of recent developments. Structural
optimization, 14 (1997), 1.

[132] Spearman, C. " general intelligence" objectively determined and measured.
(1961).

[133] Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. Gaussian
process optimization in the bandit setting: No regret and experimental design.
arXiv preprint arXiv:0912.3995, (2009).

[134] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research, 15 (2014), 1929.

[135] Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to sequence learning
with neural networks. Advances in neural information processing systems, 27
(2014), 3104.

http://dx.doi.org/10.1080/02331939808844414
https://doi.org/10.1137/040621132
http://dx.doi.org/10.1137/040621132

Bibliography 117

[136] Tchebycheff, P. Sur les résidus intégraux qui donnent des valeurs approchées
des intégrales. Acta Mathematica, 12 (1889), 287.

[137] Tennekes, H. and Lumley, J. L. A first course in turbulence (2018).

[138] Tipping, M. E. and Bishop, C. M. Probabilistic principal component analy-
sis. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
61 (1999), 611.

[139] Tsinober, A. An informal introduction to turbulence, vol. 63. Springer
Science & Business Media (2001).

[140] Tu, J. H., Rowley, C. W., Luchtenburg, D. M., Brunton, S. L., and
Kutz, J. N. On dynamic mode decomposition: Theory and applications.
arXiv preprint arXiv:1312.0041, (2013).

[141] van der Maaten, L. and Hinton, G. Visualizing data using t-SNE. Journal
of Machine Learning Research, 9 (2008), 2579.

[142] Van der Vaart, A. W. Asymptotic statistics, vol. 3. Cambridge university
press (2000).

[143] van Walree, F., Serani, A., Diez, M., and Stern, F. Prediction of
heavy weather seakeeping of a destroyer hull form by means of time domain
panel and cfd codes.

[144] Von Mises, R. La distribution de la plus grande de n valuers. Rev. math.
Union interbalcanique, 1 (1936), 141.

[145] Wang, H. and Song, M. Ckmeans. 1d. dp: optimal k-means clustering in
one dimension by dynamic programming. The R journal, 3 (2011), 29.

[146] Wood, G. and Zhang, B. Estimation of the lipschitz constant of a function.
Journal of Global Optimization, 8 (1996), 91.

[147] Woodbury, M. A. Inverting modified matrices. Statistical Research Group
(1950).

[148] Wu, J., Wang, J., Xiao, H., and Ling, J. Visualization of high dimensional
turbulence simulation data using t-SNE. In 19th AIAA Non-Deterministic
Approaches Conference, p. 1770 (2017).

[149] Wu, X. Optimal quantization by matrix searching. Journal of algorithms, 12
(1991), 663.

[150] Yang, X.-S. Handbook of Solid Modeling. McGraw-Hill (1995).

[151] Zhang, B. Topics in lipschitz global optimisation. (1995).

[152] Zhou, X. and Hitt, D. L. Proper orthogonal decomposition analysis of
coherent structures in a transient buoyant jet. Journal of Turbulence, 5 (2004),
N28. doi:10.1088/1468-5248/5/1/028.

http://dx.doi.org/10.1088/1468-5248/5/1/028

	Lipschitzian Optimization with a Statistical Estimate of the Lipschitz Constant
	Introduction
	A Brief Introduction to Lipschitzian Optimization
	Partition Based Strategies for Global Optimization

	The DIRECT Algorithm
	Potentially Optimal Hyperrectangles
	Dividing Strategy
	Convergences Properties of DIRECT
	Convergences Properties of DIRECT with an Overestimate of the Lipschitz Constant

	A Statistical Estimate of the Lipschitz Constant
	A Note to Extreme Value Theory
	Lipschitz Constant Estimation through the EVT
	Multiple Lipschitz Constants Estimates using Clustering

	A New Proposed Algorithm
	Numerical Results
	Numerical Results on Bi-dimensional Test Functions
	Numerical Results on the CEC 2014 Benchmark Functions

	Conclusions and Future Work

	Probabilistic Linear Latent Variable Models for Shape Optimization
	Introduction
	The Simulation Based Design Optimization Framework
	The Optimization Problem
	Shape Parametrization: The Free Form Deformation
	Physical Solver

	Design Space Dimensionality Reduction for SBDO
	Dataset Generation
	The Principal Component Analysis
	Optimization in the Latent Space
	Decoding from the Latent Space

	Probabilistic Linear Latent Variable Models
	Statistical Properties of the Shape Parametrization Method
	Factor Analysis
	Probabilistic Principal Component Analysis
	Exploiting the Uncertainty in the Optimization Model

	Application: Shape Optimization of a Naval Destroyer DTMB 5415
	Design Space Parameterization and Sampling
	Dimensionality Reduction
	Fixing the Threshold for the Mahalanobis Distance
	Optimization Problem
	Hydrodynamic Solver
	Numerical Results
	Conclusions and Future Works

	Data-driven Analysis of Turbulent Flows
	Introduction
	Data-driven methods for Physical Experimental Data Analysis
	Proper Orthogonal Decomposition
	Dynamic Mode Decomposition
	k-Means Clustering
	t-Distributed Stochastic Neighbor Embedding
	Multivariate Kernel Density Estimation

	Application
	High-Reynolds Number Uniform and Buoyant Jets
	Propeller Wake

	Clustering Analysis for Turbulent PIV Data
	Spatial Clustering Approach
	Snapshot Clustering Approach
	Data analysis Metrics

	Numerical Results and Physical Interpretation
	Global Flow Analysis: POD and DMD
	Spatial Clustering Results
	Snapshot Clustering: Propeller Wake Results

	Conclusions and future work

	Variational Recurrent-Type Deep Neural Networks for Ship Motion Prediction
	Introduction
	A Brief Introduction to Deep Neural Networks
	Model Definition
	The Error Backpropagation Algorithm
	Optimization and Regularization
	Uncertainty Estimation in Neural Networks

	Recurrent-Type Neural Networks
	Recurrent Neural Networks
	Error Backpropagation in Time

	Long Short Term Memory and Gated Recurrent Units
	Long Short Term Memory
	Gated Recurrent Units
	Sequence Modeling in Recurrent-Type Neural Networks

	Application: Ship Motion Prediction in High Sea State Level
	Problem Definition
	Numerical Results
	Conclusions and Future Work

