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Abstract 
 

Churches are an important part of the New Zealand historical and architectural heritage, 

and the extensive damage occurred to stone and clay-brick unreinforced masonry 

portfolio after the 2010-2011 Canterbury earthquakes emphasises the necessity to better 

understand this structural type. An effort was undertaken to identify the national stock 

of unreinforced masonry churches and to interpret the damage observed in the area 

affected by the earthquakes: of 309 religious buildings recognized and surveyed 

nationwide, a sample of 80 churches belonging to the Canterbury region is studied and 

their performance analysed statistically. Structural behaviour is described in terms of 

mechanisms affecting the so-called macro-elements, and discrete local damage levels 

are correlated firstly with macroseismic intensity through Damage Probability Matrices, 

computed for the whole building and for each mechanism. The results show that the 

severity of shaking alone is not capable to fully explain the damage, strongly influenced 

by structural details that can worsen the seismic performance or improve it through 

earthquake-resistant elements. Simple-linear regressions, correlating the mean damage 

of each mechanism with the macroseismic intensity, but neglecting the difference in the 

vulnerability of different churches subjected to the same level of shaking, are then 

improved through use of multiple-linear regressions accounting for vulnerability 

modifiers. Several statistical procedures are considered in order to select the best 

regression equation and to assess which parameters have closer relationships with 

damage. Results show good consistency between observed and expected damage, and 

the proposed regression models can be used as predictive tools to help determine 

appropriate seismic retrofit measure to be taken. The conclusions drawn for the 

Canterbury region are then extended to the whole national stock and a quantitative 

seismic risk assessment for existing unreinforced masonry churches in New Zealand is 

presented, using different intensity measures to model the seismic hazard. Seismic risk 



ii 

is first computed mechanism by mechanism, highlighting how some mechanisms are 

more frequent than others, and that very large damage levels are expected for some New 

Zealand regions. Whereupon, an alternative synthetic damage index purely based on 

observed data is proposed to summarise damage related to several mechanisms and it is 

used to validate the choice of the best index for describing the global damage of a 

church when dealing with a territorial assessment. Territorial scale assessment of the 

seismic vulnerability of churches can assist emergency management efforts and 

facilitate the identification of priorities for more in-depth analysis of individual 

buildings. Finally, a preliminary attempt for dynamically characterize the response of 

unreinforced masonry church is conducted. 
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Chapter 1 
 

 Introduction 

The major physical consequences of an earthquake for human beings are, obviously, 

human casualties and damage caused to the built and natural environments. Both 

financially and technically, it is possible to reduce these consequences in view of future 

strong earthquakes, by minimizing the seismic risk of a territory. In order to predispose 

effective tools for planning and retrofitting, it is of paramount importance to evaluate 

the earthquake vulnerability of the built and natural environments, and this is pursuable 

by developing models calibrated on the damage observed in past earthquakes. 

Among the building portfolio of a country, various earthquakes around the world have 

emphasized the high vulnerability of the monumental buildings, often the most heavily 

stricken by a seismic event. The uniqueness of each piece that is part of the cultural 

heritage, togheter with its historical, artistical, and societal values, does not allow 

applying the standardized procedures established for ordinary buildings. Within the 

invaluable buindings part of the cultural heritage of a nation, churches are of 

foundamental importance not only for historical and architectural reasons, but also for 

the symbolic significance they assume for the communities they belong to. For this 

reason, the analysis of their vulnerability has attracted strong interest after several major 

events throughout the world, when their worse performance compared to both ordinary 

and monumental buildings has highlighted their intrinsic structural vulnerability (Figure 

1.1 and Figure 1.2). As the seismic vulnerability of a building is defined as its 

propensity to suffer certain damage when subjected to an earthquake, the aim of a 

seismic vulnerability assessment is to provide a measure of the tendency of a building to 

be damaged if hit by an earthquake, and operatively it consists in correlating the seismic 

hazard to the physical damage suffered.  
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Ribeirinha church, Faial Island, Azores (1998) 

(photo from Guerreiro et al. 2000) 

 

Santi Marciano e Nicandro, L’Aquila, Italy 

(2006) 

 

Basílica del Salvador, Santiago, Chile (2010) 

(photo from Sorrentino et al. 2011) 

 

San Lorenzo a Flaviano, Amatrice, Italy (2016) 

Figure 1.1. Examples of damage caused to churches by recent earthquakes. 
 

 

a) 
 

 b) 

Figure 1.2. a) Cumulative damage ratio distribution for houses and churches 
(D’Ayala, 1999); b) Vulnerability curves of palaces and churches (Lagomarsino, 
2006). Data of both graphs are referred to the 1997 Umbria-Marche earthquake. 

 

Urban and territorial scale vulnerability assessment methods have been developed from 

the early 1970’s to the present time considering different approaches for the collection 
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and interpretation of data. These vulnerability assessment methods are classified as 

either empirical or analytical/mechanical. Empirical methods are based on selected 

parameters collected from in situ observation or expert judgement and are suited to 

identify the seismic vulnerability of a building stock. Analytical/mechanical methods 

are based on computational analysis defining a direct relationship amongst construction 

characteristics, structural response to seismic action, and damage effects. Obviously, the 

aforementioned approaches differ in computational burden and in the applicability at 

geographical scale: while the empirical methods are based on the collection of a small 

number of significant parameters and they are representative of the vulnerability of 

homogeneous typologies of buildings, the analytical methods require more specific 

information and are valid for a limited number of buildings. Both approaches are herein 

accounted in different proportion. Given the good amount of available information 

about the damage occurred to New Zealand churches during the 2010-2011 earthquake 

sequence and the extensive homogeneity of the buildings portfolio, an empirical 

approach is at first assumed for the analysis of New Zealand churches. According to 

such approach, observed vulnerabilities are based on statistical observations of recorded 

damage data as a function of the felt intensity, and the so-pursued seismic vulnerability 

assessment is spreadable at territorial scale. Large part of the vulnerability assessment 

of New Zealand unreinforced masonry churches herein conducted is based on such 

approach.  

On the other hand, analytical methods tend to feature more detailed vulnerability 

assessment algorithms with direct physical meaning and they need experimental 

validation of the parameters used to define the vulnerability. As for historical churches, 

mechanical models have been widely adopted accounting for collapse mechanism 

analyses (refer, e.g., to Giovinazzi et al., 2006; Lagomarsino, 2006; Sorrentino et al., 

2014a), based on acquired geometrical data. Less addressed, for the time being, is the 

issue related to the filter effect that the macro-elements of the building develop on the 

response of soaring elements. For this reason, a dynamic test campaign has been 

conducted on a number of representative New Zealand churches, whose results can 

provide information on modal parameters, and thus contribute to such estimation. A 

preliminary attempt in such direction is presented in the last part of this research. 
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1.1. Thesis format and chapter content 

This manuscript is a “thesis by publications” wherein each chapter (plus seven 

Appendices) represents an article or combination of articles that have, at the time of 

thesis submission, been published, accepted, or submitted to a publisher for external 

peer review. Due to the “thesis by publications” format and the common motivations for 

the studies reported in the individual chapters, there is some unavoidable repetition of 

information throughout the manuscript. The following sub-sections include brief 

summaries of the studies pertaining to each chapter and references to the included 

publications. The referenced publications are typically journal or conference articles 

added to the thesis manuscript with slight changes to writing style and to in-text 

references made to other sections, figures, tables, or appendices within the thesis. 

1.1.1. Chapter 2. An inventory of unreinforced masonry churches in 

New Zealand 

An accurate documentation was undertaken in order to identify the New Zealand stock 

of unreinforced masonry churches, as a first step in understanding the relevance of the 

damage observed in the area affected by the Canterbury earthquakes and aimed to the 

subsequent implementation of effective conservation strategies. A country-wide 

inventory is then compiled based on bibliographic and archival investigation, and on a 

10 000 km field trip, with estimated 297 unreinforced masonry churches currently 

present throughout New Zealand, excluding 12 churches already demolished in 

Christchurch because of heavy damage sustained during 2010-2011. The compiled 

database includes general information about the buildings, their architectural features 

and structural characteristics. Moreover, statistics about the occurrence of each feature 

are provided and preliminary interpretations of their role on seismic vulnerability are 

discussed. 

 

Included publication: 

Marotta, A., Goded, T., Giovinazzi, S., Lagomarsino, S., Liberatore, D., Sorrentino, L. 

and Ingham, J.M. (2015) An inventory of unreinforced masonry churches in New 

Zealand, Bulletin of the New Zealand Society for Earthquake Engineering 48(3), 170-

189. 
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1.1.2. Chapter 3. Vulnerability assessment of unreinforced masonry 

churches following the 2010-2011 Canterbury earthquake 

sequence 

Of 309 unreinforced masonry churches identified nationwide, including the 12 

demolished in Christchurch, a sample of 80 buildings belonging to the affected region is 

studied and their performance analysed statistically. Structural behaviour of religious 

buildings is described in terms of mechanisms affecting the so-called macro-elements, 

being portions of the building behaving more or less independently. Discrete local 

damage levels are correlated with macroseismic shaking intensity through Damage 

Probability Matrices. Multiple-linear regressions are also considered, accounting for 

additional modifiers increasing/reducing the vulnerability of the macro-elements. 

Results show the relevance of the proposed multiple-linear regression models for the 

national heritage of churches and the advisability of extending mechanism-based 

regressions to other countries besides New Zealand. 

 

Included publication: 

Marotta, A., Sorrentino, L., Liberatore, D., and Ingham, J.M., 2016. Vulnerability 

assessment of unreinforced masonry churches following the 2010-2011 Canterbury 

earthquake sequence, Journal of Earthquake Engineering. 

DOI:10.1080/13632469.2016.1206761. 

 

Marotta, A., Sorrentino, L., Liberatore, D., and Ingham, J.M., 2016. Statistical seismic 

vulnerability of New Zealand unreinforced masonry churches, in Proceedings of the 

10
th

 International Conference on Structural Analysis of Historical Constructions, 13-15 

September, 2016, Leuven, Belgium, 1536 - 1543. 

 

1.1.3. Chapter 4. Territorial seismic risk assessment of New Zealand 

unreinforced masonry churches 

A quantitative seismic risk assessment for the existing unreinforced masonry churches 

in New Zealand is presented. Regression models correlating mean damage levels 

against ground-motion parameters are re-calibrated for all observed collapse 

mechanisms, accounting for different intensity measures. Due to the homogeneity of 
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New Zealand churches, the so-developed vulnerability models are extended to the 

whole national inventory. In order to summarise damage related to several mechanisms, 

different global damage indexes are accounted and an alternative synthetic damage 

index is proposed. The synthetic damage index has the advantage of not requiring a 

conventional estimation of the weights used in previous definitions of a global damage 

index and is entirely based on observed data. The computed damage indexes are then 

weighted on the foot-print area of each building and compared, and a risk level for 

unreinforced masonry churches is ascribed to the different New Zealand regions. 

Results can be used for the emergency management at regional scale in case of 

earthquake or for the identification of churches in need for more in-depth analysis in a 

preventive management of emergency. 

 

Included publication: 

Marotta, A., Sorrentino, L., Liberatore, D., and Ingham, J.M., 2017. Seismic risk 

assessment of New Zealand unreinforced masonry churches using statistical procedures, 

International Journal of Architectural Heritage. Accepted.  

 

1.1.4. Chapter 5. Ambient vibration tests on New Zealand unreinforced 

masonry churches 

Ambient vibration tests are carried out on a number of representative churches located 

in Auckland. Preliminary results from the dynamic tests are the base for future 

identification of the dynamic performance and construction weakness of different 

structural components, thus guiding the recognition of possible collapse mechanisms 

and estimating the filter effect that the building can develop on the response of soaring 

elements (e.g., gables, pinnacles). 

 

Included publication: 

Marotta, A., Beskhyroun, S., Sorrentino, L., Liberatore, D., and Ingham, J.M., 2017. 

Ambient vibration tests on New Zealand unreinforced masonry churches, Proceedings 

of the 10
th

 International Conference on Structural Dynamics - Eurodyn 2017, 10-13 

September, 2017, Rome, Italy. Abstract accepted. 
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Chapter 2 
 

 An inventory of unreinforced masonry 

churches in New Zealand 

After a bibliographic and archival investigation, and a 10 000 km field trip, it is 

estimated that currently 297 unreinforced masonry churches are present throughout 

New Zealand, excluding 12 churches demolished in Christchurch because of heavy 

damage sustained during the Canterbury earthquake sequence. The compiled database 

includes general information about the buildings, their architectural features and 

structural characteristics, and any architectural and structural transformations that have 

occurred in the past. Statistics about the occurrence of each feature are provided and 

preliminary interpretations of their role on seismic vulnerability are discussed. The list 

of identified churches is reported in Appendix A, supporting their identification and 

providing their address. 

 

2.1. Introduction 

Unreinforced masonry (URM) is one of the construction materials that was most 

frequently used in New Zealand’s early built heritage and URM churches represent a 

significant proportion of the heritage building stock of New Zealand. Churches, aside 

from having relevant historical and architectural value, often assume a symbolic 

significance for the communities that they belong to. The 2010-2011 Canterbury 

earthquakes had a dramatic impact on the community: 185 people died and many 

thousands were injured (Johnston et al., 2014), but also the extensive damage and 

collapse of churches deeply marked their communities, who placed a high value on 
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these heritage religious buildings, seen as an important part of the region's character and 

history (CEHBF, 2013). Therefore, the importance of preserving such buildings is a 

fundamental societal issue. 

It is also widely known that URM churches frequently perform poorly even in moderate 

earthquakes, because of their intrinsic structural vulnerability (D'Ayala, 2000). URM 

churches are particularly vulnerable to earthquakes because of their open plan, large 

wall height-to-thickness and length-to-thickness ratios, and the use of thrusting 

horizontal structural elements for vaults and roofs. Their use of low strength materials 

often causes decay and damage due to poor maintenance, and the connections between 

the various structural components are often insufficient to resist loads generated during 

earthquakes (Ingham et al., 2012; Lagomarsino, 2012; Sorrentino et al., 2014). 

Additionally, damage is related to architectural types and construction details, which 

may vary from country to country. The 2010-2011 Canterbury earthquakes caused 

widespread damage to stone and clay-brick URM churches (Figure 2.1) (Leite et al., 

2013). Hence, a research project was undertaken to identify the New Zealand stock of 

URM churches and to interpret the damage observed in the area affected by the 

Canterbury earthquakes (Cattari et al., 2015). An accurate documentation of 

architectural heritage is the first step in understanding the relevance of the damage 

observed and in the implementation of effective conservation strategies. Consequently, 

a national inventory of URM churches is presented, accounting for the geometry, 

construction details, building and transformation history, and the preservation state.  

In the following section the inventory collection procedure is presented, and in the third 

section an outline of the history of URM churches in New Zealand is provided based on 

bibliographic and field research undertaken as part of this study. An overview of the 

characteristics of churches, with reference to geographical distribution, types, 

architectural features, and structural characteristics is given in the fourth section. 

Possible applications of the results of this research are given in the final notes. Almost 

three hundred URM churches are listed in Appendix A for each region of New Zealand. 

2.2. Inventory collection procedure 

For the purpose of understanding the scale and nature of the seismic risk of existing 

URM churches in New Zealand it is useful to investigate their number and national 

distribution. In the absence of a complete list of churches present across the country, 
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several reference sources were utilised, leading to the identification of 297 URM 

churches currently existing in New Zealand (Figure 2.2). This total does not account for 

12 churches demolished in Christchurch because of heavy damage suffered during the 

Canterbury earthquake sequence.  

The first identification source considered was the Heritage New Zealand List (HNZ, 

2014), formerly referred to as the Register. Approximately half of the identified 

churches are recorded therein (Figure 2.3). Some of the non-registered buildings were 

identified through the online inventories of the different religious denominations in New 

Zealand, archive documentation, architectural books (Warren, 1957; Fearnley, 1977; 

Anonymous, 1979a and 1979b; Wells and Ward, 1987; Kidd, 1991; Knight, 1993; 

Donovan, 2002; Wells, 2003) and reports. Such research led to acquiring knowledge of 

churches constructed of all types of structural materials. Hence, a subsequent filtering 

was performed by preliminary observation using Google Street View. Finally, 

additional churches were identified during the field survey along the 10 000 km 

itinerary that was planned based on the previously identified sites. This field survey 

aimed to acquire technical information for all URM churches, and to appropriately 

identify numerous non-registered buildings considered to be potentially significant 

examples of early New Zealand architecture. Despite the care and effort put into the 

definition of this inventory, the existence of other churches along routes not explored 

during the field trip cannot be excluded. 

The inventory database is subdivided into geographical regions and the information is 

gathered into three groups: (i) general data; (ii) architectural features; and (iii) structural 

characteristics. Table 2.1 shows the parameters considered for each main data group. 

 

 

(a) St Peter's Church (1875), Christchurch 

 

(b) St Joseph’s Church (1921), Christchurch 

Figure 2.1. Examples of damage caused by the 2010-2011 Canterbury earthquakes. 
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2.3. History of unreinforced masonry churches in New Zealand 

As soon as settlers became established in New Zealand they started to build churches 

because of their strong Christian faith (Wells, 2003). The first churches were built 

mainly with timber, because of the ease of construction in terms of time and material 

availability (Tonks and Chapman, 2009). The architecture was in accordance with Early 

English style, familiar to both clergy and architects (Walden, 1961). Auckland and 

Wellington saw early examples of brick churches (respectively, St Paul’s in 1841 and 

Wesley Chapel in 1844, the latter destroyed by the 1848 Marlborough earthquake (Mw 

7.5)), both plastered to give an appearance of stone (Dowsett, 1985). 

However, stone and clay-brick masonry buildings started being used largely from 

around 1880, when clay became readily available and prosperity increased. The 1931 

Hawke’s Bay earthquake (Mw 7.8) demonstrated the poor performance of URM and 

marked the beginning of the decline in use of URM (Dowrick, 1998; Reitherman, 

2006). After the destruction caused by the Hawke’s Bay earthquake, the New Zealand 

Standards Institute was formed to regulate building practice, and URM constructions 

were prohibited in 1965 (NZSI, 1965; Dowrick, 1998; Goodwin, 2009). After this ban, 

the use of reinforced concrete became predominant. However, the bibliographic and 

field research undertaken as part of this study has shown that reinforced-concrete 

construction was applied starting as early as the first quarter of the 20
th

 century, either 

alone or together with masonry (e.g., reinforced-concrete frame + clay-brick infill, or 

reinforced masonry). 

The period of construction has been determined for 86% of the masonry churches in the 

inventory, and in Figure 2.4 the churches of known construction date are grouped 

according to decade of construction. The majority of this building stock was established 

between the 1870s and 1931 (84%), with a few cases (13%) built between 1931 and 

1965. The trend in age shows that most of the construction activity occurred between 

1910 and 1940, with a peak around 1930. The age statistic confirms that New Zealand 

ecclesiastic masonry-construction heritage was built over a short time span, compared 

to other countries worldwide.  

In New Zealand the majority of religious buildings are Christian churches. The religious 

history of the country after the arrival of the Europeans was characterised by significant 

missionary activity. The Anglican Church of England brought Christianity to New 

Zealand through the Church Missionary Society, while Presbyterianism and 
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Catholicism were respectively and largely brought by Scottish and French settlers 

(Davidson, 2004). Methodism arrived slightly later and the Baptist Church, which had 

grown rapidly in early 19
th

 century in England, established its first congregations in 

New Zealand in about 1850 (Hearn, 2012). Later missionaries brought other religious 

denominations. With reference to the building inventory the four largest denominations 

are Anglican, Presbyterian, Catholic and Methodist (Figure 2.5a) and their churches can 

be found in all parts of the country. A much more limited number of buildings are, in 

decreasing order: Union parishes (grouping of Anglican, Presbyterian, Methodist and 

Congregationalist), Baptist, Congregationalist, Jewish, and Reformed.  

Some of the ecclesiastic buildings are no longer used as was originally intended and are 

currently utilised for other functions, ranging from civic facilities to private usages. 

Both original and changed-use churches were included in the inventory. Figure 2.5b 

shows the proportion of URM buildings still used as originally intended (91%). The 

remainder of the inventory is made of buildings that have their use changed (7%), that 

are not in use (1%), or whose use could not be determined at the time of the survey 

(1%). 

 

Table 2.1. Parameters considered in the inventory of New Zealand URM churches. 

General Data 

Name  

Religious denomination 

Location (region, city, suburb, street, #) 

Former and current use 

Construction date and architect 

HNZ registered number 

Phone contact and web-links 

Architectural Features 

Typological classification 

Overall dimensions  

Position (isolated or connected to other structures) 

Plan and elevation regularity  

Alterations / additions 

Structural characteristics 

Masonry type and quality  

Wall texture and wall cross-section morphology  

Type of roof 

Presence of thrusting structures (e.g., arches, vaults, domes, roofs without bottom chord)  

Additional vulnerability factors (e.g., soaring elements, large openings, heavy roof covers) 

Additional strengthening factors (e.g., buttresses, tie-rods) 

State of preservation 
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Figure 2.2. Distribution of URM churches in New Zealand. 
 

  

Figure 2.3. Percentage of existing URM churches registered within the New 
Zealand Heritage List (HNZ), grouped per region. 
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Figure 2.4. Percentage of URM churches according to construction period (for 
available date of construction). 

 

 

 

(a) Religious denomination 

 

(b) Current use 

Figure 2.5. URM church denomination and use. 
 

2.4. Churches characteristics 

2.4.1. Geographical distribution 

For the purpose of understanding the history of URM churches in New Zealand it is 

useful to consider their distribution nationally. Almost 70% of the inventory is 

concentrated in the South Island, with a prevalence of churches located in the Otago 

(30%) and Canterbury regions (29%), as shown in Figure 2.6.  

The comparatively low proportion of buildings in the Auckland region (14%), despite 

the region having always been the most populated of New Zealand (STATS, 2013), can 

be explained because of the larger use of timber in construction. There are at least two 
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explanations for this fact. First, stone was less readily available in the area, whereas 

Kauri trees were common, especially on the Coromandel Peninsula and in northern 

areas (Orwin, 2012). Consequently most early constructions, including churches, were 

made with timber. For example, St Mary’s in Parnell, Auckland, was originally 

designed in brick and stone masonry, but due to budget limitations was instead built in 

timber (Tonks and Chapman, 2009). Second, at the time of the 1848 Marlborough and 

1855 Wairarapa (Mw 8.2) earthquakes, it was observed that masonry buildings were 

susceptible to destruction while wooden buildings appeared more able to withstand such 

forces (Schrader, 2013). In some cases, even wind induced damage in masonry 

churches. For example, St. Stephen’s Chapel in Parnell, Auckland, was originally 

constructed in stone in 1844, but after being destroyed by a hurricane three years later 

was replaced in 1857 by the current timber building (Tonks and Chapman, 2009). 

Hence, timber ecclesiastic buildings became predominant in Auckland and acquired 

such a specific style as to be dubbed ‘Selwyn churches’, after the nation’s first Anglican 

Bishop (1841-1867) George Augustus Selwyn (Sedcole and Crookes, 1930; Knight, 

1972). Wooden churches, sometimes intended as temporary buildings, are in general 

still standing today and in good condition (Tonks and Chapman, 2009). This resilience 

was also proved by the Canterbury earthquakes, during which timber churches had the 

best overall performance, with no cases of structural damage (Leite et al., 2013). 

However, over time there was a change in building practice after several severe fires 

affected timber structures, and because masonry construction conveyed a sense of 

permanency, which was deemed to be a fundamental attribute for any church 

establishment in a new colony (Walden, 1964; Dowsett, 1985). 

The Hawke’s Bay region has a fairly low (1%) number of URM buildings, although 

many major churches were located in and around Napier up till 1931. In that year the 

Mw 7.8 Hawke’s Bay earthquake and subsequent fire caused extensive damage and 

induced reconstruction with materials other than URM. The same reasoning can reliably 

be proposed for the Tasman, Nelson, and Marlborough regions, and for the upper 

portion of the West Coast region (combined 5%), which were strongly stricken by the 

1929 Arthur’s Pass (Mw 7.1) and 1929 Murchison (Mw 7.8) earthquakes (McSaveney, 

2012). Similarly, it is worth mentioning that the upper portion of the Canterbury region 

has almost no URM churches. 
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Figure 2.6. Estimated provincial percentage of existing URM churches. 
 

The geographical distribution of URM churches was compared with the seismic hazard 

map of New Zealand, considering expected peak ground accelerations (PGAs) for a 

475-year-return-period earthquake for shallow soils (Figure 2.7) (Stirling et al., 2012). 

The comparison was further explored by computation of the seismic hazard factor, Z, 

defined by New Zealand Standards (NZS 1170.5, 2004), where the hazard factor has 

been derived as 0.5 times the magnitude-weighted 5% damped response spectrum 

acceleration for 0.5 s period for site class C (shallow soils) with a return period of 500 

years. This factor is determined through the Initial Evaluation Procedure (IEP) 

spreadsheet provided by the New Zealand Society for Earthquake Engineering 

(NZSEEG 2013). For church locations not listed in the IEP spreadsheet (about 20%), 

interpolation of the hazard factor was used. 27% of the inventory is located in zones 

with a hazard factor of 0.21 ≤ Z ≤ 0.30, 10% in zones of 0.31 ≤ Z ≤ 0.40 (Figure 2.8). A 

total of 13% of the inventory is located in high hazard areas, with a hazard factor greater 

than 0.30, being the current Z factor for Christchurch (raised from 0.22 by the 

Department of Building and Housing in May 2011 (McVerry et al., 2012)). This 

outcome confirms the relationship between the geographical distribution of currently 

existing URM churches and the seismic history of the country, and suggests that those 

churches located in the highest hazard zones should be investigated and possibly 

strengthened ahead of the remainder.  

2.4.2. Typological classification 

Within the characterisation of URM buildings, a very important classification is that 

concerning the overall building configuration. The seismic performance of a URM 

structure strongly depends on its general size and shape. Accordingly, a typological 

classification based on the plan and spatial features is developed, grouping structures 
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that may display a similar seismic behaviour. Six types are identified within the New 

Zealand URM church stock, as outlined in Figure 2.9 and Table 2.2. Photographic 

examples are given in Figure 2.10. The graph in Figure 2.11 shows the frequency of the 

types for the entire stock. Note that the majority of churches (58%) are part of the A 

type, underlining the simplicity of the architecture of New Zealand churches. The At 

type includes the presence of the transept and reaches 21%, such that the combined 

percentage of A and At types covers almost 80% of the analysed stock. Within the A 

type there is a group of small buildings, often officially denominated as chapels, that 

can be considered as votive churches, originally erected by wealthy families for 

devotion reasons or for celebrating a deceased. Generally, those churches are not part of 

a town centre, but are located in the countryside. 

 

 

Figure 2.7. Distribution of URM churches compared with the New Zealand 
national seismic hazard model (Stirling et al., 2012). 
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Figure 2.8. Percentage of URM churches according to hazard factor (Z). 
 

 

 

Figure 2.9. Typological classification of URM churches in New Zealand. 
 

 

Table 2.2. Summary of typological classification of URM churches. 

Type Plan No. of naves  Nave cover 

A Longitudinal 1 Roof 

At* Longitudinal 1 Roof 

B Longitudinal 3 Roof/Vaults 

C Central 1 Roof 

D** Central/ Longitudinal 1 Soffit 

E*** Longitudinal 3 or more Roof/Vaults 

*At: one nave with transept; 

**D: large hall without internal walls, with “box type” behaviour and exteriors as a building; 

***E: Basilica, similar to B but much larger. 
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(a) St Andrew (1938), Maheno - A type 

 

(b) All Saints' Church (1865), Dunedin - At type 

 

(c) St Matthew's Church (1874), Dunedin - B type 

 

(d) Trinity Church (now Fortune Theatre) (1869), 

Dunedin - C type 

 

(e) Sacred Heart Cathedral (1899), Wellington - 

D type  

 

(f) St Matthew in the City (1905), Auckland - E 

type 

Figure 2.10. Examples of types of URM churches, based on plan and spatial 
configuration. 
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Figure 2.11. Recurring types of URM churches. 
 

2.4.3. Architectural features 

New Zealand URM churches tend to have similar characteristics, in terms of both 

architectural features and construction details. This similarity occurs because most of 

the structures were built over a relatively short time span, and were often designed by 

the same architects.  

Focusing on the architectural characteristics of the churches, it has already been 

observed that the religious heritage is mainly represented by longitudinal plan churches, 

with a long nave eventually crossed by a transept (technical terminology is explained in 

Figure 2.12). The body of the building is arranged in naves. The main nave is at times 

flanked by lower aisles, and rows of piers or columns separate them. The main nave can 

end with a circular or polygonal apse. 

Churches were first analysed according to their overall dimensions, noting geometric 

irregularities in plan and elevation (e.g., whether they are isolated or attached/connected 

to other buildings). The foot-print area data was sorted into five value ranges: 31% have 

an area ranging from 50 to 200 m
2
, being mostly chapels and countryside churches, and 

53% have an area ranging from 201 to 500 m
2
 (Figure 2.13).  

For churches where it was possible to identify the wall thickness, the mean ratio 

between the peak height (hf) of the façade and its thickness (tf) is 23.8, with a coefficient 

of variation equal to 7.8 (Figure 2.14a). In addition to the vertical slenderness, the 

horizontal slenderness was computed, with the average ratio between the length (lf) and 

the thickness of the façade being 24.3, whereas the coefficient of variation is equal to 

8.5 (Figure 2.14b). In the same way the ratio between the height (hw) of the longitudinal 

walls and their thickness (tw) was investigated (mean value and coefficient of variation 
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equal to 12.3 and 4.3, Figure 2.14c), as well as the ratio between their length (lw) and 

thickness (mean value and coefficient of variation equal to 58.2 and 24.3, Figure 2.14d). 

These ratios can guide a preliminary vulnerability assessment, especially for those cases 

that show extreme values. Moreover, it would be interesting to compare New Zealand 

ratios with those from churches in other countries of both high and low seismic hazards, 

because existing data are limited and mostly restricted to ordinary buildings (Sorrentino 

2014).  

The presence of a porch/nartex (55%) is fairly widespread, being the church entrance. 

The porch/nartex is usually located facing the façade and opposite the church altar 

(37%), but sometimes is located on a side of the building, close to the corner of the 

façade (18%) (Figure 2.15). 

A presbytery (refer to Figure 2.12) is also generally present (46%), while the apse is 

rarer (20%) and frequently polygonal (17%) rather than circular (3%). The apse is 

mainly present in three-nave churches and Basilicas. 

Plan and elevation symmetry and regularity were also recorded. It can be observed that 

nearly 20% of churches are symmetrical and regular in both plan and elevation (Figure 

2.16). Cases of asymmetry are often due to extensions in plan that occurred during the 

life of the building, or the presence of adjacent buildings and/or raised structural 

elements (Figure 2.17). 

 

 

Figure 2.12. Schematic plan showing the common parts of a church. 
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Figure 2.13. Approximate foot-print area. 
 

 

 

(a) Peak height/thickness ratio of the façade 

 

(b) Length/thickness ratio of the façade 

 

(c) Height/thickness ratio of longitudinal walls 

 

(d) Length/thickness ratio of longitudinal walls 

Figure 2.14. Wall geometric ratios. 
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(a) St Johns (1922), Auckland - Porch facing the 

façade 

 

(b) St Patrick Basilica (1894), Oamaru - Nartex 

 

(c) St Oswald's Church (1914), Westmere - Porch on a side 

Figure 2.15. Examples of porch/nartex. 
 

 

 

 

Figure 2.16. Regularity of URM churches, both in plan and in elevation. 
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(a) Holy Trinity (1898), Auckland - Extension in 

plan 

 

(b) Wesley Broadway Methodist Church (1911), 

Palmerston North - Presence of adjacent buildings 

and raised element 

Figure 2.17. Example of geometric irregularities in plan and elevation and position 
with respect to other buildings. 

 

 

Raised elements can be domes and bell-towers, although the former is rarely present, 

and was found in only two churches of the inventory. Bell-towers are observed in 34% 

of the inventory, are always connected to the nave and can be the cause of vulnerability 

due to their different dynamic properties. In the majority of cases the bell-tower is 

flanked to the façade or along the longitudinal walls (80%), although sometimes it is 

included in the façade (20%) as seen in Figure 2.18. In 66% of cases bell-towers present 

buttresses and 53% have large openings up their height. 

Chapels are present in 43% of the inventory, often not spread along the whole nave 

wall, and sometimes in an asymmetrical position with respect to the plan configuration 

(33%). 

Sometimes the change from original use (refer to Figure 2.5b) caused alterations to the 

structure and/or configuration (Figure 2.19). These modifications could contribute to 

improve or worsen the earthquake performance of the building, e.g., depending on the 

addition of connections or the removal of structural elements and the increase of mass. 
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(a) St Mary's (1888), Pleasant Point - Bell tower 

included in the façade 

 

(b) Sacred Heart (1926), Ranfurly - Bell tower 

flanked to the façade 

 

(c) St Peter's (1932), Queenstown - Bell tower along the longitudinal walls 

Figure 2.18. Examples of bell-tower included in the façade, flanked to the façade or 
along the longitudinal walls. 

 

 

 

(a) Moray Place Congregational Church (1864), 

Dunedin - Residential apartments 

 

(b) Hanover Street Baptist Church (1912), 

Dunedin - Bar 

Figure 2.19. Examples of churches whose use has been changed. 
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2.4.4. Structural characteristics 

As shown in Figure 2.20, 55% of the inventory is constructed of clay-brick URM 

(Figure 2.21a) and 39% is constructed of natural-stone URM (Figure 2.21b). In 3% of 

cases, building stones were limited to facings, basement walls, and the main façade, 

probably because stone was more expensive than clay brick. For the remainder of the 

inventory the presence of plaster hampered a positive identification of the masonry type, 

although the date of construction indicates a traditional building technique and response 

to simple percussion excludes the use of timber. 

 

 

Figure 2.20. Masonry types of existing URM churches. 
 

 

 

(a) St. Paul’s church (1916), Auckland - Clay 

brick 

 

(b) Caversham Church (1883), Dunedin - Natural 

stone 

Figure 2.21. Examples of church construction materials. 
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The construction types were connected to local geology, with almost all stone URM 

buildings in New Zealand being constructed in areas where the material was available 

nearby from local quarries, fields and rivers (e.g., the volcanic rocks of Auckland, New 

Plymouth, Christchurch, Timaru and Dunedin, the limestone in Oamaru, and the schist 

in central Otago) (Nathan and Hayward, 2012). The natural-stone buildings are mostly 

concentrated in the South Island, in Canterbury and Otago regions (Figure 2.22), 

characterised by metamorphic rocks (such as schist, Figure 2.23a) and sedimentary 

rocks (such as limestone, Figure 2.23b), respectively. Igneous rocks are widely 

distributed throughout the country with a prevalence of basalt (Figure 2.23c) (Giaretton 

et al., 2013). 

As already widely known, the quality of construction materials plays a key role in the 

response of URM buildings. Wall construction quality appears to have improved over 

the years, with early churches sometimes constructed using roughly shaped stone blocks 

with gaps filled with poor mortar. In Christchurch, in the aftermath of the Canterbury 

earthquakes, different levels of stone and mortar quality were detected in structures 

(Dizhur et al., 2011) and it was confirmed that the use of undressed stone units, in 

conjunction with low-strength lime mortar, often led to poor earthquake response 

(Figure 2.24).  

Mortar is typically lime based, sometimes with a low compressive strength. In a few 

cases, modern cement mortar has been used to repoint existing masonry joints. 

 

 

Figure 2.22. Masonry type distribution per region. 
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(a) St John's Church (1895), Middlemarch - Schist 

 

(b) St Martin's Church (1901), Duntroon - Limestone 

 

(c) St Paul's Church (1895), Auckland - Basalt 

Figure 2.23. Examples of stone types in New Zealand. 
 

In the investigation of the wall cross-sections, 61% of the inventory (that was possible 

to survey) is made of single-material solid walls, while 39% of identifiable cases can be 

sorted into the following types showing: 

 a cavity wall (presenting a continuous air gap separating wythes from one 

another), with either clay-brick (Figure 2.25a) or natural-stone (Figure 2.25b) 

leaves; 

 a two-layer wall, with a stone external facing and one or two clay-brick leaves 

(Figure 2.25c). 
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Field observations have shown a rather high seismic vulnerability of non-solid walls, 

which are prone to failure of one or more leaves. Nonetheless, solid walls can also 

display inadequate performance, when the wythes are not properly connected and 

undressed units are used. 

Unlike other countries, in New Zealand the nave cover is rarely a URM vault. 

Considering only those churches where a survey of the interior was possible, stone 

vaults are present in 7% of the cases, being just two type B and five type E churches. A 

sloping roof, visible from the nave, is registered in 77% of the subset of the churches 

surveyed internally (Figure 2.26a). In the remainder of cases the roof is concealed by a 

ceiling. In Britain and its colonies, trussed roofs started to be adopted in the 17
th

 century 

and were developed up to the 19
th

 century, initially hidden above the ceiling and later 

revealed as a visible feature of the buildings (Yeomans, 1992). As shown in Figure 

2.27, there are four main statical schemes of sloping roofs in New Zealand: 

1. king-post trusses (28% of visible roofs), with a bottom chord in just one case and a 

raised tie in the remainder 24 cases (Figure 2.28a); 

2. queen-post trusses (4%), with one metal bottom tie, one bottom chord, and two 

raised ties (Figure 2.28b); 

3. an elegant elaboration of timber truss consisting of a scissors roof (23%), with or 

without a raised tie (19% vs. 81%) (Figure 2.28c); 

4. a rafter roof (19%), with a timber arch below the rafters in 83% of cases, and with or 

without a horizontal top beam, also dubbed collar (66% vs. 34%) (Figure 2.28d). 

Roofs without a chord at support level develop a thrust that can worsen earthquake 

performance of the building (Sorrentino et al., 2008). The remaining 9% of the visible 

sloping roofs are partially hidden by a ceiling that prevents an assured classification 

(Figure 2.28e). As shown in Figure 2.26b the roof support is a corbel stone (60%), a 

timber beam (33%), or a reinforced-concrete beam (7%). 

The occurrence of additional structural details, such as soaring elements, large openings 

and heavy roof covers, which might increase the vulnerability of the building, was also 

investigated. Soaring elements are recurrently present in New Zealand churches and in 

62% of cases a pinnacle, a parapet-belfry, or a crenellation was encountered (Figure 

2.29). Large openings on the longitudinal walls and rose windows on the façade are 

respectively present in 21% and 61% of cases. A heavy roof cover (e.g., thin stones) is 

present in 36% of the inventory. 
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St Cuthbert's Church (1860), Governors Bay 

Figure 2.24. Example of bad masonry quality. 
 

 

 

(a) St Joseph’s Church (1921), Christchurch – 

Clay-brick cavity wall 

 

(b) Trinity Congregational Church (1873), 

Christchurch – Natural-stone cavity wall 

 

(c) St Peter's Church (1875), Christchurch (Photo courtesy of Joao Leite) - Two-layer wall 

Figure 2.25. Examples of wall cross-sections. 
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(a) Nave cover 

 

(b) Type of roof support 

Figure 2.26. Type of nave cover and roof support (related to the sub-inventory for 
an accessible interior). 

 

 

 

Figure 2.27. Statical schemes of New Zealand sloping roofs. 
 

Different strengthening elements have been surveyed in the churches, with URM lateral 

buttresses observed in 82% of cases, whereas façade buttresses are present in 26% of 

the inventory. Tie rods are more rare, being used to eliminate the thrust of the roof in 

24% of the surveyed cases (Figure 2.30a), or laid transversally and/or longitudinally in 

18% of the sample (Figure 2.30b). Ring beams were detected in just two cases, but 

elsewhere they may be concealed by plaster or masonry facing.  

A good state of preservation was encountered for 54% of the surveyed buildings in the 

inventory. However, the few churches not in use show some lack of maintenance in 

plaster and roof, and 27% show a limited number of small cracks or no more than two 

larger cracks induced by soil settlement and lack of connections (17 churches in 

Auckland, 10 in Dunedin, 5 in Wellington). Some churches (5%) show more relevant 

problems, presenting more than two large cracks, but the overall condition is still 

acceptable. Another 14% fall within Christchurch and have been damaged by the 2010-

2011 Canterbury earthquakes. 
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St Gerard's Church (1908), Wellington - King-post 

truss 

 

(b) St Joseph and St Joachim (1926), Auckland - 

Queen-post truss 

 

Sacred Heart (1918), Takaka - Scissors roof 

 

(d) All Saints (1913), Palmerston North - Rafters 

roof 

 

(e) St Andrew’s Church (1914), Auckland - Roof partially hidden by ceiling 

Figure 2.28. Examples of roof types. 
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(a) Garin Memorial Chapel (Wakapuaka 

Cemetery) (1890), Nelson - Parapet-belfry (on the 

left side) 

 

(b) St Joseph’s (1879), Temuka - Pinnacles 

Figure 2.29. Examples of soaring elements. 
 

 

 

(a) St Luke's (1908), Wellington - Tie rods in the 

roof 

 

(b) St Magnus (1897), Duntroon - Tie rods 

connecting walls 

Figure 2.30. Examples of presence of tie rods. 
 

2.5. Conclusions 

The 2010-2011 Canterbury earthquakes have again demonstrated the unsatisfactory 

earthquake performance of unstrengthened URM churches, with approximately 15% of 

the affected buildings demolished due to the heavy damage suffered. Due to the high 

seismicity of New Zealand, the large concentration of people that may occur in religious 

buildings, and the societal relevance of these structures for historical and symbolical 

reasons, assessment and mitigation of the earthquake vulnerability of URM churches 

are of paramount importance. Despite such prominence, a comprehensive list of New 

Zealand URM churches was not present at the beginning of this research. Hence, a 
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detailed inventory of URM churches throughout New Zealand was compiled, with a 

total of 297 buildings being located, excluding 12 buildings that were demolished after 

the Canterbury earthquakes. It is possible that additional churches are located across the 

country, along routes not explored during the 10 000 km field trip.  

The analysis of the collected data led to the following considerations on the URM 

religious heritage buildings in existence in New Zealand: 

 The buildings were constructed mainly between 1870 and 1940 and now 

approximately half of the entire inventory is registered with HNZ.  

 The main religious denominations are: Anglican (33%), Presbyterian (23%), 

Catholic (20%) and Methodist (12%). Approximately ninety percent of churches are 

still used for their original function. 

 The existing stock is concentrated in the Otago (30%), Canterbury (29%) and 

Auckland (14%) regions.  

 A limited number of unreinforced masonry churches (13%) are located in high 

seismic hazard zones (Z hazard factor greater than 0.30). 

 New Zealand churches usually have a simple layout when compared to European 

standards. 58% of the sampled buildings have a single nave, and in 21% of cases a 

transept is added to the nave. The most frequent gross foot-print area is larger than 

200 m
2
 and smaller than 500 m

2
. Most of the buildings are not regular in plan or in 

elevation, due to the presence of added parts and connected bell-towers. 

 In more than half of the inventory clay-brick masonry is used, while natural stone is 

slightly less common. Lime mortars are typically used. Masonry quality can vary 

significantly throughout New Zealand and it appears that the quality of construction 

improved over time. Cross-sections frequently show multiple leaves that are 

inadequately connected or even separated by cavities. 

 The roof is usually sloping and has a raised tie in most cases, instead of a bottom 

chord. This detail can increase the vulnerability of the building due to exerted thrust. 

Vaults are rather seldom. In contrast, soaring elements (such as pinnacles, parapet-

belfries and crenellations) are frequent. 

 Buttresses are very frequent in New Zealand churches. In contrast, strengthening 

details such as tie rods are present in less than 20% of the cases. This absence of 

securing may be the result of the application of British construction practices, with a 

low awareness of detailing to safeguard against earthquakes. 
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 The state of preservation is usually good, although cracks can affect the buildings to 

a limited (27%) or moderate (5%) extent. The churches affected by the 2010-2011 

Canterbury earthquakes, with varying degree of severity, are about 14% of the 

stock. 

Further development will include in-depth analysis of the earthquake performance of 

the buildings affected by the 2010-2011 Canterbury earthquakes. Such analysis will 

address both the overall performance of the buildings and the response of their main 

elements (such as the façade, nave, apse, and transept). Knowledge of the behaviour of 

buildings with different structural features and geometric characteristics, as well as 

exposure to varying severity of shaking, will be helpful for the future seismic 

assessment of the national stock. The inventory reported in Appendix A will support the 

identification of buildings and provide their specific location. Moreover, it could be 

used for updating the HNZ Register. The overarching goal of this first part of the 

research was to support the conservation and protection of the religious heritage of New 

Zealand and the safety of people in and around these buildings. 
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Chapter 3 
 

 Vulnerability assessment of unreinforced 

masonry churches following the 2010-2011 

Canterbury earthquake sequence 

In this section, a sample of 80 affected buildings is analysed and their performance 

statistically interpreted. Structural behaviour is described in terms of mechanisms 

affecting the so-called macro-elements, and damage probability matrices are computed. 

Regression models correlating mean damage level against macroseismic intensity are 

also developed for all observed mechanisms, improving the initial simple-linear 

formulations through use of multiple-linear regressions accounting for vulnerability 

modifiers, whose influence is evaluated via statistical procedures. Results presented 

herein will support the future development of predictive tools for decision-makers, also 

contributing to seismic vulnerability mitigation at a territorial scale.  

 

3.1. Introduction 

The extensive damage that occurred to unreinforced stone and clay brick masonry 

(URM) churches after the 2010-2011 seismic swarm in the Canterbury region 

emphasises the need to better understand the vulnerability of this structural type and to 

determine appropriate seismic retrofit measures. Churches frequently display a seismic 

vulnerability higher than ordinary buildings (D’Ayala, 1999), especially at larger 

intensities of ground shaking, that in recent years has led to studies at a territorial scale 

after several major earthquakes (Montilla et al., 1996; Guerreiro et al., 2000; Guevara 

and Sanchez-Ramirez, 2005; Lagomarsino and Podestà, 2004a; Lagomarsino, 2012; da 

Porto et al., 2012; Sorrentino et al., 2014a) and to structural assessment of their 



40 

vulnerability (Sofronie, 1982; Elton and Marciano, 1990; Rivera De Uzcategui and 

Torres, 1997; Stiros et al., 2006; Gonzalez Ballesteros et al., 2012; Sorrentino et al., 

2014b). 

At least 297 URM churches are present in New Zealand, as shown in the inventory 

reported in Appendix A, and several assessments of the performance of New Zealand 

URM churches have been carried out recently (Anagnostopoulou et al., 2010; Leite et 

al., 2013; Lester et al., 2013; Lourenço et al., 2013; Senaldi et al., 2014). To improve 

the understanding of the seismic response of ecclesiastic buildings during the 

Canterbury earthquake sequence the existing observations were reanalysed and 

additional surveys were performed, resulting in an increased sample of 80 URM church 

buildings. The damage, contrary to the common practice in use for other building types, 

has been described both at global and local levels and damage degrees have been 

defined according to the European Macroseismic Scale (EMS-98; Grünthal, 1998). 

Existing unreinforced masonry buildings frequently suffer damages concentrated in the 

weakest elements (e.g., D’Ayala and Speranza, 2003; Sorrentino et al., 2014c). This 

behaviour is even more pronounced in churches that, because of their architectural 

characteristics (large horizontal and vertical spans), usually do not show an overall 

behaviour but instead local mechanisms generally occur. This specific feature was 

recognised by Giuffrè (1988) and systematically used by Doglioni et al. (1994) with the 

definition of the macro-element, which is an architectural component whose seismic 

behaviour is only weakly coupled to that of the rest of the structure. According to such 

an approach Lagomarsino (1998) and Lagomarsino et al. (2004) proposed a damage 

survey form with 28 local mechanisms identified in its latest official version (PCM-

DPC MiBAC, 2006), and this Italian survey form was used to assess the 80 URM 

churches of the Canterbury area. 

Several seismic vulnerability assessment methods have been developed from the early 

1970’s to the present time considering different approaches for the collection and 

interpretation of data, both at urban and territorial scale. These vulnerability assessment 

methods are classified as either empirical or analytical/mechanical methods. Empirical 

methods are based on directly observed vulnerability or expert judgement (ATC 1985- 

Report 13), are developed based on knowledge of selected parameters collected from in 

situ observation, and are suited to identification of the seismic vulnerability of a 

building stock. There are three main types of empirical methods: damage probability 

matrices (DPMs), which express in a discrete form the conditional probability of 
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obtaining a damage level due to a ground motion of given intensity (Whitman et al. 

1973); the vulnerability index method (VIM), based on the summation of parameters 

that can influence the vulnerability (Benedetti et al. 1988); and continuous vulnerability 

functions, which express the probability of exceeding a damage state, given a function 

of the earthquake intensity (Spence et al., 1992; Sabetta et al., 1998). 

Analytical/mechanical methods are based on computational analysis defining a direct 

relationship among construction characteristics, structural response to seismic action 

and damage effects. Because these methods need more detailed information, they can be 

applied to a limited number of buildings. Analytical methods produce more detailed 

algorithms with physical meaning, and their development has been strongly influenced 

by the growth of attenuation equations for specific seismic regions and corresponding 

derivation of seismic hazard maps in terms of spectral ordinates (D’Ayala, 2013). They 

can be classified according to three categories: analytically-derived vulnerability curves 

and DPMs methods (Singhal and Kiremidjian, 1996), collapse-mechanism methods 

(Bernardini el at., 1990), and capacity-spectrum-based methods (Kircher et al., 1997; 

Calvi, 1999). Finally, methods using features belonging to both previous methods, 

combining post-earthquake damage statistics with analytical damage statistics, are 

named hybrid methods (refer, e.g., to Barbat et al., 1996; Kappos et al., 1998). Because 

analytical methods need detailed information, they can be applied to a limited number 

of buildings.  

Given the available information and the interest associated with "experimental" data, an 

empirical approach was assumed for the analyses of earthquake damage to New 

Zealand URM churches, by opting for the computation of damage probability matrices 

(DPMs). Although ecclesiastical buildings have sometimes been treated as individual 

structures because of their specific architecture, several studies have previously been 

undertaken in order to statistically characterize churches at territorial level (e.g. 

Lagomarsino and Podestà, 2004b; Lagomarsino, 2006; da Porto et al., 2012). Moreover, 

New Zealand URM churches tend to have similar characteristics, in terms of both 

architectural features and construction details, because of a relatively short time span of 

construction and because they were often designed by the same architects, leading to a 

reasonably homogeneous set of buildings (refer to §2.4). According to the predominant 

literature, the first and foremost parameter considered for explaining damage is the 

severity of shaking, and macroseismic intensity is herein used as the intensity measure 

(IM) of ground motion. 
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3.2. Seismic event 

The Canterbury region of New Zealand experienced an extensive earthquake sequence 

during 2010-2011 with more than 10 000 seismic shocks since the Darfield earthquake 

on 4 September 2010 that had moment magnitude (Mw) 7.1. The most severe event, in 

terms of damage, occurred on 22 February 2011 with Mw 6.3 and an epicentre located 

10 km south-east of Christchurch, which is the second largest city in New Zealand. 

Additional information about the seismic sequence can be found in Bannister and 

Gledhill (2012) and in Bradley et al. (2014). The earthquake sequence caused extreme 

disruption, with damage to Christchurch architectural heritage being particularly 

extensive (Moon et al., 2014). With reference to churches, the Darfield earthquake 

caused limited damage compared to the February event (Anagnostopoulou et al., 2010), 

after which more than 80% of the URM churches were classified as unsafe or 

temporarily restricted for access (Leite et al., 2013). 

Goded et al. (2014a) assigned a macroseismic intensity to each district of Christchurch 

and to peripheral areas stricken by the February event, using the New Zealand Modified 

Mercalli (NZMM) intensity scale. In New Zealand, felt intensities have been assigned 

using this scale since the 1960s (Eiby, 1966), when the MM scale was revised in order 

to be directly applicable to the national stock of structures. A second revision was 

performed in 1992 (Study Group of the NZSEE, 1992), and the current version was 

developed just a few years later (Dowrick, 1996). The MM scale presents just four 

construction types, all made of masonry, whereas the current NZMM scale accounts for 

six different construction types and involves a more detailed damage description for 

grades larger than 7, including references to specific construction dates related to 

significant changes in structural codes. According to Dowrick (1996), the NZMM scale 

is broadly similar to the EMS, and minor differences can be recognised only for 

intensities 11 and 12. For the sites of 57 churches the intensities in Goded et al. (2014b) 

have been used, and the distribution of the most probable NZMMI for the Christchurch 

districts is summarised in Figure 3.1. For the remaining 23 churches, all located south of 

Ashburton (which is a town located 89 km to the south west of central Christchurch), 

the same lowest intensity (NZMMI = 4) was assumed, in accordance with the damage 

observed. 
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3.3. Damage and vulnerability assessment 

3.3.1. The sample of churches and the data collected 

New Zealand became a British colony following the signing of the Treaty of Waitangi 

in 1840. As a consequence, New Zealand colonial settlements were modelled on British 

society and as parishes became established, churches were built in English forms with 

which the clergy and architects were familiar (refer to §2, and references therein). The 

first churches were built mainly with timber because of the simplicity and speed of 

construction, and material availability, but with growing prosperity stone and clay brick 

masonry buildings became popular until 1931, when the Hawke’s Bay earthquake (Mw 

7.8) proved the poor earthquake performance of those materials. The use of URM was 

explicitly outlawed in 1965 in most areas of New Zealand (NZSI, 1965), such that 

almost all unreinforced masonry churches in New Zealand were constructed between 

the late 1840s and 1931, with a few cases of construction until 1965, being a short time 

span compared to other countries worldwide. 

Nationwide 297 URM churches have been recognized and surveyed, and data on 

structural details and geometric characteristics have been collected (§2). 80 URM 

churches have been identified in the area of the Canterbury region affected by the 

earthquakes, with 42 being in Christchurch city and an additional 12 having been 

demolished because of the heavy damage suffered (CERA, 2014). About 38% of the 80 

URM churches are made of natural-stone URM (Figure 3.2a), 51% are made of clay-

brick URM (Figure 3.2b) and the remaining 11% have a brick structure with a stone 

veneer. These percentages closely match the nationwide inventory, where 39% are 

constructed of natural-stone URM and 55% are made of clay-brick URM, showing the 

good representativeness of the Canterbury sample compared to the national portfolio. 

As for the entire New Zealand inventory, in the area affected by the earthquake wall 

cross-section morphologies can be delineated among single-material solid walls, cavity 

walls (presenting a continuous air gap separating wythes from one another) with either 

clay-brick or natural-stone leaves, and two-layer walls with a stone external facing and 

one or two clay-brick leaves. Among the structural characteristics examined, the 

British-derived trussed roofs were particularly interesting as in New Zealand there 

common statical schemes do not present a chord at the support level. 
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Regarding the typological classes identified nationwide according to the plan and spatial 

features of the buildings (§2.4.2), most of the churches present in the Canterbury region 

(85%) fall into the combined A (one nave without transept, 62%) and At (one nave with 

transept, 23%) types, confirming the simplicity of their architecture. These percentages 

are once again close to those for the entire national stock, where respectively 58% and 

21% of churches belong to A and At types. Similar agreements also apply to the four 

remaining and less common types. 

 

 

Figure 3.1. Locations of the 80 URM churches with their NZMMI assignments 
 

 

 

Figure 3.2. Examples of building materials of the URM churches in the 
Canterbury region. Photo (b) is courtesy of João Leite. 
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3.3.2. Damage classification 

Data concerning the damage suffered by ecclesiastic buildings in the Canterbury 

earthquakes were collected during 2014 and compared to the results of the surveys 

carried out in 2011, immediately after the major events (Leite et al., 2013). This earlier 

2011 survey is the only source of information about the damage to the 12 churches 

demolished before 2014. The analysis procedure was the one currently adopted in Italy 

for post-earthquake assessment (PCM-DPC MiBAC, 2006), involving the evaluation of 

28 possible collapse mechanisms (Figure 3.3), which is a more detailed approach when 

compared to the straightforward assignment of a global damage level, as is customary 

for other building types (Benedetti and Petrini, 1984; Erberik, 2008). When a single 

building is under investigation, quantitative procedures relying on detailed surveys 

through dense point clouds acquisition can be used to identify collapse mechanisms 

(Andreotti et al., 2014). When, as for the Canterbury earthquakes, a large sample of 

buildings is analysed, qualitative judgment, based on the observation of macroscopic 

cracks and deformations, is the most suitable possibility. Six damage levels, dk, were 

assigned for each mechanism, according to the approach of the EMS-98 scale: 0 - No 

damage; 1 - Negligible to slight damage; 2 - Moderate damage; 3 - Substantial to heavy 

damage; 4 - Very heavy damage; 5 - Destruction. In Figure 3.4 examples of damage 

ascription for one mechanism are reported. 

The percentages of mechanisms whose activation is possible are presented in Figure 

3.5, alongside a ratio of activated-over-possible mechanisms. The first parameter 

highlights the simplicity of the architecture of New Zealand URM churches (as already 

pointed out in §2). One macro-element, vaults in the chapels (related mechanism: #24) 

is not present at all, some other mechanisms (12, 14-15) showed systematic activation 

but their macro-elements, vaults, domes and roof lanterns, are present in just one or two 

buildings. Because of their rather poor sample size, these mechanisms, together with 7-9 

and 18, are not further discussed in the following. Within the 20 remaining mechanisms, 

the most vulnerable one is the shear response of the longitudinal walls (#6, Figure 3.6a), 

activated in 80% of possible cases. Overturning (#10, Figure 3.6b) and shear (#11) in 

the transept present the same activation rate (73%). Sixty-eight % of projections (#26, 

Figure 3.6) and triumphal arches (#13) were damaged, whereas interactions between 

nave and its roof (#19, Figure 3.6d) and damages in the porch (#4) were observed in 

67% of cases.  
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Figure 3.3. Collapse mechanisms in the Italian survey form for churches (PCM-
DPC MiBAC 2006). 
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Figure 3.4. Examples of damage ascription for mechanism no. 2 (gable 
mechanisms). Photo (b) is courtesy of João Leite. 

 
 

Figure 3.5. Percentage of possible (over the sample of 80 churches) and activated 
(over the sample of possible) mechanisms depicted in Figure 3.3. 

 

 

In Figure 3.7 the mean damage of each mechanism is plotted. Their comparison is 

meaningful provided that the distribution of buildings across felt intensities is 

comparable, which is not the case for some macro-elements that are rarely present (e.g., 

vaults in the naves, related to mechanism #9; vaults in the transept, #12; dome and roof 

lantern, #14-15), belonging to buildings located in the centre of Christchurch and 

displaying very high mean damage. Damage in the triumphal arch (#13) shows an 

average value of about 2.2, being slightly higher than for shear in longitudinal walls 

(#6), while mechanisms regarding damage in the porch (#4), overturning and shear in 

the transept (#10-11), interactions between the nave and its roof (#19), and damage in 

projections (#26) display a mean damage between 1.6 and 1.8. 
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Figure 3.6. Examples of some of the most activated mechanisms. Photo (a) is 
courtesy of João Leite. 

 
 

Figure 3.7. Mean damage for the 28 mechanisms. 
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3.4. Damage probability matrices 

3.4.1. Damage probability matrices for global damage 

The DPM approach is an empirical method originally proposed by Whitman et al. 

(1973) after the 1971 San Fernando earthquake and subsequently applied in Europe by 

several authors (Braga et al., 1982; Lagomarsino, 1998; Dolce et al., 2003; Lagomarsino 

et al., 2004; Di Pasquale et al., 2005; Liberatore et al., 2006; Vicente et al., 2011). 

Despite shortcomings associated with discrete definition of the damage and the strong 

dependence on direct damage data (Calvi et al., 2006; D’Ayala, 2013), this method is 

one of the most suitable at territorial level, allowing the estimation of vulnerability on 

the basis of a limited number of structural and architectural characteristics. DPMs 

express the probability P of reaching a damage state (D = Di) due to a ground motion 

level (I):  

 IDDPDPM iDI ,  
(1) 

 

Given the intensity of the earthquake shaking, the damage is described by a distribution 

of a discrete damage variable D.  

In literature DPMs have generally been proposed for the global performance of a 

church, being computed from a global damage index, id, representative of the damage 

that occurred to the church, calculated by means of a weighted mean of the damage 

scores assigned to each collapse mechanism: 
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(2) 

where ρk is a weight score ranging between 0 and 1, based on the influence of the 

considered mechanism on the global response of the structure; dk is the damage score 

concerning the k-th mechanism, ranging between 0 and 5; and N is the number of 

mechanisms that can be activated (N ≤ 28).  
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The damage index, originally proposed in Lagomarsino et al. (1997) and revised in 

Lagomarsino et al. (2004), is a synthetic parameter that allows comparison between the 

level of damage to churches of different typologies, sizes and shapes recognising that 

the seismic performance of a URM structure strongly depends on the overall building 

configuration. This is not a main issue in the present case, considering the already 

highlighted homogeneity of the ecclesiastical New Zealand stock. The damage indices 

for the 80 churches are plotted in Figure 3.8, showing a trending increase with felt 

intensity, but with significant scatter. This phenomenon means that macroseismic 

intensity alone cannot fully explain the damage. 

In order to express global damage in levels (Dj) comparable with those of EMS98, the 

previously calculated damage index, id, was transformed into a discrete variable, using 

the correlation suggested by Lagomarsino and Podestà (2004b) (Table 3.1). In the 

damage distribution (Figure 3.9) slight damage (D1) is prevalent (29%), followed by 

substantial (D3), moderate (D2) and null damage (D0), each of about 19%, followed by 

heavy damage (D4, 13%) and destruction (D5, 4%). 

The interpretation of the damage observed after the 2011 seismic event was undertaken 

by fitting the obtained frequencies with a binomial distribution (Braga et al., 1982), 

according to the following equation: 
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(3) 

where pi is the probability of having a damage of level i (i = 0, 1, 2, 3, 4, 5) and μD is the 

mean damage defined as: 
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(4) 

where nI is the number of churches suffering the same NZMM intensity. 
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Table 3.1. Correlation between damage index, id, and damage level, Dj. 

Dj id Description  

0 id ≤ 0.05 No damage: light damage only in one or two mechanism 

1 0.05 < id ≤ 0.25 Negligible to slight damage: light damage in some mechanisms 

2 0.25 < id ≤ 0.4 Moderate damage: light damage in many mechanisms, with one or two 

mechanisms activated at medium level 

3 0.4 < id ≤ 0.6 Substantial to heavy damage: many mechanisms have been activated at 

medium level, with severe damage in some mechanisms 

4 0.6 < id ≤ 0.8 Very heavy damage: severe damage in many mechanisms, with the 

collapse of some macroelements of the church 

5 id > 0.8 Destruction: at least 2/3 of the mechanisms exhibit severe damage 

 

In order to develop the DPM the sample was split according to felt macroseismic 

intensities (Figure 3.1) and the DPM was defined according to the percentage of 

occurrence of damage for each intensity. Because a small number of churches are 

present at some intensities, namely NZMMI = 5 and 6, a linear variation of mean 

damage is assumed over intensity, i.e.: 

NZMMIbaD   
 

(5) 

The parameters a and b have been estimated over the whole sample of 80 churches 

according to the maximum-likelihood criterion. 

In Figure 3.10 the histograms of damage, and their binomial fitting, are presented for 

each macroseismic intensity, where the binomial distribution appears effective for some 

intensities (4, 7, 9) but less so for others (5, 6, 8). These results highlight that the 

macroseismic intensity alone is not able to fully explain the damage, which can be 

increased or reduced by vulnerability factors that have not yet been considered. 

For each intensity a goodness-of-fit test (Benjamin and Cornell, 1970) was performed 

on the corresponding damage probability distribution by calculating the statistic, S: 
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where Ni is the number of churches with damage level i, pi is the corresponding 

probability and nI is the total number of churches which underwent that intensity.  

Because the terms in the summation have the probability pi in the denominator, large 

values of S occur for outliers, i.e. churches which have a damage level with small 

probability. The observed values of the statistic S are reported in Figure 3.11, along with 

the individual contributions to the summation of the different damage levels. 
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In order to establish if the binomial distribution is adequate, for each intensity 50 000 

samples were generated by the Monte Carlo method (the small size of the samples 

makes the χ
2
 distribution unsuitable for the statistic S) and the resulting critical values 

for the significance level at 5%, denoted as S0.05, were computed (Figure 3.11). Values 

of S less than S0.05 (as happens for NZMMI = 7, 8, 9) lead to acceptance of the 

probability distribution, while values greater than the significance level imply rejection 

of the distribution (as happens for NZMMI = 4, 5, 6). Apart from the scarcity of data for 

some intensities, it can be noticed that high values are mainly determined by outliers 

corresponding to substantial or high damage for low intensities. Conversely, cases 

where low damage occurred in conjunction with high intensities produce comparatively 

high values of S. These results confirm that vulnerability factors need to be considered, 

by applying suitable regression models to the response of local mechanisms. 

 

 

Figure 3.8. Distribution of the damage index, id, with NZMM intensity. 
 
 

 

Figure 3.9. Percentage of the damage level (Di) for the 80 observed churches. 



 

53 

 

Figure 3.10. Damage Probability Matrices and binomial distribution of the 80 
observed churches for given intensities. 

 

 

 

Figure 3.11. Goodness-of-fit test of the 80 observed churches for given intensities. 
The contribution of each damage level to the statistic S, Eq. (6), is reported. The 

ordinate values are cut between approximately 25 and 50.  
 

3.4.2. Damage probability matrices for local damage 

Because local collapse mechanisms are identifiable in autonomous structural parts of 

churches, an individual analysis of each mechanism is here developed. This approach 

was explored by Liberatore et al. (2009) on 86 churches and by De Matteis et al. (2014) 

for groups of mechanisms on a sample of 26 three-nave churches.  
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Here the damage histograms and the binomial fitting are computed for all the relevant 

mechanisms based on direct observations. The mean damage, μD, is now computed 

according to: 
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(7) 

where dj is the damage score assigned to the mechanism, ranging again between 0 and 

5. A selection of the outcomes is presented in Figure 3.12 while all 20 cases are showed 

in Appendix B, showing that for some mechanisms the probabilistic approach is 

improved compared to the DPMs proposed for the global performance of churches 

(Figure 3.10). The underperformance of the global damage levels, Dj, can be interpreted 

as the effect of the summation of diverse mechanism damage scores, dk, for the same 

macroseismic intensity. In some of the DPMs proposed for local mechanisms (see 

Figure 3.12) it is possible to observe a flatness in the damage distribution, even for 

increasing intensity, suggesting that heavy damage for medium intensities shows a high 

vulnerability of some macro-element, whereas little or no damage in churches strongly 

shaken indicates a successful design. 

In order to verify if a better correlation occurs between the observed damage and a 

different statistical distribution, a beta distribution is also used to fit the empirical data 

(Giovinazzi and Lagomarsino, 2005; Lallemant and Kiremidjian, 2015). The beta 

distribution is a family of continuous probability distributions defined on the interval [0, 

1] and parametrized by two positive parameters, α and β, that are the exponents of the 

random variable controlling the shape of the distribution. 
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where B(α, β) is the beta function and α, β are > 0 and computed through the Maximum 

Likelihood Estimation method (the small size of the samples makes the method of 

moments unsuitable for the computation of the parameters α and β).  

Although the beta distribution can model various shapes of damage distribution, similar 

results are obtained with respect to the binomial distribution (Figure 3.13), confirming 

discrepancies between the statistical distributions and the probabilistic functions. These 

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Parametrization
https://en.wikipedia.org/wiki/Shape_parameter
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observations are probably due to the paucity of data, especially for some intensities, and 

to the fact that the intensity measure alone is not adequate in explaining the damage. 

Similarly to the procedure employed to assess global damage, the goodness-of-fit test 

was performed for each mechanism of the corresponding damage probability binomial 

distribution by calculating the statistic S, Eq. (6), and its distribution. Figure 3.14 shows 

the observed values of the statistic for the same two mechanisms addressed in Figure 

3.12 and the comparison with the critical values for the significance level S0.05. The 

goodness-of-fit test of all mechanisms is presented in Appendix C, and it appears that 

the DPM approach works well for some mechanisms, but is less effective for those 

mechanisms where there are no substantial differences compared to the global analysis. 

Once again the results confirm that the macroseismic intensity alone is not able to fully 

explain the observed damage, and that vulnerability factors need to be accounted for. 

 

Figure 3.12. Damage Probability Matrix and binomial distribution for two of the 
20 considered mechanisms (refer to Figure 3.3). 
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Figure 3.13. Damage Probability Matrix and beta distribution for two of the 20 
considered mechanisms (refer to Figure 3.3). 

 

 

 

Figure 3.14. Goodness-of-fit test for two of the 20 considered mechanisms. 
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3.5. Correlation between mechanisms 

Additional attempts were made considering groups of mechanisms and groups of 

intensities, as also suggested in De Matteis et al. (2014). In the first case out-of-plane 

mechanisms (#1-10-16), façade mechanisms (#2-3-4), lateral walls mechanisms (#6-11-

17), roof mechanisms (#19-20-21), and bell tower mechanisms (#27-28) were 

collectively considered, whereas in the second case intensities were merged according 

to the following scheme: 4-5 NZMMI, 6-7 NZMMI, 8-9 NZMMI. Neither attempts 

markedly improved the agreement between statistical and binomial distributions, 

compared to those previously presented. A possible correlation between the considered 

mechanisms was investigated through the computation of the Pearson coefficient, 

measuring the linear correlation between two variables, and ranging between -1, when 

there is a perfect negative correlation, 0, when there is no correlation, and 1, when there 

is a perfect positive correlation. The Pearson coefficient, Rc,r, is defined as the 

covariance of the two variables considered (dc, dr) divided by the product of their 

standard deviations: 
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(9) 

where dc,i and dr,i = damage level of two mechanisms c and r of the i-th church out of n; 

rc dd ,
= covariance; cd

 and rd
 = standard deviations; cd  and rd  = mean values. 

The correlation coefficients between mechanisms (Figure 3.15) are fairly various, 

ranging between 0.29 and 0.95, but mainly rather high (> 0.5), not disproving the 

hypothesis of an autonomous response of each macro-element, because the most 

correlated mechanisms concern structural responses activated by parallel seismic 

actions (e.g., transversal response of the nave, #5, and behaviour of the triumphal arch, 

#13; shear mechanism of the longitudinal walls, #6 and overturning of the apse, #16). 

The lowest values of correlation (Rc,r = 0.29) are found for mechanisms related to 

projections (#26) and triumphal arch (#13) and to the transversal response of the nave 

(#5) and the bell tower (#27), which is a reasonable result considering that an 

undamaged bell tower, located on one side of the church, benefits the nave of a 

transversal restraint. The highest value of the Pearson coefficient concerns the 
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overturning of transept (#10) and chapels (#22), which once again is a reliable outcome 

when recognising how two structural parts of the church respond to seismic action 

oriented transverse to the nave. Figure 17 can thus guide possible merging of different 

but correlated mechanisms. 

 

 

Figure 3.15. Correlation between mechanisms: 1 implies a total positive 
correlation. 

 

3.6. Regression models 

3.6.1. Simple-linear regressions 

Similarly to the procedure for the global damage index, id, linear regression between the 

mean damage of each mechanism and the macroseismic intensity was investigated to 

evaluate their straight-line relationships according to the equation: 

 xmbypred  
(10) 

where ypred is the predicted value of damage for a given x that represents the NZMM 

intensity, b is the intercept, m is the regression coefficient and ε is the error term.  

Sample regressions are presented in Figure 3.16, where a bubble chart is assumed to 

emphasise the different occurrence of damage levels and where a weak correlation can 

be graphically observed. Bubble charts of all 20 mechanisms are reported in Appendix 

D. 
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Figure 3.16. Linear regressions between occurred damage levels and macroseismic 
intensity for sample mechanisms. 

 

 

The goodness of fit of the model can be quantitatively evaluated through the coefficient 

of determination, R
2
, reported in Figure 3.20 (left-most column for each mechanisms), 

where low values occurring in most cases indicate that simple-linear regression is not 

sufficient to explain damage occurrence. 

3.6.2. Multiple-linear regressions 

Although referring to single mechanisms, simple regressions neglect the difference in 

the vulnerability of different churches subjected to the same level of shaking. As shown 

in Figure 3.17, vulnerability depends on structural details that can worsen the seismic 

performance (e.g., poor masonry quality, large openings, thrusting structures) or 

improve seismic performance through earthquake-resistant elements (e.g., connections 

between walls and to horizontal structures, buttresses, tie rods). For this reason, such 

vulnerability modifiers were included in the survey, as already envisaged by the Italian 

simplified procedure for seismic vulnerability assessment of churches (DPCM, 2011). 

The Italian procedure is based on previous research by Lagomarsino et al. (2004), who 

used modifiers to obtain a global vulnerability index. In the following the influence of 

each vulnerability modifier on each mechanism is addressed in a disaggregated fashion 

and the corresponding equations are derived. Moreover, the Italian procedure suggests a 

limited number of modifiers for each mechanism, without differentiating between the 

relevance of each modifier with respect to the others, whereas hereinafter all applicable 

modifiers are considered for all mechanisms, and their influence is quantified.  

In order to consider more than one predictor variable, in the computation of the 

expected damage and in addition to the macroseismic intensity, the vulnerability level 

of each mechanism of each church was evaluated by resorting to multiple-linear 
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regressions. The accounted for v explanatory variables, xv, and the response, ypred, are 

fitted by a linear formulation, according to the following equation: 

 vvpred xmxmxmby ...2211  
(11) 

where x1 represents at all times the NZMM intensity and x2, x3 … xv are the 

vulnerability modifiers considered, m1, m2, …mv are the regression coefficients, b is the 

intercept and ε is the error term. For each mechanism all relevant modifiers were 

considered, but the absence of some modifiers (e.g., tie rods in the triumphal arch 

mechanism) has resulted in a different set of modifiers for each of the 20 mechanisms 

analysed.  

 

 

Figure 3.17. Examples of vulnerability modifiers: (a-b) presence/lack of buttresses; 
(c-d) presence/lack of a horizontal element able to absorb the thrust of the roof. 
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Given the uncertainties in the estimation of the vulnerability modifiers, initially they are 

assumed as dichotomous variables, often called “dummy” variables. These variables 

work as qualitative indicators of either the absence or presence of a characteristic, 

scoring 1 if a fragility increaser is present or if an earthquake-resistant element is absent 

and scoring 0 otherwise. Besides predicting the value of the damage in a more accurate 

way, multiple-linear regression analyses allow the strength of the relationship between 

damage and vulnerability modifiers to be quantified. In fact, the regression coefficients 

represent the rate of change of the response ypred as a function of changes in the other xv 

variables and are computed using the least squares method (Benjamin and Cornell, 

1970). 

The customary statistical checking tests carried out for each regression model were 

detection of multicollinearity, test of significance, and examination of residuals. Such 

examinations are useful for confirming the reliability of the models, selecting the best 

regression equation and assessing which parameters have closer relationships with 

damage. Multicollinearity is defined as high correlation between the predictor variables 

(in our case the vulnerability modifiers), so that one of them can be linearly predicted 

from the others. The detection of multicollinearity was performed by means of the 

variance inflation factor (VIFj), which provides an index that measures how much the 

variance is increased because of collinearity and is computed according to the following 

equation: 
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(12) 

where R
2

j = coefficient of determination of the regression equation with xj dependent 

variable and all other variables included in the model. Following Snee (1973), 

multicollinearity was excluded for VIFj < 5, and in the case at hand this value was never 

exceeded (Table 3.2). 

 

Another issue to be investigated in a regression analysis concerns the test of 

significance, which excludes a relationship (null hypothesis) between the dependent 

variable, ypred, and the i-th independent variable, xi, included in the regression model. To 

perform the test of significance it is necessary to preliminarily carry out the z-test, 

according to the distribution of the data under the null hypothesis can be approximated 
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by a normal distribution (with mean = 0 and standard deviation = 1), and the test 

statistic, z0, can be defined as: 
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(13) 

where ȳ = observed mean; ȳpred = predicted mean; and n  = standard error, being the 

ratio between the standard deviation (σ) and the square root of the sample size (n).  

 

The test statistic, z0, is used to check the null hypothesis through the so-called P-value: 

 00value zzorzzPP- 
 

(14) 

The smaller the P-value, the greater the evidence against the null hypothesis. Following 

Fisher (1925), the null hypothesis was rejected whenever P-value < 0.05. In Table 3.3 

an example of the computation of the P-value is given for mechanism 1: it is possible to 

observe a lack of dependency between damage and buttresses, tie rods, top beam and 

lateral restraint. These results are related to specific features of New Zealand churches, 

which frequently have ties that are spaced too far apart, small wall anchors and 

buttresses, and poor quality masonry. Top beams are seldom present, whereas lateral 

restraints are usually small compared to the façade, and hence do not influence the 

regressions. After the test of significance some modifiers were removed from the 

multiple linear regressions.  

The last check performed was the analysis of residuals, defined as the differences 

between the observed values and the values estimated by the regression. The usual 

assumption when performing a regression analysis is that residuals are independent, 

have zero mean, constant variance and follow a normal distribution, and if the 

predictive model is correct then the residuals should exhibit trends that do not contradict 

the above-mentioned assumptions. Therefore, the residual plots were analysed for each 

independent variable involved in the regressions, confirming the reliability of the model 

when the plot gives the overall impression of an approximately horizontal band. This 

requirement was met for almost all of the vulnerability modifiers considered here, 

except for those present in very few buildings (Figure 3.18). 

The examination of the relationship between damage observed and damage predicted 

confirms that multiple regression models, accounting for vulnerability modifiers, allow 

better forecasting of the damage, as shown in Figure 3.19 for some of the mechanisms, 
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while the whole portfolio in reported in Appendix E. This trend confirms that the 

intensity measure alone is not sufficient for a reliable estimation of the expected 

damage, whereas construction details and materials are fundamental to understanding 

the seismic behaviour of historical buildings. 

 

Table 3.2. Coefficients R
2

j and VIFj of the xj dependent variable of mechanism 

no.1. 
 R

2
j VIFj 

x1 and other x 0.114 1.247 

x2 and other x -0.020 1.082 

x3 and other x 0.273 1.519 

x4 and other x 0.058 1.172 

x5 and other x -0.024 1.078 

x6 and other x -0.036 1.065 

x7 and other x 0.015 1.121 

x8 and other x 0.122 1.258 

 

 

Figure 3.18. Analysis of residuals for two of the variables accounted for in 
mechanism no. 1. 
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Figure 3.19. Comparison in the correlation between damage observed and damage 
predicted using simple- or multiple-linear regression models for sample 

mechanisms. 
 

More accurate statistical are used in the following to identify those parameters that can 

be neglected, while providing a better damage prediction. The stepwise selection 

method allows the determination of the variables that generate the most efficient 

predictive model, involving the inserting of variables in turn until the regression 

equation is satisfactory (Draper and Smith, 1981). The best subsets procedure selects 

the subset of parameters optimising an objective criterion, such as having the largest 

coefficient of determination R
2
. 
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Table 3.3. Coefficients m and P-value of the multiple-linear regression of 

mechanism no.1. 
 m P-value 

x1 (NZMMI) 0.349 0.000 

x2 (Connections) 0.865 0.033 

x3 (Buttresses) -0.078 0.676 

x4 (Tie rods) -0.010 0.982 

x5 (Thrusting elements) 1.689 0.003 

x6 (Large openings) 0.538 0.011 

x7 (Top beam) 0.132 0.738 

x8 (Lateral restraint) -0.279 0.171 

x9 (Poor quality masonry) 1.011 0.000 

x10 (Slenderness) 0.852 0.008 

 

Table 3.4. Comparison between the R
2
 for the simple-linear regression and R

2
adj for 

all multiple-linear regression of all the considered mechanisms (SR = Simple-linear 

regression; MR = Multiple-linear regression; S = Stepwise procedure; BS = Best 

Subsets procedure). 
Mech. no. R

2
 R

2
adj Mech. no. R

2
 R

2
adj 

 SR MR S BS  SR MR S BS 

1 0.461 0.829 0.829 0.837 17 0.260 0.539 0.543 0.556 

2 0.456 0.751 0.757 0.766 19 0.308 0.537 0.516 0.555 

3 0.344 0.549 0.557 0.567 20 0.096 0.292 0.442 0.442 

4 0.320 0.835 0.828 0.841 21 0.220 0.613 0.694 0.694 

5 0.386 0.674 0.670 0.682 22 0.485 0.706 0.726 0.728 

6 0.430 0.530 0.542 0.546 23 0.517 0.672 0.670 0.694 

10 0.348 0.801 0.820 0.820 25 0.417 0.689 0.670 0.690 

11 0.330 0.382 0.455 0.455 26 0.287 0.445 0.330 0.445 

13 0.520 0.884 0.881 0.884 27 0.562 0.745 0.734 0.765 

16 0.371 0.790 0.780 0.797 28 0.394 0.777 0.816 0.816 

 

 

Figure 3.20. Comparison between the R
2
adj for all regression models (for the 

simple-linear regression, it is the value of R
2
). 
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The coefficient of determination R
2
 was computed for all regression models, indicating 

how well the statistical model fits the data. Because when more than one variable is 

considered R
2
 automatically increases, for multiple linear regressions the adjusted 

coefficient of determination, R
2

adj, has been used: 
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where v is the number of considered vulnerability modifiers. In Figure 3.20 and Table 

3.4 it can be noted that for any of the three multiple regressions a systematic increase in 

the value of the adjusted coefficient of determination R
2
adj is observed with respect to 

the coefficient of determination R
2 

computed for the simple-linear regressions. The 

average increase of the three multiple-linear regressions is about 90%, with a very 

marked improvement for mechanisms #20 and #21 (interaction between transept or apse 

and their roof), #16-17 (apse, out-of- and in-plane), and #28 (belfry). This trend 

confirms that the intensity measure alone is not sufficient for a reliable estimation of the 

expected damage, whereas construction details and materials are fundamental to 

understanding the seismic behaviour of historical buildings. 

Modifiers can be compared against each other (Figure 3.21 and Table 3.5), in order to 

recognise those modifiers that are most relevant. Poor quality masonry was introduced 

in the regressions as a unity value for the case of undressed natural stone units or the 

presence of cavity walls (Figure 3.22), and was found to be crucial for at least ten 

mechanisms (#1, #4, #13, #19-22, and #25-28). It is notable that the Italian procedure 

does not suggest this modifier for mechanisms #1, #4, #19-22, #25, and #28. High 

slenderness noticeably influenced seven mechanisms (#2, #3, #11, #16, #17, #23, and 

#28). This modifier was implemented when the estimated height/thickness ratio of the 

façade exceeded a value of 25, and when the ratio between the height of the longitudinal 

walls and their thickness exceeded 15, where both limiting values were higher than the 

average ratio identified by §2.4.3 for New Zealand churches. Again, it is noted that the 

Italian procedure does not suggest this modifier for mechanism #16. Connections, 

introduced in the regressions both in the case of interlocking between orthogonal walls 

and of wall anchors linked to the horizontal structures, were found to markedly affect 

six mechanisms (#2, #4, #5, #10, #16, and #27), and again the Italian procedure does 

not suggest this modifier for mechanisms #4, #5, and #16. Other parameters, such as 

thrusting elements (e.g., roofs without a bottom chord or arches), large openings (whose 
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combined length exceeds 1/3 of the wall length), heterogeneous materials (both in two 

adjacent architectural parts and within a single structural element) and top ring beams, 

are relevant for specific mechanisms.  

Unexpectedly, it was found that buttresses, which are present in most New Zealand 

churches, only slightly influenced the predicted damage. This observation can be 

explained by the significant spacing usually observed between buttresses (Figure 3.23a), 

their small depth compared to the wall thickness (Figure 3.23b), the poor quality of their 

masonry (Figure 3.23c), or failure of the poor quality masonry walls that they were 

meant to strengthen (Figure 3.23d). As already shown, for several mechanisms the poor 

quality masonry parameter was the most important in the regression. Similarly to 

buttresses, tie rods appear to have a rather limited relevance on earthquake performance, 

although they were present in only five buildings. This limited effectiveness of tie 

appears to be associated with the use of small wall anchors positioned close to the wall 

top (Figure 3.23e) or because the tie rods were spaced too far apart (Figure 3.23f). 

Hence, this observation is not meant to discourage future use of tie rods, but rather to 

point out that their presence will not automatically improve the seismic performance of 

a church. Modifiers that do not have a strong influence on the regressions are the 

presence of a lateral restraint (such as an adjacent building or a bell tower), asymmetry 

conditions (e.g., due to eccentricity of a projection with respect to the underlying 

masonry, or due to juxtaposition of a new extension), and braced roof pitches. 

Finally, the comparison between the three multiple regressions shows that in all cases 

the best subsets has an R
2

adj value substantially larger than that of the multiple-linear 

regression and marginally larger than that of the stepwise regression. Nonetheless, the 

stepwise regression considers a smaller, or occasionally an equal, number of predictor 

variables, suggesting its selection for a faster territorial scale vulnerability assessment. 

In Table 3.6 the coefficients defining the multiple-linear regressions of the 20 

considered mechanisms computed through the stepwise procedure are numerically 

presented. The modifiers added with respect to those suggested by the DPCM February, 

9 2011 (DPCM, 2011) are also highlighted therein boldface. The derived equations can 

be consequently used in future risk assessments, provided that the expected NZMM 

intensities for specific locations are available. Such hazard information is currently not 

available for New Zealand, whereas Peak Ground Acceleration (PGA) hazard maps 

have been published in recent years (Stirling et al., 2012). Hence, at least as a 

preliminary attempt, a correlation law between ground-motion parameters and 
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macroseismic intensity could be used, e.g., referring to Anbazhagan et al. (2015). 

Alternatively, the same method presented here can be used to derive multiple-linear 

regressions, with the selected intensity measure being a ground-motion parameter for 

which hazard maps are available. 

 

 

 

Figure 3.21. Comparison between the regression coefficients for all the regression 
models among all the considered mechanisms (refer to Figure 3.3). 
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Table 3.5. Comparison between the regression coefficients for all the regression 

models. (SR: simple-linear regression, MR: multiple-linear regression, S: Stepwise 

procedure, BS: Best Subsets Procedure). 

Mech. no.  SR MR S BS 

1 

b (intercept) -2.347 -1.700 -1.836 -1.482 

Intensity measure 0.590 0.326 0.352 0.323 

Tie rods  0.088   

Lateral restraint  -0.385  -0.402 

Buttresses  -0.045   

Thrusting elements  1.775 1.545 1.784 

Large openings  0.530 0.524 0.539 

Top beam  0.150   

Heterogeneous material  0.436  0.427 

Connections  0.953 0.938 0.940 

Slenderness  0.624 0.741 0.652 

Poor quality masonry  0.880 1.026 0.901 

2 

b (intercept) -2.201 -3.122 -1.558 -2.989 

Intensity 0.637 0.354 0.356 0.360 

Tie rods  0.313   

Lateral restraint  -0.106   

Buttresses  0.894  0.871 

Thrusting elements  1.026  1.021 

Large openings  0.459 0.482 0.469 

Top beam  0.617  0.683 

Heterogeneous material  0.926 1.012 0.875 

Connections  1.803 1.681 1.741 

Slenderness  -0.007   

Poor quality masonry  -0.062   

3 

b (intercept) -1.331 -0.927 -0.673 -0.924 

Intensity 0.434 0.225 0.243 0.228 

Lateral restraint  -0.134   

Buttresses  0.294  0.314 

Lintels  0.019   

Large openings  0.322  0.327 

Top beam  0.137   

Slenderness  1.223 1.296 1.202 

Poor quality masonry  0.775 0.716 0.779 

4 

b (intercept) -1.745 0.769 0.109 0.710 

Intensity 0.487 0.125  0.108 

Tie rods  -1.358  -1.215 

Buttresses  -0.334   

Lintels  0.491  0.501 

Large openings  0.334   

Connections  0.907 1.185 0.841 

Poor quality masonry  2.534 2.809 2.478 

5 

b (intercept) -1.658 -2.903 -2.270 -2.757 

Intensity 0.475 0.296 0.297 0.297 

Tie rods  0.307   

Lateral restraint  0.504  0.494 

Buttresses  -0.086   

Thrusting elements  0.543 0.573 0.546 

Top beam  0.991 1.138 1.133 

Connections  1.397 1.708 1.390 

Slenderness  0.636 0.756 0.656 

Poor quality masonry  0.434  0.419 
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Table 3.5. Comparison between the regression coefficients for all the regression 

models. (SR: simple-linear regression, MR: multiple-linear regression, S: Stepwise 

procedure, BS: Best Subsets Procedure). (continued) 

Mech. no.  SR MR S BS 

6 

b (intercept) -0.899 -0.919 -0.801 -1.013 

Intensity 0.453 0.386 0.381 0.387 

Lateral restraint  0.339  0.334 

Buttresses  -0.348  -0.338 

Lintels  0.628 0.631 0.619 

Large openings  0.010   

Top beam  -0.107   

Poor quality masonry  0.502 0.591 0.501 

10 

b (intercept) -2.752 -4.322 -2.616 -3.407 

Intensity 0.711 0.508 0.488 0.487 

Tie rods  0.000   

Lateral restraint  0.570   

Buttresses  0.193   

Large openings  0.909 0.858 0.818 

Top beam  1.045  0.869 

Connections  2.064 1.968 1.961 

Slenderness  -0.025   

Poor quality masonry  -0.254   

11 

b (intercept) -2.233 -2.733 -2.113 -2.113 

Intensity 0.564 0.436 0.469 0.469 

Lateral restraint  0.214   

Buttresses  0.468   

Lintels  -0.419   

Large openings  0.683   

Top beam  0.221   

Slenderness  0.600 1.290 1.290 

Poor quality masonry  0.619   

13 

b (intercept) -2.865 -1.101 -1.250 -1.101 

Intensity 0.676 0.256 0.292 0.256 

Tie rods  0.000   

Lateral restraint  0.638  0.638 

Poor quality masonry  2.638 3.000 2.638 

16 

b (intercept) -1.906 -1.752 -1.158 -1.533 

Intensity 0.559 0.307 0.313 0.311 

Tie rods  0.330   

Lateral restraint  -0.670  -0.651 

Buttresses  0.057   

Large openings  0.322  0.314 

Top beam  0.679  0.785 

Connections  1.029 1.121 1.020 

Slenderness  1.263 1.589 1.245 

Poor quality masonry  0.343  0.346 

17 

b (intercept) -1.021 -0.113 -0.391 -0.288 

Intensity 0.338 0.158 0.168 0.170 

Lateral restraint  -0.179   

Buttresses  -0.285  -0.301 

Lintels  -0.255   

Large openings  0.106   

Slenderness  1.627 1.878 1.648 

Poor quality masonry  0.522  0.366 
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Table 3.5. Comparison between the regression coefficients for all the regression 

models. (SR: simple-linear regression, MR: multiple-linear regression, S: Stepwise 

procedure, BS: Best Subsets Procedure). (continued) 

Mech. no.  SR MR S BS 

19 

b (intercept) -0.867 -2.935 -0.656 -2.372 

Intensity 0.475 0.332 0.275 0.326 

Tie rods  0.101   

Thrusting elements  1.264  1.597 

Top beam  0.832   

Braced roof pitch   0.863 0.826 0.853 

Poor quality masonry  1.189 1.567 1.274 

20 

b (intercept) -1.573 -2.595 1.000 1.000 

Intensity 0.490 0.234   

Tie rods  0.974   

Thrusting elements  0.957   

Braced roof pitch   0.462   

Poor quality masonry  1.802 2.100 2.100 

21 

b (intercept) -1.576 -0.805 0.444 0.444 

Intensity 0.492 0.071   

Tie rods  0.521   

Thrusting elements  0.309   

Braced roof pitch   0.313   

Poor quality masonry  2.528 2.756 2.756 

22 

b (intercept) -2.866 -4.427 -2.545 -2.513 

Intensity 0.682 0.517 0.493 0.491 

Tie rods  1.113   

Lateral restraint  0.613   

Buttresses  0.194   

Large openings  1.317 1.576 1.403 

Connections  0.284   

Slenderness  0.805  0.887 

Poor quality masonry  0.962 1.091 1.043 

23 

b (intercept) -1.921 -2.661 -1.555 -2.640 

Intensity 0.512 0.372 0.386 0.377 

Lateral restraint  0.214   

Buttresses  -0.159   

Lintels  -0.145   

Large openings  0.495  0.461 

Top beam  1.150  1.098 

Slenderness  1.380 1.364 1.334 

Poor quality masonry  0.715 0.773 0.703 

25 

b (intercept) -1.921 -2.661 -1.555 -2.640 

Intensity 0.512 0.372 0.386 0.377 

Lateral restraint  0.214   

Buttresses  -0.159   

Lintels  -0.145   

Large openings  0.495  0.461 

Top beam  1.150  1.098 

26 

b (intercept) -0.683 -0.702 1.333 -0.702 

Intensity 0.428 0.213   0.213 

Heterogeneous material  0.665   0.665 

Slenderness  1.106   1.106 

Asymmetry  0.966   0.966 

Poor quality masonry  1.150 1.974 1.150 
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Table 3.5. Comparison between the regression coefficients for all the regression 

models. (SR: simple-linear regression, MR: multiple-linear regression, S: Stepwise 

procedure, BS: Best Subsets Procedure). (continued) 

Mech. no.  SR MR S BS 

27 

b (intercept) -2.410 -1.374 -1.633 -1.334 

Intensity 0.654 0.367 0.461 0.362 

Buttresses  0.037   

Lintels  -0.858  -0.857 

Large openings  0.669  0.682 

Connections  1.794 2.085 1.781 

Heterogeneous material  1.078 1.520 1.057 

Slenderness  0.117   

Poor quality masonry  1.064  1.047 

28 

b (intercept) -2.304 1.699 0.380 0.380 

Intensity 0.757 -0.223   

Buttresses  -0.031   

Lintels  -0.252   

Large openings  -0.409   

Slenderness  1.902 1.718 1.718 

Poor quality masonry  3.925 3.352 3.352 

 

 

 

Figure 3.22. Examples of poor quality masonry: (a-b) undressed natural stone 
units; (c-d) cavity walls. Photos (b-c-d) are courtesy of João Leite. 
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Figure 3.23. Examples of limited effectiveness of earthquake-resistant elements: (a-
b-c-d) buttresses; (e-f) tie rods. Photos (d-e) are courtesy of João Leite. 
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Table 3.6. Regression coefficients of the stepwise models. Modifiers added with 

respect to the DPCM February, 9 2011 are boldface. 
Mechanism no. 

Variable 

1 2 3 4 5 6 10 11 13 16 

Intensity measure  0.352 0.356 0.243 N/A 0.297 0.381 0.488 0.469 0.292 0.313 

Tie rods N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
Lateral restraint N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
Buttresses N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
Lintels N/A N/A N/A N/A N/A 0.631 N/A N/A N/A N/A 
Thrusting elements 1.545 N/A N/A N/A 0.573 N/A N/A N/A N/A N/A 
Large openings 0.524 0.482 N/A N/A N/A N/A 0.858 N/A N/A N/A 
Top beam N/A N/A N/A N/A 1.138 N/A N/A N/A N/A N/A 
Heterogeneous materials N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
Connections 0.938 1.681 N/A 1.185 1.708 N/A 1.968 N/A N/A 1.121 

Braced roof pitch  N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
Slenderness 0.741 1.012 1.296 N/A 0.756 N/A 0.773 1.290 N/A 1.589 

Asymmetry conditions N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
Poor quality masonry 1.026 N/A 0.716 2.809 N/A 0.591 N/A N/A 3.000 N/A 
b (intercept) -1.836 -1.558 -0.673 0.109 -2.270 -0.801 -2.616 -2.113 -1.250 -1.158 

 
Mechanism no. 

Variable 

17 19 20 21 22 23 25 26 27 28 

Intensity measure  0.168 0.275 N/A N/A 0.493 0.386 0.341 N/A 0.461 N/A 
Tie rods N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
Lateral restraint N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
Buttresses N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
Lintels N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
Thrusting elements N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
Large openings N/A N/A N/A N/A 1.576 N/A N/A N/A N/A N/A 
Top beam N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
Heterogeneous materials N/A N/A N/A N/A N/A N/A 1.136 N/A 1.520 N/A 
Connections N/A N/A N/A N/A N/A N/A N/A N/A 2.085 N/A 
Braced roof pitch  N/A 0.826 N/A N/A N/A N/A N/A N/A N/A N/A 
Slenderness 1.878 N/A N/A N/A N/A 1.364 N/A N/A N/A 1.718 

Asymmetry conditions N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
Poor quality masonry N/A 1.567 2.100 2.756 1.091 0.773 2.049 1.974 N/A 3.352 

b (intercept) -0.391 -0.656 1.000 0.444 -2.545 -1.555 -1.598 1.333 -1.633 0.380 

 

3.7. Conclusions 

The 2010-2011 Canterbury earthquakes affected at least 80 unreinforced masonry 

churches, 12 of which were demolished due to the suffered damage, demonstrating the 

inadequate seismic performance of churches due to their intrinsic structural fragility. 

Considering the high seismicity of New Zealand, the high exposure of human lives, and 

the societal significance of ecclesiastic buildings, for both historical and symbolic 

reasons, the reduction of the vulnerability of unreinforced masonry churches is a 

fundamental issue. In order to understand which churches are most vulnerable, the 

analysis and the interpretation of their observed performance is of great interest. 

Moreover, considering the homogeneity of churches across New Zealand, the 
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conclusions drawn for the Canterbury region can be reasonably extended to the whole 

national stock.  

Because URM churches respond to earthquakes as a composition of macro-elements, 

the damage that occurred to the churches of the Canterbury region has been surveyed by 

accounting for 28 possible local collapse mechanisms. Only 20 of these mechanisms 

were developed in a statistically relevant number of churches, due to the comparatively 

simple architectural layout of New Zealand churches. Damage data has been interpreted 

mechanism by mechanism, and firstly analysed using Damage Probability Matrices 

(DPMs) that correlate discrete damage levels with shaking intensity. DPMs were also 

fitted with a binomial distribution, and reasonable agreement was observed in a few 

cases indicating the weakness of the basic assumption that damage can be explained by 

the severity of shaking alone, neglecting any difference in vulnerability. Consequently, 

additional modifiers that increase/reduce the vulnerability of the macro-elements were 

systematically introduced as “dummy” variables in multiple-linear regressions. Several 

statistical models were considered, in order to obtain the model having the largest 

coefficient of determination, together with the smallest number of relevant modifiers for 

a faster territorial scale application. The coefficients defining the multiple-linear 

regressions of 20 mechanisms were computed and among structural details, poor quality 

masonry, connections, and slenderness have the largest influence on damage. Once 

associated with the appropriate hazard scenario, the proposed regressions can deliver 

relevant information for the future assessment at territorial scale of the seismic 

vulnerability, for the emergency management and for the prioritisation of more in-depth 

analysis of individual buildings, both in New Zealand and in other regions possessing a 

similar churches stock.  

Further development will involve the introduction of vulnerability modifiers in 

regressions accounting for their effectiveness, releasing the 0/1 alternative. Moreover, 

the regression equations will be re-evaluated with alternative intensity measures. 
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Chapter 4 
 

 Territorial seismic risk assessment of New 

Zealand unreinforced masonry churches 

Given the high seismicity of the country, the exposure of human lives and the societal 

significance of ecclesiastic buildings, for both historical and religious reasons, the 

reduction in seismic vulnerability of this building type is of primary importance. By 

analysing the seismic performance of a sample of 80 affected buildings, regression 

models correlating mean damage levels against ground-motion parameters were 

developed for observed collapse mechanisms, accounting for vulnerability modifiers 

whose influence was estimated via statistical procedures. Considering the homogeneity 

of New Zealand URM churches, the vulnerability models developed for the Canterbury 

region were extended to the whole country inventory, and a synthetic index was 

proposed to summarise damage related to several mechanisms. Territorial scale 

assessment of the seismic vulnerability of churches can assist emergency management 

efforts and facilitate the identification of priorities for more in-depth analysis of 

individual buildings. After proper calibration, the proposed approach can be applied to 

other countries with similar building heritage. 

 

4.1. Introduction 

New Zealand is subject to frequent seismic activity, being located along a zone of 

contact between the Pacific and the Australian tectonic plates, on the so-called “Ring of 

Fire”. The country has experienced several major earthquakes, at times very destructive, 

as in 1929 (Arthur’s Pass Mw 7.1, Murchison Mw 7.8) and in 1931 (Hawke’s Bay Mw 

7.8). During 2010-2011 the Canterbury region was stricken by an extensive earthquake 
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sequence, with the most severe event in terms of damage occurring on 22 February 

2011 (Mw 6.3). Unreinforced masonry (URM) buildings form a significant component 

of the national building stock dating prior to the 1965 Model Building Code (Russell 

and Ingham, 2010) and represent an inestimable portion of the national architectural 

heritage, whilst during the Canterbury earthquakes this building type was particularly 

severely affected (Moon et al., 2014). The seismic sequence also had an impressive 

impact on the religious community, given the societal relevance of New Zealand 

churches (Marotta et al., 2015). Moreover, it is widely known that churches frequently 

exhibit a seismic vulnerability higher than ordinary buildings (D’Ayala, 2000), because 

of their open plan, large wall height-to-thickness and length-to-thickness ratios, and the 

use of thrusting horizontal structural elements for vaults and roofs (Sorrentino et al., 

2014a, b). Therefore, it is relevant to assess the seismic risk of New Zealand churches. 

Seismic risk models constitute important tools for framing public policies toward land-

use planning and emergency management, and a reliable estimation of seismic risk can 

minimize social and economic losses caused by earthquakes. For these reasons, seismic 

risk assessment has attracted strong interest in seismic areas, at both urban (e.g., 

Faccioli et al., 1999; Dolce et al., 2006; Kappos et al., 2008; Erberik, 2010; Marulanda 

et al., 2013; Cardona et al., 2014; Toma-Danila et al., 2015) and territorial scales (e.g., 

Rota et al., 2011; Chrysostomou et al., 2014; Dunand et al., 2014; Eleftheriadou et al., 

2014; Chaulagain et al., 2015; Siddique and Schwarz, 2015). 

The study reported here investigates the structural vulnerability of New Zealand 

unreinforced masonry churches, and the associated seismic risk, as an outcome of 

seismic hazard, building vulnerability and exposure (Dowrick, 2003). Exposure refers to 

the national inventory of URM churches described in Marotta et al. (2015), compiled 

after an extensive survey that for each building provided information about location, 

geometry, and construction techniques. Marotta et al. (2015) have shown the 

homogeneity of the building portfolio in terms of both architectural features and 

construction details. For example, 79% of the URM churches nationwide are single-

nave buildings, compared to 85% of those affected by the 2010-2011 Canterbury 

earthquakes. Similarly 39% of New Zealand URM churches are made of natural-stone 

masonry, compared to 38% of the Canterbury set (Marotta et al., 2016). The observed 

vulnerability of Canterbury URM churches during 2010-2011 has already been analysed 

according to statistical procedures in Marotta et al. (2016), assuming the New Zealand 

Modified Mercalli macroseismic intensity (NZMMI) as the ground motion parameter. 



 

85 

Hereinafter, different intensity measures are considered, with the most robust measure 

used to model seismic hazard, and consequently damage data is reinterpreted. Given the 

homogeneity of the national inventory, fragility curves derived from Canterbury data 

are applied to all of New Zealand to obtain seismic risk estimates. 

4.2. Ground motion intensity measures 

Selecting appropriate ground motion parameters is of fundamental importance in the 

definition of fragility curves that are used to correlate building damage against intensity 

measures and subsequently used to forecast the seismic risk within a specific region. 

The most frequently used parameter when dealing with observed vulnerabilities is the 

macroseismic intensity, which is attributed based on effects on the built and natural 

environment. Use of the macroseismic intensity, whilst common in literature (for 

example: Dolce et al., 2006; Chrysostomou et al., 2014; Vicente et al., 2014; Cherif et 

al., 2015), presents some disadvantages, such as its conventional nature and the use of 

discrete values. Additionally, when damage forecast is of interest, rather than observed 

damage interpretation, the inclusion of site effects typical of macroseismic intensity is a 

limitation if just one expected intensity should be applied to a territory where different 

local amplifications are likely. Finally, seismic hazard is described in terms of expected 

macroseismic intensities only in regions where catalogues date back an adequate 

timespan. Therefore, different ground motion descriptors are considered herein, 

computed from the records of the 22 February 2011 Christchurch earthquake. All 

intensity measures are vector sums relative to their two orthogonal components, and the 

two intensity measures at each church location are extracted by means of a 

triangulation-based linear 2-D interpolation of the ground-motion records at the 

scattered accelerometric stations.  

Peak Ground Acceleration (PGA) and Peak Ground Velocity (PGV) are selected as 

ground motion parameters because they are the most commonly used intensity measures 

and because they are familiar to technical practitioners. Recorded PGA values vary 

between 0.01 g and 1.34 g, with an average of 0.36 g, whereas PGV values vary 

between 0.004 m/s and 1.15 m/s, with an average of 0.27 m/s. 

Arias Intensity, IA, is selected as a ground motion descriptor because it captures the 

potential destructiveness of an earthquake as the integral of the square of the 
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acceleration-time history (Travasarou et al., 2003) and because it has been demonstrated 

to be an effective predictor of the likelihood of damage to short-period structures 

(Stafford et al., 2009). As defined by Arias (1970), IA is the total energy per unit weight 

absorbed by a set of undamped single-degree-of-freedom oscillators at the end of an 

earthquake, calculated as follows: 

 dtta
g

I A 



0

2

2


 (16) 

where a is the acceleration as a function of time t, in units of g, the acceleration due to 

gravity. IA varies between 0.0002 m/s and 17.08 m/s, with an average of 1.12 m/s. 

Housner Intensity (Housner, 1959), IH, is selected because it captures important aspects 

of the amplitude and frequency content of a record over a range of primary importance 

for many structures (Kramer, 1996), and is defined as: 

 dTTSI vH ,
5.2

1.0

  (17) 

where the integral refers to the area under the pseudo-velocity response spectrum, Sv, 

over the period T ranging between 0.1 and 2.5 s, and where ξ is the damping ratio of the 

structure. Moreover, some studies (for example: Decanini et al., 2002; Masi et al., 2011; 

Chiauzzi et al., 2012; Mouyiannou et al., 2014) have demonstrated that IH can be a valid 

alternative to other seismic peak parameters. Recorded IH varies between 0.02 m and 

4.30 m, with an average of 1.02 m. 

To better account for the global response of ordinary masonry structures, whose 

effective fundamental period is rarely beyond 0.5 s, a modified Housner Intensity, mIH, 

has been proposed by Mouyiannou et al. (2014): 

 dTTSmI vH ,
5.0

1.0

  (18) 

Recorded mIH varies between 0.001 m and 0.77 m, with an average of 0.09 m. 
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Cross-validation is used to estimate how accurate the interpolations are, by removing 

each accelerometric station one at a time and predicting the associated intensity measure 

value using the remaining data. The comparison between predicted and recorded values 

of each omitted point shows a fairly low correlation for IA (R
2 

= 0.45), a reasonable 

agreement for mIH and PGA (coefficient of determination, respectively, equal to 0.61 

and 0.66), and a very good correlation for PGV and IH (R
2 

= 0.89 and R
2 

= 0.91, 

respectively). 

4.3. Vulnerability calibration of local mechanisms 

The aim of a seismic vulnerability assessment is to provide a measure of the tendency of 

a set of buildings to suffer certain damage when subjected to earthquake ground 

shaking. The physical damage suffered by 80 URM churches following the 22 February 

2011 Christchurch earthquake (§3.3) is herein correlated to the five aforementioned 

intensity measures. The earthquake response of historical URM constructions, and 

particularly churches, can be described by identifying separate macro-elements, which 

are specific architectural parts whose seismic behaviour is only slightly linked to 

adjacent parts (e.g., D’Ayala and Speranza, 2003; Gizzi et al., 2014; Sorrentino et al., 

2014c). Consequently, the damage survey and interpretation of Canterbury URM 

churches were undertaken based on 28 local mechanisms (Lagomarsino et al., 2004), as 

currently adopted in Italy for post-earthquake assessment of churches (De Matteis et al., 

2016). Six levels of damage were assigned to each mechanism on the basis of a 

qualitative judgment, ranging between 0 (no damage) to 5 (total collapse), according to 

the approach of the European Macroseismic Scale (Grünthal, 1998). When a single 

building is under investigation, or in the case of moderate to low shaking, advanced 

survey techniques can be used to identify collapse mechanisms, for example through 

dense point cloud acquisition (Andreotti et al., 2015). 

Because some of the 28 mechanisms in the Italian form are rarely observed in New 

Zealand as they are related to macro-elements that are seldom present (e.g., columns 

between the naves, vaults, chapels, domes), eight mechanisms were eliminated and the 

remaining twenty mechanisms were analysed in the vulnerability assessment (Table 

4.1).  
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Table 4.1. List of the damage mechanisms observed in Canterbury churches. 

Numbering refers to the 28 mechanisms in the Italian form (Lagomarsino et al. 

2004). 
Ref. no. Description Ref. no. Description 

1 Overturning of the façade 17 Shear in the apse 

2 Gable mechanisms 19 Interactions between the nave and its roof 

3 Shear in the façade 20 Interactions between the transept and its roof 

4 Damage in the porch 21 Interactions between the apse and its roof 

5 Transversal response of the nave 22 Overturning of the chapels 

6 Shear in longitudinal walls 23 Shear in the chapels 

10 Overturning of the transept 25 Interactions next to irregularities 

11 Shear in the transept 26 Projections 

13 Triumphal arch 27 Bell tower 

16 Overturning of the apse 28 Belfry 

 

As already pointed out in §3.6.2, the seismic vulnerability of URM churches is strongly 

modified by structural details that can worsen the seismic performance, such as large 

openings, thrusting structures, or poor masonry quality (Liberatore et al., 2016) or 

improve seismic performance through the presence of earthquake-resistant elements, 

such as connections between walls and to horizontal structures, top ring beams, or tie 

rods. 

Consequently, the vulnerability of each mechanism was evaluated by multiple-linear 

regressions, in which the accounted v explanatory variables, xv, and the response, d, 

representing the damage that occurred, were fitted by a linear formulation, according to: 

 bxmxmxmd vv...2211  (19) 

where x1 represented the ground motion severity (macroseismic intensity was used in 

§3.6.2), x2, x3, … xv are the vulnerability modifiers considered, m1, m2, …mv are the 

regression coefficients, b is the intercept and ϵ is the error term. For each mechanism a 

different set of modifiers was considered. In §3.6.2 the vulnerability modifiers were 

assumed equal to either 0 or 1, working as indicators of either the absence or presence 

of a characteristic and its effectiveness, scoring 1 if either a fragility increaser was 

present or if an earthquake-resistant element was absent, or scoring 0 if a fragility 

increaser was absent or if an earthquake-resistant element was present and effective. 

Herein the vulnerability modifiers can score between the limits of 0 and 1, dependent on 

whether a fragility increaser was partially present (e.g., a trussed roof without a bottom 
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chord but with a raised tie) or if an earthquake-resistant element was present but 

ineffective (e.g., buttresses not connected to the walls that they are meant to strengthen). 

In the following evaluations the discrete values of 0.33 and 0.67 have been used on the 

basis of expert judgment. An example of the use of these variables is presented in §4.7. 

Two statistical procedures, namely Stepwise and Best Subsets (Draper and Smith, 

1981), were used to determine the variables that generated the most efficient predictive 

model. The Stepwise selection method allows the determination of the variables that 

generate the most efficient predictive model, involving the inserting of variables in turn 

until the regression equation is satisfactory. The Best Subsets procedure selects the 

subset of parameters that optimise an objective criterion, such as having the largest 

coefficient of determination. 

Differently from §3.6.2, Eq. (19) is hereinafter used assuming that x1 may be either 

PGA, PGV, IA, IH, or mIH. The effectiveness of each intensity measure is then evaluated 

with reference to the regression (Eq. (19)) of the twenty mechanisms. Because several 

variables contribute to Eq. (19), R
2 

will automatically increase when compared to a 

monoparametric regression (Draper and Smith, 1981). Consequently, it is appropriate to 

use the adjusted coefficient of determination R
2

adj: 

  













vn

n
RRadj

1
11 22

 (20) 

where n is the sample size and v is the number of considered vulnerability modifiers. As 

for R
2
, R

2
adj ≤ 1 and the higher R

2
adj the better the correlation.  

R
2

adj is computed for both Stepwise and Best Subsets regression models, and the one 

presenting the highest R
2

adj is used. In the case of equivalence between the two R
2

adj, the 

regression model that considered a smaller number of predictor variables is chosen in 

order to achieve a faster territorial scale vulnerability assessment. The regression 

models accounting for the different intensity measures do not differ greatly in terms of 

the vulnerability modifiers that need to be taken into account (Appendix F). In Figure 

4.1 the intensity measures are compared in terms of R
2

adj, by varying the mechanisms 

reported in Table 4.1. PGA, PGV and IH have practically the same mean R
2

adj, with IH 

having a fairly lower scatter. NZMMI has a slightly higher average value but much 

larger scatter compared to IH. IA and mIH have fairly lower average values and larger 

scatter. 
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Figure 4.1. Comparison between adjusted coefficients of determination, R
2
adj, for 

different intensity measures based on mechanisms reported in Table 4.1. NZMMI 
data after §3.2. 

 

Table 4.2. Comparison between adjusted coefficients of determination, R
2
adj, for 

different intensity measures based on mechanisms reported in Table 4.1. 
Mech. no. NZMMI PGA PGV IA IH mIH 

1 0.827 0.787 0.799 0.756 0.797 0.771 

2 0.697 0.630 0.636 0.603 0.628 0.625 

3 0.514 0.486 0.519 0.462 0.533 0.464 

4 0.753 0.753 0.739 0.756 0.713 0.777 

5 0.683 0.630 0.645 0.601 0.645 0.631 

6 0.543 0.550 0.505 0.459 0.483 0.516 

10 0.784 0.671 0.758 0.648 0.754 0.675 

11 0.704 0.731 0.596 0.702 0.530 0.713 

13 0.896 0.903 0.884 0.897 0.885 0.891 

16 0.735 0.707 0.711 0.688 0.710 0.714 

17 0.511 0.509 0.508 0.493 0.511 0.495 

19 0.630 0.625 0.654 0.631 0.614 0.615 

20 0.561 0.483 0.483 0.483 0.555 0.483 

21 0.511 0.511 0.511 0.621 0.683 0.511 

22 0.683 0.709 0.638 0.619 0.637 0.655 

23 0.629 0.576 0.585 0.540 0.588 0.543 

25 0.697 0.646 0.667 0.616 0.655 0.640 

26 0.559 0.495 0.523 0.475 0.511 0.495 

27 0.803 0.679 0.753 0.661 0.752 0.704 

28 0.530 0.533 0.645 0.565 0.614 0.517 

mean 0.662 0.631 0.638 0.614 0.640 0.622 

standard dev. 0.117 0.115 0.112 0.113 0.106 0.118 
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According to this comparison, although peak ground measures are more straightforward 

parameters, IH is the preferred intensity measure for use in the following computations 

because it exhibits similar reliability of PGV in the interpolation of ground motion at 

the sites of the churches but better results to both PGA and PGV in terms of 

effectiveness in damage regressions. 

For the twenty mechanisms considered here, the coefficients defining the selected 

multiple-linear regressions of Eq. (19) are presented in Table 4.3.  

Among the modifiers accounted for, tie rods have no influence on the regressions of any 

mechanism, confirming the observation reported in §3.6.2. Their inadequate 

effectiveness can be associated with the use of small wall anchors and with their 

placement being too far apart along the wall, together with their rather limited presence 

among the sample. It is expected that their appropriate use in strengthening 

interventions will markedly improve church earthquake performance. 

Table 4.3. Computed coefficients of the regression models (Eq. (19)) for IH as 

intensity measure 
Mechanism no. 

Variable 

1 2 3 4 5 6 10 11 13 16 

Intensity measure (m
-1

) 0.376 0.353 0.358 0.156 0.267 0.516 0.565 0.594 0.042 0.352 

Lateral restraint N/A N/A N/A N/A N/A 0.706 N/A N/A 0.468 N/A 

Buttresses N/A 1.428 N/A 0.870 N/A N/A N/A N/A N/A N/A 

Lintels N/A N/A N/A 1.289 N/A 0.666 N/A N/A N/A N/A 

Thrusting elements 1.713 N/A N/A N/A 0.614 N/A N/A N/A N/A N/A 

Large openings 0.479 N/A N/A N/A N/A N/A 1.072 N/A N/A N/A 

Top beam N/A N/A N/A N/A N/A N/A 3.215 N/A N/A N/A 

Heterogeneous materials N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Connections 1.368 2.023 N/A 1.488 2.306 N/A 2.156 N/A N/A 1.206 

Slenderness 0.875 0.745 1.626 N/A 0.654 N/A N/A 1.485 N/A 2.044 

Asymmetry conditions N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Poor quality masonry 0.987 N/A 0.424 1.848 N/A 0.886 N/A N/A 4.179 N/A 

b (intercept) -0.458 -0.935 0.241 -1.470 0.180 -0.454 -3.305 0.117 0.062 0.335 

σ (residual standard error) 0.778 1.135 1.001 0.966 0.932 1.033 0.955 1.163 0.351 0.954 

 

Mechanism no. 

Variable 

17 19 20 21 22 23 25 26 27 28 

Intensity measure (m
-1

) 0.236 0.417 0.365 0.384 0.472 0.361 0.422 0.452 0.638 0.943 

Lateral restraint N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Buttresses N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Lintels N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Thrusting elements N/A 3.266 1.663 1.673 N/A N/A N/A N/A N/A N/A 

Large openings N/A N/A N/A N/A N/A 0.574 N/A N/A N/A N/A 

Top beam N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Heterogeneous materials N/A N/A N/A N/A N/A N/A 0.904 N/A N/A N/A 

Connections N/A N/A N/A N/A 2.053 N/A 0.990 N/A 2.092 N/A 

Slenderness 1.728 N/A N/A N/A N/A 1.599 N/A 2.388 N/A N/A 

Asymmetry conditions N/A N/A N/A N/A N/A N/A N/A 1.170 N/A N/A 

Poor quality masonry N/A 1.055 3.094 1.510 1.316 0.855 1.543 1.089 0.919 2.028 

b (intercept) 0.298 -1.925 -2.210 -0.367 -0.243 0.046 -0.337 -0.436 -0.009 -0.174 

σ (residual standard error) 0.904 1.020 1.371 0.960 1.152 0.893 1.024 1.265 0.915 1.554 
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The damage predicted by Eq. (19) using the modifiers in Table 4.3, which is the basis of 

the following risk analysis, is a mean value. However, in the same table the residual 

standard error, σ (Draper and Smith, 1981), is computed for each mechanism showing 

mean and standard deviation equal to 1.024 and 0.262, respectively. A residual standard 

error of approximately unity is not negligible, but needs to be compared to a damage 

value as large as 5, and is smaller than the residual standard error of the simple-linear 

regressions accounting for intensity measure alone (mean = 1.367, standard deviation = 

0.253). 

The so-computed coefficients of the regression models are consequently used to derive 

equations for the following territorial seismic risk assessment. An overview of the 

estimated total number of damaged churches, disaggregated in terms of damage levels, 

is presented in Figure 4.2 for the considered mechanisms. Histograms refer to New 

Zealand regions, with the least populated regions being grouped. Some mechanisms can 

occur in more churches than can others (#1-3, #5-6, #16-17) because they are related to 

the most commonly present macro-elements. Damage level usually is up to d3 

(substantial to heavy damage), with the few exceptions occurring mostly in Auckland, 

Canterbury and Otago regions (d5 in mechanisms #2, #13, #27-28). Because the overall 

dimensions of the buildings are relevant in a seismic risk analysis (Dolce et al. 2006), 

on the right axes of Figure 4.2 a regional mean damage, weighted on foot-print area and 

normalised by the maximum value in the accounted mechanisms, is also presented. The 

comparison between these two damage measures highlights how the simple reference to 

number of buildings can be over simplistic. 

4.4. Vulnerability calibration of global response 

In buildings with multiple mechanisms it is important to define a synthetic index 

expressing the overall severity of damage. For a risk analysis it would be ideal to have 

reparation costs related to each mechanism, but unfortunately such information is 

currently not available for New Zealand. However, part of the reparation cost estimation 

entails accounting for the geometrical size of the macro-elements. For this reason, 

following Cattari et al. (2015), the damage of each mechanism can also be weighted 

based on the surface area of the associated macro-element when compared to the church 

surface area (Figure 4.3). 
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Figure 4.2. Expected regional damage. Left axis: number of damaged churches, 
disaggregated in terms of damage levels. Right axis: normalised mean damage, 
weighted on building foot-print area. Regions: 1 = Auckland, 2 = Waikato, 3 = 

Manawatu-Wanganui, 4 = Wellington, 5 = Canterbury, 6 = Otago, 7 = Southland, 
8 = others (Northland, Bay of Plenty, Gisborne, Hawke’s Bay, Taranaki, 

Marlborough, Nelson, Tasman, West Coast). Mechanism description given in 
Table 4.1. 
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Figure 4.3. Surface area of the façade macroelement (associated to mechanisms #1 
and #3) and church total surface area. 

 

A possible alternative is given by the normalized average, id, proposed by Lagomarsino 

et al. (2004), as the mean of the damage scores, dk, assigned to each of the N collapse 

mechanisms, multiplied by the weights ρk: 
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(21) 

Equation (21) has the drawback of requiring an expert judgement estimation of the 

weights ρk. The normalised average, id, can be transformed into a discrete variable, 

varying from 0 to 5, using the correlation suggested by Lagomarsino and Podestà 

(2004). In the following, the weighted mean damage, D, is continuous over a 0-5 scale 

and is defined simply as: 
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(22) 

By assigning unitary values to the weights ρk the arithmetic mean is obtained. 
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In order to avoid a conventional estimation of the ρk weights, an alternative synthetic 

damage index can be defined. Given the damage observed in Canterbury churches, Eq. 

(19) can be re-expressed in vector form as: 

εbcmd  11x  
(23) 

where d represents the vector of observed damage, m1 is the vector of the regression 

coefficients of the intensity measure x1, vector c groups the regression modifiers 

associated with the twenty mechanisms (e.g., for the j-th mechanism: 

jvjvjjj xmxmc  ...22 ), b is the vector of intercepts and  is the vector of error 

terms. In the case of New Zealand URM churches, regression coefficients mj,i and 

intercepts bj can be found in Table 4.3. 

The ground motion parameter x1 that best fits the observed damage by minimizing the 

sum of squares of the error terms can then be established as: 

0
1

εε
T

dx

d

 

(24) 

Whereas Eq. (19) was obtained by minimizing the error on a mechanism-by-mechanism 

basis with x1 being a known parameter, the formulation may be re-considered where x1 

is a ground motion parameter that fits data of all considered mechanisms at one time. 

From Eqs. (23) and (24) x1 can be expressed as: 
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that can be rearranged as:  
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(26) 

The sought after ground motion parameter x1 is equal to the difference of two terms, 

where the first term depends on observed damage (including intercepts) and is here 

defined as the synthetic damage index, Ds: 
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(27) 

The second term depends on the vulnerability modifiers alone, and is here defined as the 

vulnerability index, V: 
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(28) 

Accordingly, Eq. (26) can be rewritten as: 

VDx s 1  
(29) 

or: 

VxDs  1  
(30) 

A simple additive model is therefore established, where the synthetic damage index, Ds, 

is calculated as the sum of the ground motion parameter, x1, and the vulnerability index, 

V, and all quantities share the same unit of measure. Because the elements of vectors 

m1, b, and c were derived herein as regressions with IH as the intensity measure, it 

follows that the damage, the ground motion parameter and the vulnerability in Eq. (30) 

are all measured in metre units. The observed variable x1 was computed for each church 

and a mean value of 1.68 m was obtained. The Housner Intensity associated with the 

records of the February event was similarly estimated for each church site as explained 

in the previous section, and a comparable mean value of 1.57 m was obtained. 

By comparing Eq. (26) with Eq. (27) it follows that Ds can be interpreted as the ground 

motion x1 causing damage d in a building having null modifiers (c = 0). It also follows 

that this ground motion is higher than the value required to induce the same damage to a 

building with non-zero vulnerability modifiers. Accordingly, based on Eq. (29), V can 

be interpreted as the reduction of the ground motion parameter x1 necessary to induce 

the same damage d to the actual building. The higher the building vulnerability, the 

lower the necessary ground motion x1. 

The synthetic damage of Eq. (27) is an observed damage, which can be used for 

comparisons and model validation. An alternative interpretation of synthetic damage 

can be established by means of Eq. (30), defining x1 as being the ground motion 

parameter either interpolated from accelerograms recorded during the earthquake or as 

determined from hazard studies. In this way, Ds is a predicted damage, given the 

intensity measure at the site, for a building with vulnerability V computed using Eq. 

(28). 

Both definitions of synthetic damage are scalar measures computed from the damage 

associated with the mechanisms that are possible in the analysed church, but these 

synthetic indexes avoid the conventional definition of the weights present in Eq. (22). 
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An example of the computation of predicted Ds is given in §4.7. It is also worth 

mentioning that the vulnerability V does not provide the intensity measure that a 

building will resist but, when added to the expected intensity measure at the site, will 

forecast the predicted damage. 

As Equation (30) establishes a relationship between three quantities, it follows that 

when any two quantities are known it is possible to obtain the third. Specifically, once 

damage and vulnerability are known (e.g. after an earthquake) it is possible to estimate 

the ground motion severity, gaining a quantitative alternative to the conventional 

macroseismic intensity, which enables a qualitative estimate of ground motion severity 

based upon the effects on buildings accounting for their vulnerability. Alternatively, 

when the expected ground motion and vulnerability are provided (e.g. in a risk 

analysis), the forecast damage can be established. 

A comparison of the observed synthetic damage index with the classical weighted mean 

damage D, computed for Canterbury churches according to Eq. (22) and assuming ρk = 

1, is provided in Figure 4.4a to illustrate the application of a damage index expressed in 

terms of a ground motion unit of measure. An extremely good correlation is achieved, 

confirming the efficacy of the proposed synthetic damage index. 

Given the relationship between the predicted synthetic damage index Ds and the 

weighted mean damage D observed for the Canterbury sample (Figure 4.4b), a constant 

equal to 2.5 m can be used to obtain a non-dimensional damage, sD
, in a 0-5 scale: 

5.2

s
s

D
D 

 

(31) 

The minimum and maximum values of V recorded in the inventory were 0.16 m and 

7.63 m. The highest level of damage (d5) is obtained considering a value of x1 equal to 

4.87 m: (7.63 + 4.87) / 2.5 = 5. Considering that the maximum value of expected IH is 

6.41 m for the case of soil class E (very soft soil), hazard factor equal to 0.60 (the 

maximum value in NZS 2004), and a return period factor of 1.80 (2500 years), the 

maximum value that the non-dimensional parameter sD
 can assume in the worst case 

scenario is: (7.63 + 6.41) / 2.5 = 5.62, which slightly exceeds d5. Conversely, the 

smallest value of expected IH is equal to 0.08 m, for soil A (strong rock), a hazard factor 

equal to 0.13 (the minimum value in NZS 2004), and a return period factor 0.20 (20 
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years). This minimum value is still larger than the smallest IH = 0.03 m interpolated 

from the 2011 Canterbury earthquake, for which Eq. (30) was calibrated. 

The predicted synthetic damage index computed following Eq. (30) and the weighted 

mean damage D have the same general trend, as proven by an R
2
 = 0.80 (Figure 4.4b). It 

is also worth mentioning that the normalized average damage of Eq.(21), for the 

inventory considered here, differs from the simpler arithmetic mean (ρk = 1) in only 

eight cases for the whole stock, with a difference of approximately 1% in the mean 

value. Moreover, because the synthetic damage index Ds has the units of a ground 

motion intensity measure, the weighted mean damage D could be correlated directly 

with a customary intensity measure, e.g. PGA or IH. When this exercise is undertaken a 

coefficient of determination equal to 0.73 or 0.71, respectively, is achieved, which is 

significantly smaller than that provided in Figure 4.4b. 

Finally, another advantage of the proposed damage index which is a combination of a 

ground motion intensity measure and building vulnerability, is the ability to use a 

simple plot (Figure 4.5) to illustrate the contribution of each component. By reporting 

the intensity measure on the horizontal axis and the vulnerability on the vertical axis, 

the global damage index of a single building can be read on the bisector, in intensity 

measure dimension scale (by a factor 1/√2) or in a non-dimensional 0-5 scale. Different 

combinations of intensity measure and vulnerability can deliver the same damage 

(Figure 4.5a-b), whereas for the same building (equal vulnerability) different return 

period events (entailing different values of x1) will cause different levels of damage 

(Figure 4.5b-c). 

 

 

Figure 4.4. Correlation between weighted mean damage, D, observed in the 
Canterbury churches (Eq. (22), ρk = 1) and: a) observed synthetic damage index 

(Eq. (27)); b) predicted synthetic damage index (Eq. (30)). 
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Figure 4.5. Global damage index, Ds, as a combination of hazard, x1, and 
vulnerability, V: a) church with high V and low x1; b) church with same Ds as in a) 

but higher x1 and lower V; c) church with same V as in b) but lower x1 (shorter 
event return period). 

4.4.1. Estimation of the global damage index of churches with limited 

access 

In the aftermath of an earthquake the collection of damage data can be hampered by the 

partial accessibility of churches due to safety restriction. In order to find a method for 

the expeditious assessment of churches for which some of the macro-elements are not 

visible, the correlation between the damage of the observed mechanisms, investigated 

through the computation of the Pearson coefficient in §3.5, is used. 

Figure 3.15 provides guidance on the selection of the most correlated mechanisms, for 

which simple-linear regressions can be used to estimate the damage of macro-elements 

that cannot be inspected by means of the damage ascribed to observed macro-elements 

(e.g. estimating the damage in mechanism #13 based on the damage due to mechanism 

#1). The assumption underlying the selection of the mechanisms to be used in the 

regression models is that usually at least one side of the inspected church is visible, as 

are mechanisms that are related to lateral walls, projections and belfries (#5, #6, #26, 

#28). According to this hypothesis, only one regression coefficient is given for 

mechanisms concerning the main macro-elements that are visible from outside (façade, 

#1-4, apse, #16-17, and transept, #10-11), while more than one regression coefficient is 

proposed for mechanisms that can be inspected from inside (triumphal arch, #13, and 

roofs, #19-21) and for macro-elements that can be located alternatively along different 

sides of the church, such as chapels and bell tower (#22-27) (Table 4.4). Even if more 

than one regression coefficient is given, the procedure entails the use a monoparametric 

regression such that if both independent variables are available then the mechanism 

involving the highest coefficient of correlation is recommended for use and 
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consequently is printed in boldface in Table 4.4. In this specific case, the use of bilinear 

regressions involves a negligible increase of the adjusted coefficient of determination 

with respect to the monoparametric regressions. The computed regression coefficients 

are applied to the Canterbury sample in order to verify the reliability of the proposed 

method, assuming churches to be visible only from outside and excluding the 

mechanisms not visible from the street. Good agreement is achieved between the 

weighted mean damage observed in the Canterbury churches, D, and the damage 

computed applying the coefficients in Table 4.4, Dc, as proven by an R
2
 = 0.96 (Figure 

4.6). Nonetheless, in the following, the complete set of observed damages is used. 

 

Table 4.4. Estimation of damage in churches with partial accessibility, through 

simple-linear regressions. The columns report mechanisms with inspected damage; 

the rows report mechanisms that cannot be inspected. When more than one 

independent variable is present the highest R
2
 value is shown in boldface. 

x 

y 

1 2 10 16 17 28 

1     0.901  

2     1.233  

3     1.257  

4     1.165  

10 1.021      

11 0.824      

13 1.145   0.869  0.718 

16  0.830     

17  0.603     

19  0.720   1.031  

20  0.587   0.942  

21  0.647   0.946  

22 0.907   0.719   

23 0.744   0.578   

25 0.993  0.853 0.770   

27  0.944  0.823   

 

 

Figure 4.6. Correlation between mean damage, D, observed in the Canterbury 
churches and the damage computed applying the coefficients in Table 4.4, Dc. 
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4.5. Seismic risk 

The territorial seismic risk of New Zealand churches is herein computed accounting for 

the previously defined intensity measure and vulnerability, and for exposure as 

surveyed in §2. As for the seismic hazard, the expected IH values can be derived on the 

basis of the site hazard spectra calculated according to the New Zealand Loadings 

Standard, by multiplying the spectral shape factor for site classes by the hazard factor. 

Once the elastic site spectrum for horizontal loading has been obtained, IH can be 

computed as the area under the pseudo-velocity spectrum for a 5% damping ratio (Eq. 

(17)). To account for site response, subsoil classes have been identified according to the 

georeferenced database released by GNS Science. This database has been developed 

using the New Zealand 1:250 000 scale digital geological map, and suggests ranges of 

shear-wave velocity values for various geological formations, based on direct 

measurements in boreholes or derived from geophysical methods coupled with the 

available subsurface data (Perrin et al., 2015). IHs are computed using the site subsoil 

class coefficients provided in NZS (2004) for the modal response spectrum and the 

numerical integration time history methods. 

The four aforementioned global damage indexes (mean damage weighted based on the 

geometrical surface area, weighted mean damage, simple mean damage, and synthetic 

damage index) are computed for each building, given the expected IH at their site. 

Figure 4.7 shows the computations carried out according to Eq. (30) for three example 

regions. The four global damage indexes are multiplied by the corresponding foot-print 

area and summed up over the relevant territory. In the case of a scenario analysis, the 

territory is that affected by the earthquake. For example, Table 4.5 presents the scenario 

related to the 2011 February event and computes the total loss, where the loss is thus the 

damage times the foot-print area, that an insurance company could take into account for 

re-insurance purposes. 

The four aforementioned indexes can be also used for the computation of the Expected 

Annual Loss of different regions (Table 4.6), where the loss is computed as previously 

defined, and could be used for the allocation of a national budget for risk reduction or as 

part of the computation of an insurance premium. Results relative to the weighted mean 

damage, the simple mean damage and the synthetic damage index are very similar. 
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Figure 4.7. Predicted synthetic damage index, Ds, computed according to Eq (30), 
for churches belonging to different regions: a) Bay of Plenty; b) Manawatu-

Wanganui; c) Otago. 
 

The weighted mean damage has average deviation with respect to the simple mean not 

exceeding 2%, therefore it is confirmed that the ρk weights do not deliver a significant 

contribution, as observed in Figure 4.4. On the contrary, although the mean damage 

weighted on the geometrical size of the macro-elements presents lower values, the 

percentages for the allocation of a national budget among regions are very similar to 

that of the simple mean. Because the synthetic damage index has been derived without 

any a-priori assumption about the weights of the mechanisms, this index can be used as 

validation for the arithmetic mean as a more straightforward tool. 

A map with risk values per region, based on the simple mean damage index (Eq. (22) 

with ρk = 1) is presented in Figure 4.8. In order to better understand the results, Figure 

4.8 also shows for each region average values of damage index, D, and total foot-print 

area. Although the damage index D, being computed according to Eqs (19) and (22), 

already encloses for hazard and vulnerability, Figure 4.8 also shows expected Housner 

Intensity IH, and surveyed vulnerability V (Eq. (28)), where these values are averages of 

the individual values computed for each church. It is clear that the highest risks are 

expected in the Canterbury and Otago regions. Despite the similar exposure, Canterbury 

has a higher hazard and a smaller vulnerability than Otago. The higher risk of these two 

regions is due to the very large size of building portfolios compared to all other regions, 

with the exception of Auckland. On the contrary, Wellington has a significantly larger 

hazard than the previously mentioned regions, but smaller vulnerability and exposure. 

The very large hazard of West Coast and Gisborne is more than compensated for by the 

rather low combined size of URM buildings, as a result of the 1929 and 1931 

earthquakes (§2.3). In contrast, the highest average vulnerability is observed in the 

Northland region, but low hazard and the presence of only one small URM church make 
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the risk comparatively small. In these regions, as well as in the Bay of Plenty, Hawke’s 

Bay, Taranaki, Tasman, and Waikato, the risk level is bracketed between 180 m
2
 and 

1993 m
2
 because of limited exposure and a combination of low hazard and 

vulnerability, as compared to the value of 28 520 m
2
 reached in Canterbury. 

 

Table 4.5. Scenario analysis of the 2011 February event for the Canterbury region, 

according with the different global damage 
 Mean damage  

weighted on  

the geometrical size 

Weighted  

mean damage Mean damage 

Synthetic  

damage index 

Canterbury 19 367.00 m2
 27 881.00 m2

 28 531.00 m2
 27 901.24 m2

 

 

 

Table 4.6. Expected Annual Loss of New Zealand regions, according with the 

different global damage 
 Mean damage  

weighted on  

the geometrical size 

Weighted  

mean damage 

Arithmetic 

mean damage 

Synthetic  

damage index 

Auckland 38.31 m2
 41.87 m2

 42.09 m2
 35.89 m2

 

Bay of Plenty 0.36 m2
 0.36 m2

 0.36 m2
 0.25 m2

 

Canterbury 39.67 m2
 59.93 m2

 57.04 m2
 55.11 m2

 

Gisborne 2.02 m2
 2.02 m2

 2.02 m2
 1.75 m2

 

Hawke's Bay 0.38 m2
 0.38 m2

 0.38 m2
 0.39 m2

 

Manawatu-Wanganui 7.84 m2
 8.46 m2

 7.60 m2
 11.51 m2

 

Marlborough  3.28 m2
 3.72 m2

 3.72 m2
 4.34 m2

 

Nelson 2.76 m2
 3.60 m2

 3.60 m2
 4.47 m2

 

Northland 0.30 m2
 0.60 m2

 0.60 m2
 0.51 m2

 

Otago 38.71 m2
 47.49 m2

 47.73 m2
 42.59 m2

 

Southland 7.50 m2
 8.69 m2

 8.69 m2
 8.14 m2

 

Taranaki 2.65 m2
 3.99 m2

 3.99 m2
 3.48 m2

 

Tasman 1.08 m2
 1.08 m2

 1.08 m2
 1.82 m2

 

Waikato 3.13 m2
 3.13 m2

 3.13 m2
 2.55 m2

 

Wellington 9.22 m2
 10.33 m2

 10.33 m2
 12.85 m2

 

West Coast 1.62 m2
 1.62 m2

 1.62 m2
 2.23 m2
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Figure 4.8. Seismic risk values of New Zealand regions computed with the 
churches individual values of damage, D, and foot-print area. Values in boxes are 

regional averages of D, IH, and V, and regional total of foot-print area. 
 

4.6. Conclusions 

A quantitative seismic risk assessment for existing unreinforced masonry churches in 

New Zealand has been presented, based on a national inventory previously surveyed. 

Hazard has been estimated based on code defined bedrock acceleration expected for a 

return period of 500 years and literature available regarding site subsoil classes. Several 

ground motion parameters have been considered as intensity measures, and physical 

damage suffered by 80 URM churches following the 22 February 2011 event has been 

correlated to these descriptors. For twenty local mechanisms the vulnerability is 

expressed as a linear regression of intensity measure and modifiers worsening or 

improving the seismic response. The considered intensity measures show a similar 

correlation to damage, but the Housner Intensity can be interpolated more robustly from 

recorded data and consequently is used for the following analyses. The most efficient 
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correlation is evaluated for each mechanism according to Stepwise and Best Subsets 

statistical procedures, and corresponding coefficients are provided. 

Seismic risk is first computed mechanism by mechanism, highlighting how some 

mechanisms are more frequently encountered than are others, and that very large 

damage levels are expected in a few cases for some regions only. The findings of the 

analyses also emphasise how results can vary significantly if the number of buildings or 

their size is considered when expressing exposure. Because reparation cost information 

is not available, an alternative synthetic damage index is proposed as a ground motion 

parameter, by minimizing the sum of squares of the difference between expected and 

observed damage. The proposed index does not require a conventional estimation of the 

weights used in previous definitions of a global damage index and is purely based on 

observed data. 

Different global damage indexes have been computed and then compared through the 

computation of the Expected Annual Loss of different regions. Because results are very 

similar, the synthetic damage index, that has the advantage of being derived without any 

a-priori assumption about the weights of the mechanisms, can be used as validation for 

the arithmetic mean as a more straightforward tool. Finally, risk values for each New 

Zealand region have been presented. Maximum values are expected in the Canterbury 

and Otago regions, where exposure is very large and offsets the higher vulnerability or 

hazard observed in other regions. A method for the expeditious assessment of churches 

with partial accessibility is also proposed, by means of the correlation between observed 

mechanisms. Territorial scale assessment of church seismic risk can be used for 

emergency management at regional scale in the case of occurrence of an earthquake, 

allowing an estimate of the required resources to be deployed and possible scenarios, 

given the recorded ground motion. In a preventive framework, such a risk assessment 

serves to identify priorities for more in-depth analysis of individual buildings, to 

evaluate the impact of possible retrofitting by accounting for modifiers not previously 

present in the building, and could be used for the assignment of a national budget 

among regions or for the computation of an insurance premium. The method proposed 

can be applied elsewhere, provided that enough observation damage data is available to 

calibrate the vulnerability regressions, or can be used for a rough preliminary 

assessment in countries with a similar built heritage. 
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4.7. Calculation section 

As a practical development from the theoretical basis presented above, a worked 

example of an existing URM church is reported herein. The building under 

consideration is a stone masonry church located on the foreshore of Lake Tekapo, in the 

Canterbury region (Figure 4.9). Only 9 mechanisms out of 20 are possible, because the 

porch, transept, triumphal arch, chapels, and bell tower (mechanisms #4, #10-11, #13, 

#20-23, #25, #27-28) are not present. 

 

 

Figure 4.9. Church of the Good Shepherd (Lake Tekapo): a) external view from 
the street; b) internal view. 

4.7.1. Computation of the synthetic damage index 

In Table 4.7 an overview of the modifier attribution is reported, varying between 0 and 

1 depending on the presence and effectiveness of fragility increasers or earthquake-

resistant elements. For the sake of conciseness only some modifiers are discussed in 

detail, whereas a full explanation of all modifiers is given in §3.6.2. E.g., because the 

façade does not present buttresses whatsoever, a unity value (absent earthquake resistant 

element) is attributed to the corresponding modifiers of mechanism #2. Likewise, a 

unity value is introduced to account for the poor quality masonry modifier (fragility 

increaser), because of the presence of undressed natural stone units (mechanisms #1, #3, 

#6, #19, #26). The nave cover is a sloping roof without a chord at support level 

(thrusting element, i.e. fragility increaser), but with a raised tie, which contributes to the 

thrust reduction (as shown in Sorrentino et al., 2008) thus scoring a 0.33 score in 

mechanisms #5 and #19. In contrast, no thrusts are applied to the façade, leading to zero 

scores for mechanism #1. Finally, in the last line of Table 4.7 the elements of vector c 
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are computed as column-wise sums, whereas in Table 4.8 the reported data are the 

vector m1 of the regression coefficients of the intensity measure. 

Accordingly, the vulnerability index, V, is computed as: 

m93.3
11

1 
mm

cm
T

T

V

 

(32) 

 

From the hazard analysis the expected IH in Lake Tekapo is 1.60 m such that the 

predicted non-dimensional synthetic damage index can be obtained as: 

21.2
5.2

53.5

5.2

93.360.1



sD

 

(33) 

 

corresponding to a moderate damage d2.  

4.7.2. Computation of the mean damage considering the church as 

partially accessible 

In order to fully illustrate how the proposed procedure works, let us initially assume that 

the apse is not visible, whereas the façade is. Consequently, according to Table 4.4: 

216 830.0 dd   (34) 

217 603.0 dd   (35) 

 

As for mechanism #19, related to the interactions between the nave and its roof, there 

are three possible cases. If only the façade is visible: 

219 729.0 dd   (36) 

If only the apse is visible: 

1719 1.031 dd   (37) 

If both façade and apse are visible, Eq. (36) has to be used, because associated to the 

highest R
2
, as highlighted in Table 4.4 through boldface. 
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Table 4.7. Modifier attribution and computed vector c for each mechanism of the 

sample church. 

Mechanism 

no. 

Variable 

1 2 3 5 6 16 17 19 26 

Lateral 

restraint N/A N/A N/A N/A 1×0.706 N/A N/A N/A N/A 

Buttresses N/A 1×1.428 N/A N/A N/A N/A N/A N/A N/A 

Lintels N/A N/A N/A N/A 1×0.666 N/A N/A N/A N/A 

Thrusting 

elements 0×1.713 N/A N/A 0.33×0.614 N/A N/A N/A 0.33×3.266 N/A 

Large 

openings 0×0.479 N/A N/A N/A N/A N/A N/A N/A N/A 

Top beam N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Heterogeneous 

materials N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Connections 0×1.368 0×2.023 N/A 0.33×2.306 N/A 0×1.206 N/A N/A N/A 

Slenderness 0×0.875 0×0.745 0×1.626 0×0.654 N/A 0×2.044 0×1.728 N/A 0×2.388 

Asymmetry 

conditions N/A N/A N/A N/A N/A N/A N/A N/A 0.67×1.170 

Poor quality 

masonry 1×0.987 N/A 1×0.424 N/A 1×0.886 N/A N/A 1×1.055 1×1.089 

c 0.987 1.428 0.424 0.964 2.258 0.000 0.000 2.133 1.861 

 

 

Table 4.8. Coefficients of the intensity measure. 

Mechanism 

 no. 

Variable 

1 2 3 5 6 16 17 19 26 

m1 (m
-1

) 0.376 0.353 0.358 0.267 0.516 0.352 0.236 0.417 0.452 
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Chapter 5 
 

 Ambient vibration tests on New Zealand 

unreinforced masonry churches 

The extensive damage observed in stone and clay brick unreinforced masonry churches 

after the 2010-2011 Canterbury earthquakes has highlighted the need to appropriately 

describe their dynamic features. Dealing with historical structures, characterized by a 

high level of uncertainty affecting both material properties and structural schemes, and 

given the paramount need of non-destructive investigation techniques, ambient 

vibration tests can be considered an effective tool. A test campaign has been conducted 

on four churches located in Auckland and deemed to be representative of the New 

Zealand portfolio, being both in stone and clay brick unreinforced masonry, single- or 

multiple-nave buildings with or without bell towers, with naves covered by a sloping 

timber roof or vaults. The structures have been instrumented with tri-axial digital 

wireless accelerometer sensors. The sensor setup has been arranged following both 

vertical and horizontal alignments, recording with a sampling rate of 128 Hz and a 

sampling time ranging between 10 to 60 mins. Results of the dynamic tests can guide 

the identification of possible collapse mechanisms, can provide information on modal 

parameters, and contribute to estimate the filter effect that the macro-elements of the 

building develop on the response of soaring elements, such as gables, pinnacles and 

crenellations. 
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5.1. Introduction 

A great deal of knowledge about the dynamic performance associated with existing 

structures can be generated by experimentally evaluating the structures’ dynamic 

properties. In general, such tests provide true forms of many complex phenomena such 

as soil-structure interaction, nonlinearities in stiffness, non-structural components and 

energy dissipation mechanisms. Thus, in-situ test results can be considered as the true 

base for advanced assessment of structural integrity, damage detection and validation of 

design assumptions. Nevertheless, in case of historical structures characterized by a 

high level of uncertainty affecting both material properties and structural schemes and 

given the paramount need of a non-destructive approach, ambient vibration tests can be 

considered an effective tool for assessing their dynamic behaviour (Rainieri and 

Fabbrocino, 2011). 

Several studies based on ambient vibration tests have already been carried out on 

historical structures (Gentile and Saisi, 2007; Bayraktar et al., 2009; Aras et al., 2011; 

Osmancikli et al., 2012; Karatzetzou et al., 2015; Nohutcu et al., 2015) and specifically 

on churches (Jaishi et al., 2003; Baptista et al., 2005; Casarin and Modena, 2007; 

Tashkov et al., 2010; Votsis et al., 2012; Ramos et al., 2013; Gizzi et al., 2014). 

The study reported here investigates the dynamic behaviour of New Zealand 

unreinforced masonry churches by means of the results of an ambient vibration 

campaign carried on four buildings, representative of the national inventory (§ 2). In 

fact, it is widely known that URM churches frequently perform poorly even in moderate 

earthquakes, because of their intrinsic structural vulnerability due to their open plan, 

large wall height-to-thickness and length-to-thickness ratios, and the use of thrusting 

horizontal structural elements for vaults and roofs. Moreover, their use of low strength 

materials and a poor maintenance often causes decay, and the connections between the 

various structural components are often insufficient to resist loads generated during 

earthquakes (Sorrentino et al. 2008). Additionally, damage is related to architectural 

types and construction details, which may vary from country to country (§ 3). The 

2010-2011 Canterbury earthquakes have again demonstrated the unsatisfactory 

earthquake performance of unstrengthened URM churches with damage occurred being 

particularly extensive. For this reason to properly describe the dynamic characteristics 

of this structural type is of paramount importance. 
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Modal identification is based on operational modal analysis (OMA) techniques, also 

called output-only modal analysis, which use structural response measurements from 

ambient excitation to extract modal characteristics of a structure in terms of 

eigenfrequencies, damping and mode shapes. The main assumption at the base of OMA 

methods is that the ambient excitation input, represented by wind, traffic and human 

activities, is a Gaussian white noise characterized by a flat spectrum in the frequency 

range of interest. Unlike experimental modal analysis (EMA), where the structure is 

excited by a controlled and measured signal and thus developed in a deterministic 

framework, the output-only modal analysis, being based on random responses, follows a 

stochastic approach and is used for modal identification under actual operating 

conditions, and in situations where it is difficult or impossible to artificially excite the 

structure, as in the case of historical buildings. Nevertheless, due to the random nature 

of the excitation, the response includes not only the modal contributions of the ambient 

forces and the structural system but also the contribution of noise signals from 

undesired sources. 

Such dynamic tests, aside from guiding the identification of possible collapse 

mechanisms in historical structures as unreinforced masonry churches, can contribute to 

estimate the filter effect that the macro-elements of the building develop on the response 

of soaring elements, such as gables, pinnacles and crenellations. The Italian Building 

Code (DMI 2008) provides simplified formulas for modal shapes and participation 

factors when dealing with the verification of portion of buildings at a given height 

above ground, but only in the case of ordinary buildings and no calibration is set for 

such factors in case of churches. 

5.2. Local mechanisms analysis according to the Italian Building Code 

Existing masonry buildings are prone to suffer earthquake induced local collapse 

mechanisms, that can be assessed using limit analysis of equilibrium according to the 

kinematic approach, aiming to estimate the horizontal action activating the kinematism. 

The seismic capacity can be evaluated in terms of strength or displacement, and the 

considered macro-element is transformed into a single-degree-of-freedom system, 

identified as a rigid body. Considering a virtual rotation θk, it is possible to determine 

the generalised displacement of the body (centre and angle of rotation) and the 

displacement components of the points in which forces are applied. 
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According to the strength-based linear kinematic analysis, the horizontal load 

multiplier, α0, that activates the local mechanism is obtained solving the Equation of 

Virtual Works, written in the form of virtual displacements: 
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(38) 

where Pi is the generic gravity load (self-weight of the body, applied in the centroid, or 

other loads on the body); Pj is the generic gravity load not directly sustained by the 

bodies of the kinematic chain, but whose mass, as a consequence of the earthquake, if 

not appropriately transferred to other parts of the building, generates an horizontal force 

on the bodies of the mechanism; δx,i is the virtual horizontal displacement of the point of 

application of the i-th weight Pi, and δx,j is the virtual horizontal displacement of the 

point of application of the j-th weight Pj,; δy,i is the virtual vertical displacement of the 

point of application of the i-th weight Pi; Fh is the generic external force applied to the 

body and δh is the virtual displacement of the point of application of the h-th external 

force; Lfi is the work of possible internal forces. Accordingly, n if the number of self-

weight forces applied to the bodies of the kinematic chain; m is the number of forces not 

directly applied to the bodies but whose seismic force is applied on the bodies of the 

kinematic chain; o is the number of external forces, not associated to masses, applied to 

the body. 

The seismic spectral acceleration, a
*

0, activating the mechanism is obtained following: 
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where g is the gravity acceleration, e
*
 is the mass participation factor, and CF is the 

confidence factor, assumed equal to 1.35. 

The mass participation factor e
* 

is computed as: 
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where M
* 

is evaluated assimilating the virtual displacements of the points of application 

of the different forces associated to the kinematism, Pi, to a modal shape of vibration: 
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(41) 

As the Italian code assumes to have concentrated masses, the mass participation factor 

e
*
is considered equal to 1. 

 

Following the displacement-based non-linear kinematic analysis, in order to know the 

displacement capacity of a mechanism up to collapse, the horizontal load multiplier α 

can be evaluated with reference to any displaced configuration, described by the 

displacement dk of a control point of the system. The spectral displacement d
*
 of the 

equivalent oscillator can be obtained knowing the displacement of the control point dk 

and defining the equivalent spectral displacement with reference to the virtual 

displacements evaluated with respect to the initial configuration: 
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where δx,k is the horizontal virtual displacement of the point k, assumed as reference for 

computing the displacement dk. 

 

The strength and the displacement capacity related to the Damage Limitation Limit 

State (DLLS) and the Life Safety Limit State (LSLS) are evaluated on the capacity 

curve, at the following points: 

o spectral acceleration, a
*

0, corresponding to the activation of the mechanism, 

for DLLS; 

o spectral displacement, d
*

u, corresponding to the 40% of the displacement 

that makes α= 0, for LSLS. 

The safety verifications against the DLLS is satisfied whenever the spectral acceleration 

of activation of the mechanism, a
*

0, is larger then the seismic demand peak acceleration. 

When an isolated element or a portion of a construction at ground level is evaluated (Z 

= 0), a
*

0 is compared to the ground acceleration, that is the elastic-spectral ordinate for 

T = 0. On the contrary, if the mechanism involves a portion of the building at a given 
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height above ground (Z > 0), the amplification of the acceleration at the considered 

height compared to the acceleration of the ground has to be accounted. The seismic 

demand peak acceleration are reported in Table 5.1. 

The verification of the LSLS of local mechanisms, can be developed according to two 

different procedures: 

o simplified verification with behaviour factor q (linear kinematic analysis, 

strength-based); 

o verification by means of capacity spectrum (non-linear kinematic analysis), 

consisting in the comparison between an ultimate displacement capacity d
*

u of 

the mechanism and a spectral displacement demand ∆d. 

The spectral displacement demand are reported in Table 5.1. 

 

Table 5.1. Seismic demand peak acceleration and spectral displacement demand 

according to Damage Limitation Limit State (DLLS) and Life Safety Limit State 

(LSLS). 
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where ag is function of the exceedance probability for the assumed limit state and the 

reference life of the building; S is the coefficient accounting for soil type and 

topographic conditions; q is the behaviour factor, equal to 2; T1 is the 1
st
 period of 

vibration of the whole structure in the direction under consideration; Se(T1) is the elastic 

spectrum ordinate, function of the exceedance probability of the considered limit state 

and the reference life of the building VR, calculated for T1; ψ(Z) is the 1
st
 mode of 

vibration of the building in the direction under consideration, normalised to unity at the 

top of the building and generally assumed equal to Z/H, where H is the height above 

ground of the whole building; γ is equivalent to the modal mass participation factor of 

the building, assumed equal to 3N/(2N+1), with N = number of stories of the building; 

SDe(TS) is the ordinate of the elastic displacement spectrum, evaluated as a function of 

the secant period of the mechanism, not of the building; SDe(T1) is the displacement 
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elastic spectrum ordinate, function of the exceedance probability of the considered limit 

state and the reference life of the building VR, calculated for T1. 

In the case of local mechanisms, DLLS corresponds to the appearance of cracks that 

involve only part of the structure; therefore, in the case of existing masonry buildings, 

although it is recommended to satisfy this limit state, its verification is not mandatory 

for conservation issues.  

5.3. Operational modal analysis 

Ambient excitation testing does not directly lend itself to the frequency response 

functions (FRFs) in the frequency domain, or impulse response functions (IRFs) in the 

time domain, because the input forces are not measured. The extraction of modal 

parameters from the ambient vibration data can be conducted by using several output-

only methods, operating both in the frequency and time domain: Peak Picking, 

Frequency Domain and Enhanced Frequency Domain Decomposition, and Stochastic 

Subspace Identification. According to the methods operating in the frequency domain, 

namely the first three above-mentioned, the relationship between the input, x(t), and the 

output, y(t), at a resonant frequency, f, can be written as: 

     fGfHfG xxyy

2


 
(43) 

where Gyy(f) is the output spectral density function; Gxx(f) is the input spectral density 

function; H(f) is the Frequency Response Function (FRF), a complex number with real 

and imaginary parts, that in polar notation is equal to:  

    )( fiefHfH 
 

(44) 

where θ(f) is the phase.  

 

Peak Picking (PP) method, also known as Basic Frequency Domain technique, is the 

classical approach that allows identifying the modal parameters of a structure from 

ambient responses, by processing the signal using the Discrete Fourier Transform. The 

measured time histories are converted to spectra and the eigenfrequencies are 

determined as the peaks of the spectra. This method allows to estimate mode shapes 

directly from the power spectral density matrix at the peak (Bendat and Piersol, 1993), 

but it gives reliable results only if the modes are well separated and in case of low 

damping.  
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Frequency Domain Decomposition (FDD) technique has been introduced by Brincker et 

al. (2000) and is an improvement of the classical approach, overcoming its 

disadvantages. By decomposing the spectral density function of the output, Gyy(f), using 

the Singular Value Decomposition (SVD), the response is separated into a set of single 

degree of freedom systems, each corresponding to an individual mode. The SVD of the 

spectral matrix at each frequency is given by: 

       fUfSfUfG H

yy 
 

(45) 

where U(f) is a unitary matrix containing singular vectors and S(f) is a diagonal matrix 

holding scalar singular values. 

If only one mode is dominating at a given frequency, there is only one term in Eq. (45) 

and the corresponding singular vector is an estimate of the mode shape for that resonant 

frequency.  

 

Enhanced Frequency Domain Decomposition (EFDD) is an extension of the FDD 

technique (Jacobsen et al., 2007), consisting in taking back to time domain the spectral 

density function identified around a resonance peak by using the Inverse Discrete 

Fourier Transform. The function is estimated using the singular vector determined by 

the basic FDD technique and comparing it to neighbouring vectors by computing the 

Modal Assurance Criterion (MAC). MAC is a statistical indicator of consistency 

between mode shapes, being sensitive to large differences between them (Pastor et al. 

2012). It is calculated as the normalized scalar product of the two sets of mode shape 

vectors, ϕ1 and ϕ2: 

 
 
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(46) 

MAC is a scalar coefficient analogous to the correlation coefficient in statistics and 

ranges between zero, representing no consistent correspondence, to one. Consequently, 

if the modal vectors under consideration exhibit a consistent linear relationship, the 

modal assurance criterion should approach unity. By using the MAC value as a 

threshold, and generally a value greater than 0.80 is taken into account, only singular 

values whereby random noise is averaged out are taken into account. 
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Stochastic Subspace Identification is a method that accounts the stochastic response 

from a system as a function of time, where the system is considered in a classical 

formulation as a multi degree of freedom structural system. Moving the classical 

continuous time formulation to the discrete time domain by introducing the State Space 

formulation, the classical 2
nd

 order system equation simplifies to a first order equation: 

     tfBtxAtx c 
 

   txCty 
 

(47) 

where x(t) denotes, this time, the system state, f(t) is the system unknown input, Ac is the 

system matrix in continuous time from which the modal parameters can be calculated, B 

is the load matrix and C is the observation matrix. 

The input term, B f(t), which could consist of deterministic and stochastic excitation, 

can be replaced with a pure stochastic input vector w(t), and the term v(t) is introduced 

as measurement noise: 

     twtxAtx c 
 

     tvtxCty 
 

(48) 

Since measurement data is obtained in discrete time samples, the system equations have 

to be denoted in discrete formulation, and the system matrices can be estimated through 

the use of a linear regression approach, and modal parameters are found by eigenvalue 

decomposition: 

ttdt wxAx 1  

ttt vxCy 
 

(49) 

The estimated modes, increasing model dimension, are then plotted on a stabilization 

diagram, where structural modes should remain “stable” whereas noise modes should be 

different at any model order and therefore they do not stabilize into a single frequency.  

 

Since the presence of peaks in the spectra of the signals can be due both to the 

frequency content of the input and to the structural response, it is of paramount 

importance with any of the accounted methods to look at the phase and at the coherence 

function. For dominant peaks, in fact, the phase of the cross-spectra is either zero or 

180°, as expected for a resonant response of the structure, and is calculated according 

to: 
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where Cxy(f) and Qxy(f) are, respectively, the real and the imaginary part of the one-sided 

cross-spectral density function, Gxy(f). 

On the other hand, for dominant peaks, the coherence function between input force and 

each response, needed for establishing the random errors in the phase estimates, tend to 

reach the unity at the identified frequencies. When the coherence function, whose 

expression is reported in the following Eq. (51), is greater than zero but less than unity, 

the system relating y(t) to x(t) could be not linear or the output y(t) could be due to other 

inputs besides x(t): 

 
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(51) 

 

5.4. Description of the tested churches 

The test campaign has been conducted on four churches located in Auckland and 

deemed to be representative of the New Zealand portfolio, being both in stone and clay 

brick unreinforced masonry, single- or multiple-nave buildings with or without bell 

towers, with naves covered by a sloping timber roof or vaults (Figure 5.1).  

The church of St Paul’s is also known as the Auckland Anglican "Mother Church" as 

the original St Paul's was the first church to be built in the city. The foundation stone 

was laid on 1841 and the church also served as Auckland Cathedral for over 40 years. 

Although it has never been completed, as clearly visible in the unfinished bell tower, St 

Paul's is nevertheless a particularly fine example of Gothic Revival architecture, with its 

natural stone facing and finest decorative finishes, with its hammer beam trusses and 

lancet-shaped openings.  

The Church of Our Lady of the Assumption has historical and architectural significance 

for its striking Gothic Revival design. It is an example of the important work of Thomas 

Mahoney, major contributor to the ecclesiastical architecture of Auckland, which 

designed the church in 1887. The brick building presents a steeply-pitched timber roof 

with arch braces underneath the collar, external buttressing, lancet-shaped openings and 

broached spire, being thus an expression of Early English Gothic influences. The 
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addition of the spire completed the church in 1902 and a foyer was added in 1970 along 

the east side of the nave. 

The church of St Matthew's-in-the-City is one of the finest Gothic Revival stone 

churches throughout New Zealand and is situated on an elevated site at the intersection 

of two important inner city streets. The cathedral-sized building was designed by a 

famous firm of English architects, F.L. Pearson, and built in 1902 with Oamaru stone 

and a considerable use of brick for non-structural walls and for the upper part of the bell 

tower, externally faced by the same Oamaru stone. The building, unusually wide for its 

length, presents double aisles with rows of columns in the middle, chancel, chapels, 

transept and a gallery on the west end. With their finest stone vault ceilings in all roofs 

except the nave which is timbered, the church is regarded as the finest example of stone 

vaulting in New Zealand. 

Saint Francis and All Sales, built in brick in 1919, is a neo-Gothic Roman Catholic 

church designed by Thomas Mahoney. Its rectangular floor plan with porches, chapels 

and sacristies in balance on either side of the rectangular nave, and the two towers 

topped with octagonal pillars on either side of the front façade, result in a building of 

almost perfect symmetry. The timber ceiling is a fine example of queen post truss with 

double hammer beams supported by stone corbels.  

5.5. Test setup 

An ambient vibration testing campaign was carried out during October 2015 on the four 

churches reputed representative of the national stock. Tri-axial USB digital 

accelerometer sensors (Figure 5.2), produced by the Gulf Coast Data Concepts and 

based on Micro Electro-Mechanical Systems (MEMS) technology were used in the 

tests. The use of MEMS based accelerometers is an attractive economical alternative to 

the use of large sensing networks characterized by high costs for both installing and 

maintaining the extensive wiring system needed in a large structure to connect 

individual sensors to a central control unit. Moreover, as these accelerometers generally 

have low energy consumption, they can often operate for an extended period only 

powered by a battery. Each sensor, and specifically the X6-1A model used in the tests, 

stores the precise time stamped data on a microSD memory and the real-time data are 

accessible via USB connectivity. Table 5.2 presents the characteristics of the 

accelerometer X6-1A. 
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St Paul’s (1841) 

  

Our Lady of Assumption (1887) 

  

St Matthew in the City (1902) 

  

St Francis de Sales and All Saints (1919) 

Figure 5.1. Tested churches, located in Auckland and deemed to be representative 
of the New Zealand portfolio. 

 

 



 

127 

The measurement sensors were placed following both vertical and horizontal 

alignments and, in each of the setups, the accelerations in X, Y, and Z axes were 

recorded with a sampling rate of 128 Hz and a sampling time ranging between 60 min 

and one week. Figure 5.3 shows a schematic representation of the sensors layout in the 

four different churches, where the different colour of the sensors denotes different 

testing days. Before installation, all accelerometers were synchronized to a computer 

clock. The structures were instrumented with twenty accelerometers, on average, lightly 

glued to the surface of the structural elements under consideration, recording under 

operational conditions and not interfering with the normal churches activities. 

Excitation was thus provided only by wind, traffic and human activities. The data 

processing aimed to the modal identification of the structures has then been carried out 

using the System Identification Toolbox, a MATLAB-based toolbox for modal 

parameters identification (Beskhyroun 2011). Figure 5.4 presents an example of the 

acceleration time series under random excitation and ambient noise relative to one of 

the test setup. 

 

Table 5.2. Characteristics of the MEMS accelerometer. 

Sensor type X6-1A 

Acceleration range (g) ±2.0 

Sensitivity (count/g) 2048 

Sensitivity Deviation (%) ±1.0 

Nonlinearity (%FS) ±0.5 

Zero-g Offset Level Accuracy (mg) 
±150 (X, Y axis) 

±250 (Z axis) 

Inter-Axis Alignment Error (Degrees) ±0.1 

 

  

Figure 5.2. Accelerometer X6-1A and Sensor Orientation 
(www.gcdataconcepts.com). 
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Our Lady of Assumption 

  

St Matthew in the City 

 

St Paul’s 

 

St Francis de Sales and All Saints 

Figure 5.3. Layout and distribution of accelerometers in the four tested churches. 
 

5.6. Modal parameter identification 

The data processing aimed to the identification of the modal parameters of the structures 

has been carried out, so far, by using the Peak Picking method, thus identifying the 

potential frequencies of the elements under consideration from the peaks of the Power 

Spectral Density (PSD) diagrams. For one of the considered test setup, namely the one 

relative to the façade of the Church of Our Lady of Assumption, the PSD diagrams are 

shown in Figure 5.5 and Figure 5.6.  
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A preliminary estimation of the dominant frequencies of some of the structural elements 

under consideration is summarized in Table 5.3. After further future investigations, 

involving also a comparison between the results obtained from different output-only 

identification techniques (§5.3), results of the dynamic tests can be used, as mentioned, 

to estimate the filter effect that the macro-elements of the building develop on the 

response of soaring elements, as well as can guide a new empirical formulation for the 

estimation of the modal participation factors associated to unreinforced masonry 

churches (refer to Table 5.1). 

 

 

 

 

Figure 5.4. Acceleration time series under random excitation and ambient noise of 
the Z (out-of-plane) component of three vertically aligned sensors in the façade of 

the Church of Our Lady of Assumption (accelerations are measured in m/s
2
). 
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Table 5.3. Natural frequencies identified according to PP technique. 

Church Element f (Hz) 

St Pauls 
Pinnacle 8.6 

Façade 8.8 

Our Lady of Assumption 
Façade 9.3 

Transept 8.9 

St Matthew in the City Apse 8.1 

St Francis de Sales and All Saints Façade 6.6 

 

 

 

 

 

Figure 5.5. Power Spectral Density plot of the Z (out-of-plane) component of three 
vertically aligned sensors in the façade of the Church of Our Lady of Assumption. 
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Figure 5.6. Power Spectral Density plot of the Z (out-of-plane) component of four 
vertically aligned sensors in the pinnacle of the Church of St Paul’s. 

 

5.7. Preliminary conclusions and future development 

The possibility of using natural sources of excitation to define the modal response of an 

historical structure is very appealing, considering that the procedures used to determine 

a detectable dynamic response in new structures are mainly unviable for old ones or, 

eventually, to be carried out with extreme precaution. The use of ambient vibrations as 

source of excitation is then particularly effective in the assessment of the dynamic 

behaviour of historical buildings, since it implies a preservation care unlikely reachable 

with other techniques. Nevertheless, due to the random nature of the excitation used, the 
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response of the structure includes not only the modal contributions of ambient forces 

and structural system. For this reason it is fundamental to identify the structural 

response by decoupling the ambient noise. 

Ambient vibration measurements have been conducted on four selected historical 

churches in Auckland, New Zealand, by means of tri-axis digital accelerometer sensors. 

The identification of the dynamic parameters (natural frequencies, for the time being) 

related to some of the structural elements under consideration, has been performed 

recurring to a classical technique operating in frequency domain, the Peak Picking.  

Future developments involve the processing of the data relative to all test setups and the 

use of different output-only methods, operating both in the frequency and time domain. 

Results obtained by the in-situ ambient vibration tests can be further used for the 

estimation of the modal participation factors associated with the soaring elements 

present in unreinforced masonry churches. 
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Chapter 6 
 

 Conclusions 

The 2010-2011 Canterbury earthquake sequence caused extreme disruption, with 

damage to Christchurch architectural heritage, and specifically to unreinforced masonry 

churches, being particularly extensive, and thus highlighting the intrinsic structural 

fragility of this architectural type. Due to the high seismicity of the country, the 

potential large presence of people in and around religious buildings, and the associated 

societal relevance for both historical and symbolical reasons, the assessment of the 

seismic vulnerability of unerinforced churches and the mitigation of their seismic risk 

are of overriding importance. A detailed inventory of unerinforced churches throughout 

New Zealand has been compiled from various reference sources, leading to the 

identification of 297 buildings across the country. Statistics about the occurrence of 

architectural and structural features have been provided with preliminary evaluation of 

their role on seismic vulnerability. Detailed analyses have been then performed on a 

sample of 80 buildings in the affected region of Canterbury, in order to understand the 

seismic response provided by the ecclesiastic buildings during the earthquake sequence. 

Because unerinforced churches respond to earthquakes not as a whole, but with a set of 

macro-elements behaving more or less independently one from the adjacent, damage 

was surveyed by utilising a form that accounts for 28 possible local collapse 

mechanisms. In the literature, damage that has occurred to churches has generally been 

analysed by computing a global damage index, based upon summing up and weighting 

separate mechanism damage levels. Moreover, correlations with shaking intensity and 

vulnerability have been attempted only for this parameter. Herein, in addition to 

established procedures, damage was interpreted mechanism by mechanism, and firstly 

analysed through damage probability matrices, correlating discrete damage levels with 
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shaking intensity, and fitted with a binomial distribution. Although reasonable 

agreements between damage probability matrices and binomial distributions have been 

observed, and the probabilistic approach has improved compared to the matrices 

proposed for the global performance, flatness in damage distribution can be found in 

some cases. This result depends on the base assumption that damage can be explained 

by the severity of shaking alone, while it is self-evident that this statement is too crude 

and that the differences in vulnerability need to be addressed. Consequently, additional 

modifiers that increase/reduce the vulnerability of the macro-elements have been 

surveyed and introduced, initially, as dichotomous variables in multiple-linear 

regressions. Results have shown that multiple regression models accounting for 

vulnerability modifiers, allow far better forecasting of the damage. For this reason, 

vulnerability indicators are considered essential in the seismic vulnerability assessment 

of churches, and have been subsequently introduced in regression models also 

accounting for their structural effectiveness in seismic response. The proposed models, 

re-calibrated on the Canterbury churches accounting for several other ground motion 

intensity measures, have then been adopted to develop a quantitative seismic risk 

assessment for existing unreinforced masonry churches in New Zealand based on the 

national inventory. An alternative synthetic damage index is also proposed as a ground 

motion parameter, purely based on observed data and not requiring a conventional 

estimation of the weights used in previous definitions of a global damage index. Four 

different indexes expressing the global damage have been computed and then compared 

through the computation of the total Expected Annual Loss of different regions. The 

very similar results obtained accounting for the different indexes, guided the selection 

of the one based on the simple mean as the most straightforward tool when dealing with 

the assessment of the global damage at territorial scale, supported by the validation 

provided by the synthetic damage index, that has the advantage of being derived 

without any a-priori assumption. A method for the expeditious assessment of churches 

with partial accessibility has also been proposed, by means of the correlation emerged 

between observed mechanisms. 

Findings from the territorial scale assessment of the seismic risk of New Zealand 

unreinforced masonry churches can be used for emergency management at regional 

scale in the case of occurrence of an earthquake or to help identifying priorities for more 

in-depth analysis of individual buildings in a preventive framework. The proposed 

mechanism-based regression models can be extended to other countries besides New 
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Zealand and, once calibrated on observed damage and specific structural features, and 

associated with the relative hazard scenario, can be adopted to support seismic 

vulnerability mitigation. Alternatively, the proposed models can be used for a rough 

preliminary assessment in countries with a built heritage similar to New Zealand. 

Moving from an empirical approach to an analytical approach, still based on macro-

elements, an ambient vibration test campaign has been conducted on four representative 

New Zealand churches, in order to dynamically characterize the response of religious 

buildings. The modal identification has been based on the classical operational modal 

analysis technique, operating in frequency domain, and very preliminary results have 

been presented, while further processing of the recorded data are ongoing. In this 

regard, further work on the dynamic assessment of unreinforced masonry churches will 

be aimed to estimate the filter effect that the macro-elements of the building develop on 

the response of typical soaring elements present in religious buildings, such as gables, 

pinnacles and crenellations, for which no calibration is given, and for future 

identification of the dynamic performance and construction weakness of different 

structural components, thus guiding the recognition of possible collapse mechanisms. 
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Appendix A: List of the unreinforced masonry 

churches in New Zealand, disaggregated for each 

region 

1 –NORTHLAND 

Name Address HNZ no. 

PAIHIA 

Williams Memorial Church of St Paul 36 Marsden Rd 3824 

 

2 –AUCKLAND 

Name Address HNZ no. 

AUCKLAND 

St Patrick's Cathedral 1 St Patricks Square 97 

St Andrew's First Presbyterian Church Cnr of Symonds St and Alten 

Rd 

20 

St Matthew in the City Cnr of Hobson St and 

Wellesley St 

99 

Pitt street Methodist Church 78 Pitt St 626 

Congregational Church Of Jesus 3 East St / 

Baptist Tabernacle 429 Queen St 7357 

St Paul's Church 28 Symonds St 650 

Wesleyan Chapel 8A Pitt St 7752 

St James' Church 39 Church Rd 689 

Church of the Melanesian Mission Building 40-44 Tamaki Drive 111 

Dominion Road Methodist Church 426 Dominion Rd 2607 

St Alban the Martyr 443 Dominion Rd 511 

St Barnabas 283 Mt Eden Rd  516 

Holy Trinity  437 Parnell Rd / 

Holy Trinity 18 Mason Ave 2320 

St Augustine's Church 95 Calliope Rd 4529 

St Francis de Sales, All Souls 2A Albert Rd / 

St Paul's Cnr of Albert and Victoria Rds / 

St Benedict's Church 1 St Benedicts St 640 

St Michaels Church 6 Beatrice Rd 118 
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Name Address HNZ no. 

Church of Our Lady of the Assumption 130 Church St 523 

St Columba Church 100 Surrey Crescent 2644 

King's College Chapel 41 Golf Ave 90 

St Paul's Church 14 St Vincent Ave 651 

St Saviour's Chapel 80 Wyllie Road 7169 

All Hallows 218 Beach Road / 

Calvary Tamil Methodist Church 587 Manukau Road / 

St Vincent de Paul Church Cnr Fenwick Avenue and 

Shakespeare Rd, 

/ 

St Joseph and St Joachim  118 Church St,  / 

St John's 328 East Tamaki Rd / 

St Thomas 2 Islington Avenue / 

Waikumete Cemetery Chapel Glenview Rd 2605 

St David 70 Khyber Pass Rd / 

Neligan House Chapel  12 St Stephens Ave / 

St Andrews 18 Station Rd / 

New Zealand Chinese Mission Church 161 Trafalgar St / 

St Aidans 90 Onewa Rd / 

? 39 Margan Ave / 

? 40 Margan Ave / 

Selwyn Chapel 105 Great South Rd 693 

First Presbyterian Church Papakura 2 Coles Crescent / 

St Johns 120 Great South Rd / 

PUKEKOHE 

St Andrew's 37 Queen Street / 

 

3 –WAIKATO 

Name Address HNZ no. 

GORDONTON 

St Mary’s Church 974 Gordonton Rd 4303 

HAMILTON 

St Mary’s Convent Chapel 47 Clyde St 5460 

St Andrews Cnr River Rd and Te Aroha St / 

HUNTLY 

St Paul's Church Cnr of William St and Glasgow 

St 

4165 

HYDE 

? 9071 Eton St / 

NGARUAWAHIA 

St Paul's Church 128 Thermal Explorer Highway 4246 
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Name Address HNZ no. 

RAGLAN 

Raglan District Union Church 3 Stewart St / 

TE AROHA 

St David's Union Church 8 Church St 4288 

St Mark's Church 7 Kenrick St 4290 

TE AWAMUTU 

Te Awamutu Church 261 Bank St 4295 

TIRAU 

Tirau Co-Operating Church 67 Main Rd / 

 

4 –BAY OF PLENTY 

Name Address HNZ no. 

OPOTIKI 

Former Methodist Church ? / 

 

5 –GISBORNE 

Name Address HNZ no. 

GISBORNE 

Holy Trinity Church 79 Derby St 3526 

St Andrew's Church 176 Cobden St 3525 

WAIPIRO 

St Abraham's Memorial Church 12 Marae Rd 3490 

 

6 –HAWKE'S BAY 

Name Address HNZ no. 

PAKIPAKI 

Pakipaki War Memorial church 63 Old Main Rd / 

WAIPUKURAU 

St Mary’s 11 St Mary's Rd  / 

 

7 –TARANAKI 

Name Address HNZ no. 

HAWERA 

St Mary's Church 206 Princes St 861 

INGLEWOOD 

St Andrew’s Church 104 Rata Rd 875 

NEW PLYMOUTH 

Taranaki Cathedral (St Mary's Church) 37 Vivian St 148 
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8 –MANAWATU-WANGANUI 

Name Address HNZ no. 

CARTERTON 

St Mary 2 King St  / 

DANNEVIRKE 

St John the Baptist 174 High St 4551 

LEVIN 

St John’s Church 90 Cambridge St 4091 

MANAKAU 

Methodist Church (Former) 1104 State Highway 1 4051 

MASTERTON 

St. Luke’s Union Church Cnr Worksop Rd and Queen St / 

MOAWHANGO 

Batley Memorial Chapel 32 Wherewhere Rd 3308 

PALMERSTON NORTH 

Wesley Broadway 264 Broadway Ave  

All Saints’ Church 338 Church St 191 

WANGANUI 

Wanganui Collegiate School Chapel 128 Liverpool St  999 

WESTMERE 

St Oswald’s Church State highway 3  956 

Westmere Memorial Church 110 State Highway 3 2738 

 

9 –WELLINGTON 

Name Address HNZ no. 

LOWER HUTT 

Epuni Baptist Church 304 Waiwhetu Rd / 

Methodist church Laings Rd / 

WELLINGTON 

Erskine College Chapel 31 Avon Street 7795 

All Saints Church 1 Abbot St / 

St Luke's Parish 34 Pitt St / 

St Michael and All Angels Corner St Michael's Crescent 

and Upland Rd 

/ 

Karori Crematorium Chapel Old Karori Road  1399 

Congregational Church 45 Cambridge Terrace / 

Miramar Uniting Church 56 Hobart St / 

Our Lady Star of the Sea Convent Chapel 16 Fettes Crescent  1413 

St Jude's 68 Freyberg St / 

St Hilda's 311 The Parade / 
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Name Address HNZ no. 

Sacred Heart Cathedral 40 Hill St 214 

All Saints Church 94 Hamilton Rd 1331 

St Gerard's Church 75 Hawker St 226 

St Anne's Church (Former) 77 Northland Rd 3603 

Missions to Seamen Building (Former) 7 Stout St 3611 

 

10 –TASMAN 

Name Address HNZ no. 

MOTUEKA 

St Peter Chanel (Former) 31 High St 1671 

Former church 207 High St / 

TAKAKA 

Sacred Heart 94 Commercial St / 

 

11 –NELSON 

Name Address HNZ no. 

NELSON 

Garin Memorial Chapel (Wakapuaka Cemetery) 272 Atawhai Drive 1637 

All Saints 30 Vanguard St / 

Christ Church Cathedral Trafalgar Square / 

STOKE 

St Barnabas’ 523 Main Rd 3025 

 

12 –MARLBOROUGH 

Name Address HNZ no. 

BLENHEIM 

The Church of the Nativity 76 Alfred St / 

HAVELOCK 

St Peter's Church 30 Lawrence St 1496 

Sacred Heart Church 15 Lawrence St  / 

PICTON 

St Joseph’s 119 Wellington Rd  / 

WARD 

St Peter’s Chanel  7298 SH1 / 

WHARANUI 

St Oswald's Church 8817 State Highway 1 / 
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13 –WEST COAST 

Name Address HNZ no. 

HOKITIKA 

St Mary’s  71 Sewell St 1705 

St Andrew’s United Church  66 Hampden St 5013 

 

14 –CANTERBURY  

Name Address HNZ no. 

AKAROA PENINSULA 

St Paul's Church  850 Old Tai Tapu Rd 4395 

St Kentigern  396 Kaituna Valley Rd / 

Church of St John the Evangelist 1131 Okains Bay Rd 1715 

St Luke 1280 Chorlton Rd 7094 

St Cuthbert's Church  8 Governors Bay Teddington 

Rd 

281 

ASHBURTON 

Church of the Holy Name 58 Sealy St 284 

St Andrew's Presbyterian Church 130 Havelock St 1809 

St Andrew's Presbyterian Church (Former) 130 Havelock St 1804 

Ashburton Baptist Church Corner Havelock St and Cass 

St 

/ 

CAVE 

St Monica 6 Anne St / 

All Saint's Cave 30 Elizabeth St / 

St David's Memorial Church Burnetts Rd 312 

CHRISTCHURCH 

St Joseph's Parish 133 Main North Rd / 

Christchurch North Methodist 61 Harewood Rd / 

Our Lady of Perpetual Help Church 58 Somme St / 

St John's Church 49 Bryndwr Rd / 

St Barnabas’ Church 145 Fendalton Rd 3681 

St Ninians' Church 9 Puriri St / 

St Peter's Church 24 Main South Rd 1792 

St Brendan's Church 47 Kirk Rd / 

St John of God Chapel 12 Nash Rd 4393 

Cashmere Hills Church 2 Macmillan Ave 1842 

St Mark's Church 101 Opawa Rd / 

Opawa Community Church 158 Opawa Rd / 

Church of the All Saints 48 Wakefield Ave / 

St Mary’s Parish 112 Lonsdale St / 

St Faith’s 46 Hawke St / 
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Name Address HNZ no. 

Synagogue Gloucester St / 

The Rose Historic Chapel  866 Colombo St 7239 

Trinity Congregational Church 124 Worcester St 306 

Cathedral Church of Christ  100 Cathedral Square 46 

Christ`s College Chapel 33 Rolleston Ave 3277 

Nurses Memorial Chapel 2 Riccarton Ave 1851 

Cathedral of the Blessed Sacrament 136 Barbadoes St 47 

St James the Great Riccarton 69 Riccarton Rd / 

St John The Evangelist Church Christchurch Akaroa Rd 5293 

St Mark's Marshland 338 Prestons Rd / 

St John The Evangelist Church 10 St Johns St / 

Prebbleton Community 641 Springs Rd / 

Nazareth House Chapel 220 Brougham St / 

Knox Church 28 Bealey Ave / 

St Columba 88 Petrie St / 

St Andrew's College 347 Papanui Rd / 

Shirley Church Shirley Rd / 

Ex-St James ? / 

DUNTROON 

St Magnus Presbyterian Church 11 Rees St 3255 

St Martin's Church 3487 Kurow - Duntroon Rd 2429 

FAIRLIE 

St Patrick and All Saints  7 Gall St / 

GERALDINE 

St Andrew the Apostle 10 Cox St / 

Immaculate Conception 19 Hislop St / 

Church of the Holy Innocents Rangitata Gorge Rd 1976 

HORORATA 

St John’s Hororata 224 Hororata Rd / 

KAIAPOI 

Methodist Church 52 Fuller St 3760 

KUROW 

St Alban Chapel 5636 Kurow-Duntroon Rd / 

St Stephen 83 Provincial Highway 2435 

LAKE TEKAPO 

Church of the Good Shepherd Pioneer Drive 311 

LEESTON 

St John's The Evangelist 158 High St / 

MAKIKIHI 

St. Mary’s Star of the Sea 1686 Waimate Highway / 
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Name Address HNZ no. 

MAUNGATI 

St James’ Maungati 143 Timaunga Rd / 

OTIPUA 

St Marks High St / 

PLEASANT POINT 

St Mary’s Church 29 Afghan St 7697 

St Alban’s Pleasant Point 20 Harris St / 

SAINT ANDREWS 

St Andrews 8 Thackeray St / 

SEFTON 

St Luke's Upper Sefton Rd / 

SHEFFIELD 

St Ambrose Sheffield 46 Railway Tce East / 

SOUTHBRIDGE 

St James’ 2 Hastings St / 

SOUTHBURN 

Southburn Church 994 Pareora River Rd / 

TEMUKA 

St Peter's Temuka 192 King St / 

St Josephs Catholic Church 28 Wilkin St 2033 

Holy Trinity Arowhenua 3 Huirapa St / 

TIMARU 

St Paul 28 Seddon St / 

St Joseph’s Church 42 Douglas St / 

Woodlands Road Methodist Church Cnr Woodlands and North St / 

Bank Street Methodist Church 38 Bank St 3155 

St Mary’s Church 24 Church St 328 

Chalmers Church 4 Elizabeth St 7107 

TOTARA VALLEY 

St Paul’s Presbyterian Church (Former) 856 Cleland Rd 1995 

WAIAU 

All Saints' Church 35 Parnassus St 3690 

WAIHAO DOWNS 

St Michael's Church 1115 State Highway 82 / 

WAIMATE 

St Pauls Waimate 11 Glasgow St / 

Knox Church 58 Shearman St / 

St Patrick’s Church 2 Timaru Rd 7343 

WAIPARA 

St Paul's Church 173 Church Rd 7111 
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Name Address HNZ no. 

WOODBURY 

St Thomas' Church 6 Church St / 

WOODEND 

Methodist Church 86 Main North Rd 3795 

 

15 –OTAGO 

Name Address HNZ no. 

ALEXANDRA 

St Enoch's church 12 Centennial Ave / 

St Aidan’s 42 Shannon St / 

ARROWTOWN 

St John's Church 26 Berkshire St 2119 

St Patrick’s 7 Hertford St 2117 

AWAMOKO 

Awamoko Presbyterian Church 1783 Georgetown-Pukeuri Rd / 

BANNOCKBURN 

Bannockburn Presbyterian Church 33 Hall Rd 2385 

CLYDE 

St Michael and All Angels Church 8 Matau St 2386 

St Dunstan's Church 61 Sunderland St 2387 

St Magnus’ 60 Sunderland St / 

CROMWELL 

Goldfields Old Church 52 Erris St / 

Mary Immaculate and the Irish Martyrs 3 Sligo St / 

St John's Presbyterian Church 24 Inniscort St 2131 

St Andrew's Anglican Church 41 Blyth St 2132 

DUNEDIN 

St Davids Church 227 North Rd 4734 

Glenaven Church 7 Chambers St 3371 

Catholic Church of the Sacred Heart of Jesus 89 North Rd 2214 

Opoho Presbyterian Church 50 Signal Hill Rd / 

Dundas Street Methodist Church (Former) 50 Dundas St 3367 

All Saints' Church 786 Cumberland St 2136 

Knox Church 463 George St 4372 

Hanover Street Baptist Church 65 Hanover St 4792 

St Paul's Cathedral and Belfry 36 The Octagon 376 

Trinity Church (now Fortune Theatre) 231 Stuart St 3378 

Moray Place Congregational Church (Former) 81 Moray Place 2218 

Synagogue 29 Moray Place 9606 

Cathedral Church of St Joseph 288 Rattray St 364 
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Name Address HNZ no. 

First Church of Otago 410 Moray Place 60 

St Matthew's Church 28 Hope St 2212 

St Andrew 64 Melville St 3185 

Highgate Presbyterian Church 580 Highgate / 

Kaikorai Presbyterian Church 127 Taieri Rd / 

Roslyn Presbyterian Church 21 Highgate 3377 

Caversham Baptist Church 10 Surrey St  / 

Caversham Church 61 Thorn St 7319 

St Peters Caversham 57 Baker St 9545 

Wesley Church 333 Hillside Rd / 

St Patrick's Basilica 32 Macandrew Rd 2213 

St James (South Presbyterian) 400 King Edward St / 

Holy Cross 12 Richardson St / 

St Kilda Tongan Fellowship 56 Queens Drive / 

Andersons Bay Presbyterian Church Deacons 76 Silverton St  / 

North East Valley Baptist Church 270 North Rd / 

Halfway Bush Union Church 28 Balmain St  / 

St Clair 51 Albert St / 

ENFIELD 

Enfield Presbyterian Church 805 Weston-Ngapara Rd 2417 

ESK VALLEY 

St Mary's Church Church Hill Road 319 

HAMPDEN 

Presbyterian Church 2 London St 3249 

HERBERT 

St John's Presbyterian Church 1 Ord St 2416 

HERIOT 

Heriot Community Church 17 Roxburgh St / 

HYDE 

Catholic Church of the Sacred Heart of Jesus 9137 Eton St 2253 

KOKONGA 

? Kyeburn-Hyde Rd / 

KUROW 

Sacred Heart Roman Catholic church 5634 Kurow-Duntroon Rd / 

LAWRENCE 

Lawrence Presbyterian Church (Former) 7 Colonsay St 2243 

St Patrick 12 Colonsay St 2243 

Holy Trinity Anglican Church 9 Whitehaven St 2245 

Lawrence Methodist Church Corner of Whitehaven St and 

Colonsay St 

/ 
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Name Address HNZ no. 

LOVELLS FLAT 

? Station Rd / 

MACRAES FLAT 

St Patrick's Catholic Church (Former) 7 Hyde St 2397 

? 1726 Macraes Rd / 

MAHENO 

St Andrew’s 4 Short St / 

MIDDLEMARCH 

St John's Church 4 Aberafon St / 

MILTON 

St John 167 Union St / 

Tokomairiro Church 30 Union St 2250 

Immaculate Conception 24 Dryden St / 

MOSGIEL 

East Taieri Presbyterian Church 12A Cemetery Rd 2260 

Gospel Hall 75 Gordon Rd / 

Mosgiel Presbyterian Church 11 Church St / 

NASEBY 

St George 46 Derwent St / 

NORTH TAIERI 

North Taieri Presbyterian Church 39 Wairongoa Rd 3234 

OAMARU 

Rosary Chapel 70 Reed St 2301 

St Patricks Basilica 64 Reed St 58 

Reformed Church (Church of Christ) 6 Eden St / 

St Paul's Church 3 Coquet St 2300 

St Luke's Anglican Church 2 Tees St 4365 

Columba Presbyterian Church 33 Wansbeck St 7313 

Wesley Church 22 Eden St / 

PALMERSTON 

St James' Church 80 Tiverton St 3247 

St Mary's Church 8 Stromness St 2396 

Blessed Sacrament  44 Ronaldsay St / 

PORT CHALMERS 

St Mary's Star of the Sea Church 34 Magnetic St 2328 

Holy Trinity Church 1 Scotia St 2320 

Iona Church 24 Mount St 7165 

QUEENSTOWN 

St Peter's Church 6 Church St 2341 

St Joseph's Church 41 Melbourne St 2340 
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Name Address HNZ no. 

RANFURLY 

Sacred Heart 4 Stuart Rd / 

ROXBURGH 

Teviot Union Parish Church 75 Scotland St / 

St James' Church 12 Ferry Rd 2345 

Our Lady of Peace 5 Liddle St / 

SAINT BATHANS 

St Patrick's Church Cross St 3210 

 

16 –SOUTHLAND 

Name Address HNZ no. 

CENTRE BUSH 

St Andrew's Presbyterian Church (Former) 1785 Dipton-Winton Highway 7427 

GORE 

Holy Trinity 15 Traford Street / 

INVERCARGILL 

First Church 151 Tay St 387 

St John's Anglican Church Complex 108 Tay St 391 

Central Methodist Church 82 Jed St 2449 

St Paul's Church 178 Dee St 2517 

Windsor Community Church 19 Windsor St / 

All Saints Anglican Church and Parish Hall 509 Dee St 2440 

St Stephen's Church 284 North Rd 2518 

Sacred Heart 449 North Rd / 

St Patrick’s 33 Rimu St / 

St Mary’s 54 Eye St / 

MATAURA 

St Savious 127 Main Rd / 

Mataura Presbyterian ? / 

WYNDHAM 

St Kevin’s 45 Inkermann St / 
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Appendix B: Damage Probability Matrices and 

binomial distribution of the 20 considered 

mechanisms  
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Appendix C: Goodness-of-fit test of the 20 

considered mechanisms 
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Appendix D: Linear regressions between occurred 

damage levels and macroseismic intensity for the 20 

considered mechanisms 
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Appendix E: Comparison in the correlation 

between damage observed and damage predicted 

using simple- or multiple-linear regression models 

for the 20 considered mechanisms 
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Appendix F: Regression coefficients for all 

considered intensity measures 

Table 0.1. Computed coefficients of the regression models for NZMMI as intensity 

measure 
Mechanism no. 

Variable 

1 2 3 4 5 6 10 11 13 16 

Intensity measure  0.329 0.369 0.255 0.230 0.294 0.407 0.541 0.595 0.066 0.296 

Lateral restraint N/A N/A N/A N/A N/A 0.590 1.240 N/A 0.359 N/A 

Buttresses N/A 1.088 N/A 0.630 N/A N/A N/A N/A N/A N/A 

Lintels N/A N/A N/A 1.476 N/A 0.707 N/A N/A N/A N/A 

Thrusting elements 1.730 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Large openings 0.591 0.521 N/A N/A N/A N/A 1.166 0.964 N/A N/A 

Top beam N/A 0.669 N/A N/A N/A N/A 4.484 N/A N/A N/A 

Heterogeneous materials N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Connections 1.425 1.848 N/A 1.703 2.301 N/A 2.044 N/A N/A 1.610 

Slenderness 0.708 0.525 1.398 N/A 0.875 N/A N/A 1.142 N/A 1.834 

Asymmetry conditions N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Poor quality masonry 0.882 N/A 0.486 1.096 N/A 0.696 N/A N/A 4.118 N/A 

b (intercept) -1.870 -3.108 -0.775 -2.603 -0.973 -2.081 -8.323 -3.280 -0.247 -0.928 

 

Mechanism no. 

Variable 

17 19 20 21 22 23 25 26 27 28 

Intensity measure  0.175 0.256 0.299 N/A 0.432 0.441 0.352 0.356 0.420 N/A 

Lateral restraint N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Buttresses N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Lintels N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Thrusting elements N/A 3.327 2.369 N/A N/A N/A N/A N/A N/A N/A 

Large openings N/A N/A N/A N/A N/A N/A N/A N/A 0.728 N/A 

Top beam N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Heterogeneous materials N/A N/A N/A N/A N/A N/A 1.020 N/A N/A N/A 

Connections N/A N/A N/A N/A 2.270 N/A 0.946 N/A 2.401 N/A 

Slenderness 1.795 N/A N/A N/A N/A 1.740 N/A 1.831 N/A 2.580 

Asymmetry conditions N/A N/A N/A N/A N/A N/A N/A 1.181 1.473 N/A 

Poor quality masonry N/A 1.188 3.337 2.751 1.073 N/A 1.532 0.804 N/A 2.475 

b (intercept) -0.418 -2.910 -4.317 0.152 -2.138 -1.605 -1.914 -1.767 -1.550 0.440 
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Table 0.2. Computed coefficients of the regression models for PGA as intensity 

measure 
Mechanism no. 

Variable 

1 2 3 4 5 6 10 11 13 16 

Intensity measure  1.616 1.497 1.199 1.318 0.997 2.425 1.472 3.227 0.697 1.627 

Lateral restraint N/A N/A N/A N/A N/A 0.721 N/A N/A 0.444 N/A 

Buttresses N/A 1.155 N/A 0.764 N/A N/A 1.019 N/A N/A N/A 

Lintels N/A N/A N/A 1.437 N/A 0.632 N/A N/A N/A N/A 

Thrusting elements 1.886 N/A N/A N/A 0.650 N/A N/A N/A N/A N/A 

Large openings 0.588 0.354 N/A N/A N/A N/A 1.476 1.127 N/A N/A 

Top beam N/A N/A N/A N/A N/A N/A 2.540 N/A N/A N/A 

Heterogeneous materials N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Connections 1.338 2.208 N/A 1.538 2.150 N/A 1.983 N/A N/A 1.362 

Slenderness 0.805 0.539 1.465 N/A 0.855 N/A N/A 0.885 N/A 2.105 

Asymmetry conditions N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Poor quality masonry 1.044 N/A 0.584 1.001 N/A 0.705 N/A N/A 3.725 N/A 

b (intercept) -0.471 -0.785 0.331 -1.607 0.210 -0.435 -2.890 -0.588 -0.011 0.326 

 

Mechanism no. 

Variable 

17 19 20 21 22 23 25 26 27 28 

Intensity measure  1.103 2.407 N/A N/A 3.377 1.660 1.700 1.648 1.657 7.437 

Lateral restraint N/A N/A N/A N/A 1.730 N/A N/A N/A N/A N/A 

Buttresses N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Lintels N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Thrusting elements N/A 3.016 N/A N/A N/A N/A N/A N/A N/A N/A 

Large openings N/A N/A N/A N/A N/A 0.638 N/A N/A N/A N/A 

Top beam N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Heterogeneous materials N/A N/A N/A N/A N/A N/A 1.052 N/A N/A N/A 

Connections N/A N/A N/A N/A 1.543 N/A 0.867 N/A 2.914 N/A 

Slenderness 1.824 N/A N/A N/A N/A 1.703 N/A 1.936 N/A N/A 

Asymmetry conditions N/A N/A N/A N/A N/A N/A N/A 0.978 1.669 N/A 

Poor quality masonry N/A N/A 3.310 2.751 1.299 0.937 1.662 0.825 N/A N/A 

b (intercept) 0.288 -1.287 0.039 0.152 -2.130 -0.011 -0.347 -0.115 0.483 0.029 
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Table 0.3. Computed coefficients of the regression models for PGV as intensity 

measure 
Mechanism no. 

Variable 

1 2 3 4 5 6 10 11 13 16 

Intensity measure  1.546 1.510 1.366 1.162 1.077 2.145 2.409 2.883 0.144 1.421 

Lateral restraint N/A N/A N/A N/A N/A 0.749 0.767 N/A 0.457 N/A 

Buttresses N/A 1.300 N/A 0.696 N/A N/A 0.690 N/A N/A N/A 

Lintels N/A N/A N/A 1.599 N/A 0.670 N/A N/A N/A N/A 

Thrusting elements 1.735 N/A N/A N/A 0.601 N/A N/A N/A N/A N/A 

Large openings 0.529 0.341 N/A N/A N/A N/A 1.309 N/A N/A N/A 

Top beam N/A 0.565 N/A N/A N/A N/A 2.968 N/A N/A N/A 

Heterogeneous materials N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Connections 1.364 2.038 N/A 1.808 2.282 N/A 1.965 N/A N/A 1.307 

Slenderness 0.839 0.580 1.565 N/A 0.714 N/A N/A 1.432 N/A 2.044 

Asymmetry conditions N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Poor quality masonry 1.019 N/A 0.491 1.110 N/A 0.859 N/A N/A 4.230 N/A 

b (intercept) -0.498 -1.475 0.246 -1.788 0.173 -0.524 -4.352 -0.163 0.068 0.327 

 

Mechanism no. 

Variable 

17 19 20 21 22 23 25 26 27 28 

Intensity measure  0.923 1.996 2.064 N/A 1.926 1.481 1.811 1.913 2.495 3.984 

Lateral restraint N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Buttresses N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Lintels N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Thrusting elements N/A 3.148 1.741 N/A N/A N/A N/A N/A N/A N/A 

Large openings N/A N/A N/A N/A N/A 0.588 N/A N/A N/A N/A 

Top beam N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Heterogeneous materials N/A N/A N/A N/A N/A N/A 0.852 N/A N/A N/A 

Connections N/A N/A N/A N/A 2.159 N/A 0.950 N/A 2.084 N/A 

Slenderness 1.779 N/A N/A N/A N/A 1.616 N/A 2.262 N/A N/A 

Asymmetry conditions N/A N/A N/A N/A N/A N/A N/A 1.153 N/A N/A 

Poor quality masonry N/A 1.003 3.006 2.751 1.341 0.871 1.529 1.008 0.983 2.074 

b (intercept) 0.300 -1.955 -2.575 0.152 -0.275 0.026 -0.366 -0.419 -0.039 -0.267 
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Table 0.4. Computed coefficients of the regression models for IA as intensity 

measure 
Mechanism no. 

Variable 

1 2 3 4 5 6 10 11 13 16 

Intensity measure  0.170 0.141 0.129 0.172 N/A 0.282 0.138 0.382 0.087 0.191 

Lateral restraint N/A N/A N/A N/A N/A 0.836 N/A N/A 0.496 N/A 

Buttresses N/A 1.166 N/A 0.813 N/A N/A 1.113 N/A N/A N/A 

Lintels N/A N/A N/A 1.436 N/A N/A N/A N/A N/A N/A 

Thrusting elements 1.989 N/A N/A N/A 0.746 N/A N/A N/A N/A N/A 

Large openings 0.541 0.382 N/A N/A N/A N/A 1.490 1.182 N/A N/A 

Top beam N/A N/A N/A N/A N/A N/A 2.724 N/A N/A N/A 

Heterogeneous materials N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Connections 1.474 2.363 N/A 1.534 2.670 N/A 2.153 N/A N/A 1.464 

Slenderness 0.884 0.664 1.556 N/A 0.864 N/A N/A 1.050 N/A 2.263 

Asymmetry conditions N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Poor quality masonry 1.111 N/A 0.677 1.105 N/A 0.945 N/A N/A 3.936 N/A 

b (intercept) -0.286 -0.623 0.447 -1.538 -0.247 0.175 -2.831 -0.112 0.014 0.484 

 

Mechanism no. 

Variable 

17 19 20 21 22 23 25 26 27 28 

Intensity measure  0.132 0.376 N/A 0.464 0.281 0.202 0.190 0.199 N/A 1.259 

Lateral restraint N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Buttresses N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Lintels N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Thrusting elements N/A 2.761 N/A N/A N/A N/A N/A N/A N/A N/A 

Large openings N/A N/A N/A N/A N/A 0.740 N/A N/A N/A N/A 

Top beam N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Heterogeneous materials N/A N/A N/A N/A N/A N/A 1.039 N/A N/A N/A 

Connections N/A N/A N/A N/A 2.390 N/A 0.924 N/A 3.184 N/A 

Slenderness 1.965 N/A N/A N/A N/A 1.819 N/A 1.925 N/A N/A 

Asymmetry conditions N/A N/A N/A N/A N/A N/A N/A 0.882 1.736 N/A 

Poor quality masonry N/A N/A 3.310 1.916 1.643 1.059 1.796 0.973 0.942 N/A 

b (intercept) 0.394 -0.974 0.039 -0.441 -0.210 0.095 -0.172 0.058 0.512 0.357 
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Table 0.5. Computed coefficients of the regression models for mIH as intensity 

measure 
Mechanism no. 

Variable 

1 2 3 4 5 6 10 11 13 16 

Intensity measure  3.885 3.826 2.743 4.323 2.695 6.303 4.265 9.109 1.018 4.330 

Lateral restraint N/A N/A N/A N/A N/A 0.740 N/A N/A 0.384 N/A 

Buttresses N/A 1.159 N/A 0.778 N/A N/A 1.008 N/A N/A N/A 

Lintels N/A N/A N/A 1.594 N/A 0.658 N/A N/A N/A N/A 

Thrusting elements 1.976 N/A N/A N/A 0.659 N/A N/A N/A N/A N/A 

Large openings 0.582 0.366 N/A N/A N/A N/A 1.487 1.281 N/A N/A 

Top beam N/A N/A N/A N/A N/A N/A 2.742 N/A N/A N/A 

Heterogeneous materials N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Connections 1.525 2.324 N/A 1.601 2.248 N/A 2.098 N/A N/A 1.547 

Slenderness 0.748 0.534 1.510 N/A 0.825 N/A N/A 0.921 N/A 2.105 

Asymmetry conditions N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Poor quality masonry 1.113 N/A 0.685 0.987 N/A 0.824 N/A N/A 4.159 N/A 

b (intercept) -0.473 -0.806 0.338 -1.858 0.189 -0.513 -3.191 -0.771 0.024 0.295 

 

Mechanism no. 

Variable 

17 19 20 21 22 23 25 26 27 28 

Intensity measure  2.493 7.949 N/A N/A 6.255 3.994 4.527 4.728 3.903 12.372 

Lateral restraint N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Buttresses N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Lintels N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Thrusting elements N/A 2.816 N/A N/A N/A N/A N/A N/A N/A N/A 

Large openings N/A N/A N/A N/A N/A 0.657 N/A N/A N/A N/A 

Top beam N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Heterogeneous materials N/A N/A N/A N/A N/A N/A 1.015 N/A N/A N/A 

Connections N/A N/A N/A N/A 2.397 N/A 0.947 N/A 2.677 N/A 

Slenderness 1.938 N/A N/A N/A N/A 1.710 N/A 1.997 N/A N/A 

Asymmetry conditions N/A N/A N/A N/A N/A N/A N/A 1.057 1.454 N/A 

Poor quality masonry N/A N/A 2.751 2.751 1.472 0.986 1.709 0.891 0.866 2.208 

b (intercept) 0.314 -1.371 0.039 0.152 -0.409 0.015 -0.382 -0.217 0.183 -0.261 
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