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Abstract

In this thesis we are concerned with mathematical methods and models for tra�c �ow, with special

emphasis to second-order e�ects like Stop & Go waves.

To begin with, we investigate the sensitivity of the celebrated Lighthill-Whitham-Richards model on

network to its parameters and to the network itself. The quanti�cation of sensitivity is obtained by

measuring the Wasserstein distance between two LWR solutions corresponding to di�erent inputs. To

this end, we propose a numerical method to approximate the Wasserstein distance between two density

distributions de�ned on a network.

After that, we present a new multi-scale method for reproducing tra�c �ow, which couples a �rst-

order macroscopic model with a second-order microscopic model, avoiding any interface or boundary

conditions between them. The new multi-scale model is characterized by the fact that microscopic and

macroscopic descriptions are not spatially or temporally separated.

Furthermore, a delayed LWR model on networks is proposed in order to allow simple �rst-order

models to describe complex second-order e�ects caused by bounded accelerations. A time delay term is

introduced in the �ux term and its impact is studied from the numerical point of view.

Lastly, we focus on Stop & Go waves, a typical phenomenon of congested tra�c �ow. Real data are

used to point out the main features of this phenomenon, then we investigate the possibility to reproduce

it using new tra�c models speci�cally conceived for this purpose.
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Introduction

Since many years tra�c models have become an indispensable tool in the urban management of vehicular

tra�c and in the last decades an intensive research activity in the �eld of tra�c �ow modelling �our-

ished. The presence of hard congestions in urban networks may have dramatic implications in modern

society, a�ecting, e.g. productivity, pollution, fuel consumption and life-style. Nowadays, many projects

about urban intelligence and sustainable mobility require in some way the ability to forecast tra�c �ow.

Therefore, new solutions to these issues will be of great socio-economical impact. Moreover, the modern

technologies are an incessant source of new challenges for mathematicians, physicists and engineers. The

big amount of data available gives opportunities to improve models calibrating and validating the existing

ones, but also to catch the main features of tra�c evolution in order to build new accurate models. To do

that, researchers can analyse and process data coming from di�erent sources as GPS devices that track

the exact position of a vehicle, or �xed sensors that record the �ux of vehicles passing through a certain

point.

The idea of modelling vehicular tra�c has a long history dating back to the beginning of the 20th

century. In the last seventy years, many methods have been developed resorting to di�erent approaches.

Starting from the natural idea of tracking every single vehicle, several Follow-the-Leader models grew-

up for computing positions, velocities and accelerations of each car by means of systems of ordinary

di�erential equations (ODEs) [3, 25, 29]. Other ways go from kinetic [72] to macroscopic �uid-dynamic

and measures approaches [4, 13, 14, 40, 60, 63], focusing on averaged quantities by means of systems

of partial di�erential equations (PDEs), in particular conservation laws. The choice of the scale of

observation mainly depends on the number of the involved vehicles, the size of the network and so on.

Moreover the connections among di�erent scales are well established [21, 29, 30, 37, 38, 45]. These nice

links are the basis for developing multi-scale models [18, 42, 43, 50, 53].

The work presented in this thesis �ts in the framework mentioned above since we deal with mi-

croscopic, macroscopic and multi-scale tra�c �ow models on networks. We focus also on comparing

di�erent solutions using Wasserstein distance, in particular we present a numerical approximation of it.

Furthermore, we investigate speci�cally the phenomenon of Stop & Go waves starting from a set of real

data coming from Autovie Venete S.p.A. (AV), an Italian company operating on the highways of the

North-East of Italy.

In Chapter 1, we will focus on the mathematical background necessary to deal with tra�c �ow

models. Conservation laws theory will be recalled together with the numerical counterpart [32, 54, 55].

Then we will focus on tra�c �ow modelling and in particular we will describe some approaches existing

in literature. Furthermore, the extension to the network is required in order to describe real situations
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where the vehicles move on several interconnected roads. On this topic, a large literature exists [8, 14, 40]

and di�erent techniques have been proposed so far. One useful tool in the theory of conservation laws is

the Wasserstein distance and its link with the well known Monge Kantorovich mass transfer problem, or

the optimal transport problem [65, 70, 71].

Focusing on the most famous macroscopic model introduced by Lighthill, Whitham [56] and Richards

[61], in Chapter 2 we will propose a new approach to extend it on large networks, following the idea

presented in [9, 10]. Vehicles are divided on the basis of their path assuming that drivers know the way to

get their destination. Since the number of equations will grow as the network size increases, this approach

will become unfeasible on large networks, then the idea is to divide the drivers on the basis of their path

only next to the junctions. Then, the sensitivity of the model to its parameters will be investigated.

To this end, we need a suitable tool to compare and quantify the di�erence (or the closeness) between

various scenarios. Since the Lp- distances are not su�cient to catch the natural concept of distance

among densities, the natural notion of distance we need is the Wasserstein one. The bottleneck for

using this distance on networks comes from the computational side. Indeed, the classical de�nition of

Wasserstein distance is not suitable for numerical approximation. Recent characterizations also seem

to be un�t for this goal. Let us mention in this regard the variational approach proposed by Mazón

et al. [57], which generalizes to networks the results by Evans and Gangbo [32]. It can be also shown

[57] that the Wasserstein distance has a nice link with the p-Laplacian operator. This leads naturally

to a PDE-based approach to solve the problem but both these approaches are highly ill-conditioned and

then computationally infeasible. Exploiting the link with optimal transport problem, we will propose

and implement a pure discrete, reasonably fast algorithm to approximate the Wasserstein distance on a

network, based on a linear programming method. The sensitivity analysis will be done with respect to

the initial data, the network size, the capacity of roads and tra�c distribution at junctions.

It is well known that �rst order models represent a simpli�cation of the reality since they are built on

the assumption that accelerations are instantaneous, and the tra�c conditions are always at equilibrium.

Second order models instead are closer to the real dynamics of drivers since they consider bounded

accelerations [3, 33]. On the other hand, second order macroscopic models are di�cult to handle. In order

to overcome issues coming from single scale models, many kinds of multi-scale models were proposed so

far: �rst-order FtL and LWR [18], second-order FtL and LWR [43], second-order FtL and phase-transition

model [42], second-order FtL and second order macroscopic model [53]. They all are characterized by the

interface which separates micro- and macro-model, which can be either �xed or solution-dependent. In

Chapter 3 we will propose a new multi-scale approach, where the interface is not needed. We will couple

a �rst order macroscopic model with a second order microscopic one in order to inherit the advantages

of both the approaches and get an easy-to-implement macroscopic model with second-order features,

avoiding high computational costs.

In order to catch second order e�ects, mixing di�erent scales is not the only way. Taking into account

that the velocity can not change instantaneously, instead of switching to second order models, one could

introduce a time delay in �rst order models. Since many phenomena need some transient to become

visible or e�ective, several applications of delayed-systems are presented in literature: the study of the

evolution of the HIV in medicine [27, 67], the feedback control loops in control engineering [52], and many

applications in mechanics and economics [6]. In tra�c �ow models the delay represents the reaction time

of both drivers and vehicles. Delayed �rst order models on networks are the core of Chapter 4. The

impact of the delay on the solutions will be investigated, and the comparison with classical models will
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be provided.

Since our aim is to develop new strategies to reproduce second order acceleration based e�ects, in

Chapter 5 we will focus on a typical phenomenon of tra�c �ow, the so-called Stop-and-Go (S&G) waves:

vehicles stop and restart without any apparent reason, and this perturbation travels backward with

respect to the cars' trajectories. S&G waves often appear in tra�c �ow literature [62, 68] and one of

the main open challenges is modelling and simulating them. To this aim we will use real tra�c data

coming from Autovie Venete, which will help us to point out the main features of this phenomenon.

We will develop a new microscopic second order model speci�cally conceived to reproduce S&G waves,

then mixing scales or introducing a time-delay in the model, we will be able to recover S&G waves at a

macroscopic level too.

Publications

• C. Balzotti and E. Iacomini,

Stop & Go waves: a microscopic and a macroscopic description,

submitted.

• E. Cristiani and E. Iacomini,

An interface-free multi-scale multi-order model for tra�c �ow,

Discrete and Continuous Dynamical Systems - Series B, 24 (2019), pp. 6189-6207.

• F. Camilli, R. De Maio and E. Iacomini,

A Hopf-Lax formula for Hamilton-Jacobi equations with Caputo time derivative,

Journal of Mathematical Analysis and Applications, 477 (2019), pp. 1019-1032.

• M. Briani, E. Cristiani and E. Iacomini,

Sensitivity analysis of the LWR model for tra�c forecast on large networks using Wasserstein dis-

tance,

Communications in Mathematical Science, 16 (2018), pp. 123-144.
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Chapter 1

Background

In this chapter we present the theoretical tools and results we will refer to throughout the thesis. We

recall the basic notion about the theory of conservation laws, which are �rst order nonlinear hyperbolic

partial di�erential equations (PDEs) with a particular structure, described in the �rst section.

The second part of the chapter is devoted to the applications. In particular we focus on tra�c �ow,

giving an overview of the main approaches and the existing models. After investigating the main features

of each model we deal with their extension to the road network, going deeper in the description of di�erent

approaches.

Lastly we introduce the notion of Wasserstein distance in order to compare di�erent tra�c scenarios

and quantify how similar (or not) they are.

1.1 Conservation laws

Conservation laws are essential for understanding the physical world around us, indeed they describe the

conservation in time of a quantity in an isolated system.

The typical form of a scalar conservation law is the following:

∂tu(x,t)+∂xf(u(x,t)) = 0, (1.1.1)

where u : R×R+→R is the �conserved quantity�, or state variable, and f : Rm→Rm is the �ux.

They are also known as continuity equations, partial di�erential equations which give a relation

between the amount of the quantity and the �transport� of that quantity, indeed (1.1.1) can be seen as a

generalization of the rigid transport equation.

The formulation of equation (1.1.1) relies on the continuum assumption, in which u is assumed to

be inde�nitely divisible without changing its physical nature, for example a �uid has to be treated as

continuous even if is composed of molecules. The continuum assumption is ensured by considering a very

large mass compared to the size of the domain.

In order to see how conservation laws arise from physical principles, let us focus on a one-dimensional

gas dynamics problem. For example consider a gas �owing in a tube where the properties of the gas such

as density and velocity are assumed to be constant across each cross section of the tube.

Let u be the gas density in the section from a to b of the tube and f(u) the �ux through the boundaries.

7



Our aim is understanding how the gas quantity changes in the considered domain. The volume of the

gas is �xed since it is in the tube, so the variation of the gas quantity depends on the variation in time of

the density. On the other hand the variation of the gas is given by the di�erence between the incoming

and outgoing gas quantities. Mathematically we have:

d

dt

∫ b

a

u(x,t)dx=f (u(a,t))−f (u(t,b)) (1.1.2)

that is called integral form of the conservation law. Under regularity assumptions for u, we can rewrite

the equation:
d

dt

∫ b

a

u(x,t)dx=− d

dt

∫ b

a

f (u(x,t))x dx (1.1.3)

and switching the integral and derivative signs we obtain:∫ b

a

∂tu(x,t)dx+

∫ b

a

∂xf (u(x,t)) = 0, (1.1.4)

and lastly: ∫ b

a

(∂tu(x,t)+∂xf (u(x,t))) dx= 0. (1.1.5)

Since (1.1.5) has to hold for any a and b, we easily recover (1.1.1).

Let us now focus on the main properties of the solutions. Consider the following Cauchy problem:∂tu(x,t)+∂xf(u(x,t)) = 0, x∈R, t>0,

u(x,0) =u0(x).
(1.1.6)

It is well known that due to the nonlinearity of the problem, we can not de�ne classical solutions, that

means u(x,t)∈C1(R×R+), since the solution may develop discontinuities in a �nite time also for regular

initial data. For this reason we are looking for weak solutions to (1.1.6).

De�nition 1.1.1 (Weak solution). A function u(x,t)∈L∞
(
L1∩L∞(R),R+

)
that satisfy (1.1.6) in the

sense of distributions:∫
R

∫
R+

[
u(x,t)∂tϕ(x,t)+f(u(x,t))∂xϕ(x,t)

]
dtdx+

∫
R
u0(x)ϕ(x,0)dx= 0 (1.1.7)

∀ϕ∈C∞c (R;R+×R), is called weak solution to (1.1.6).

On the other hand, the notion of weak solutions just introduced is not strong enough to provide

uniqueness of solutions to (1.1.6), indeed we persist having in�nite solutions.

Consider for example the Burger equation ut+
(
u2

2

)
x

= 0 with initial data u0 = 0 for x<0 and u0 = 1

for x≥0:

uα(x,t) =


0 x< αt

2

α αt
2 ≤x<

(1+α)t
2

1 x≥ (1+α)t
2

(1.1.8)

are a family of weak solutions for every 0<α<1.

So we need a more accurate de�nition able to pick out the most physically relevant solution to (1.1.6).
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De�nition 1.1.2 (Entropy solution). A function u∈L∞(R+;L1∩L∞(R)) is an entropy solution to

(1.1.6) if it satis�es the entropy inequality:∫
R

∫
R+

[
|u(x,t)−k|∂tϕ(x,t)+sgn(u(x,t)−k)[f(u(x,t))−f(k)]∂xϕ(x,t)

]
dtdx+

∫
R
|u(x)−k|ϕ(x,0)dx≥0

(1.1.9)

for all ϕ∈C∞c (R+×R;R) with ϕ≥0, and for all constants k∈R.

Clearly, any entropy solution is a weak solution too. The uniqueness of the entropy solution is given

by the theorem below, proved by Kruºkov in the '70s, see [51].

Theorem 1.1.3 (Kruºkov). Assume that the �ux is locally Lipschitz. Then, for any given initial

condition ū in L∞ with compact support, there exists a unique entropy solution to (1.1.6) in the sense of

De�nition 1.1.2.

1.1.1 Riemann problem

For linear hyperbolic equations characteristics lines play a major role. For nonlinear problems, the

generalization of this theory, which is most frequently used in understanding how the solution behaves

and in developing numerical methods, is the solution of a Riemann problem.

A Riemann problem is nothing less than a Cauchy problem with a particular initial data consisting

in two constant states separated by a single discontinuity:
∂tu(x,t)+∂xf(u(x,t)) = 0

u0(x) =

u− x<0

u+ x≥0,

(1.1.10)

where u−,u+∈R. For example let us compute explicitly the entropy solution in the case of a concave

�ux.

• If u−<u+ (shock wave) the entropic solution is given by:

u(x,t) =

u− x<λt

u+ x≥λt
λ=

f (u+)−f (u−)

u+−u− , (1.1.11)

The shock wave will have a positive speed if f(u+)≥f(u−), negative on the contrary. Equation

(1.1.11) is also known in the literature as the Rankine-Hugoniot condition.

• If u−≥u+ (rarefaction wave) the entropic solution is given by:

u(t,x) =


u− x

t ≤f ′ (u−)

ψ
(
x
t

)
f ′ (u−)≤ x

t ≤f ′ (u+)

u+ x
t ≥f ′ (u+) ,

(1.1.12)

where the function ψ(ξ) is de�ned by the solution if f ′(ψ(ξ)) = ξ. The speed of the rarefaction wave

will be positive if f ′(u+),f ′(u−)>0, it will be negative if f ′(u+),f ′(u−)<0.
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1.1.2 System of conservation laws

In order to describe more complicated physical problems such as the motion of particles in a �uid with

no viscosity, a scalar conservation law is not longer su�cient. The main example in this framework is

represented by the Euler equations of �uid dynamics, in which we have three unknowns: the density, the

velocity of particles and the internal energy that have to satisfy respectively three conservation laws, i.

e. for the conservation of mass, momentum and global energy.

A system of conservation laws in one space variable is a partial di�erential equation in the form:

∂tu(x,t)+∂x[F(u(x,t))] = 0 (1.1.13)

where x∈R, t∈R+, u :R×R+→Rm is the vector of unknowns and F :Rm→Rm describes the �uxes.

Remark 1.1.4. There exists also more complicated systems where the space variable is a vector x∈Rn.
The problem can be rewritten taken u :Rn×R+→Rn and F :Rm→Mm×n. The theory for this kind of

systems is not so developed due to the di�culties we can easily imagine.

Let us consider the Cauchy problem associated to (1.1.13):∂tu(x,t)+∂x[F(u(x,t))] = 0, x∈R,t>0,

u(x,0) =u0(x).
(1.1.14)

Assume that F has a su�cient regularity in order to admit its Jacobian matrix A(u).

Under hypothesis of regularity on u, we can rewrite (1.1.13) in the quasi linear form:

∂tu+A(u)∂xu= 0. (1.1.15)

De�nition 1.1.5 (Hyperbolic system). The system (1.1.13) is hyperbolic if for every u∈Rm, the matrix
A(u) admits m real eigenvalues λ1(u),. ..,λm(u).

Moreover if all the eigenvalues are distinct the system is strictly hyperbolic.

Let us denote by ri(u) a right eigenvector such that A(u)ri(u) =λi(u)ri(u).

De�nition 1.1.6 (Characteristic �eld). λi(u) is called characteristic �eld, in particular it is the λi-�eld.

De�nition 1.1.7. Let λ1<λ2< ·· ·<λm be m distinct real eigenvalues of the Jacobian matrix A. Since

A depends in the solution u, so do the eigenvalues λi, i= 1,. ..,m and the corresponding eigenvectors

ri. Let ∇u denote the gradient with respect to u. Then the λi-�eld is called genuinely nonlinear if the

function:

∇uλi(u) ·ri(u) 6= 0,

in other words if ∇uλi(u) is not orthogonal to the corresponding eigenvector ri(u).

On the other hand, if

∇uλi(u) ·ri(u) = 0

λi(u) is called linearly degenerate.

Note that for a linear system the eigenvalues are constant so we have ∇uλi(u) = 0 for every i= 1,. ..,m,

thus they are linearly degenerate.
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A crucial role is played by some quantities that are invariant along the characteristic �elds called

Riemann invariants.

De�nition 1.1.8 (Riemann invariant). A Riemann invariant associated to the eigenvector ri(u) is a

scalar function z that depends on u such that:

∇z(u) ·ri(u) = 0.

If the i−th characteristic �eld is genuinely nonlinear, we can assume without loosing of generality

that:

∇uλi(u) ·ri(u)>0 ∀u∈Ω. (1.1.16)

This means that λi(u) is strictly decreasing or increasing along the direction of ri, otherwise there would

exist a point u0 such that:

∇uλi(u0) ·ri(u0) = 0 (1.1.17)

that contradicts the hypothesis on the characteristic �eld.

1.2 Numerical aspects

After some investigations on the analytical properties on the theory of conservation laws, let us focus on

their numerical counterpart.

Since the solution of conservation laws may develop jumps in �nite time, we expect that a di�erence

discretization by �nite di�erences of the PDE is inappropriate near discontinuities.

One possible approach is to combine a standard �nite di�erence method in smooth regions with some

explicit procedure for tracking the location of discontinuities. These methods are usually called �shock

tracking". They are quite easy in one dimensional problem, but become harder in more space dimensions

in which the discontinuity lies on a curve or a surface that interacts each other.

On the other hand we would like to have a numerical method that will produce sharp approximations

to discontinuous solutions automatically, without ad hoc techniques or using jump conditions. These

methods are called �shock capturing". A great variety of these schemes is now available due to their wide

applications and this is our framework.

Consider a typical Cauchy problem for a scalar conservation law:∂tu(x,t)+∂xf(u(x,t)) = 0, x∈R,t>0,

u(x,0) =u0(x).
(1.2.18)

The �rst step in any numerical approximation is to discretize both the spatial and temporal domain. Let

∆t>0 and ∆x>0 be respectively the time and the space steps. It will be useful de�ne unj =u(xj ,t
n) as

the solution at time tn=n∆t at point xj = j∆x with j∈Z and n∈N. Since the solution we are looking for
is not supposed to be continuous we have to be careful about considering pointwise values. To overcome

this issue we will consider the cell average:

unj =u(xj ,t
n) =

1

∆x

∫ xj+ 1
2 ∆x

xj− 1
2 ∆x

u(x,tn)dx. (1.2.19)
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Moreover, the initial datum too has to be projected on a ū0(x) piecewise constant function. This is why

the Riemann problem (1.1.10) plays such an important role here.

Before introducing the algorithms, let us brie�y recall general notions about numerical schemes for

conservation laws. To this aim let us introduce û(x,t) as the solution of the approximated problem. Since

we can not handle numerically in�nite domains, we assume L>0 as the length of the space interval, i.e.

the length of a road, and Nx= L
∆x the number of the cells in which the space is divided.

First of all, in order to guarantee that the numerical methods do not converge to non-solutions let us

require that the schemes we will consider admit the conservation form.

De�nition 1.2.1 (Conservative form). Given a uniform grid with time step ∆t and spacial mesh size

∆x, a numerical method is said to be conservative if the corresponding scheme can be written as:

un+1
j =unj −

∆t

∆x

(
gnj+ 1

2
−gnj− 1

2

)
, j= 1,. ..,Nx, n∈N (1.2.20)

where g :R2k→R is a continuous function, called the numerical �ux function, that de�nes a (2k+1)-point

scheme: gn
j+ 1

2

=g(unj−k+1,. ..,u
n
j+k).

Essentially, the conservative form ensures that the discretization technique actually represents a dis-

crete approximation to the integral form of the conservation laws.

Another important property of our numerical methods is the consistency with (1.1.1), that is the

numerical �ux function g reduces to the true �ux f for the case of constant �ow, i. e. g(u,...,u) =

f(u) ∀u∈R. In order to guarantee the consistency it is su�cient assuming g as a Lipschitz continuous

function in each variable.

The main advantage of conservative and consistent schemes is that, when they converge, they con-

verge to solutions whose shocks or discontinuity satisfy automatically the jump conditions, that is, the

discontinuities always travel at the correct velocity as the following theorem ensures.

Theorem 1.2.2 (Lax-Wendro�). Assume that û(x,t) is the solution of a conservative and consistent

scheme. Let û(x,t) be uniformly bounded in L∞ and convergent to u(x,t) almost surely, as the grid size

∆t and ∆x go to 0. Then u(x,t) is a weak solution of (1.1.1).

For the proof see [55].

Note that the Lax-Wendro� theorem guarantees that the approximated solution converges only to

a weak solution. In order to prove the convergence to the entropic solution we have to verify another

condition.

De�nition 1.2.3. A function U(u) and a function F (u) are called respectively the entropy and the

entropy �ux of u if:

i) U(u) is absolutely continuous and convex;

ii) F ′(u) =U ′(u)f ′(u) where f is the �ux of the conservation law and it is derived with respect to u.

De�nition 1.2.4. A numerical scheme written in the conservative form is consistent with the entropy

inequality if ∀U de�ned above, there exists a numeric entropic �ux F̂ = F̂ (u,...,u) such that:

i) U(un+1
j )−U(nj )+ ∆t

∆x

(
F̂n
j+ 1

2

− F̂n
j− 1

2

)
≤0;
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ii) F̂ (u,...,u) =F (u).

Theorem 1.2.5. Suppose that a conservative scheme is consistent with the entropic inequality, the ap-

proximated solution û(x,t)is uniformly bounded in L∞ and converges a.s. to u(x,t). Then u(x,t) is the

entropic solution of (1.1.1).

1.2.1 Lax Friedrichs scheme

The Lax Friedrichs method presented by Lax in 1954 [54] is the simplest conservative and consistent �rst

order scheme. It is a centred scheme based on �nite di�erences. The typical form is given by:

un+1
j =

1

2

(
unj+1 +unj−1

)
− ∆t

2∆x

(
f(unj+1)−f(unj−1)

)
(1.2.21)

where f is the �ux of the conservation law we have to solve. In order to guarantee the stability of the

scheme we have to satisfy the Courant-Friedrichs-Levy condition (CFL):

∆t

∆x
max
u
|f ′(u)|≤1, (1.2.22)

This scheme can be written also in the conservative form (1.2.20) choosing:

gnj+ 1
2

=
1

2

(
f(unj+1)+f(unj )

)
− ∆x

2∆t

(
unj+1−unj

)
. (1.2.23)

Due to the presence of the average on the neighbour cells it smears out the solutions, hence it is quite

dissipative.

1.2.2 Staggered Lax Friedrichs scheme

In order to reduce the dissipative behaviour of the Lax Friedrichs scheme, let us introduce a staggered

grid as an intermediate step. The staggered density values are obtained by averaging over the neighbour

densities. Then, centered di�erences are used with respect to the original grid points that are located a

distance half of a step size to the considered point. Finally, the values are projected back to the original

grid. For the detailed derivation of this scheme we refer to [44]. Note that the CFL condition has to be

halved in order to preserve stability. The numerical scheme is the following:

Left side : un+1
0 = 1

4 (3un0 +un1 )− ∆t
2∆x (f(un1 )+f(un0 )−2γ̄n)

Central points : un+1
j = 1

4 (unj−1 +2unj +unj+1)− ∆t
2∆x

(
f(unj+1)−f(unj−1)

)
Right side : un+1

Nx = 1
4 (3unNx+unNx−1)− ∆t

2∆x

(
2γ̃n−f(unNx)−f(unNx−1)

)
,

(1.2.24)

where γ̄n and γ̃n are known, recovered by the boundary conditions, and f(uni ) is the �ux of the conser-

vation law.

1.2.3 Godunov scheme

One of the most important �rst order scheme for conservation laws is the Godunov scheme, introduced

by Godunov in 1959. The main idea consists of solving several Riemann problems (1.1.10), one at each
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cell boundary, to obtain the solution, since u has been projected on a piecewise constant function. Let

us assume that the CFL condition is satis�ed, so (3.2.4) holds. As said above, let us consider:

ūnj =
1

∆x

∫ xj+ 1
2 ∆x

xj− 1
2 ∆x

u(x,tn)dx, (1.2.25)

and each cell Cj = [xj− 1
2
,xj+ 1

2
] for all j∈Z.

The initial datum u0(x,t) has to be projected on a piecewise constant function. Recalling (1.1.2) and

assuming a=xj− 1
2
and b= j+ 1

2 , we obtain:

∫ x
j+ 1

2

x
j− 1

2

u
(
tn+1,x

)
dx−

∫ x
j+ 1

2

x
j− 1

2

u(tn,x)dx=−
∫ tn+1

tn
f
(
u
(
t,xj+ 1

2

))
dt+

∫ tn+1

tn
f
(
u
(
t,xj− 1

2

))
dt. (1.2.26)

just applying the fundamental theorem of calculus. Note that on the left we have spacial integrals on the

cell Cj , and, for construction, the values in the cells are constant:

4x
(
ūn+1
j − ūnj

)
=−

∫ tn+1

tn
f
(
u
(
t,xj+ 1

2

))
dt+

∫ tn+1

tn
f
(
u
(
t,xj− 1

2

))
dt. (1.2.27)

Now, focusing on the right side of (1.2.26), we observe that f(u(t,xj− 1
2
)) and f(u(t,xj− 1

2
)) are constant

for t∈ [tn,tn+1]. It happens because u at time tn is piecewise constant and the Riemann problems generate

constant solutions at the cell interfaces. Therefore we can write the scheme as follows:

4x
(
ūn+1
j − ūnj

)
=−4t G

(
ūnj ,ū

n
j+1

)
+4t G

(
ūnj−1,ū

n
j

)
(1.2.28)

where G is the numerical Godunov �ux: G(ūnj ,ū
n
j+1) =f(u(xn

j+ 1
2

)) and G(ūnj−1,ū
n
j ) =f(u(xn

j− 1
2

)).

From the construction of the scheme, it is clear that we can write it in the conservative form:

un+1
j =unj −

4t
4x

[
G
(
unj ,u

n
j+1

)
−G

(
unj−1,u

n
j

)]
. (1.2.29)

To our purpose, we are interested in studying the non convex �ux case, so the Godunov �ux is:

G
(
u−,u+

)
=


min

u∈[u−,u+]
f (u) u−≤u+

max
u∈[u−,u+]

f (u) u−>u+
. (1.2.30)

1.3 Application to tra�c �ow

Conservation laws are considered to be fundamental laws of nature, with broad application in physics, as

well as in other �elds such as chemistry, biology, geology, and engineering.

For instance let us consider a single lane road with two arbitrary points a and b, a<b, along the road.

Let us call ρ(x,t) the density of cars at the point x∈ [a,b] at time t≥0, that is the number of cars in a

kilometre, and v(x,t) the mean velocity. The variation of the number of cars is due only to the incoming

�ux in x=a and to the outgoing �ux in x= b, where the �ux is given by the vehicles times their mean

14



velocity, f =ρv. Mathematically we have:

d

dt

∫ b

a

ρ(x,t)dx=v(ρ(a,t))ρ(a,t)−v(ρ(b,t))ρ(b,t) =−
∫ b

a

[
f(ρ(x,t))

]
x
dx. (1.3.31)

Since it holds for all a<b, we recover the scalar conservation law:

∂tρ(x,t)+∂xf(ρ(x,t),v(x,t)) = 0. (1.3.32)

Therefore we are able to describe the evolution of tra�c �ow thanks to the theory of conservation laws.

Moreover we can think of tra�c as a �uid and use �uid dynamics equations to describe its behaviour in

terms of macroscopic variables as we will see in the next section.

1.3.1 Macroscopic approach

In macroscopic models [40], tra�c is described in terms of macroscopic variables such as the average

density ρ=ρ(x,t), that is the number of vehicles in a kilometre, and their mean velocity v=v(x,t) at

the point x∈R at time t>0. So we loose the detailed level of vehicles' description, indeed they become

indistinguishable from each other.

Let us assume that ρ∈ [0,ρmax], where ρ= 0 means that there are no cars, i. e. the road is empty,

while ρ=ρmax stands for the fully congested scenario, i. e. the cars are bump-to-bump. As well as

density, v∈ [0,vmax], and in analogy with the real observations, a reasonable behaviour for the velocity

is a decreasing function as the density increases.

The typical form of a �rst order macroscopic model is:∂tρ(x,t)+∂x(ρ(x,t) v(x,t)) = 0,

ρ(x,0) =ρ0(x)
, (1.3.33)

for (x,t)∈R× [0,Tf ], a �nal time Tf >0, and initial distribution ρ0.

The law that describes the �ux in terms of the density is the so-called fundamental diagram that plays

a crucial role in this framework. Physically it represents the number of vehicles that pass through the

point x in a given length of time. It is clear that the �ux has to be 0 both in the case of empty road,

since the density is null, and in the case of of fully congested road, since the velocity is null in order to

avoid collisions. But for intermediate values of density, it is more complicated as real data show [7], see

Fig. 1.1. Indeed drivers act di�erently in response of the same tra�c conditions.

A huge literature exists about the shape of this given law has to show, since it is one of the main

ingredient of macroscopic models.

In the �rst-order models like the most famous introduced in the early '50 by Lighthill, Witham and

Richards (LWR), the velocity v=v(ρ) is given as a function of the density, so the �ux is depending only

on the density, that is the only unknown of the PDE.

The following hypotheses are made on the �ux:

1) f ∈C0([0,ρmax])∩C1((0,ρmax));

2) is strictly concave;
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Figure 1.1: Fundamental diagram from real data [7].

3) f(0) =f(ρmax) = 0;

4) f(σ) = maxs∈(0,ρmax)f(s).

There are di�erent fundamental diagrams that satisfy the assumptions. The simplest one is the following:

f(ρ) =ρ vmax
(

1− ρ

ρmax

)
, (1.3.34)

mostly used by the mathematical community.

;
0 0.2 0.4 0.6 0.8 1

f

0

0.05

0.1

0.15

0.2

0.25

Figure 1.2: Typical parabolic fundamental diagram.

In order to �t the real data shown in Fig. 1.1, another fundamental diagram is also popular:

f(ρ) :=


fmax

σ ρ, if ρ≤σ
fmax

σ−1 (ρ−1), if ρ>σ
(1.3.35)
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Figure 1.3: Typical triangular-shape fundamental diagram.

By the way, there exists also:

f(ρ) =ρ v0 log

(
ρmax

ρ

)
(1.3.36)

that comes from the experimental data from the Lincoln tunnel in New York and proposed for the �rst

time by Greenberg. We have to mention the one studied by Greenshield:

f(ρ) =ρ vmax
(

1−
(

ρ

ρmax

)n)
(1.3.37)

and the California model too:

f(ρ) =ρ v0

(
1

ρ
− 1

ρmax

)
. (1.3.38)

Once chosen the fundamental diagram, there are no di�culties in solving (1.3.33). On the other hand

the lacks of the LWR model, or �rst order models in general, are well known. For example, it fails to

generate capacity drop, hysteresis, relaxation, platoon di�usion, or spontaneous congestions like stop and

go waves, that are typical features of tra�c dynamics.

In order to overcome this problem, second order models have been proposed. They take into account

the non-equilibria states, assuming that accelerations are not instantaneous. To do this, the equation

that describes the variation of the velocity in time has to be added to the system, replacing the typical

given law f(ρ) of �rst order models.

The �rst works on this direction were proposed by Payne and Whitham in the '70s, but they had some

drawbacks, that were pointed out by Daganzo in 1995 [28]. The 'resurrection' of second order models

is due to Aw and Rascle in the 2000 [4], and Zhang in 2002 [73], that highlighted for the �rst time the

di�erences between tra�c and �uid �ows. Indeed the model is designed to simulate the anisotropic tra�c

behaviour, taking into account that the speed of each car does not change instantaneously and drivers

look only ahead, that is the condition of the road in front of them, and do not care about what happens

behind.

In formulas we have:∂tρ(x,t)+∂x(ρ(x,t) v(x,t)) = 0,

∂tv(x,t)+v(x,t)∂xv(x,t) = ve(ρ(x,t))−v(x,t)
τ − P ′(ρ(x,t))∂xρ(x,t)

ρ ,
(1.3.39)

where τ >0 stands for the reaction/relaxation time, ve(ρ) : [0,ρmax]→ [0,vmax] is a C1 decreasing function
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which gives the equilibrium (i.e. desired) velocity, that means the speed drivers would to achieve, and

P (ρ) is an increasing function representing a pressure law:

P (ρ) :=


Vref
γ

(
ρ

ρmax

)γ
, γ >0

Vref ln
(

ρ
ρmax

)
, γ= 0.

(1.3.40)

From the mathematical point of view the second order model (1.3.39) is a purely nonlinear hyperbolic

system of two conservation laws, indeed we can rewrite (1.3.39) as follows:∂tρ(x,t)+∂x(ρ(x,t) v(x,t)) = 0,

∂t [ρ(x,t)w(x,t)]+∂x[v(x,t)ρ(x,t)w(x,t)] =ρ(x,t) ve(ρ(x,t))−v(x,t)
τ ,

(1.3.41)

with w(x,t) =v(x,t)+P (ρ(x,t)), also called the Lagrangian marker.

Let us forget for a while the relaxation term and focus our attention on the Aw Rascle model:∂tρ(x,t)+∂x(ρ(x,t) v(x,t)) = 0,

∂t [ρ(x,t)w(x,t)]+∂x[v(x,t)ρ(x,t)w(x,t)] = 0,
(1.3.42)

In order to point out the main features of (1.3.42), let us compute the eigenvalues of the Jacobian matrix

associated to the system:

λ1 =v−ρP ′(ρ) λ2 =v. (1.3.43)

Therefore the system (1.3.42) is hyperbolic except for ρ= 0 when the two eigenvalues coalesce and the

jacobian matrix is no longer diagonalizable.

Computing the corresponding right eigenvectors, we �nd out that r1 = (1,−P ′(ρ))T and r2 = (1,0)T .

Reminding Sec. 1.1.2, we can say that λ2 is always linearly degenerate, and λ1 would be linearly

degenerate if and only if P (ρ) =A− B
ρ , for A,B>0 real constants. Under our assumption for P (ρ),

(1.3.40), λ1 is always genuinely non linear, and therefore will admit either shock waves or rarefactions,

while the second one admits contact discontinuities that correspond to waves whose propagation speed

is always equal to the corresponding eigenvalue.

Note that λ1≤λ2 so all the waves propagate at a speed at most equal to the velocity v of the

corresponding state.

Numerical approximation

The conservation law (1.3.33) will be numerically solve by means of the classical Godunov scheme (1.2.29)

for the LWR model as described in [40].

Moreover we can solve the system (1.3.33) applying the Staggered Lax-Friedrichs method presented above

(1.2.24).

1.3.2 Microscopic approach

On the other hand, the natural way of describing tra�c evolution is tracking each single vehicle and

following its trajectory. In order to do this, assume that N vehicles are moving along a single-lane
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in�nite road where overtaking is not possible. This means that cars are ordered and have to follow the

�rst one that is called the leader. Cars that are not the leader are termed followers.

Let Xk(t) be the position of the k-th car at time t>0 and Vk(t) its instantaneous velocity, for

k= 0,. ..,N . The dynamics is governed by the distance between adjacent vehicles and described by a

system of ordinary di�erential equations (ODEs) in the following way:{
Ẋk(t) =V (Xk(t),Xk+1(t)), k<N

ẊN (t) = V̄
(1.3.44)

where Ẋk(t) stands for the derivative in time of the k-th vehicle's position.

Note that the leader needs a special dynamics since he has no one in front of him, so he/she moves at a

constant velocity V̄ ≥0.

Moreover if an accurate description is required, we have to consider also the acceleration term that

will depend on the positions and the velocities of the nearby vehicles:
Ẋk(t) =Vk(t), k≤N
V̇k(t) =A(Xk(t),Xk+1(t),Vk(t),Vk+1(t)), k<N

V̇N (t) = 0.

(1.3.45)

The systems (1.3.44) and (1.3.45) are the typical form respectively of a �rst order and a second order

Follow-the-Leader type models, also known as Car-Following models. In this framework the di�erence

between �rst and second order models lies in the acceleration term: the former kind of models represents

a simpli�cation of the reality since assume that accelerations are instantaneous, and the tra�c conditions

are always at equilibrium. On the other hand second order models are closer to the real dynamics since

consider bounded accelerations.

There are many possible choices for the velocity and the acceleration terms, that identify which

model we are considering, [3]. Let us focus �rst on the velocity term. Starting from real observations, the

velocity function has to be 0 if the cars are nearer than a safe distance or the length of a vehicle called

`N , so nobody can move in order to avoid collisions. On the other hand if cars are too far for in�uencing

themselves they can travel at the maximum velocity allowed, Vmax. Thus we need an increasing function

depending on the distance between nearby vehicles that we will denote with V des. One of the most used

velocity function is the following:

V des(Xk+1,Xk) =

(
1− `N

Xk+1−Xk

)
(1.3.46)

assuming that the distance between two vehicles is always greater than the length of a vehicle itself, i. e.

|Xk+1−Xk|≥ `N ,∀k.
The acceleration term is not so intuitive instead. There are a lot of parameters that we have to take into

account such as the time-reaction of the drivers', the response of the vehicles' and so on. This is why

there exist a lot of second order FtL models, depending on the choice for the acceleration term.

The most famous was proposed by Aw et al. in the early 2000s in [3], where the acceleration term is
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de�ned as follows:

A
(
Xk+1,Xk,Vk+1,Vk

)
=C

Vk+1−Vk
(Xk+1−Xk)γ+1

+
1

τ

[
v∗
(

`N
Xk+1−Xk

)
−Vk

]
(1.3.47)

where τ >0 is modelling the reaction time, `N >0 stands for the length of vehicles, C,γ≥0 are additional

model parameters, and v∗ is a C1 decreasing function related to the macroscopic approach, which gives

the equilibrium (i.e. desired) velocity of drivers as a function of the degree of congestion.

Numerical approximation

Systems (1.3.44) and (1.3.45) will be numerically integrated by means of the explicit Euler scheme.

1.3.3 From micro to macro

A natural question is now arising about the relationships between the two scales. Connections between

microscopic agent-based and macroscopic �uid-dynamics tra�c �ow models are already well established.

There are several works in the literature investigating the limit for �rst and second order models as

[19, 30, 37, 38, 64] or applying the theory of mean �eld games to recover a new macroscopic model [15].

On the other hand links between the scales on networks are rarer, see [25].

The interest in pointing out and establishing connections between microscopic and macroscopic models

comes from the willing of justify and validate the macroscopic model on the basis of the microscopic

assumptions, which are easier to understand. For example the continuum hypothesis, see Sec. 1.3.1,

is not immediately justi�able in this context, since the number of vehicles is typically lower then the

number of molecules in a �uid, but it is accepted as a technical approximation thanks to the link with

macroscopic quantities as measures for tra�c dynamics.

Moreover the limit from the discrete to the continuous approaches could be seen as a theoretical

analogue of the reconstruction of tra�c conditions through high sampling data from GPS devices. Our

aim is using this technique to recover a new macroscopic model able to reproduce the tra�c dynamics. Let

us now showing how the solution of the Follow-the-Leader model (1.3.44) tends to the entropic solution

of LWR model (1.3.33).

After recalling the assumptions made in Section 1.3.2, i. e. N indistinguishable vehicles are moving

on a single-lane in�nite road where overtaking is not allowed, we denote by `N >0 the vehicle's length

(or mass) and byM the total length/mass of cars. It holds:

`N =
M
N

(1.3.48)

that meansM does not change for increasing number of cars, indeed their own length/mass is decreasing

accordingly. In order to avoid collisions, we assume that δk(t) :=Xk+1(t)−Xk(t)≥ `N , for k= 0,. ..,N−1.

Recalling the system (1.3.44), we are able to solve it by a recursion procedure. Starting from the leader, i.

e. the Nth-vehicle, for which we obtain XN (t) =XN +
∫ t

0
V (s)ds. We recover the solution for Xk(t), once

knowing Xk+1(t). The following result presented in [30], provides the non-degeneration of the quantities

δk(t) for k= 0,. ..,N−1 and t≥0, that ensures the existence and the uniqueness of the global solution once

assuming that the microscopic velocity V (δ) is analogous to the macroscopic one v(ρ), i. e. V (δ) =v( `Nδ )

and v(ρ) =V ( `Nρ ).
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Lemma 1.3.1 (Discrete maximum principle). For k= 1,. ..,N−1, we have:

`N
R
≤Xk+1(t)−Xk(t)≤XN (0)−X0(0)+(Vmax−v(R))t t≥0 (1.3.49)

with R= maxk=0,...,N−1

(
`N
δk

)
the discrete density.

In order to formalize the connections between macro and microscopic descriptions we have to introduce

the natural spaces for the density and the positions of cars:

DM=
{
ρ∈L1(R;[0,1]) :

∫
Rρ(x)dx=M, with compact support

}
CN =

{
X ∈Rn+1 :Xk+1−Xk≥ `N , ∀k= 0,. ..,N−1

} (1.3.50)

and the operators EN :CN→DM and FN :DM→CN as:

EN [ρ] =X=

XN = max(supp(ρ)),

Xk = max{z∈R :
∫Xk+1

z
ρ(x)dx= `N}, k=N−1,. ..,1

(1.3.51)

FN [X] =ρN =

N−1∑
k=0

`N
δk
χ[X1,Xk+1), (1.3.52)

where χI stands for the characteristic function of the interval I.

The operator EN gives the microscopic interpretation of the macroscopic density thanks to the vehicles'

positions. On the other hand, the operator FN plays the opposite role: given the discrete positions of

cars it provides the corresponding piecewise constant density.

Proposition 1.3.2. For every N ∈N with N ≥2 and for every M>0, EN ◦FN = IdCN
. Viceversa,

FN ◦EN = IdDM pointwise in DM∩BV (R;[0,1]) with respect to the L1-norm, so that

• limN→∞ ||(FN ◦EN )(ρ)−ρ||L1 = 0 for all ρ∈DM∩BV (R;[0,1]) and

• limN→∞((FN ◦EN )(ρ))(x) =ρ(x) for all ρ∈DM∩BV (R;[0,1]), for a.e. x∈R.

We refer to [64] for the proof.

Moreover, the following two results ensure the well-posedness of the Cauchy problems (1.3.44) and

(1.3.33).

Proposition 1.3.3. After the assumptions made on v for the LWR model in Sec.1.3.1, for any M>0

and for any initial datum ρ̄∈DM∩BV (R;[0,1]), the Cauchy problem (1.3.33) admits a unique solution

ρ∈C0,1(R+;DM).

Proposition 1.3.4. After the assumptions made on v for the LWR model in Sec.1.3.1 and V (δ) =v( `Nδ ),

for any N ∈N, with N >2 and for any initial datum X̄ ∈CN , the Cauchy problem (1.3.44) admits a unique

solution X ∈C0,1(R+;CN )

For the proofs we refer to [30].

1.3.4 Extension to the network

In order to describe more realistic situations where the vehicles move on several interconnected roads,

the models presented above are not su�cient.
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Let us deal with a connected and directed graph G= (E ,J ) consisting of a �nite set of vertexes J and

a set of oriented edges E connecting the vertexes. Starting from G, we build the network N by assigning

to each edge e∈E a positive length Le∈ (0,+∞). Moreover, a coordinate is assigned to each point of the

edge. The coordinate will be denoted by xe and it increases according to the direction of the edge, i.e.

we have xe = 0 at the initial vertex and xe =Le at the terminal vertex. The mathematical de�nition is

the following.

De�nition 1.3.5. A network N is a couple (E ,J ) where:

• E is a �nite collection of edges, which are intervals on R,
Ii= [ai,bi] ⊆R, with i= 1,..,Ne;

• each edge has a system of local coordinates;

• J is a �nite collection of vertices. Each vertex J is union of two non empty subsets Inc(J) and

Out(J) of {1;.. .;Ne}.

Figure 1.4: Network example.

In this context the edges represent the roads, the vertexes the junctions, Inc(J) and Out(J) are the

sets of the indices of the incoming and outgoing roads, respectively, of a junction J . In order to determine

in a unique way a junction we assume that:

1) For every J 6=J ′∈J we have Inc(J)∩Inc(J ′) =∅ and Out(J)∩Out(J ′) =∅.

2) If i /∈∪J∈J Inc(J), then bi= +∞ and if i /∈∪J∈JOut(J) then ai=−∞.

Moreover, the two cases are mutually exclusive.

The natural way to extend (1.3.33) to the network is to assume that the conservation law is satis�ed on

each arc for all times t>0 and consider separately the problem at the vertexes.

The �rst idea one could have is summing up the boundary conditions at the end/beginning of roads

and going on solving (1.1.6), but it is not the right way to proceed. For example let us consider a junction

with two incoming roads, e1 and e2, and one outgoing road, e3. If we sum up the densities at the end of

e1 and e2 it is easy that we may exceed ρmax that would be the density value at the beginning of e3, and

it makes no sense. Thus the relevant physical condition is the conservation of �uxes at the junction, that

means the number of the incoming vehicles in a unit of time has to be the same of the outgoing vehicles.

So cars can not be created or deleted at junctions.

Moreover, additional conditions have to be imposed at junctions, because in general the conservation

of the mass alone is not su�cient to characterize a unique solution.
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Multiple approaches have been suggested in the literature for overcoming such ill-posedness: (i)

maximization of the �ux across junctions and introduction of priorities among the incoming roads [16,

40, 49]; (ii) introduction of a bu�er to model the junctions by means of additional ODE coupled with

(1.3.33) [8, 39, 41, 46]; (iii) reformulation of the problem on all possible paths on the network rather than

on roads and junctions [9, 10, 11, 47]. In general, each of them allows to determine a unique solution for

the tra�c evolution on the network, but the solutions might be di�erent.

Let us analyse in detail these approaches, pointing out their main features.

1.3.4.1 Classical approach

The classical approach introduced in [16, 40, 49] deals with the maximization of the �ux at the junctions

and the introduction of priorities on the incoming roads in order to select a unique solution and solve the

ill-posedness of the problem.

Let us consider a generic junction J and denote by Ei= [ai,bi], for i= 1,. ..,n the incoming roads and

by Ej = [aj ,bj ], for j=n+1,. ..,n+m the outgoing roads.

De�nition 1.3.6. A tra�c distribution matrix is given by

A=

 αn+1,1 .. . αn+1,n

.. . . .. ...

αn+m,1 .. . αn+m,n

 (1.3.53)

where 0≤αj,i≤1 for every i∈{1,. ..,n} and for every j∈{n+1,. ..,n+m} and

n+m∑
j=n+1

αj,i= 1, (1.3.54)

for every i= 1,. ..,n.

Roughly speaking, the i−th column of A describes how the cars coming from an incoming road i

distributes in percentages to the outgoing roads. Note that each vertex has its own distribution matrix.

In this framework we assume that the coe�cient of A are constant but they could also depend on time,

since the preferences of the drivers may change during the day.

A natural request for the densities on the incoming/outgoing roads at a generic junction, i.e.

(ρ1,. ..,ρn+m), in order to have an admissible solution in J is:

n∑
i=1

f
(
ρi(bi−,t)

)
=

n+m∑
j=n+1

f
(
ρj(aj+,t)

)
(1.3.55)

that means that the vehicles at the junction have to be conserved. Note that this assumption can be

considered as a generalization of the Rankine-Hugoniot conditions at the junctions.

Let us de�ne the maximum incoming �ux and the maximum outgoing �ux on each road, respectively,

as follows:

γimax (ρ(bi,t)) =

f (ρ(bi,t)) if ρ(bi,t)∈ [0,σ],

f (σ) if ρ(bi,t)∈ (σ,ρmax]
i= 1,. ..,n (1.3.56)
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and

γjmax (ρ(aj ,t)) =

f (ρ(aj ,t)) if ρ(aj ,t)∈ (σ,ρmax],

f (σ) if ρ(aj ,t)∈ [0,σ]
j=n+1,. ..,n+m. (1.3.57)

Equations (1.3.56) and (1.3.57) are also known as supply and demand functions. Indeed the supply

function measures the maximum �ux that could outgoing from the incoming road, instead the demand

function measures the maximum �ux that an outgoing road could receive.

;
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Figure 1.5: Example of demand (left) and supply (right) functions.

Let us denote:

Ωi=
[
0,γimax (ρ(t,bi))

]
, i= 1,. ..,n,

Ωj =
[
0,γjmax (ρ(t,aj))

]
, j=n+1,. ..,n+m,

Ω =
{(
γ1,. ..,γn

)
∈Ω1× .. .×Ωn |A

(
γ1,. ..γn

)T ∈Ωn+1× .. .×Ωn+m

}
where Ωi and Ωj are the sets of all the possible �uxes for the solution at the junctions, and Ω stands for

the set of all the admissible �uxes at the end of the incoming roads, taking into account the preferences

matrix A.

In order to maximize the �ux at the junctions, we have to solve an optimization problem with linear

constraints:

max
(γ1,...,γn)∈Ω

n∑
i=1

γi. (1.3.58)

On the other hand, (1.3.58) has not a unique solution in general. For example it can admit in�nite

solutions as shown in Fig. 1.6 where the admissible solutions are all the points belonging to the bold

line, that represents the constraint γ1 +γ2≤γ3
max. This happens in the case of two incoming roads and

one outgoing where the sum of the incoming densities have not to exceed the capacity of the outgoing

road. So we have to impose another constraint that takes into account the priority, or the right of way

of drivers denoted by the vector q= (q1,. ..,qn):

(γ1,. ..,γn)∈{qs, s∈R+}. (1.3.59)

It is required that qi≥0 ∀i= 1,. ..,n and
∑n
i=1q

i= 1.
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Figure 1.6: Example of in�nite admissible solutions.

We are now able to guarantee the uniqueness of the solution.

Numerical approximation

We numerically solve the conservation law on each arc by means of the Godunov scheme (1.2.29) or

applying the Staggered Lax Friedrichs scheme (1.2.24). On the other hand, at the junction we employ

the supply and demand functions (1.3.56) (1.3.57) at the last cell of the outgoing road and the �rst cell

of the incoming road.

1.3.4.2 Junction with bu�er

An alternative way to describe the dynamics of a junction is to represent it with a bu�er, see [39]. Since

sometimes the geometry of a junction has no negligible e�ects on tra�c conditions, we are not allowed to

assume that a junction is a single point with no dynamics. The main idea behind modelling a junction

with a bu�er is that we would recover the microscopic description of vehicles' dynamics', by considering

the fact that cars do not pass immediately from a road to another but spend some time crossing the

junction, but, on the other hand, we would also maintain the macroscopic description of the problem.

Even if the junction remains a 0-dimensional object, it has now its own dynamics.

Indeed the bu�er allows some storage capacity, and mathematically, its evolution is described by an

ODE that takes into account how, the total number of cars at the junction, change in time.

Let us call r(t) the number of vehicles we can �nd in the bu�er at time t. It can goes from 0 to rmax,

that means the maximum capacity of the junction we are considering. Its dynamics is described by:

ṙ(t) =
∑

i∈Inc(J)

f(ρi(bi,t))−
∑

j∈Out(J)

f(ρj(aj ,t)) (1.3.60)

and it is nothing else that the sum of the incoming vehicles less the sum of the outgoing ones at the same

time t.

The last step we have to focus on is how the incoming and the outgoing roads interface with the
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Figure 1.7: Bu�er approach.

bu�er. Let us introduce the supply and demand functions for the bu�er, denoted respectively by dB and

sB. They are the functions representing the maximization of the �ux for the incoming and the outgoing

roads, as (1.3.56) and (1.3.57), see Fig 1.5. In other words we have to maximize the number of the

incoming and outgoing vehicles at the bu�er. Mathematically we have:

dB=

β 0<r≤ rmax

min{γimax(ρ(bi)),β} r(t) = 0
(1.3.61)

sB=

β 0≤ r<rmax

min{β,γjmax(ρ(aj))} r(t) = rmax,
(1.3.62)

where β is a constant parameter of the model. We can recover the incoming and the outgoing �uxes as

follows:

f inc= min{γimax(ρ(bi)),sβ} fout= min{dβ ,γjmax(ρ(aj))}. (1.3.63)

1.3.4.3 Multi-path approach

The main idea underlying this approach is considering the network not like a set of vertices and edges

but as a set of all the possible overlapping paths joining all possible sources with all possible destinations.

Indeed drivers are divided on the basis of their path. The dynamics has to be reformulated on the paths

so the multi-path approach is based on a system of nonlinear conservation law with discontinuous �ux.

Let us assume that the number of all the possible paths on the network is Np and let us denote them

by P 1,P 2,. ..,PNp .

Figure 1.8: A generic network where two possible paths are highlighted.

Thus a point x(p) on the network is characterized by both the path it belongs to and the distance x from
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the origin of that path.

Rather than tracking the total density ρ(x,t), in this framework is more convenient to study the

evolution of the so called sub-densities µp(x(q),t), that is the density of the vehicles following the p-th

path at point x(q) at time t. Obviously µp(x(q),t)∈ [0,ρmax] as well as ρ. Note that from the de�nition

we have µp(x(q),t) = 0 if x(q) /∈P p.
The total density ρ(x,t) is recovered by summing up all the sub-densities at any point x:

ρ(x(p),t) =

Np∑
q=1

µq(x(p),t) (1.3.64)

Clearly the dynamics of vehicles that follow the pth-path is in�uenced by the vehicles that are following

the other paths because the same arc could belong to di�erent paths. So we can not forget to compute

the total density too, since the velocity depends on ρ.

Moreover ρ(x,t) takes into account the whole network topology, as suggested in (1.3.64), indeed adding

or deleting a road or modify a junction become easier [9, 10].

The LWR model (1.3.33) can be rewritten in this framework as a system of NP conservation laws

with discontinuous �ux:

∂

∂t
µp(x(p),t)+

∂

∂x(p)

(
µp(x(p),t)v(ρ(x(p),t))

)
= 0 x(p)∈P p, t>0, p= 1,. ..,NP , (1.3.65)

where, for avoiding any confusion with the indices, we change the notation for the partial derivative:
∂
∂t =∂t. Multiplying and dividing by the total density the second term inside the brackets, we obtain the

typical form of LWR:

∂

∂t
µp(x(p),t)+

∂

∂x(p)

(
µp(x(p),t)

ρ(x(p),t)
f(ρ(x(p),t))

)
= 0 x(p)∈P p, t>0, p= 1,. ..,NP . (1.3.66)

Remark 1.3.7. If ρ(x,t) = 0, it implies that µ(x,t) = 0 too, so it is convenient assume µp(x,t)
ρ(x,t) = 0 to avoid

any unphysical singularity.

Note that the conservation laws in the system (1.3.66) are coupled by means of the total density, but

it may happen that some paths do not share any arc so we can �nd decoupled equations.

Numerical approximation

Let us denote with µn,p
k(q)

the discrete subdensity µp
(
x

(q)
k ,tn

)
, where k(q) is the kth-node belonging to the

path P q. In order to avoid any confusions, we drop the brackets k(q) =kq.

The numerical counterpart of the Multipath approach [9] is an �hybrid" scheme obtained by applying

�rst the Upwind scheme [55] and then the Godunov scheme (1.2.29) to (1.3.66). In particular, employing

directly the Godunov scheme on (1.3.66), leads to consider the derivative of the coe�cient
µp

ρ too, since it

depends on x. Because it is a little bit hard to compute, we apply �rst an Upwind backward approximation

of (1.3.66) in order to obtain:

µn+1,p
kp −µn,pkp

∆t
+

1

∆x

[
µn,pkp

ρn,pkp
f(ρnkp)

µn,pkp−1

ρn,pkp−1

f(ρkp−1)

]
= 0. (1.3.67)
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After that, we are ready to employ the Godunov scheme:

µn+1,p
kp =µn,pkp −

∆t

∆x

[
µn,pkp

ρn,pkp
G(ρnkp+1,ρ

n
kp)

µn,pkp−1

ρn,pkp−1

G(ρnkp ,ρkp−1)

]
, (1.3.68)

for n≥0, p= 1,. ..,NP and G stands for the Godunov �ux, that is:

G(ρr,ρl) =



min{f(ρr),f(ρl)} ρl≤ρr

f(ρl) ρl>ρr, ρl<σ

f(ρr) ρl>ρr, ρr>σ

f(σ) ρl>ρr, ρr<σ<ρl.

(1.3.69)

Note that this scheme is intrinsically asymmetric since the coe�cient in front of the �uxes involve only

the node kp and kp−1, and not kp+1.

1.4 Wasserstein distance

It is well known that several problems in tra�c modelling require the comparison of two density functions

representing tra�c conditions. For example it is necessary for the theoretical study of the property of the

solution of scalar conservation laws or the study of the convergence of numerical schemes, indeed we have

to verify (and quantify) that the numerical solution is close to the exact solution. Moreover the comparison

between two densities plays a crucial role also in more application �elds such as the calibration, that is

to �nd the values of the parameters for the predicted outputs to be as close as possible to the observed

ones, and the validation of models, to check if the outputs are close to the observed ones, as well as the

sensitivity analysis of the model itself, in which we have to quantify how the uncertainty in the outputs

can be apportioned to di�erent sources of uncertainty in the inputs and/or model's parameters.

Our aim is indeed to quantify the di�erence (or the closeness) between di�erent scenarios and the

main ingredient we will need is the Wasserstein distance.

In order to understand why this notion of distance is more natural than Lp-distances in this framework,

let us begin this section with a meaningful example.

Let us consider three di�erent density functions ρi for i= 1,2,3, respectively the blue, the red and the

green line in Fig. 1.9, corresponding to the same total mass M. The L1-distance between ρ1 and ρ2 is

equal to: ∫
R
|ρ1(x)−ρ2(x)|=

∫
supp(ρ1)∪supp(ρ2)

|ρ1(x)−ρ2(x)|= 2M.

We recover the same result by computing the distance between ρ1 and ρ3 that is equal to 2M as well.

Thus we can conclude that all the Lp-distances are blind with respect to variation of the densities

once the supports of them are disjoint. On the other hand our perception of distance suggests that

||ρ3−ρ1||> ||ρ2−ρ1|| and this is exactly what Wasserstein distance guarantees.

Let us now introduce the Wasserstein distance formally.

Let us denote by (X,D) a complete and separable metric space with distance D, and by B(X) a Borel

σ-algebra of (X,D). Let us also denote by M+(X) the set of non-negative �nite Radon measures on

(X,B(X)). Let νs (s standing for supply) and νd (d standing for demand) be two Radon measures in

M+(X) such that νs(X) =νd(X).
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Figure 1.9: Example of di�erent density functions with disjoint supports.

De�nition 1.4.1 (Wasserstein distance). For any q∈ [1,+∞), the Lq-Wasserstein distance between νs

and νd is

Wq(ν
s,νd) :=

(
inf

γ∈Γ(νs,νd)

∫
X×X

D(x,y)q dγ(x,y)

)1/q

(1.4.70)

where

Γ(νs,νd) :=
{
γ∈M+(X×X) s.t. γ(A×X) =νs(A), γ(X×B) =νd(B), ∀ A,B⊂X

}
.

Assuming that the measures ν{s,d} are absolutely continuous with respect to the Lebesgue measure,

i.e. there are two density functions ρ{s,d} such that dν{s,d}=ρ{s,d}dx, and considering the particular case

X=Rn, D(x,y) =‖x−y‖Rn , we have

Wq(ν
s,νd) =Wq(ρ

s,ρd) =

(
inf
T∈T

∫
Rn

‖T (x)−x‖qRn ρ
s(x)dx

)1/q

(1.4.71)

where

T :=

{
T :Rn→Rn s.t.

∫
A

ρd(x)dx=

∫
{x:T (x)∈A}

ρs(x)dx, ∀A⊂Rn bounded

}
.

To better understand the abstract de�nition of Wasserstein distance, we highlight the strict relation with

the famous optimal mass transportation problem pointed out by Santambrogio in [65] and Villani [70, 71].

The idea is that a sand of soil or a sandpile with mass distribution ρs, has to be moved to an excavation

with the same total volume and mass. The cost for moving mass depends on both the distance from the

point of origin to the destination point, and the amount of mass that has to be moved along that path.

We are looking for minimizing the total cost of the mass rearrangement, i. e. �nding the optimal path

to transport the mass from the initial to the �nal con�guration.

In other words in (1.4.70) νs plays the role of the density of the mass we have to move, νd is the

density that νs has to reach, i. e. the excavator, dγ(x,y) denotes the amount of mass moving from two
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points and D(x,y) is the cost we have to pay, i. e. the distance between x and y.

More sophisticated characterizations based on a �uid-dynamic approach [5] , p-Laplacian [57], or a

variational approach [57] are also available.

Remark 1.4.2. In our framework, the mass to be moved corresponds to that of vehicles. We therefore

measure the distance between two LWR solutions by computing the minimal cost to move vehicles from

the scenario corresponding to one density distribution to the scenario corresponding to the other density

distribution. Moreover, we assume that the mass transfer is constrained to happen along the network N
(i.e. X=N ), but the transfer does not need to respect usual road laws (road direction, tra�c distribution

at junctions, etc.). This is reasonable since the measure of the distance between densities is conceptually

di�erent from the physical motion of vehicles.

1.4.1 Optimal transportation problem

Let us brie�y recall the optimal transport problem, also known as Monge-Kantorovich problem, and its

main properties.

De�nition 1.4.3 (Monge-Kantorovich problem). Fix two positive Radon measures ν1 and ν2, ν1,ν2∈
M+(X) satisfying the mass balance condition:

ν1(X) =ν2(X). (1.4.72)

The Monge-Kantorovich problem is the minimization problem:

min
γ∈Γ(ν1,ν2)

∫
X×X

D(x,y)q dγ(x,y) (1.4.73)

where Γ(ν1,ν2) was de�ned in Def.1.4.1. The elements γ∈Γ(ν1,ν2) are called transport plans between ν1

and ν2, and a minimizer γ∗ is an optimal transport plan.

Let us introduce the main tools used for proving the existence of the solution to (1.4.73).

De�nition 1.4.4 (Lower semi-continuity). On a metric space X, a function g :R→R+ is said to be

lower semi continuous if for every sequence xn→x we have g(x)≤ liminfnf(xn).

Theorem 1.4.5 (Weierstrass). If g :X→R+ is lower semi-continuous and X is compact, then there

exists x̄∈X such that g(x̄) = minx∈X g(x).

Now we are ready to present the existence result proved in [65].

Theorem 1.4.6. Let X be a compact metric space, ν1,ν2∈M+(X) and D(x,y) :X×X→R be lower

semi-continuous and bounded from below. Then the Monge-Kantorovich problem admits a solution.

Moreover, the Monge-Kantorovich problem has a dual formulation that is stated in the following

theorem.

Theorem 1.4.7 (Duality formulation). Let ν1,ν2∈M+(X) be two measures satisfying the mass balance

condition. Then,

min
γ∈Γ(ν1,ν2)

∫
X×X

D(x,y)qdγ(x,y) = sup
z∈KD(X)

∫
X

zd(ν1−ν2) (1.4.74)
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where KD(X) ={z :X→R : |z(x)−z(y)|≤D(x,y)q,∀x,y∈X}.
Moreover, there exists w∈KD(X) such that:∫

X

wd(ν1−ν2) = sup
z∈KD(X)

∫
X

zd(ν1−ν2). (1.4.75)

Such maximizers are called Kantorovich potentials.

The duality formulation and the link with the optimal transport problem help us to numerically

compute the Wasserstein distance on networks. The successful result will be presented in the next

chapter.
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Chapter 2

Sensitivity analysis for the LWR model

on networks

This chapter is devoted to quantifying the sensitivity of the LWR model on network to its parameters

and to the network itself, in order to point out what in�uences most the solution of the LWR model. To

do that, a numerical approximation of Wasserstein distance is required, since we need a suitable tool to

quantify the di�erence between various scenarios. We will start from the network discretization rewriting

the problem on the corresponding graph, and then we will develop the algorithm to compute Wasserstein

distance using the link with optimal transport problems, see Sec. 1.4.1.

Moreover, the management of the LWR model on large networks is not so trivial also with the multi-

path approach presented in Sec. 1.3.4.3. Since the number of paths increases exponentially as the network

grows, the LWR solutions will be computed with a local version of the multi-path approach: indeed the

sub-densities appear only in the cells next to the junctions, so they are not de�ned for all the possible

paths on the whole network. In this way, the system of PDEs we have to solve remains feasible, even if

each junction has its own system.

2.1 Approximation of Wasserstein distance on graph.

The aim of this section is the numerical approximation of Wasserstein distance on networks. To do that

we have �rstly to discretize the problem.

A network can be always approximated by a discrete graph at the cost of a loss of resolution.

For numerical purposes, the network has to be discretized by means of a grid. To avoid technicalities, let

us assume that the length of all the edges is a multiple of the space step ∆x, so we can use the same grid

size everywhere in N . In this way, each edge is divided in Nxe cells, while the total number of cells on the

network is given by Nx, in order to be consistent with the notations introduced in Sec. 1.2. The center

of each cell on edge e will be denoted by xe,j , j= 1,. ..,Nxe and the cell itself by Ce,j =
[
x
e,j− 1

2
,x

e,j+ 1
2

)
.

Now we can create a new, undirected graph whose vertexes coincide with the centres of the cells, and they

are connected in agreement with the network, see Fig. 2.1. The graph created by this procedure will be

denoted hereafter by G∆
N . The number of vertices of G∆

N equals the total number of cells in N , therefore

will be denoted by J . In order to complete the discretization procedure, the mass distributed on each cell
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Ce

j v
e

∆x

Figure 2.1: Original directed graph G (left), network N built on G discretized with space step ∆x (center), and
undirected graph G∆

N built on the discretized network N (right).

is accumulated to the vertex located at the center of the cell. Doing this, the problem is reformulated as

an optimal mass transportation problem on a graph. The new problem clearly approximates the original

one on the network N and the approximation error is controlled by ∆x. Focusing on our particular case,

after the numerical approximation of the LWR model, we are left with a single value ρe,j for each cell

Ce,j of the network, which represents the average density in that cell, see (1.2.25). This means that the

numerical procedure returns a constant density ρ(x)≡ρe,j for all x∈Ce,j , which must be accumulated in

the centre xe,j of the cell.

At this point one can resort to classical problems (see Hitchcock's paper [48]) and methods (see e.g.,

[65, Sec. 6.4.1] and [66, Chap. 19]), recasting the problem in the framework of linear programming (LP).

Let us enumerate the vertexes of G∆
N by j= 1,. ..,J , and denote by ρsj , ρ

d

j , the supply and demand

densities concentrated in vertex j, respectively. Following the mass transport interpretation, the supply

mass at vertex j is sj :=ρsj∆x, and the demand mass is dj :=ρdj∆x. Let cjk be the cost of shipping a

unit quantity of mass from the origin j∈{1,. ..,J} to the destination k∈{1,. ..,J}. Here we de�ne cjk as
the length of the shortest path joining j and k on G∆

N , which can be easily found by, e.g., the Dijkstra

algorithm [31]. Let xjk be the (unknown) quantity shipped from the origin j to the destination k. The

problem is then formulated as

minimize H :=
J∑
j=1

J∑
k=1

cjkxjk

subject to
∑
k

xjk = sj , ∀j∑
j

xjk =dk, ∀k

xjk≥0.

(2.1.1)

Note that the solution satis�es xjk≤min{sj ,dk} since one cannot move more than sj from any source

vertex j and it is useless to bring more than dk to any sink vertex k. From (2.1.1) it is easy to recover a

standard LP problem

minimize cᵀx

subject to Ax=b

x≥0,

(2.1.2)
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simply de�ning

x := (x11,x12,. ..,x1J ,x21,x22,. ..,x2J ,. ..,xJ1,. ..,xJJ)ᵀ

c := (c11,c12,. ..,c1J ,c21,c22,. ..,c2J ,. ..,cJ1,. ..,cJJ)ᵀ

b := (s1,. ..,sJ ,d1,. ..,dJ)ᵀ

and A as the 2J×J2 sparse matrix

A :=



1J 0 0 ·· · 0

0 1J 0 ·· · 0

0 0 1J ·· · 0
...

...
...
. . .

...

0 0 0 ·· · 1J
IJ IJ IJ IJ IJ


(2.1.3)

where IJ is the J×J identity matrix and 1J := (1 1 ·· · 1︸ ︷︷ ︸
J times

).

2.2 Error analysis of Wasserstein approximation

Let us now focus on quantifying the error introduced by the LP-based method presented above in com-

puting the exact Wasserstein distance. We do that in the general case, without restricting ourselves to

piecewise constant density functions.

Proposition 2.2.1. Let ρs,ρd :N →R two densities de�ned on a network N such that

M =

∫
N
ρsdx=

∫
N
ρddx. (2.2.4)

Then,

|W (ρs,ρd)−H(ρs,ρd)|≤M∆x (2.2.5)

where hereafter W denotes the Wasserstein distance W1 and H is the solution of the problem (2.1.1).

Proof. To begin with, let us focus on a generic cell Cj of the network. In accordance with the optimal

�ow (found a posteriori as the solution of the optimal mass problem), the mass in Cj is transferred in

one or more cells of the network. Let us denote by mjk the mass which is moved from cell Cj to Ck for

some k= 1,. ..,J (including k= j). Let us also denote by ωsjk(·) the density pro�le (with supp(ωsjk)⊆Cj)
associated to the leaving massmjk in Cj and by ω

d

jk(·) the density pro�le (with supp(ωdjk)⊆Ck) associated
to the arriving mass in Ck, see Fig. 2.2. By de�nition we have

mjk =

∫
Cj

ωsjk(x)dx=

∫
Ck

ωdjk(x)dx.

Let us denote by bj :=xj− 1
2
, b̄j :=xj+ 1

2
, and similarly by bk, b̄k, the two border points of the cell j and

k, respectively.

By suitably accumulating the masses at the borders of the cells, and recalling that the discrete

approach requires instead to accumulate the masses at the centers of the cells, we have:
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bj b̄j
Cj

bk b̄k
Ck

mjk

ωjk

ω∗jk
�
��
B
B
B

��
�

Figure 2.2: Proposition 2.2.1. Mass mjk moving from Cj = [bj , b̄j) to Ck = [bk, b̄k).

Case A: j 6=k.

W (ωsjk,ω
d

jk)≤mjk max
bj∈{b̄j ,bj}
bk∈{b̄k,bk}

W (δbj ,δbk) =H(ωsjk,ω
d

jk)+2
mjk∆x

2
, (2.2.6)

and, equivalently,

W (ωsjk,ω
d

jk)≥mjk min
bj∈{b̄j ,bj}
bk∈{b̄k,bk}

W (δbj ,δbk) =H(ωsjk,ω
d

jk)−2
mjk∆x

2
(2.2.7)

(where the additional distance ±2
mjk∆x

2 comes from moving the mass from the borders to the centers of

the cells in Cj and Ck).

Case B: j=k.

H(ωsjk,ω
d

jk) = 0 and 0≤W (ωsjk,ω
d

jk)≤mjk∆x, (2.2.8)

then we still have

W (ωsjk,ω
d

jk)≤H(ωsjk,ω
d

jk)+mjk∆x and W (ωsjk,ω
d

jk)≥H(ωsjk,ω
d

jk)−mjk∆x.

as in (2.2.6)-(2.2.7).

Summing up we obtain, by (2.1.1),

W (ρs,ρd) =
∑
j

∑
k

W (ωsjk,ω
d

jk)≤
∑
j

∑
k

[H(ωsjk,ω
d

jk)+mjk∆x] =H(ρs,ρd)+M∆x

and

W (ρs,ρd) =
∑
j

∑
k

W (ωsjk,ω
d

jk)≥
∑
j

∑
k

[H(ωsjk,ω
d

jk)−mjk∆x] =H(ρs,ρd)−M∆x.

Finally we have

|W (ρs,ρd)−H(ρs,ρd)|≤M∆x.

It is also easy to prove that this estimate is actually sharp. To see this it is su�cient to consider the

one-dimensional case N =R and choose ρs =Mδb̄j and ρd =Mδbj+1
.
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Figure 2.3: Exact vs. approximate Wasserstein distance. Functions ρs, ρd (left) and convergence of |W −H| as
∆x→0 (right).

In the following we test the discrete approach described above against a one-dimensional problem

where the Wasserstein distance can be analytically computed. We de�ne

ρs(x) =

{
x4−2x2 +1, x∈ [−2,2]

0, otherwise
and ρd(x)≡ 23

15
,

see Fig. 2.3(left). Note that the total mass is equal, i.e. M =
∫
Rρ

s =
∫
Rρ

d = 92
15 . The exact Wasserstein

distance between the two densities can be easily computed by using this formula if p= 1:

W1(ρs,ρd) =

∫
R
|F s(x)−F d(x)|dx, F {s,d}(x) :=

∫ x

−∞
ρ{s,d}(x)dx, (2.2.9)

obtaining W (ρs,ρd) = 3.2. In Fig. 2.3(right) we report the value of the error |W −H| as a function of

the space step ∆x used to discretize the interval [−2,2], and we compare it with the theoretical estimate

given by Prop. 2.2.1. We note that in this special case the measured convergence rate is superlinear and

the error is much lower than the theoretical estimate.

2.3 Local multi-path approach

In order to compute the solution of the LWR model on large networks following the multi-path approach

presented in Sec. 1.3.4.3, the main issue we have to overcome is its unfeasibility given by the number of

paths that grows exponentially with the size of the network, so the system becomes rapidly unmanageable.

The idea is then to divide vehicles on the basis of their path only next to the junctions. This means

that in the cells surrounding the junctions we de�ne �local� sub-densities that vanish right after. Far

from the junctions, we consider only the global density so we avoid the increasing number of the possible

routes.

We loose the global vision of the all paths on the whole network, in other words the total source-

destination vision of the network, but we gain the feasibility of the problem since each junction has its

own system of PDEs referring only to that junction itself (i.e. no more than 16 equations if we have 4

incoming and 4 outgoing roads).
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De�ne as usual the unknown density at grid nodes as

ρn
e,j :=

1

∆x

∫ x
e,j+ 1

2

x
e,j− 1

2

ρ(y,n∆t)dy, e∈E , j= 1,. ..,Nxe , n= 1,. ..,NT . (2.3.10)

Starting from the initial condition ρ0
e,j := 1

∆x

∫ x
e,j+ 1

2
x
e,j− 1

2

ρ0(y)dy, the approximate solution at any internal

cell j= 2,. ..,Nxe�1 of any edge e∈E is easily found by the standard Godunov scheme:

ρn+1
e,j =ρn

e,j−
∆t

∆x

(
G(ρn

e,j ,ρ
n
e,j+1)−G(ρn

e,j−1,ρ
n
e,j)
)
, n= 0,. ..,NT −1, (2.3.11)

where the numerical �ux G is de�ned as in (1.3.69).

Around vertexes we proceed as follows: let us focus on a generic vertex v∈J and denote by nv
inc

and

nvout the number of incoming and outgoing edges at v, respectively. As in the classical approach 1.3.4.1,

we assume that it is given a tra�c distribution matrix Av = (αv
rr
′), r= 1,. ..,nv

inc
, r′= 1,. ..,nvout which

prescribes how the tra�c distributes in percentage from any incoming edge r to any outgoing edge r′.

Clearly 0≤αv
rr
′ ≤1 ∀r,r′ and ∑

r
′αv

rr
′ = 1 ∀r.

Now, following the multipath approach presented in 1.3.4.3 and keeping the same notations as above,

we look at all possible paths across the vertex v. Having nv
inc

incoming edges and nvout outgoing edges,

we have nvp :=nv
inc
×nvout possible paths.

Let us focus on a generic path p= (e,e′) which joins edge e with e′, see Fig. 2.4. The problem is ready to

v 1

2

Nxe
Nxe�1e

e′
p= (e,e′)

Figure 2.4: Zoom around vertex v. We show the path p= (e,e′) and cells' labels on that path.

be solved by the Godunov-based multi-path scheme with minor modi�cations for all paths of all vertexes.

Dropping the indexes p and v for readability, we have in the last cell of the incoming edge:

µn+1
e,Je

=µn
e,Je−

∆t

∆x

(
µn
e,Je

ρn
e,Je

G
(
ρn
e,Je ,ρ

n
e
′,1

)
−αv

ee
′G
(
ρn
e,Je−1,ρ

n
e,Je

))
, (2.3.12)

for n= 0,. ..,NT −1. Note the presence of the parameter αv
ee
′ in front of the incoming �ux which tells

that only a percentage of the total mass is following path p. In the �rst cell of the outgoing edge we have
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instead:

µn+1
e
′,1 =µn

e
′,1−

∆t

∆x

(
µn
e
′,1

ρn
e
′,1

G
(
ρn
e
′,1,ρ

n
e
′,2

)
−
µn
e,Je

ρn
e,Je

G
(
ρn
e,Je ,ρ

n
e
′,1

))
, (2.3.13)

for n= 0,. ..,NT −1. The algorithm is completed by summing, at any time step, the sub-densities µ's

(where de�ned) to compute the total density ρ, to be used at the next time step in (2.3.11), (2.3.12), and

(2.3.13). More precisely, we have

ρn+1
e,Je

=

nvp∑
q=1

µn+1
e,Nxe

(q,v) and ρn+1
e
′,1 =

nvp∑
q=1

µn+1
e
′,1 (q,v). (2.3.14)

Note that (2.3.12) and (2.3.13) are systems of nvp equations, coupled via (2.3.14), that takes into account

vehicles moving along paths other than p= (e,e′). The other total densities ρ appearing in (2.3.12) and

(2.3.13) are instead given by (2.3.11).

For the sake of clarity and dissipate any doubt, we write explicitly the scheme in the case of simple

junctions.

Example 2.3.1 (Diverging case). First of all, we consider the diverging case, where we have one incoming

(e1) and two outgoing roads (e′1, e
′
2). The total densities on the edges are de�ned by

ρe1,Nxe1
:=µe1,Nxe1

((e1,e
′
1)),v)+µe1,Nxe1

((e1,e
′
2)),v),

ρ
e
′
1,1

:=µ
e
′
1,1

((e1,e
′
1)),v),

ρ
e
′
2,1

:=µ
e
′
2,1

((e2,e
′
2)),v).

(2.3.15)

Slightly simplifying the notation, system (2.3.12) is explicitly written as

µn+1
e1,Nxe1

(e1,e′1)=µ
n
e1,Nxe1

(e1,e′1)−
∆t
∆x

(
µn
e1,Nxe1

(e1,e
′
1)

ρn
e1,Nxe1

G
(
ρn
e1,Nxe1

,ρn
e
′
1,1

)
−αv

e1e
′
1
G
(
ρn
e1,Nxe1

−1,ρ
n
e1,Nxe1

))
,

µn+1
e1,Nxe1

(e1,e′2)=µ
n
e1,Nxe1

(e1,e′2)−
∆t
∆x

(
µn
e1,Nxe1

(e1,e
′
2)

ρn
e1,Nxe1

G
(
ρn
e1,Nxe1

,ρn
e
′
2,1

)
−αv

e1e
′
2
G
(
ρn
e1,Nxe1

−1,ρ
n
e1,Nxe1

))
,

while system (2.3.13) is explicitly written as

µn+1
e
′
1,1

(e1,e′1)=µ
n
e
′
1,1

(e1,e′1)−
∆t
∆x

(
µn
e
′
1,1

(e1,e
′
1)

ρn
e
′
1,1

G
(
ρn
e
′
1,1
,ρn

e
′
1,2

)
−
µn
e1,Nxe1

(e1,e
′
1)

ρn
e1,Nxe1

G
(
ρn
e1,Nxe1

,ρn
e
′
1,1

))
,

µn+1
e
′
2,1

(e1,e′2)=µ
n
e
′
2,1

(e1,e′2)−
∆t
∆x

(
µn
e
′
2,1

(e1,e
′
2)

ρn
e
′
2,1

G
(
ρn
e
′
2,1
,ρn

e
′
2,2

)
−
µn
e1,Nxe1

(e1,e
′
2)

ρn
e1,Nxe1

G
(
ρn
e1,Nxe1

,ρn
e
′
2,1

))
.

To complete the computation, we sum the sub-densities. Recalling that we have α
e1e
′
1
+α

e1e
′
2

= 1, we get

ρn+1
e1,Nxe1

=ρn
e1,Nxe1

− ∆t

∆x

(
µn
e1,Nxe1

(e1,e
′
1)G

(
ρn
e1,Nxe1

,ρn
e
′
1,1

)
+µn

e1,Nxe1

(e1,e
′
2)G

(
ρn
e1,Nxe1

,ρn
e
′
2,1

)
ρn
e1,Nxe1

−G
(
ρn
e1,Nxe1

−1,ρ
n
e1,Nxe1

))
,
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ρn+1
e
′
1,1

=ρn
e
′
1,1
− ∆t

∆x

(
G
(
ρn
e
′
1,1
,ρn

e
′
1,2

)
−
µn
e1,Nxe1

(e1,e
′
1)G

(
ρn
e1,Nxe1

,ρn
e
′
1,1

)
ρn
e1,Nxe1

)
.

Example 2.3.2 (Merging case). Let us consider the opposite case: a single vertex v with two incoming

edges e1,e2 and one outgoing edge e′1.

The total densities on ei, i= 1,2, and e′1, are de�ned by

ρe1,Nxe1
:=µe1,Nxe1

((e1,e
′
1)),v),

ρe2,Nxe2
:=µe2,Nxe2

((e2,e
′
1)),v)

ρ
e
′
1,1

:=µ
e
′
1,1

((e1,e
′
1)),v)+µ

e
′
1,1

((e2,e
′
1)),v).

(2.3.16)

In this case, since ρei,Nxe1
, i= 1,2, coincide with the relative subdensities, system (2.3.12) is explicitly

written as

µn+1
e1,Nxe1

(e1,e′1)=µ
n
e1,Nxe1

(e1,e′1)−
∆t
∆x

(
G
(
ρn
e1,Nxe1

,ρn
e
′
1,1

)
−G

(
ρn
e1,Nxe1

−1,ρ
n
e1,Nxe1

))
,

µn+1
e2,Nxe2

(e2,e′1)=µ
n
e2,Nxe2

(e2,e′1)−
∆t
∆x

(
G
(
ρn
e2,Nxe2

,ρn
e
′
1,1

)
−G

(
ρn
e2,Nxe2

−1,ρ
n
e2,Nxe2

))
;

(2.3.17)

while system (2.3.13) is explicitly written as

µn+1
e
′
1,1

(e1,e′1)=µ
n
e
′
1,1

(e1,e′1)−
∆t
∆x

(
µn
e
′
1,1

(e1,e
′
1)

ρn
e
′
1,1

G
(
ρn
e
′
1,1
,ρn

e
′
1,2

)
−G

(
ρn
e1,Nxe1

,ρn
e
′
1,1

))
,

µn+1
e
′
1,1

(e2,e′1)=µ
n
e
′
1,1

(e2,e′1)−
∆t
∆x

(
µn
e
′
1,1

(e2,e
′
1)

ρn
e
′
1,1

G
(
ρn
e
′
1,1
,ρn

e
′
1,2

)
−G

(
ρn
e2,Nxe2

,ρn
e
′
1,1

))
,

(2.3.18)

To complete the computation, we sum the sub-densities and we get

ρn+1
e1,Nxe1

=ρn
e1,Nxe1

− ∆t

∆x

(
G
(
ρn
e1,Nxe1

,ρn
e
′
1,1

)
ρn
e1,Nxe1

−G
(
ρn
e1,Nxe1

−1,ρ
n
e1,Nxe1

))
,

the analogous holds for ρn+1
e1,Nxe2

, and:

ρn+1
e
′
1,1

=ρn
e
′
1,1
− ∆t

∆x

(
G
(
ρn
e
′
1,1
,ρn

e
′
1,2

)
−
µn
e1,Nxe1

(e1,e
′
1)G

(
ρn
e1,Nxe1

,ρn
e
′
1,1

)
ρn
e1,Nxe1

−
µn
e2,Nxe2

(e2,e
′
1)G

(
ρn
e2,Nxe2

,ρn
e
′
1,1

)
ρn
e2,Nxe2

)
.

Example 2.3.3. Now, we consider the case of a single vertex v with two incoming edges e1,e2 and two

outgoing edges e′1,e
′
2.
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The total densities on ei and e
′
i, i= 1,2, are de�ned by

ρe1,Nxe1
:=µe1,Nxe1

((e1,e
′
1)),v)+µe1,Nxe1

((e1,e
′
2),v),

ρe2,Nxe2
:=µe2,Nxe2

((e2,e
′
1)),v)+µe2,Nxe2

((e2,e
′
2)),v),

ρ
e
′
1,1

:=µ
e
′
1,1

((e1,e
′
1)),v)+µ

e
′
1,1

((e2,e
′
1)),v),

ρ
e
′
2,1

:=µ
e
′
2,1

((e1,e
′
2)),v)+µ

e
′
2,1

((e2,e
′
2)),v).

(2.3.19)

Slightly simplifying the notation, system (2.3.12) is explicitly written as

µn+1
e1,Nxe1

(e1,e′1)=µ
n
e1,Nxe1

(e1,e′1)−
∆t
∆x

(
µn
e1,Nxe1

(e1,e
′
1)

ρn
e1,Nxe1

G
(
ρn
e1,Nxe1

,ρn
e
′
1,1

)
−αv

e1e
′
1
G
(
ρn
e1,Nxe1

−1,ρ
n
e1,Nxe1

))
,

µn+1
e1,Nxe1

(e1,e′2)=µ
n
e1,Nxe1

(e1,e′2)−
∆t
∆x

(
µn
e1,Nxe1

(e1,e
′
2)

ρn
e1,Nxe1

G
(
ρn
e1,Nxe1

,ρn
e
′
2,1

)
−αv

e1e
′
2
G
(
ρn
e1,Nxe1

−1,ρ
n
e1,Nxe1

))
,

µn+1
e2,Nxe2

(e2,e′1)=µ
n
e2,Nxe2

(e2,e′1)−
∆t
∆x

(
µn
e2,Nxe2

(e2,e
′
1)

ρn
e2,Nxe2

G
(
ρn
e2,Nxe2

,ρn
e
′
1,1

)
−αv

e2e
′
1
G
(
ρn
e2,Nxe2

−1,ρ
n
e2,Nxe2

))
,

µn+1
e2,Nxe2

(e2,e′2)=µ
n
e2,Nxe2

(e2,e′2)−
∆t
∆x

(
µn
e2,Nxe2

(e2,e
′
2)

ρn
e2,Nxe2

G
(
ρn
e2,Nxe2

,ρn
e
′
2,1

)
−αv

e2e
′
2
G
(
ρn
e2,Nxe2

−1,ρ
n
e2,Nxe2

))
;

while system (2.3.13) is explicitly written as

µn+1
e
′
1,1

(e1,e′1)=µ
n
e
′
1,1

(e1,e′1)−
∆t
∆x

(
µn
e
′
1,1

(e1,e
′
1)

ρn
e
′
1,1

G
(
ρn
e
′
1,1
,ρn

e
′
1,2

)
−
µn
e1,Nxe1

(e1,e
′
1)

ρn
e1,Nxe1

G
(
ρn
e1,Nxe1

,ρn
e
′
1,1

))
,

µn+1
e
′
1,1

(e2,e′1)=µ
n
e
′
1,1

(e2,e′1)−
∆t
∆x

(
µn
e
′
1,1

(e2,e
′
1)

ρn
e
′
1,1

G
(
ρn
e
′
1,1
,ρn

e
′
1,2

)
−
µn
e2,Nxe2

(e2,e
′
1)

ρn
e2,Nxe2

G
(
ρn
e2,Nxe2

,ρn
e
′
1,1

))
,

µn+1
e
′
2,1

(e1,e′2)=µ
n
e
′
2,1

(e1,e′2)−
∆t
∆x

(
µn
e
′
2,1

(e1,e
′
2)

ρn
e
′
2,1

G
(
ρn
e
′
2,1
,ρn

e
′
2,2

)
−
µn
e1,Nxe1

(e1,e
′
2)

ρn
e1,Nxe1

G
(
ρn
e1,Nxe1

,ρn
e
′
2,1

))
,

µn+1
e
′
2,1

(e2,e′2)=µ
n
e
′
2,1

(e2,e′2)−
∆t
∆x

(
µn
e
′
2,1

(e2,e
′
2)

ρn
e
′
2,1

G
(
ρn
e
′
2,1
,ρn

e
′
2,2

)
−
µn
e2,Nxe2

(e2,e
′
2)

ρn
e2,Nxe2

G
(
ρn
e2,Nxe2

,ρn
e
′
2,1

))
.

To complete the computation, we sum the sub-densities. Recalling that we have α
e1e
′
1
+α

e1e
′
2

= 1 and

α
e2e
′
1
+α

e2e
′
2

= 1, we get

ρn+1
e1,Nxe1

=ρn
e1,Nxe1

− ∆t

∆x

(
µn
e1,Nxe1

(e1,e
′
1)G

(
ρn
e1,Nxe1

,ρn
e
′
1,1

)
+µn

e1,Nxe1

(e1,e
′
2)G

(
ρn
e1,Nxe1

,ρn
e
′
2,1

)
ρn
e1,Nxe1

−G
(
ρn
e1,Nxe1

−1,ρ
n
e1,Nxe1

))
,

ρn+1
e
′
1,1

=ρn
e
′
1,1
− ∆t

∆x

(
G
(
ρn
e
′
1,1
,ρn

e
′
1,2

)
−
µn
e1,Nxe1

(e1,e
′
1)G

(
ρn
e1,Nxe1

,ρn
e
′
1,1

)
ρn
e1,Nxe1

−
µn
e2,Nxe2

(e2,e
′
1)G

(
ρn
e2,Nxe2

,ρn
e
′
1,1

)
ρn
e2,Nxe2

)
,

and analogous expressions for ρn+1
e2,Nxe2

and ρn+1
e
′
2,1

.
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2.4 Sensitivity analysis.

In this section we employ the discrete approach described in Sec. 2.1 to perform a sensitivity analysis of

the LWR model. To solve the LP problem we used the GLPK 1 free C library.

For numerical tests we consider the �Manhattan�-like two-way road network depicted in Fig. 2.5. This

choice is motivated by the fact that it allows one to easily compare networks of di�erent size. Given the

number ` of junctions per side, we get 4`(`−1) roads and `2 junctions. Roads are numbered starting

from those going rightward, then leftward, upward, and �nally downward. The length of each road is

Le = 1 and, if not otherwise stated, ∆x= 0.1 (Nxe = 10, Nx= 40`(`−1)).

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44 45

46 47 48 49 50

51 52 53 54 55

56 57 58 59 60

61 62 63 64 65

66 67 68 69 70

71 72 73 74 75

76 77 78 79 80

→
←

↑

↓

Figure 2.5: Manhattan-like road network with `= 5 and Je = 10. We draw the centers of the cells and report the
numbering of roads and junctions. Roads are actually two-way, the small gap between lanes going in opposite
directions is left for visualization purpose only. Road directions are indicated by the arrows at the bottom-left
corner.

In order to fairly compare simulations with di�erent number of vehicles, we report the normalized

1https://www.gnu.org/software/glpk/
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approximate Wasserstein distance

Ĥ :=

∑
j

∑
k cjkx

∗
jk

M
, (2.4.20)

where M as in (2.2.4), and x∗jk is the solution of the LP problem (2.1.2).

2.4.1 Sensitivity to initial data.

In this test we measure the sensitivity to the initial position of vehicles. The goal is to quantify the

impact of a possible error in locating vehicles at initial time (but still catching the correct amount of

vehicles). In addition, this preliminary test aims at investigating some conceptual and numerical aspects

of the proposed procedure. In particular we show the di�erence between Wasserstein and L1 distance

(see Sec. 1.4) and we study the convergence Ĥ→W as ∆x→0 (see Sec. 2.2).

The parameters which remain �xed in this test are

• Fundamental diagram: σ= 0.3 and fmax = 0.25 (see (1.3.35)).

• Distribution matrix :

αv
rr
′ =

1

nvout
, ∀v∈V, r= 1,. ..,nvinc, r′= 1,. ..,nvout.

We consider the following two initial conditions, see Fig. 2.6: for all e∈E and j= 1,. ..,Nxe/2,

ρs,0
e,j =

{
0.5, on rightward roads

0, elsewhere,
ρd,0
e,j =

{
0.5, on leftward roads

0, elsewhere.
(2.4.21)

Figure 2.6: Sensitivity to initial data. ρs,0 (left) and ρd,0 (right).

Remark 2.4.1. Due to the uniform tra�c distribution at junctions, the density tends to become constant

on the whole network as t→+∞, regardless of the initial datum. As a consequence, we expect that the

distance between ρs(t) and ρd(t) (no matter how de�ned) tends to 0 as t→+∞.
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2.4.1.1 Comparison with L1 distance.

In this test we compare the approximate Wasserstein distance with the discrete L1 distance (normalized

with respect to the mass as well), here denoted by L̂1 and de�ned by

L̂1(ρs(·,t),ρd(·,t)) :=
∆x

M

∑
e∈E

Nxe∑
j=1

|ρs
e,j(t)−ρde,j(t)|. (2.4.22)

Functions t→L̂1(ρs(·,t),ρd(·,t)) and t→Ĥ(ρs(·,t),ρd(·,t)) are shown in Fig. 2.7 for two di�erent network

size. Initially, the L̂1 distance shows a plateau, which lasts until the supports of the densities ρs and
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Ĥ

Time
0 2 4 6 8 10

D
is

ta
nc

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 L1

Ĥ

Figure 2.7: Sensitivity to initial data (L̂1 vs. Ĥ). Comparison between functions t→L̂1(ρs(·,t),ρd(·,t)) and
t→Ĥ(ρs(·,t),ρd(·,t)) for `= 3 (left) and `= 5 (right).

ρd are disjoint. This is not the case of the Wasserstein distance which instead immediately decreases.

After that, the supports of the two densities start to overlap but the regions with maximal density move

away from each other, see Fig. 2.8. When this process ends, we get the maximal value of the Wasserstein

distance and the change of slope of the L̂1 distance. Later on, the two densities uniformly distribute

along the network and the two distances go smoothly to 0.

2.4.1.2 Numerical convergence as ∆x→0.

In this test we consider a small network (`= 3) and we compute the Wasserstein distance Ĥ(ρs,ρd) for

di�erent values of Nxe . Fig. 2.9 shows the functions t→Ĥ(ρs(·,t),ρd(·,t)) for Nxe = 10,20,40,80 and

Nxe→Ĥ(ρs(·,T ),ρd(·,T )) at �xed time T = 1.4. Fig. 2.9(left) suggests a relatively small sensitivity to the

space step. We can safely assume that the di�erence between the values of Ĥ obtained with Nxe = 10

and Nxe = 160 is lower than 10% with respect to the largest of the two values. We get similar results also

for larger networks. The numerical convergence of Ĥ= Ĥ(Je) as Nxe→+∞ is also clearly visible in Fig.

2.9(right).

In the next sections, the sensitivity analysis will be obtained with Je = 10 which seems to be a good

compromise between accuracy of the results and computational costs.
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Figure 2.8: Sensitivity to initial data (L̂1 vs. Ĥ). ρs (left) and ρd (right) at time T = 1.8.
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Figure 2.9: Sensitivity to initial data (convergence). Function t→Ĥ(ρs(·,t),ρd(·,t)) for di�erent values of Nxe(Je
for semplicity) (left) and function Nxe→Ĥ(ρs(·,T ),ρd(·,T )) with T = 1.4 (right).

2.4.2 Sensitivity to fundamental diagram.

In this test we measure the sensitivity to the two parameters of the fundamental diagram, namely σ and

fmax. The goal is to quantify the impact of a possible error in measuring the capacity of the roads or

in describing the drivers behavior. Note that the linear structure of the fundamental diagram used here

(see Fig. 1.3) does not play any special role and any other fundamental diagram could be considered, as

long as it is duly parametrized.

The parameters which remain �xed in this test are

• Initial density :

ρ0
e,j =

{
0.5 on rightward roads,

0 elsewhere,
e∈E , j= 1.. .,Je.

• Distribution matrix :

αv
rr
′ =

1

nvout
, ∀v∈V, r= 1,. ..,nvinc, r′= 1,. ..,nvout.
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In Fig. 2.10(left) we report the distance between the solutions ρs and ρd at time T = 20 obtained

with f smax = 0.25, σs = 0.3 and fdmax = 0.25, σd∈ [0.15,0.5], respectively. In Fig. 2.10(right) we report

the distance between the two solutions at time T = 20 obtained with σs = 0.3, f smax = 0.25, and σd = 0.3,

fdmax∈ [0.15,0.4], respectively. Errors in the calibration of σ or fmax lead to similar discrepancies, which
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Figure 2.10: Sensitivity to fundamental diagram. Function σd→Ĥ(ρs(·,T ),ρd(·,T )) (left) and,
fdmax→Ĥ(ρs(·,T ),ρd(·,T )) (right), for `= 5,6,7.

are again ampli�ed by the network size. Discrepancies grow approximately linearly with respect to both

|σd−σs| and |fdmax−f smax|.
In Fig. 2.11 we report the distance between the solutions ρs and ρd obtained with f smax =fdmax = 0.25,

σs = 0.3, σd = 0.2 (left), and σs =σd = 0.3, f smax = 0.25, fdmax = 0.3 (right), as a function of time. Again, we
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Figure 2.11: Sensitivity to fundamental diagram. With respect to σ (left) and fmax (right). Function
t→Ĥ(ρs(·,t),ρd(·,t)) for `= 5,6,7.

see that the distances tend to 0 as t→∞ because vehicles spread across the networks toward a constant

stationary density distribution (see Remark 2.4.1), and the size of the network a�ects the time scale only.

2.4.3 Sensitivity to the distribution matrix.

In this test we measure the sensitivity to the distribution coe�cients at junctions, see Sec. 2.3. The goal

is to quantify the impact of a possible error in the knowledge of the path choice at junctions.
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The parameters which remain �xed in this test are

• Initial density : ρ0
e,j = 0.5, e∈E , j= 1,. ..,Nxe .

• Fundamental diagram: σ= 0.3 and fmax = 0.25.

Supply distribution ρs is obtained by means of equidistributed coe�cients

αs,v
rr
′ =

1

nvout
, ∀v∈J , r= 1,. ..,nvinc, r′= 1,. ..,nvout.

Note that, due to the symmetry of the network and the initial datum, ρs≡0.5 for all x and t.

2.4.3.1 Single junction.

Here demand distribution ρd is obtained by varying the distribution coe�cients at the junction v̄ located

at the very center of the network (see, e.g., vertex 13 in Fig. 2.5). Variation is performed by means of a

scalar parameter ε>0. We have, for all incoming roads r= 1,2,3,4,

αd,v̄
r1 =

1

nvout
+ε, αd,v̄

r2 =
1

nvout
−ε, αd,v̄

r3 =
1

nvout
+ε, αd,v̄

r4 =
1

nvout
−ε.

In Fig. 2.12 we report the distribution ρd at time t= 5 and t= 45 obtained with ε= 0.1, to be compared

with the constant distribution ρs≡0.5. Remarkably, a minor local modi�cation of the tra�c distribution

→
1

→
1

←2←2

↑3↓4

↑3↓4

Figure 2.12: Sensitivity to distribution matrix (single junction). Density ρd at time t= 5 (left) and t= 45 (right).

in a single junction breaks the symmetry and has a great impact on the solution. This time the density

does not tend to distribute uniformly across the network and then we expect the distance W (ρs,ρd)

to increase in time, although the growth cannot continue inde�nitely since the distance between two

distributions on a �nite network is �nite.

In Fig. 2.13 we show the distance between the two densities as a function of time for ε= 0.1, 0.2. The

distance is indeed increasing and bounded as expected. Moreover a larger ε accelerates the growth of the

distance. Further comments will be given in the following Sec. 2.4.3.3.
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Figure 2.13: Sensitivity to tra�c distribution at junctions (single junction). Function t→Ĥ(ρs(·,t),ρd(·,t)) for
`= 3,5,7. ε= 0.1 (left), ε= 0.2 (right).

2.4.3.2 All junctions.

Let us now modify all the distribution coe�cients, and not only those at one junction. In the following

test we set, for any v and r= 1,2,3,4,

αd,v
r1 =

1

nvout
+ε, αd,v

r2 =
1

nvout
−ε, αd,v

r3 =
1

nvout
+ε, αd,v

r4 =
1

nvout
−ε,

if v is labeled by an odd number and

αd,v
r1 =

1

nvout
−ε, αd,v

r2 =
1

nvout
+ε, αd,v

r3 =
1

nvout
−ε, αd,v

r4 =
1

nvout
+ε,

otherwise (at border junctions only the �rst two incoming roads r= 1,2 are considered). Results with

ε= 0.1 are shown in Fig. 2.14.

2.4.3.3 Comparison

We observe a great di�erence between the density distributions ρd's reported in Secs. 2.4.3.1 and 2.4.3.2.

In Fig. 2.12(right) we see that free and congested roads segregate but remain close to each other. On the

contrary, in Fig. 2.14(left) free and congested roads segregate and separate spatially from each other. The

Wasserstein distance is able to catch this di�erence. Indeed, in the former test the Wasserstein distance

is almost independent of the network size (Fig. 2.13(left)), while in the latter test (Fig. 2.14(right)) it is

proportional to the network size (at large times).

2.4.4 Sensitivity to road network.

In this test we measure the sensitivity to the road network. The goal is to quantify the impact of a

possible change in the network, speci�cally a road closure.

The parameters which remain �xed in this test are

• Initial density : ρ0
e,j = 0.3, e∈E , j= 1,. ..,Je.
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Figure 2.14: Sensitivity to tra�c distribution at junctions (all junctions). Density ρd at time t= 55 (left) and
function t→Ĥ(ρs(·,t),ρd(·,t)) for `= 3,5,7 (right).

• Fundamental diagram: σ= 0.3 and fmax = 0.25.

• Distribution matrix: equidistributed along outgoing roads.

Supply distribution ρs is obtained solving the equations on the complete network, while demand

distribution ρd is obtained by closing the central rightward road ē (see, e.g., edge 11 in Fig. 2.5) just

after the initial time, i.e. vehicles can come out of the road but none of them can enter. Note that, due

to the symmetry of the network and the initial datum, ρs≡0.3 for all x and t.

In Fig. 2.15(left) we report the distribution ρd at time t= 55, to be compared with the constant

distribution. We see that the closure of a single road has a great impact on the solution. In Fig.

A
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Figure 2.15: Sensitivity to road network. Density ρd at time t= 55 (left) and function t→Ĥ(ρs(·,t),ρd(·,t)) for
`= 5,7 (right).

2.15(right) we show the distance between the two densities as a function of time. The long-time behavior

of the sensitivity is proportional to the network size. Even if the road closure is a local modi�cation of
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the network dynamics, the behavior with respect to the network size is more similar to that shown in Fig.

2.14(right) (all junctions perturbation) than that shown in Fig. 2.13(left) (single junction perturbation).

Again the reason can be found by observing the densities: Fig. 2.15(left) shows that the free and congested

roads segregate and separate spatially from each other, as in Fig. 2.14(left).
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Chapter 3

A new multi-scale model

The analysis done in the previous chapter suggests us to improve �rst order macroscopic models, for

example mixing di�erent scales and de�ne a new multi-scale multi-order model to reproduce accurately

the density evolution.

In this chapter we will introduce a new multi-scale model conceived to inherit the advantages of a �rst-

order macroscopic model, see Sec. 1.3.1, and a second-order microscopic model, see Sec. 1.3.2, avoiding

any interface or boundary conditions between them.

Moreover the numerical counterpart will be developed and the complete algorithm will be explained

in detail. We will prove also that the Euler-Godunov associated scheme is conservative, so the total mass

is preserved.

3.1 Motivations

Single-scale models are often unsatisfactory for a number of reasons which involve both modeling and

numerical considerations. Generally speaking, we can say that:

• Second-order models are more realistic and often perform better than �rst-order ones [33, 34];

• The numerical approximation of second-order macroscopic models is more di�cult than that of

�rst-order macroscopic models, especially if high-order numerical schemes are pursued;

• Microscopic models require a rather large CPU time if the number of vehicles involved in the

simulation is large.

Ideally, one would have an easy-to-implement macroscopic model with second-order features. This is

the goal which motivated the multi-scale model proposed. Multi-scale models are typically based on the

spatial separation of the microscopic and macroscopic parts. On the contrary, the model we propose

here is characterized by the fact that no interface (either �xed or mobile) is explicitly de�ned. More

precisely, the macroscopic model is always and everywhere alive, while the microscopic model is activated

only where and when it is needed, and it is able to correct (in full or in part) the macroscopic one. This

procedure is expected to be advantageous if one couples an easy-to-use �rst-order macroscopic model with

a more realistic but still easy-to-use second-order microscopic model. Advantages are complemented by

the low computational cost, which comes from the fact that the microscopic model is used only in small
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parts of the road, therefore the number of vehicles individually tracked is kept low. The question arises

how the need of the second-order model can be detected. In principle, the second-order model should

be activated when and where the tra�c is not at equilibrium, i.e. the velocity of vehicles is far from

the desired one (as for the current tra�c conditions). This usually happens when nearby vehicles have

very di�erent speeds, since this implies the need of strong accelerations or decelerations which �rst-order

models cannot handle. On the contrary, the second-order model can be safely deactivated when vehicles

are moving at desired velocity, i.e. their acceleration is close to zero.

3.2 Multi-scale model with complete information

We are now ready to couple a microscopic model in the form (1.3.45) and the macroscopic model (1.3.33).

In this section we assume, for illustrative purposes, that both the macroscopic and the microscopic models

are alive in the whole space-time domain, i.e. we have a complete information coming from the two models.

It is given an initial condition at macroscopic level ρ0 :=ρ(·,0)∈L1(R), such that M=
∫
Rρ0(x)dx

and N is the corresponding number of microscopic vehicles. One can set the initial position of vehicles

{X1(0),. ..,XN (0)} simply distributing them according to the probability density distribution ρ0/M.

Initial velocities are set as Vk(0) =v∗(ρ0(Xk(0))), for k<N , and VN (0) =Vmax.

Let us also de�ne, as usual, f : [0,ρmax]→R+, ρ 7→f(ρ) :=ρv∗(ρ), the �ux of vehicles as a function of

their density.

The multi-scale model with complete information reads, in integral form, as

∂t

∫ b

a

ρ(x,t)dx=θ
(
f(a,t)−f(b,t)

)
+(1−θ)

(
N∑
k=1

`Nδ(Xk(t)−a)−
N∑
k=1

`Nδ(Xk(t)−b)
)
, ∀a,b∈R

Ẋk(t) =Vk(t), k≤N,
V̇k(t) =A(Xk(t),Xk+1(t),Vk(t),Vk+1(t);p), k<N,

V̇N (t) = 0,

(3.2.1)

where θ∈ [0,1] is an additional parameter, x 7→ δ(x−x0) is the Dirac delta function centered at x0, and

the time derivative ∂t is intended in the distributional sense. Moreover, p represents the vector of model

parameters.

The idea underlying the model (3.2.1) is the following: The gain or loss of mass in any space interval

[a,b] between time t and t+dt is only given by the �ow of vehicles through the boundaries a and b, like in

classical conservation laws. In this case, at the macroscopic level the �ow is given by the classical LWR

�ux function f , while at the microscopic level the mass instantaneously (dis)appears at the passage of

vehicles through the boundaries. The parameter θ is intended for tuning the contribution of the micro-

and macro-scale, in the same spirit of [20, 22, 23, 24, 26]. Here we expect that large values of θ reduce

the oscillations due to abrupt passage of microscopic vehicles across boundaries, while small values of θ

increase the e�ectiveness of second-order dynamics.
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3.2.1 Numerical approximation

The system (3.2.1) can be approximate by a suitable combination of existing numerical schemes. In

the following, we employ the classical Godunov scheme for the PDE and the explicit Euler scheme for

the system of ODEs. To do that, we recall the notation introduced above: for space and time steps

∆x,∆t>0 (with λ := ∆t
∆x ) and a grid in space {xj := j∆x, j∈Z} and time {tn :=n∆t, n∈N}. We denote

by Cj := [xj− 1
2
,xj+ 1

2
) the cell centered in xj . As usual, we de�ne

ρnj :=
1

∆x

∫
Cj

ρ(x,tn)dx

and we denote by (Xn
k ,V

n
k ) the approximation of (Xk(tn),Vk(tn)), for k= 1,. ..,N .

In order to de�ne the correspondence between the micro- and the macro-scale we also introduce the

scaling parameter Γmax, de�ned as the maximum number of vehicles which can fall in one cell of length

∆x. Γmax is the microscopic counterpart of ρmax and it is naturally related to the scaling parameter `N

by

`N =
∆x

Γmax

.

By means of Γmax we can de�ne the number of vehicles to put in any cell Cj , which is equal to
⌊

ρ0
j

ρmax

Γmax

⌋
.

In this way we have
N∑
k=1

`N =N`N =
∑
j∈Z

ρ0
j∆x=

∫
R
ρ0(x)dx=M.

We also assume that vehicles are initially equispaced in the cell and we assign to each of them the same

velocity v∗(ρ0
j ). This procedure de�nes the initial positions {X0

1 ,. ..,X
0
N} and velocities {V 0

1 ,. ..,V
0
N} of

the microscopic vehicles.

The numerical scheme reads as follows.

ρn+1
j =ρnj +θλ

(
G(ρnj−1,ρ

n
j )−G(ρnj ,ρ

n
j+1)

)
+(1−θ)λ

(
Fnj− 1

2
−Fnj+ 1

2

)
,

Xn+1
k =Xn

k +∆tV nk , k≤N,

V n+1
k =V nk +∆tA(Xn

k ,X
n
k+1,V

n
k ,V

n
k+1;p), k<N,

V n+1
N =V nN ,

(3.2.2)

with the classical Godunov's numerical �ux (1.3.69) and with the microscopic numerical �ux:

Fnj± 1
2

:=
`N
∆t

Card
{
k∈{1,. ..,N} :xnk <xj± 1

2
≤xn+1

k

}
(3.2.3)

(where 'Card' denote the cardinality of a set). Note that the microscopic �ux is simply computed by

counting the number of vehicles passing through the boundaries of the cell Cj in the time interval [tn,tn+1).

Such a numerical scheme comes along with a natural CFL condition for the microscopic and the

macroscopic part, in order to guarantee that in one time step both characteristic curves and vehicles
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themselves do not move more than one cell apart. To get this, we need to impose

λ<min

 1

max
ρ∈[0,ρmax]

|f ′(ρ)| ,
1

Vmax

. (3.2.4)

3.3 The multi-scale algorithm

One of the main feature of the proposed multi-scale model is that the microscopic part of the model is

activated only where and when the macroscopic model is expected to fail. This forces us to introduce

two important modi�cations with respect to the model with complete information.

First, the number N of microscopic (singularly tracked) vehicles can change in time. To deal with

that, we denote by Γn the total number of vehicles at time tn, and by Γnj the number of vehicles which,

at time tn, fall in the cell Cj .

Second, vehicle k+1 is no longer, in general, in front of vehicle k. To overcome this issue, we will

denote by next(k) the vehicle in front of the k-th one, with the convection that leaders have next= 0.

Finally, we need some additional positive parameters which rule the activation and deactivation of

the second-order microscopic model, which will be denoted by δt, δv and δV . Let us brie�y describe their

meaning, which will be even clearer after the description of the algorithm.

• δt is the minimal period of time that one microscopic vehicle is active. In other words, if a vehicle

is activated at time tn, it cannot be deactivated before time tn+δt.

• δv is the minimal variation of the macroscopic velocity function which activates the second-order

model.

• δV is the maximal di�erence between the current velocity and the equilibrium velocity of microscopic

vehicles which allows the deactivation of the second-order model.

We are now ready to present the main steps of the algorithm which updates the density and the state

of the microscopic vehicles

(ρn,Xn,V n)→ (ρn+1,Xn+1,V n+1).

1. Compute Γnj ∀j.

2. Activation of new vehicles (Fig. 3.1). For all j, if |v∗(ρnj+1)−v∗(ρnj )|>δv, for all i∈{j−1,j,j+

1,j+2} put new vehicles in cell Ci (unless the cell is already occupied, i.e. unless Γni >0) with

velocity v∗(ρni ). The number of vehicles to put in the cell Ci is
⌊
ρni
ρmax

Γmax

⌋
. They are initially

equispaced in the cell and they have the same velocity.

ρ

X
Cj−1 Cj Cj+1 Cj+2

Figure 3.1: Step 1: Vehicles appear around large jumps of the macroscopic velocity (corresponding to large jumps
of the macroscopic density).
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3. Labeling (Fig. 3.2). Find next(k) for all k. The rightmost vehicle is labeled as leader (next= 0).

Also, all vehicles h such that |Xn
next(h)−Xn

h |>∆x are also labeled as leader. This choice comes

from the assumption that every time a vehicle has a free space of length ≥∆x in front of it, its

dynamics ceases to be dependent on the vehicle in front (if any). We will see, in Step 7, that the

dynamics will depend instead on the macroscopic density.

X

Figure 3.2: Step 3: Green vehicles are leaders.

4. Deactivation of followers (Fig. 3.3). Remove all followers k which are active since more than δt

units of time and such that
∣∣∣Vk−v∗( ρmax`N

Xn
next(k)

−Xn
k

)∣∣∣<δV . Note that, without the �rst condition new

vehicles would immediately deactivated since their velocity is initially at equilibrium (see Step 2).

In this way, instead, vehicles have enough time to fully exploit their second-order dynamics. After

that, if and when they get close to the equilibrium velocity again, they are deactivated.

X

Figure 3.3: Step 4: Red vehicles are going to be deactivated.

5. Deactivation of leaders. Remove all leaders which are not followed by anyone (lonely leaders).

6. Repeat steps 1 and 3 if needed.

7. Update vehicles' positions and velocities. We run the microscopic second-order model
Xn+1
k =Xn

k +∆tV nk , ∀k,

V n+1
k =V nk +∆tA(Xn

k ,X
n
next(k),V

n
k ,V

n
next(k);p), if next(k)>0,

V n+1
k =v∗(ρnj∗(k,n)+1), if next(k) = 0,

(3.3.5)

where j∗(k,n) is the cell occupied by the vehicle k at time tn. Note that leaders' dynamics only

depend on the density ρ. Indeed, the velocity of a leader is that of macroscopic vehicles located in

the cell in front of it (cf. Colombo and Marcellini [18]).

8. Compute Fn
j− 1

2

and Fn
j+ 1

2

as de�ned in (3.2.3).

9. Update vehicles' density. We run the multi-scale model, which reads as follows. For θ= 0,

ρn+1
j =ρnj +λ ·



Fn
j− 1

2

−Fn
j+ 1

2

if Γnj−1, Γnj , Γnj+1>0

Fn
j− 1

2

−G(ρnj ,ρ
n
j+1) if Γnj−1, Γnj >0 & Γnj+1 = 0

G(ρnj−1,ρ
n
j )−Fn

j+ 1
2

if Γnj−1 = 0 & Γnj , Γnj+1>0

G(ρnj−1,ρ
n
j )−G(ρnj ,ρ

n
j+1) otherwise.

(3.3.6)
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For θ∈ [0,1],

ρn+1
j =ρnj +

λ ·



[
θG(ρnj−1,ρ

n
j )+(1−θ)Fn

j− 1
2

]
−
[
θG(ρnj ,ρ

n
j+1)+(1−θ)Fn

j+ 1
2

]
if Γnj−1, Γnj , Γnj+1>0[

θG(ρnj−1,ρ
n
j )+(1−θ)Fn

j− 1
2

]
−G(ρnj ,ρ

n
j+1),

if Γnj−1, Γnj >0 & Γnj+1 = 0

G(ρnj−1,ρ
n
j )−

[
θG(ρnj ,ρ

n
j+1)+(1−θ)Fn

j+ 1
2

]
,

if Γnj−1 = 0 & Γnj , Γnj+1>0

G(ρnj−1,ρ
n
j )−G(ρnj ,ρ

n
j+1), otherwise.

(3.3.7)

The scheme is di�erent from the one with complete information (3.2.2) because here microscopic

information is not always available. Where microscopic vehicles are present, one can choose a

suitable combination of macroscopic and microscopic �ux to update the macroscopic density. Where

microscopic vehicles are missing, only the macroscopic �ux is used, see Fig. 3.4.

ρ

X
Cj

Fj− 1
2

G(ρj ,ρj+1)

Figure 3.4: Step 9: Update of density ρj using microscopic �ux on the left boundary and macroscopic �ux on the
right boundary of the cell j (case Γj−1, Γj>0 & Γj+1 = 0, θ= 0).

Remark 3.3.1. We stress once again that the macroscopic density ρ is always updated (Step 9), regardless

of the value of θ and regardless of the presence of microscopic vehicles (conversely we should manage the

interface between the micro- and the macro-scale). Moreover, the total mass of the system must be

evaluated by means on ρ only, as
∫
Rρdx. The appearance of new microscopic vehicles should be seen

as a temporary correction procedure which does not imply an additional injection of mass in the system.

Furthermore this �correction� leads the macroscopic model showing a bounded acceleration behavior since

it relies on a second order microscopic model. Note also that even if θ= 0 (dynamics fully driven by the

microscopic model), the macroscopic dynamics are still used, precisely where microscopic vehicles are not

present. Moreover the density is used to de�ne the velocity of microscopic leaders, so micro and macro

models are no independent. Instead if θ= 1 the microscopic model has no e�ect on the dynamics.

3.4 Numerical tests

In this section we present some numerical results for the multi-scale model described in Section 3.3, with

scheme (3.3.6) (θ= 0). In the �rst three tests A is de�ned as in (1.3.47), while in the last test A is de�ned

as in (5.2.1).

We denote by L the length of the road, by T the �nal time of the simulation, by Nx the number of
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space steps, by Nt the number of time steps. We set θ=γ= 0, Vref =Vmax =ρmax = 1 and v∗(ρ) = 1−ρ.
The others parameters used in the simulations are summarized in Table 3.1.

T L Nx Nt τ Γmax δv δt δV α ∆min

T1 3 20 100 300 0.01 20 0.08 15∆t 0.3 � �
T2 3 20 100 600 0.01�3 30 0.1 15∆t 0.5 � �
T3 12 20 100 1200 0.1 30 0.1 30∆t 0.2 � �

Table 3.1: Model and algorithm parameters used for the numerical tests

3.4.1 Test 1: activation and deactivation of microscopic model

In this preliminary test we check the correctness of the steps 2, 3, 4 of the algorithm and we try to

quantify the computational advantage of the new method. To do this, we consider a step function as

initial condition ρ0 and we plot the result of the classical LWR model (the density coming from the

multi-scale is not plotted for better clarity) and the microscopic vehicles along the x-axis. We can see

that at the initial time vehicles are correctly activated only around the three discontinuities (Fig. 3.5a).

After some time, the �rst discontinuity is smoothed enough for allowing the deactivation of vehicles (Fig.

3.5b).

a.
n=1,   t=0

0 2 4 6 8 10 12 14 16 18 20
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0.2
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0.6

0.8

1 rhoLWR
car pos

x

ρ

b.
n=100,   t=0.99331

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1 rhoLWR
car pos

x

ρ

Figure 3.5: Test 1: a. n= 1, b. n= 100

In order to quantify the computational advantage, we compare the CPU time consumed by the fully

microscopic model and the multi-scale model (the fully macroscopic model is not considered since we

know that the LWR model is not able alone to provide a satisfactory tra�c description). We run the

two models for di�erent values of the road length L, keeping �xed both ∆x and Γmax. Positions of the

discontinuities of ρ0 (at x= 3,6,11 if L= 20) are scaled linearly with L. Note that the increase of L

(and then of Nx accordingly), causes the increase of the total number of vehicles in the fully microscopic

model, while in the multi-scale model the number of vehicles remains constant, being vehicles con�ned

around discontinuities. In Fig. 3.6 we show the CPU time for the two models as a function of L. We see

that the CPU time scales almost linearly with respect to L in both cases. This is a bit surprising for the

multi-scale model but it can be explained by the fact that the computational e�ort of Steps 1, 2, 9 of the

algorithm scales linearly with the number of cells Nx. Apart from that, we see that the CPU time for
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Figure 3.6: Test 1: CPU time for the fully microscopic model and the multi-scale model.

the multi-scale model is much lower than that of the fully microscopic model, and this is mainly due to

the fact that the number of microscopic vehicles is kept low.

3.4.2 Test 2: e�ect of the relaxation term τ

In this test we investigate the e�ect of the relaxation parameter τ in the second-order model (1.3.47).

This parameter is related to the reactivity of drivers. More precisely, the smaller τ , the more reactive the

drivers are and the more the vehicles are able to accelerate and reach the equilibrium velocity rapidly. We

consider the case of a road congested in the �rst part and totally free in the second part (Fig. 3.7a). In

this case the LWR model shows immediately the classical rarefaction fan around the original discontinuity

(Fig. 3.7bcd). Microscopic vehicles are activated only around the discontinuity (Fig. 3.7abcd) and are

able to take into account the bounded acceleration of vehicles, see especially Fig. 3.7b where the velocity

of microscopic vehicles is also plotted. At time step n= 400 the di�erence between τ = 0.01 (Fig. 3.7c) and

τ = 3 (Fig. 3.7d) is quite visible. In the former case (highly reactive drivers) the dynamics of the multi-

scale model are very similar to that of the LWR model, while in the latest case (poorly reactive drivers)

the multi-scale model di�ers from LWR and correctly take into account a delay in moving forward.

As discussed in Section 1.3.1, it is interesting to recover the fundamental diagram a posteriori, i.e. by

means of the simulated tra�c conditions. To do that, we plot the set of 2D points

{(ρnj∗(k,n),ρ
n
j∗(k,n)V

n
k ) ∀k and ∀n, provided vehicle k is active at t= tn} (3.4.8)

where j∗(k,n) is the cell occupied by the vehicle k at time tn, see Fig. 3.8. It can be seen that the

multi-scale model is indeed able to recover a scattered (multivalued) fundamental diagram. Moreover,

the scattering increases with τ , as expected, and decreases smoothly as ρ→0.
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Figure 3.7: Test 2: a. n= 1, b. n= 100, c. n= 400, τ = 0.01, d. n= 400, τ = 3.
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Figure 3.8: Test 2: Fundamental diagram of the multi-scale model compared with that of the LWR model. a.

τ = 0.01, b. τ = 3.

3.4.3 Test 3: self-sustained perturbation

In this test we show the behavior of the model in presence of a perturbation. The perturbation is

represented, at time t= 0, by a small region where vehicles are moving slower than elsewhere (and
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therefore their density is higher). A typical example is given by sags, which are road sections along which

gradient changes signi�cantly from downwards to upwards [62].

Microscopic vehicles are immediately activated in the region of perturbation (Fig. 3.9a), and, for a

short time the multi-scale model and the LWR model behave similarly (Fig. 3.9b). At the microscopic

level, it is clear that vehicles decelerates when get closer to the perturbation and then accelerate again

(Fig. 3.9b). After that, the LWR model tends to smear out the perturbation as usual. The multi-scale

model, instead, self-sustains the perturbation, which does not disappear, at least for a certain time (Fig.

3.9c). Around time step n= 900 microscopic vehicles disappear since the perturbation is no longer strong

enough to destroy the equilibrium, and the multi-scale model turns to be the LWR one (Fig. 3.9d).
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Figure 3.9: Test 3: a. n= 1, b. n= 22, c. n= 441, d. n= 926.
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Chapter 4

Delayed LWR model on networks

In this chapter we deal with delayed models, which describe explicitly how past events in�uence the

current evolution of a system by means of a time delay term. This kind of models encloses a wide area

of applications, from epidemiology to tra�c �ow, as seen in the Introduction.

We will introduce a time delay in �rst order tra�c �ow model, which will allow us to introduce

bounded accelerations as in the previous chapter, avoiding upgrading to second order models. The delay

will be involved in the �ux term, following the approach presented in [12]. The analytical results are still

under investigations.

4.1 Derivation of the model

As shown in Sec. 1.3.3, we are able to derive macroscopic models starting from microscopic scale. Indeed

let us consider the delayed microscopic model introduced by Newell in 1961 [59]:

Ẋk =V

(
Xk+1(t−T )−Xk(t−T )

`N

)
k= 1,. ..,N−1, (4.1.1)

where T is the reaction time, i. e. the delay. This means that now we face a delayed di�erential equation

(DDE) system. Consequently, we have to provide an initial history function as initial data de�ned on

[−T,0], in order to guarantee the well-posedness of the problem in [0,Tf ].

Our aim is to explicitly include the delay in the �ux function at the macroscopic scale avoiding the

di�usion approximation as in [69], where the macroscopic model was obtained using a Taylor approxima-

tion.

Let us brie�y recall that the density can be recovered by the microscopic quantities:

ρj(t) =
`N

Xk+1(t)−Xk(t)
(4.1.2)

as shown in Sec.1.3.3. Moreover, inserting this formula into (4.1.1), we get

Ẋk =V

(
1

ρj(t−T )

)
, (4.1.3)
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which is equivalent to Ẋk =v (ρj(t−T )), since v is the macroscopic counterpart of V .

Passing to the limit on the number of vehicles, i.e. N→∞, and keeping in mind that

∂t
1

ρj(t)
=∂t

Xk+1(t)−Xk(t)

`N
=
v (ρj+1(t−T )−ρj(t−T ))

`N
, (4.1.4)

we end up with

∂t
1

ρ(y,t)
−∂yv(ρ(y,t−T )) = 0. (4.1.5)

Changing the coordinates from the Lagrangian to the Eulerian ones, i.e. ρ(x,t) = 1
ρ(y,t) , we obtain

∂tρ(x,t)+∂x
(
ρ(x,t)v(ρ(x,t−T ))

)
= 0 (4.1.6)

that is the Delayed LWR model (DLWR). To avoid any confusion, we will assume v(ρ(x,t)) = 1−ρ(x,t).

Note that if the delay tends to 0, we recover the classical LWR model, see Fig. 5.12. On the other hand,

if the delay is large enough, cars can overtake or crash each other, for example when a vehicle suddenly

brakes and the car following is not reacting in time to slow down, see Fig. 5.11.

4.1.1 Numerical approximation

Equation (4.1.6) is numerically solved with the Staggered Lax Friedrichs scheme (1.2.24).

In order to observe the delay e�ect on the solution, let us compare the solutions coming from the

standard LWR model and the delayed LWR one with T = 15∆t, with Dirichlet boundary conditions.

Starting from the same initial data, see Fig. 4.1 (left), we note how the DLWR density is sharper than
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Figure 4.1: Density on network: without delay (red line), with delay (blue line) at time n= 0 and n= 25 .

the other one. A little queue is formed immediately since vehicles' decelerations are not instantaneous,

see Fig. 4.1(right). This behaviour is more and more evident as time increases, Fig. 4.2.
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Figure 4.2: Density on network: without delay (red line), with delay (blue line) at time n= 50 and n= 100.

4.2 Extension to the network

Let us now focusing on the possibility to extend the delayed model on the road network. As shown in

Sec.1.3.4, we can solve separately (4.1.6) along the roads and then analyse what happens at the junctions,

following the classical approach. To do that, the �classical� supply and demand functions [40] (introduced

in Sec.1.3.4.1)

De(ρ) =

{
f(ρ) ρ≤σ
fmax ρ>σ,

Se(ρ) =

{
fmax ρ≤σ
f(ρ) ρ>σ,

(4.2.7)

do not seem suitable for solving the problem at the junctions. Indeed we have to take into account the

delay in the �ux term since it depends on the velocity. We extend the de�nition of supply and demand

functions in the case of delay as follows:

De(ρ,ρ
D) =



ρ(1−ρD) ρ≤σ,ρD≤σ
ρ(1−σ) ρ≤σ,ρD>σ
σ(1−ρD) ρ>σ,ρD≤σ
σ(1−σ) elsewhere,

Se(ρ,ρ
D) =



ρ(1−ρD) ρ>σ,ρD>σ

ρ(1−σ) ρ>σ,ρD≤σ
σ(1−ρD) ρ≤σ,ρD>σ
σ(1−σ) elsewhere,

(4.2.8)

where ρD =ρ(x,t−T ) stands for the delayed density.

Remark 4.2.1. In order to avoid complications with supply and demand functions, one could in principle

follow the multipath approach, see Sec. 1.3.4.3. Unfortunately, a Riemann solver is needed to apply the

Godunov scheme, but we are not able to solve explicitly a Riemann problem with the delay in the �ux

term.

Actually the multipath approach does not work with the Lax Friedrichs algorithm 1.2.21 as it is proved

by the following counterexample.

Counterexample: Let us recall the merging scenario, see Example 2.3.2, where we have two in-

coming and one outgoing roads. From the multipath point of view, we have two possible paths, thus
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two sub-densities µ1(e1,e
′
1) and µ2(e2,e

′
1). Assume that µ1(e1,e

′
1) =µ2(e2,e

′
1) =σ= 1

2ρmax. The Lax-

Friedrichs algorithm for the multipath approach is obtained from (2.3.17) and (2.3.18) by replacing G with

the Lax Friedrichs �ux de�ned in 1.2.21. Simplifying the notations and assuming that J is the merging

cell, we can write the scheme as follows:

µn+1
1,J =

1

2

(
µn1,J+1 +µn1,J−1

)
− ∆t

2∆x

(
µn1,J+1

ρnJ+1

f(ρnJ+1)−f(ρnJ−1)

)
µn+1

2,J =
1

2

(
µn2,J+1 +µn2,J−1

)
− ∆t

2∆x

(
µn2,J+1

ρnJ+1

f(ρnJ+1)−f(ρnJ−1)

)
.

We are now ready to compute the total density ρn+1
1,J , reminding that the assumption is µn1,J−1 =µn2,J−1 =

µn1,J+1 =µn2,J+1 = 1
2ρmax.

ρn+1
J =µn+1

1,J +µn+1
2,J =

=
1

2

(
µn1,J+1 +µn1,J−1

)
− ∆t

2∆x

(
µn1,J+1

ρnJ+1

f(ρnJ+1)−f(ρnJ−1)

)
+

1

2

(
µn2,J+1 +µn2,J−1

)
− ∆t

2∆x

(
µn2,J+1

ρnJ+1

f(ρnJ+1)−f(ρnJ−1)

)
=

1

2

(
µn1,J+1 +µn1,J−1 +µn2,J+1 +µn2,J−1

)
− ∆t

2∆x

(
µn1,J+1

ρnJ+1

f(ρnJ+1)−f(ρnJ−1)+
µn2,J+1

ρnJ+1

f(ρnJ+1)−f(ρnJ−1)

)
=

1

2
(σ+σ+σ+σ)− ∆t

2∆x
(−f(σ))

=ρmax+
∆t

2∆x
f(σ).

Then we have ρn+1
J >ρmax since f(σ)>0, which is physically unacceptable.

4.3 Numerical tests

Let us focus on the numerical simulations on network. First of all, we will describe what happens on

small networks (i.e. three arcs and one junction) in order to understand the density behaviour in presence

of single junctions. After that, we will be ready to deal with a more complicated network.

We will show the density evolution in time. Moreover, we will compute the exit time, that is the time

needed to empty the whole network, in order to compare di�erent solutions coming from di�erent delay

values. To do that, we assume null Dirichlet boundary condition on the network incoming nodes and null

Neumann condition on the network outgoing nodes, i.e. cars can only exit from the network.

4.3.1 Diverging case

Let us consider a network with three arcs and one junction, with one incoming road, called e1 = 1 and

two outgoing roads, e′1 = 2 e′2 = 3.
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The corresponding �uxes at the junction are:

γ̂2 = min{α2,1D1(ρ1,t),S2(ρ2,t)}
γ̂3 = min{α3,1D1(ρ1,t),S3(ρ3,t)}
γ̂1 = γ̂2 + γ̂3,

(4.3.9)

In the following test we assume α3,1 =α2,1 = 1
2 and the initial data: ρ0

1 = 0.9, ρ0
2 = 0.5, ρ0

3 = 0.3.

Our aim is pointing out the impact of the delay on the density evolution and to do that we �rst

overlap two solutions corresponding to di�erent delays, and then we compute the exit time at di�erent

delay values.

Looking at Fig. 4.3, we note that the density pro�le corresponding to the higher value of the delay

shows a longer queue on the incoming road.

Figure 4.3: Comparison between solutions computed with a delay of 50 units of time (blue line) and 250 units of
time (red line) at T = 500∆t (left) and T = 1000∆t (right).

Moreover, from Fig. 4.4, it is evident that the higher is the delay, the higher is the corresponding exit

time, as intuition suggest, and the growth seems to be slightly super-linear.

Figure 4.4: Exit Time computed at di�erent delay values in case of diverging junction.
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4.3.2 Merging case

Consider now the opposite case: a network with three arcs and one junction, with two incoming roads,

called e1 = 1, e2 = 2, and one outgoing road, e′1 = 3. This is a more complicated example because we

merge two arcs, so we have to be careful not to exceed ρmax, see Ex. 4.2.1.

The corresponding �uxes at the junction are given by:

γ̂1 = min{D1(ρ1,t),max{qS3(ρ3,t),S3(ρ3,t)−D2(ρ2,t)}},
γ̂2 = min{D2(ρ2,t),max{(1−q)S3(ρ3,t),S3(ρ3,t)−D1(ρ1,t)}}
γ̂3 = γ̂1 + γ̂2.

(4.3.10)

where q∈ (0,1) is the priority coe�cient, see Sec.1.3.4.1. In this framework γ̄n for ρ3 is given by γ̂3, while

γ̃n for ρ1 and ρ2 is respectively given by γ̂1 and γ̂2.

Assume that on the �rst incoming road the density is ρ0
1 = 0.4 and on the second one is ρ0

2 = 0.2, while

on the the outgoing road is initially empty. Moreover assume that q= 1
2 .

Looking at the density pro�le, Fig 4.5, we observe the formation of a queue on the �rst incoming

road, which is higher if the delay is higher, in particular the density reaches its maximum value.

Note that nothing assures that the density does not exceed ρmax, indeed if the delay is too high

vehicles may crash, as it happens in real life. In this case the model is not reliable any more and we have

to change the dynamics.

Figure 4.5: Comparison between solutions computed with a delay of 50 units of time (blue line) and 250 units of
time (red line) at t= 500∆t (left) and t= 1000∆t (right).

As regards the exit time, it grows as the delay grows and the behaviour still seems to be slightly super-

linear, Fig. 4.6, like the previous case.

4.3.3 Diamond network

We are now ready to join together di�erent types of junctions and consider a more complicated network

as we can see in Fig. 4.7, where we have 7 edges and 4 junctions,

we have ρi, i= 1,. ..,7 densities, linked at the junctions thanks to (4.3.9) and (4.3.10) in case of diverging

or merging junctions.
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Figure 4.6: Exit Time computed at di�erent delay values in case of merging junction.

TRAFFIC FLOW NETWORKS 1067

problem for traffic flow through the network is defined and solved numerically.

2. Networks and continuous traffic flow models. In this section several
definitions concerning the network are given. Moreover, the equations used to describe
the flow on the network are specified.

Definition 2.1 (network definition). 1 A traffic flow network is a finite, con-
nected directed graph where, in addition, we may attach a finite number of directed
curves extending to infinity. The roads are numbered by i, and the set of all roads
is I = (1, 2, . . . , K). The junctions are numbered by j, and the set of junctions is
J = (J1, J2, . . . , JM ). Each road is modeled by the interval [ai, bi], where ai and bi can
be infinity. For an example, see Figure 2.1.
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Fig. 2.1. Prototype of a network.

Continuous traffic models have been introduced by several researchers. A recently
introduced model is due to Aw and Rascle [2]; see also [1, 7]. The cumulative form
of the model is

∂tρ + ∂x(ρu) = 0,(2.1)

∂t(ρu) + ∂x(ρu2) + c(ρ)∂xρ =
1

T (ρ)
ρ[U(ρ) −u],

where ρ describes the density on the whole road and u describes the mean velocity.
f(ρ) = ρU(ρ) is the so-called fundamental diagram and T is a relaxation time. c =
c(ρ) describes the anticipation of the drivers. As long as T is small, the above model
is approximated by the well-known Lighthill–Whitham equations [21],

∂tρ + ∂xf(ρ) = 0(2.2)

with f(ρ) = ρU(ρ).
Remark 2.1. The cumulative Lighthill–Whitham model (2.2) is used by both net-

work models mentioned above and will also be used in the new model for comparison.
We note that a traffic network definition based on the full equations (2.1) can be done
as well using the approach discussed below. This will be left to future work. A full
multilane approach considering each lane with a separate equation will usually not
be used for the whole network due to the large computation time required for such a
simulation.

1Follow Holden and Risebro in [12].
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Figure 4.7: Example of �diamond� network.

Let ρ0
1 = 0.6, ρ0

2 = 0.2, ρ0
3 = 0.3, ρ0

4 = 0.2, ρ0
5 = 0.3, ρ0

6 = 0.1 and ρ0
7 = 0.2 be the initial data, Fig. 4.8.

Moreover, let the vehicles be equally distributed at junctions, i.e. q= 1
2 and αj,i=

1
2 .

In the following �gures the density is represented by colours on network as the colorbar suggests.

As shown in Fig. 4.9, the delay leads to higher density values next to the merging junctions, while in

the classical LWR scenario the density does not turn to red, i.e. at the end of edge 3.

This behaviour is stressed for increasing time steps, Fig. 4.10, until the density reaches its maximum

value only in the delayed scenario at the end of edge 6, Figs. 4.11-4.12. One of the main consequence is

that the exit time is increasing with the delay.

Note that the exit time, on network, seems to have an exponential behaviour, see Fig. 4.13, so the

slightly super-linear pro�le of the exit time shown on the single junction scenarios is emphasized.
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Figure 4.8: Initial data on the diamond network.

Figure 4.9: Density on network: without delay (left), with delay (right), for n= 500.

Figure 4.10: Density on network: without delay (left), with delay (right), for n= 1000.
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Figure 4.11: Density on network: without delay (left), with delay (right), for n= 1500.

Figure 4.12: Density on network: without delay (left), with delay (right), for n= 2000.

Figure 4.13: Exit Time computed at di�erent delay values in case of the �diamond� network.
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Chapter 5

Modelling Stop & Go waves

Stop & Go (S&G) waves are a typical feature of congested tra�c and represent a real danger for drivers.

A S&G wave is detected when vehicles stop and restart without any apparent reason, generating a wave

that travels backward with respect to the cars' trajectories [36, 62].

Nowadays there are a few models able to reproduce S&G waves in literature, at least theoretically.

In practice, it is very hard to �nd in the literature simulations which reproduce well recognizable S&G

waves. In this chapter we will try to �ll this gap, since modelling properly this phenomenon is crucial for

developing techniques aimed at reducing it [17, 68]. For example, autonomous vehicles could be trained

to avoid triggering S&G waves.

Real tra�c data play a fundamental role in this framework, indeed detecting and observing real S&G

waves point out the main features of this phenomenon.

In this chapter we will present a new microscopic model speci�cally conceived to recreate S&G waves

and we will compare the numerical solutions with the real measurements.

Moreover, the new microscopic model will be coupled with the LWR model following the multi-scale

approach presented in Sec. 3.

Lastly, we will try to recover the S&G waves from the delayed model, introduced in Sec. 4.

5.1 Real data and Stop & Go waves

Let us focus on real data coming from Autovie Venete S.p.A. (AV), an Italian company operating on the

highways of the North-East of Italy, which has several sensors and radars to supervise and control tra�c

evolution all over its road network, which is about 234 km long and includes the highway Venezia-Trieste

(A4), Palmanova-Udine (A23), Portogruaro-Pordenone-Conegliano (A28) and Villesse-Gorizia (A34), see

Fig. 5.1.

Most roads have two lanes and only one is for overtaking. Moreover the geographical position is

strategic for the trading with East-Europe, in particular with Slovenia, and roads often hold a lot of

trucks, see Tab. 5.1. In order to monitor the tra�c evolution on the road network, AV installed several

�xed sensors, which count passing vehicles, their velocity and their road occupancy rate at each minute in

each lane. Moreover they are also able to divide vehicles in �ve classes: cars, cars with trailer or caravan,

trucks, trucks with trailer and buses. One more class has been added in order to detect all the vehicles
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2.2 Analisi dei dati

Figura 2.8: Mappa di Autovie.

Analizziamo ora i dati relativi ad un ampio periodo temporale che va dal 26.07.2016

al 25.10.2016 riguardo il flusso dei veicoli con la distinzione in classi. Consideriamo tre

coppie di sensori 13 – 14 (km 478.5), 21 – 22 (km 461.176), 61 – 62 (km 447.176) posti

sulla A4 direzione Est e studiamo le percentuali di veicoli registrati per ogni classe.

Veicoli registrati Percentuali

Classe 0 6’615’488 100 %

Auto 4’855’778 73.4001 %

Auto con rimorchio 120’905 1.8276 %

Camion 299’273 4.5238 %

Camion con rimorchio 1’152’817 17.4260 %

Bus 72’583 1.0972 %

Non identificati 114’132 1.7252 %

26

Figure 5.1: Autovie Venete road map.

that do not appear in the �ve classes, the �unknow�. Furthermore we �nd in the class 0 the total number

of vehicles, i.e. the sum of all the previous classes.

The amount of available data is signi�cant: we collected about 8,000,000 records per month. This is

why we need a data analysis �rst.

We will focus on the period from 26.07.2016 to 25.10.2016.

First of all, our aim is understanding which class is mostly represented, i.e. which in�uences most the

tra�c evolution. To do that, we merge the two lanes corresponding to the same point of the road, i.e.

which correspond to the same kilometre of the highway. For example, if we consider three di�erent road

points on A4, East direction, we obtain the results of Tab. 5.1.

Detected vehicles Percentage
All vehicles 6,615,488 100%
Cars 4,855,778 73.4%
Cars with trailer/Caravan 120,905 1.8%
Lorry/Truck 299,273 4.5%
Truck with trailer 1,152,817 17.4%
Bus 72,583 1.1%
Unknowns 114,132 1.8%

Table 5.1: Sensor data from 26.07.2016 until 25.10.2016.

Cars are the majority and represent the 70% of total vehicles, see Fig. 5.2, but the total impact on

tra�c �ow must be computed taking into account also the length of vehicles. For example, let us assume

that we have 100 vehicles on the road: 73 cars and 27 trucks, following Tab. 5.1. Assume also that a car

is 4m long and a truck is 12m long. Therefore cars occupy 73 ·4 = 292m while trucks cover 27 ·12 = 324m.

This means that even if trucks are less than cars, their impact on tra�c �ow is high due to the occupancy
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rate.

Moreover we have to take into account that heavy vehicles' maximum speed is lower, i.e. 70-90km/h,

70%

2%

6%

19%

1%2%

Cars
Cars with trailer
Trucks
Trucks with trailer
Bus
Unknowns

Figure 5.2: Percentage of di�erent vehicles' classes from 26.07.2016 to 25.10.2016.

than cars' one, i.e. 130km/h, and we have to keep in mind also that the reaction time of trucks is greater

than cars' reaction time.

On AV road network the creeping phenomenon is often observed: queues of heavy vehicles often

appear on the rightmost lane, while light vehicles travel on the overtaking lane even if with reduced

speed [35]. Heavy vehicles queues show the typical behaviour of S&G phenomenon, which we will focus

on.

For example, let us analyse data collected on 21.09.2018 along the east direction of A4.

Starting from a small slowdown located at km 489 at time 12:10, a little queue is formed ten minutes

later between km 485-486. From AV reports, we know that the queue grows and moves backward: at

time 12:30 the queue is between km 482-483 and one hour later is between km 463-468, as shown in Fig.

5.3.

This is the typical S&G wave behaviour: the initial perturbation increases and propagates backward,

so vehicles begin to stop and restart even far from the origin of perturbation itself.

Looking at the data from �xed sensors let us focus on the �ux of heavy vehicles. We can easily observe

that �ux data are oscillating a lot, as the red line in Fig. 5.4 suggests. Moreover, there are minutes in

which only a few vehicles are detected and this either means that a few vehicles travel along the highway

or that vehicles are slow (or are stopped), i.e. the road is congested. In order to distinguish the two cases,

we consider the Gaussian mean, the black line in Fig. 5.4. Considering the sensors on the East direction

of A4 at km 466.7 from 12 p.m. to 16 p.m. on 21.09.2018 as before, we note that the �ux detected,

in particular the Gaussian mean, is almost constant until 13:30 p.m.. From 13:30 p.m. to 14 p.m. the

�ux is almost 0, as we expected seeing Fig. 5.3. Moreover from 15 p.m. to 15:30 p.m. another queue is

detected.
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Figure 5.3: Reported S&G waves.

2.3 La giornata del 21 settembre 2018

Figura 2.16: Grafici dei flussi e delle velocità al sensore 231 dei mezzi pesanti.

Se i veicoli pesanti sono stati costretti ad arrestare la loro marcia il tra�co dei veicoli

leggeri invece è continuato a scorrere sulla corsia di sorpasso. Vediamo i dati dei sensori.

34

Time of the day (h)

Fl
ux

 (v
eh

/m
in

)

Figure 5.4: Flux of heavy vehicles on 21.09.2018.

5.2 A new microscopic model

In this section we describe a new microscopic second-order model speci�cally conceived to reproduce S&G

waves. This model is nothing but a minimal version of the model recently introduced by Zhao and Zhang

[74] to describe the dynamics of vehicles, bicycles and pedestrians in a uni�ed framework. Our model
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is 'minimal' in the sense that it is obtained from the Zhao and Zhang's model dropping all the terms

which are not strictly necessary to reproduce realistic S&G waves. Recalling the second order microscopic

models introduced in Sec. 1.3.2, it has the form (1.3.45) with

A
(
X,X ′,V,V ′;(τ,ζ,∆min,Vmax)

)
=

1

τ

(
vZZ

(
X ′−X

)
−V

)
(5.2.1)

and

vZZ(∆) :=


0, ∆≤∆min,

ζ(∆−∆min), ∆min≤∆≤∆min+Vmax/ζ,

Vmax, ∆≥∆min+Vmax/ζ.

(5.2.2)

Here ζ >0 is a parameter and ∆min>`N is the minimum critical spacing distance between the centers

Figure 5.5: vZZ function.

of mass of a vehicle and the preceding one. Note that this minimal model, unlike the original one [74], is

deterministic. Moreover, one should note that the condition Xk+1(0)−Xk(0)≥ `N⇒Xk+1(t)−Xk(t)≥
`N ∀t is not a priori guaranteed.1

In Figs. 5.6-5.7 we show a typical solution to the system (1.3.45)-(5.2.1)-(5.2.2) in the case of a circular

road of length L. Initial conditions are Xk(0) = kL
N+1 and Vk(0) = 0, for k= 1,. ..,N . Numerical integration

is obtained by the explicit Euler scheme on a road segment [0,L] with periodic boundary conditions. It

can be seen that backward S&G waves are immediately generated by the small perturbation in the initial

positions of the vehicles. Indeed, vehicles are initially equispaced

Xk(0)−Xk−1(0) =
L

N+1
, k>1

with the exception of the couple (N ,1) (�rst vehicle in X1 is just in front of the N -th vehicle in XN

because of the periodic boundary conditions), for which we have

X1(0)+L−XN (0) =
L

N+1
+L− NL

N+1
=

2L

N+1
.

Small perturbations in the initial velocity lead to similar e�ects as well.

Now let us consider a straight road in order to simulate the trajectories reported in AV real data.

Starting with empty road, we use the �ux data coming from sensors in order to recover left boundary

1The question arises why this condition should hold true in the context of tra�c modeling, considering the fact that
rear-end collisions are actually possible in real life. We have to be careful that in this case the model is not reliable any
more and we have to change the dynamics.
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Figure 5.6: Space-time trajectories of vehicles obeying to the system (1.3.45)-(5.2.1)-(5.2.2) with N = 34, α= 0.6,
∆min = 7.89, Vmax = 1, τ = 4.86, L= 314.
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Figure 5.7: Zoom of the trajectories shown in Fig. 5.6 around initial time. It is well visible the emergence of the
S&G wave from the interaction between the �rst and the last vehicle.

condition. These measurements are referring to the S&G wave detected on 21.09.2018 on the East

direction of A4, as above, see Fig. 5.3-5.4.

Let us modify the model (5.2.1)-(5.2.2) considering two di�erent reaction times: one for accelerations
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and the other for decelerations. The system becomes as follows:
Ẋk(t) =Vk(t)V̇k(t) = 1

τA

(
vZZ (Xk+1(t)−Xk(t))−Vk(t)

)
if vZZ−Vk>0

V̇k(t) = 1
τF

(
vZZ (Xk+1(t)−Xk(t))−Vk(t)

)
if vZZ−Vk<0

(5.2.3)

where τA and τF are respectively the acceleration/deceleration reaction time. This choice is motivated

by the fact that heavy vehicles reaction to accelerations and decelerations is di�erent in time, i.e. braking

must be more e�cient (also for safety) than acceleration.

We modify also the function vZZ , introducing a discontinuity in its pro�le as in Fig. 5.8. After duly

Figure 5.8: vZZ modi�ed function.

calibration, the solution obtained with this microscopic model is really close to real data as shown in Fig.

5.9, where the light green lines stand for the length of the queue recorded in AV reports.

5.4 Simulazione del secondo incidente

Figura 5.41: Modello multiscala: traiettorie veicoli pesanti con sovrapposizione

misurazioni report AV.

Mostriamo in figura 5.41 un ingrandimento delle traiettorie dei soli mezzi pesanti

con la sovrapposizione dei dati relativi al report redatto a mano dagli addetti di AV

che riportiamo con righe verdi orizzontali. Avevamo già ra�gurato in maniera grafica

queste misurazioni nella figura 2.15. Osserviamo come per lunghi tempi l’estensione

della coda ottenuta numericamente sia coerente con la misurazione di AV specialmente

alle ore 13.24.

Notiamo anche come la soluzione numerica si discosti leggermente nelle prime misu-

razioni subito dopo l’incidente. Questo problema potrebbe essere risolto inserendo nella

parte microscopica del modello multiscala dei parametri di reattività stocastici ⌧A, ⌧F

variabili a seconda dell’intensità di tra�co locale.

5.4 Simulazione del secondo incidente

In questa seconda simulazione testiamo i tre modelli con i dati relativi al secondo

incidente sulla A4 est che ha causato, poco dopo le ore quattordici, un intasamento totale

della carreggiata a partire dal km 456 con il conseguente arresto globale del tra�co. Per

143

Figure 5.9: Heavy vehicles trajectories simulated with AV report measurements overlapping (green lines).
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5.3 Multi-scale model for S&G waves

Let us now couple the new microscopic model described by the system (1.3.45)-(5.2.1)-(5.2.2), with the

classical LWR model, using the multi-scale approach, described in Sec. 3.

A perturbation is created at initial time and microscopic vehicles are forced to be activated every-

where in the domain (Fig. 5.10a). After time δt, vehicles located in regions at equilibrium are correctly

deactivated, while they stay alive around the initial perturbation (Fig. 5.10b). After that, perturbation

increases until vehicles almost stop completely (Fig. 5.10c), and �nally a large S&G wave is formed (Fig.

5.10d).
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Figure 5.10: Multiscale approach for S&G waves at di�erent time step a. n= 1, b. n= 277, c. n= 1666, d.
n= 2191.

5.4 DLWR for S&G waves

In this section we see if the DLWRmodel is able to reproduce S&G wave on a single road when the velocity

function is chosen as the macroscopic counterpart of (5.2.3). In order to avoid useless technicalities, we

will choose the delay T as a multiple of the time step ∆t.

We have to be careful in choosing the delay parameter: starting from the initial data Fig. 5.13a, if the
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delay is too large the density grows more than one since an accident happened, i.e. cars are not reactive

and brake too late, see Fig. 5.11. On the other hand, if the delay is too small the typical LWR density

pro�le is shown, see Fig. 5.12.
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Figure 5.11: E�ect of high delay value on the density pro�le.

Scaling the parameters of Sec. 5.3 properly, we are able to obtain qualitatively the same results of

Sec. 5.3.
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Figure 5.12: E�ect of small delay value on the density pro�le.

5.4.1 S&G waves on networks

The DLWR model is able to reproduce S&G waves also on networks. Let us consider the diamond

network Fig. 4.7 introduced in Sec. 4.3.3. Assume ρ0
1 = 0.9, ρ0

2 = 0.4, ρ0
3 = 0.3, ρ0

4 = 0.2, ρ0
5 = 0.4, ρ0

6 = 0.1

and ρ0
7 = 0.2 as initial data, Fig. 5.14, and, moreover, that vehicles are equally distributed at junctions,

i.e. q= 1
2 and αj,i=

1
2 . The velocity function is v(ρ) = 1−ρ.

In the following �gures the density is represented by colors on network as the colorbar suggests. Looking

at Fig. 5.15, we note that a congestion is formed for n= 1000 at the end of roads 5 and 6. The queue
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Figure 5.13: DLWR density at di�erent time steps a. n= 1, b. n= 75, c. n= 200, d. n= 500.
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Figure 5.14: Initial data on the diamond network.

is increasing and density reaches its maximum value as we can see in Fig. 5.15 for n= 2000 at the end

of road 6. After a while, the congestion starts to propagate backward and vehicles begin to stop and

restart, even if the queue at the junction is vanished. This is evident by following the evolution of the

dark red spot on the road 6, Fig. 5.16.
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Figs. 5.15-5.16 describe perfectly the evolution of a S&G wave.
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Figure 5.15: DLWR density on network at di�erent time steps: n= 1000(left), n= 2000(right).
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Figure 5.16: DLWR density on network at di�erent time steps: n= 3000(left), n= 3500(right).

81





Conclusions

In this thesis, we proposed to employ Wasserstein distance for comparing tra�c density distributions on

networks. The numerical approximation of the Wasserstein distance on spaces other than the real line

is not trivial. The linear-programming-based method proposed seems to be appropriate although the

computational cost and memory requirements increase nonlinearly with the number of grid nodes.

As far as it concerns the sensitivity analysis of LWR model, we can say that wrong estimation of the

position of vehicles at initial time does not seem to have a major impact on the �nal solution, at least

for large times and small networks. Similar conclusions apply to wrong estimation of the fundamental

diagram: errors on the capacity of the roads estimates have approximately the same impact on the �nal

solution, and the discrepancy grows approximately linearly with respect to the parameters involved.

Conversely, wrong estimation of tra�c distribution at junctions and road closures seem to have a

far greater impact. Vehicles are redirected in the wrong direction at every passage across the junction,

therefore the error grows in time.

Numerical investigation also shows that, in general, the sensitivity grows with the network size.

Therefore we expect that LWR previsions based on real data become rapidly unusable on large networks.

Moreover, we introduced di�erent approaches in order to reproduce second order tra�c phenomena

avoiding purely second order macroscopic models. The goal was to avoid to deal with systems of conser-

vation laws, which are hard to solve from the numerical point of view. On the other hand second order

e�ects are crucial in tra�c evolution, as we have seen also from real data.

We proposed two di�erent ways to overcome this issue: a new multiscale approach and a delayed

macroscopic model. The former requires a smart mixing of two single scale models, i.e. a �rst order

macroscopic model coupled with a second order microscopic one, in order to avoid high computational

costs. The latter is based on the idea that the reaction time, which exists in braking and accelerating,

has to appear in the macroscopic equation of the model. To do that, we put a time delay term in the

�ux of the �rst order macroscopic model. Our aim was to extend this approach on networks and recover

S&G waves on networks.

Both approaches have shown to be perfectly able to reproduce second order e�ects caused by

bounded accelerations, especially S&G waves, see Figs. 5.10-5.13-5.16. This is one of the main results of

the thesis since simulations of S&G waves are largely missing in the literature about tra�c �ow modelling.

We conclude proposing some open questions strictly related to the work presented in this thesis:

• Extensions of the proposed multiscale approach: non-constant modelling parameters can be consid-

ered, i.e. the relaxation time or the tuning parameter can be assumed as functions of the density.
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Allowing θ to be dependent on ρ itself, one can obtain a smooth passage from the macroscopic to

the microscopic description as the tra�c conditions become more and more congested. Also the

relaxation parameter τ can depend on ρ, in such a way that drivers are described as more reactive

if tra�c conditions are more dangerous (e.g. in case of large �ux characterized by a large number

of vehicle moving at high velocity).

• Analysis and Control of S&G waves: techniques aimed at reducing tra�c congestions and in partic-

ular S&G waves are highly desirable [17, 68] for improving drivers' safety and reducing air pollution.

One can understand under which conditions S&G waves arise and disappear and the role of the

stochasticity to simulate di�erent drivers' behaviours. Starting from models able to reproduce this

phenomenon, we would like to control the vehicles' dynamics in order to avoid the triggering of the

S&G wave, for example with the help of trained autonomous vehicles [68].

• Many particles' limit: starting from the new microscopic model introduced in Sec. 5.2, one could

recover the macroscopic counterpart passing through the many particles' limit. The idea is getting

a new macroscopic model able to describe second order phenomena easier than the classical ARZ.

From the numerical point of view we are investigating the relaxation schemes introduced by Natalini

[1, 2, 58]. Since we have no pressure term, we consider εP (ρ) as ε→0.

• Theoretical results for delayed models: in this thesis we consider only the numerical solution to

the delayed model. However it remains to investigate the numerical scheme properties, such as the

mass preserving property and the local maximum principle depending on the delay. Furthermore,

an estimate of the sensitivity of the solution with respect to the delay has to be studied.
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