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Introduction 

Understanding the mechanisms of brain development and training is an 

important topic in neuroscience research. One of the most remarkable 

abilities of the brain is to adapt to the events of life. The brain is a dynamic 

organ that evolves throughout life. During learning and experiencing, it is 

the structure of the brain itself that changes, with the creation of new 

connections between neurons. Neuroplasticity is not an isolated state of the 

nervous system, it is a normally continuous state. That is because the brain is 

meant to respond to changes in environmental conditions or because of 

pathological conditions of different aetiology. Exercising and practice have 

long been used to restore (to varying degrees) impaired functions. Improved 

training strategies, rehabilitative protocols and methodologies to foster the 

neuroplasticity effects are currently being developed. The improvement in 

our understanding of the neuroplastic changes associated with injuries and 

the inherent repair strategies is of crucial importance. A key question is to 

evaluate whether and to what extent a certain rehabilitation strategy is 

actually helping the neuroplasticity process.  

In the clinical practice, in addition to their importance for the diagnosis 

of motor and cognitive impairment, behavioural scales are used as well to 

assess the impact of the brain reorganization induced by neurorehabilitative 

interventions. Although there are numerous general and specific scales with 

established reliability and validity, no single scale is suitable to all clinical or 

research situations. Furthermore, behavioural scales provide an indirect 

measure of brain plasticity through its behavioural manifestations, but not 

directly in the brain. Indeed, finding markers that could predict and enhance 

brain plasticity is still a challenge. However, research on biomarkers of 

recovery is still limited, especially using neurophysiological tools. 
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Despite the enormous potential given by recent advances in sensor and 

signal processing technology, the information provided by these 

investigations has not yet been effectively used in the clinical field due to the 

difficulty in extracting stable and synthetic indices. Developments aimed at 

overcoming this limitation could lead to the definition of descriptors that can 

be related to clinical parameters of interest for the diagnosis, the 

understanding and the evaluation of the effects of neuro-rehabilitation 

therapies. 

The overall objective of my PhD project has been to establish a 

methodology for the definition and analysis of neurophysiological indices 

that can provide a measure of changes in brain activity and organization that 

can be quantifiable (i.e. measurable in real world conditions), is reliable 

(sensitive, specific, and consistent over time), widely applicable and 

modifiable (amenable to improvement using existing approaches). The aim 

is to describe the specific properties of the general brain organization to be 

correlated with the outcome of the rehabilitation intervention, with possible 

prognostic/decision support value. The objective is to support the diagnosis 

of motor and cognitive disabilities, to provide a neurophysiological 

description of the changes in brain activity and organization that underlie 

functional recover and to allow the evaluation of the effects of rehabilitative 

treatments (conventional and innovative) in terms of brain reorganization 

(measures of neurophysiological outcome of a treatment). 

To this purpose, my research activity has focused on developing an 

approach for the extraction of neurophysiological indices from a non-

invasive estimate of brain activity and connectivity based on 

electroencephalographic (EEG) measurements. 

High Density EEG offers advantages such as high safety and 

affordability in medical settings, especially in those that are traditionally 

difficult, such as stroke. Brain injuries represent major medical unmet needs 
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worldwide and need the development of new therapies. Given the insidious 

nature of these conditions and the significant cost of many diagnostic tests, 

there is a strong need for a method that is widely available, reliable and 

inexpensive. In this regard, the EEG can have significant potential and many 

considerable advantages. The EEG has an excellent temporal resolution, of 

the order of a few milliseconds, thus reflects synaptic activity, which is a 

common denominator for the functional impact of neurodegenerative 

processes. EEG is a non-invasive, portable and inexpensive technology that 

is widely adopted and that requires a relatively short acquisition time. 

Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI) 

currently make it possible to easily obtain accurate measurements of neural 

lesions. This is not, however, the case for measuring brain function. 

Although functional MRI, Positron Emission Tomography (PET) and other 

associated methods can be used to assess brain function, these neuroimaging 

techniques have major limitations for large-scale clinical adoption, including 

cost, accessibility and safety. Moreover, although it has a much lower spatial 

resolution than the other methods mentioned above, electroencephalography 

is one of the few techniques to study neuronal activity in a non-invasive 

manner with a timing that corresponds to that of the processes under study. 

Major attention has been given to the analysis of EEG recorded during 

the resting state. EEG measures of resting brain function provide insights 

into basal differences in brain state, therefore useful to predict the capacity 

of an individual brain, transcending inter-individual heterogeneity, to 

undergo plasticity and thus respond to therapeutic intervention.  

All data reported in this thesis were collected by the team of the 

Neuroelectrical Imaging and BCI Lab (NEILab) at Fondazione Santa Lucia, 

IRCCS, Rome, Italy. 

This thesis is divided into five Chapters. Chapter 1 describes the general 

physiological aspects of the nervous system, the neuronal electrophysiology, 
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the electroencephalography techniques and the monitored activity of the 

brain in order to understand the brain dynamics when the subject is engaged 

in particular experimental tasks. In Chapter 2, methods for the estimation of 

cortical connectivity based on auto-regressive multivariate models are 

presented, as well as methods for validation of connectivity estimates. These 

connections are then used to generate network data for further analysis such 

as graph theory metrics. Graph theory provides tractable means to analyze 

dynamic and integrated systems. In Chapter 3, the topographic 

reorganization after a stroke event of the brain connectivity network related 

to the resting state condition was described by defining various indexes. 

Differences in brain network organization have been investigated with 

respect to a healthy population and between different subgroups of patients 

in order to evaluate the deviation from the healthy condition and characterize 

patients on the basis of their clinical features. Chapter 4 describes a study 

conducted on the EEG tracks of a group of stroke patients undergoing motor 

imaging training supported by a Brain Computer Interface (BCI). Through 

spectral and connectivity estimation analysis, the study aimed to prove and 

characterize the amount of recovery of patients undergoing rehabilitation 

training based on motor imagery. In Chapter 5, it was explored whether an 

EEG-derived connectivity sensorimotor index at rest could vary in relation 

with the corticospinal tract integrity and excitability in subacute stroke 

patients. Functional changes in the motor area have been quantified and 

positively correlated with commonly used stroke clinical indices. As for 

today, the uncertainties about the effects of in-homogeneities due to brain 

lesions preclude the adoption of EEG functional mapping on patients with 

lesioned brain. In Chapter 6, is described a work that has the aim to quantify 

the accuracy of a distributed source localization method in recovering 

extended sources of activated cortex when cortical lesions of different 

dimensions are introduced in simulated data. To this purpose, EEG source-
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distributed activity estimated from real resting state data was modified 

including silent lesion areas. Finally, a general conclusion, reporting the 

main contributions achieved within this PhD project, their possible impact 

and their future development, closes this PhD thesis.  



I 

Physiological bases and characteristics of the 

Electroencephalographic signal  
 

 

1.1 The central nervous system 

1.2 The cortical neurons 

1.3 Bioelectric signal transmission 

1.4 Stroke: causes, diagnosis and treatment 

1.5 Electromagnetic fields and cortical neurons 

1.6 From neuronal sources to EEG signal 

1.7 General features of the EEG signal 

1.8 Electroencephalography 

_____________________________________________________________ ...........  

1.1 The central nervous system 

The human brain is the central organ of the human nervous system, it is 

the primary location of most of the psychic and neurological functions of the 

body. Its complexity can be quantified by comparing it to a network 

interconnecting 10
10

 neuronal cells. Each of them is capable of very simple 

operations: depending on the state of polarization of the neurons connected 

to it, the neuron may (or may not) depolarize, thus providing an 

electrochemical signal to the connected neurons. These will become 

responsible for the transmission and processing of the information through 

the nervous system. 
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The distinction between the central and peripheral nervous systems is 

for merely didactic purposes, since the peripheral nervous system (PNS) 

consists mainly of extensions of nerve cells that are part of the central 

nervous system (CNS). Therefore, the following definition applies by 

convention: the CNS represents all nerve formations contained within the 

cranial cavity and the vertebral canal. 

The central nervous system is a bilateral and symmetrical structure, 

traditionally divided into six parts: spinal cord, medulla, pons and 

cerebellum, midbrain, diencephalon and cerebral hemispheres. All brain 

functions are located in the cortex, which covers the cerebral hemispheres 

and in which all information is processed and integrated. The cortex, in 

itself, is a very complex structure whose morphology, intensely irregular, is 

the result of the particular brain evolution of the primates. In fact, during this 

evolution, the volume of the cortex has increased more rapidly than the 

volume of the skull, forming a large number of slits (called sulci) and 

circumvolutions, whose crests are called gyri. Some of the sulci are always 

present in the human brain, so they are used as reference points to divide the 

cortex of each hemisphere into four lobes: frontal, parietal, temporal and 

occipital (Figure 1.1). 

Among the structures that compose the nervous system, the cerebral 

cortex is certainly the part that has developed most recently and certainly 

characterized by a high degree of complexity. 
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Fig. 1.1 - Schematic representation of brain structure. 

 

It has long been known that different areas of the brain are related to 

specific cognitive and motor tasks: in literature a widely used subdivision of 

the cerebral cortex is that of German anatomist Korbinian Brodmann that, by  

performing accurate histological examinations and evaluating different types 

of nerve cells and myelin fibre placement, identified 47 specific areas with 

distinct characteristics. In Figure 1.2 it is possible to distinguish various 

areas that refer to some specific tasks, such as the primary sensory area (3-1-

2), the secondary sensory area (5-7), the primary visual area (17), the 

secondary visual area (18-19), the primary motor area (4) and the premotor 

area (6). 
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Fig. 1.2 - Brodmann areas on the representation of the brain. Each numbered zone is 

associated with a portion of the brain in which the neurons are similar. 

1.2 The cortical neurons 

Electroencephalography (EEG) measures voltage fluctuations mainly 

generated by the grey matter of the cortex but it is also influenced by the 

grey matter placed deeper (e.g. thalamus). The cerebral cortex contains 

different types of nerve cells (neurons), whose structure is represented in 

Figure 1.3, responsible for the processing and transmission of information in 

the nervous system. 

 

Fig. 1.3 The cell structure that contains the nucleus controls the metabolism of the 

whole unit; the dendritis receives the incoming impulses while the propagation of 

the nerve impulses takes place through the axon that is covered by the myelin 

sheath. The electrical signal is transmitted through the inter-neuronal synapses. 
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Depending on their morphology, their laminar arrangement and the class 

of neurotransmitters they use, nerve cells can be grouped into two main 

categories. A particular type of cell, the pyramidal cell, is the first class to be 

considered. These cells represent, with their pyramid-shaped cell bodies, but 

especially with their multiple connections, the main constituent of the 

cerebral cortex. Pyramidal cells project their axons to other brain regions and 

to the spinal cord; they are excitatory neurons and constitute the main 

projection neurons of the cerebral cortex. These have collateral ramifications 

that have a significant functional role in the generation of global electrical 

activity of the neural cortical aggregates. These cells have a characteristic 

dendritic organization that facilitates the integration of various adjoining 

signals. In fact, their apical dendrites often cross several cortical layers and 

are always oriented perpendicularly to the cortical surface. This anatomical 

organization means that afferent synaptic connections from different cortical 

layers reach the dendritic tree at different points. The other class of cells 

within the cerebral cortex is generically defined as non-pyramidal cells. 

Non-pyramidal cells have oval shaped cell bodies. In general, their axons do 

not leave the cortex but terminate on nearby neurons; for this reason they are 

called interneurons. From a morphological point of view, interneurons 

constitute a heterogeneous population. By far, the largest group consists of 

stellate cells. A stellate cell has the axon oriented vertically, parallel to the 

pyramidal cells. These type of neurons receive information directly from 

thalamic neurons and retransmit it to other interneurons or to nearby 

pyramidal cells. Some non-pyramidal cells have axons oriented horizontally, 

in the same plane as the cortical layers. An important type of neuron with 

horizontal axon is the basket cell, which forms dense synaptic connections 

that envelop the soma of post-synaptic neurons. It is believed that basket 

cells are responsible for columnar inhibition, which allows neurons in a 
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cortical column to perform their function relatively independently of that 

performed by neighboring columns. 

1.3 Bioelectric signal transmission 

The transmission of the bioelectric signal is the main characteristic of 

nerve cells (neurons). When a neuron is excited by an external stimuli it 

becomes the site of an electric field, which propagates along its axon. The 

electric field consists of a temporary inversion potential at the terminals of 

the membrane (action potential). The inversion of polarization of the cell is 

called depolarization, then the potential quickly returns to its rest value of -

90 mV by reconstituting the double layer with negative charges inside and 

positive charges outside. The arrival of the action potential from an afferent 

axon causes the depolarization of the presynaptic membrane and that leads, 

in the chemical synapses, to the opening of the calcium channels (Ca
2+

). The 

ions entry induces the fusion of the vesicles with the membrane and the 

exocytosis of the neurotransmitters contained in them; these cross the 

synaptic cleft reaching the postsynaptic receptors and this interaction causes 

the opening of the sodium (Na
+
) and potassium (K

+
) ionic channels. The ions 

entry induces the fusion of the vesicles with the membrane and the 

exocytosis of the contained neurotransmitters; neurotransmitters, through the 

synaptic cleft, reach the postsynaptic receptors and such interaction causes 

the opening of the sodium (Na
+
) and potassium (K

+
) ionic channels. The 

variation of the intra and extra cellular ionic concentration, producing ionic 

flows, tends to cancel the membrane potential causing its depolarization 

(excitatory postsynaptic potential, EPSP). This is not sufficient for 

generating an action potential: in fact, it is necessary to have several synaptic 

processes on the same neuron which are close in space and time. The 

extracellular space around the depolarization will charge negatively with 

respect to the cellular body and the basal dendrites, which will become 
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electropositive. The resulting electrical field will assume the classical dipolar 

distribution, with one source corresponding to the electropositive peak, and 

one sink, corresponding to the electronegative peak (EPSP site). This 

electrical field will then produce an ions flow in the extracellular space that 

will create an ionic current, conventionally directed toward the EPSP site 

(extracellular current). The intracellular space around the depolarization will 

positively charge itself with respect to the cellular body and the basal 

dendrites. This imbalance will be compensated by a movement of charges 

inside the neuron (intracellular currents). 

1.4 Stroke: causes, diagnosis and treatment 

Stroke is a cerebrovascular lesion caused by the disruption of blood 

flow to the brain due to an obstruction or rupture of an artery. The 

interruption deprives the brain of blood and oxygen, causing the death of 

brain cells.  

The human brain consists of more than ten billion cells. These cells 

require a large amount of energy, in the form of oxygen and glucose. 

Although the brain represents only 2% of our body weight, it consumes up to 

85% of the oxygen we breathe. 

 When an artery in the brain breaks out or is obstructed, causing blood 

to stop flowing, the neurons, deprived of the oxygen and nutrients needed for 

even a few minutes, begin to die. Brain cells destroyed by the initial stroke 

damage trigger a chain reaction that destroys cells even in a large 

surrounding area. Because brain cells do not regenerate, stroke damage is 

often permanent. Depending on which part of the brain is affected by the 

stroke, the result may be paralysis and loss of speech, vision or memory 

functions. Stroke can also lead to coma or death. There is a stroke per minute 

in Western countries.  
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Strokes are caused by ischaemia or haemorrhage. The ability of the 

blood to coagulate, while on the one hand it allows the wounds healing, on 

the other hand it can cause a cerebral ischemia through two distinct 

processes: embolism and the formation of thrombi. The most common stroke 

is the thrombotic stroke (cerebral thrombosis). In this type of stroke, a blood 

clot forms inside a cerebral artery, narrowing the blood vessel. This process 

can completely interrupt the nutrient supply to the brain area sprayed by the 

artery that is occluded. In other cases a lump of blood, the embolus, which 

has formed in another part of the body, usually in the heart, can travel with 

the blood flow and fix itself in a cerebral artery. If the embolus has a 

sufficiently large size it can block blood flow to the brain and cause an 

embolic stroke. Haemorrhagic stroke, which is less frequent but more fatal, 

is caused by the rupture of a blood vessel in the brain. 

Acute stroke therapy aims to achieve the following results: 

 The reduction of cerebral edema. Edema is an increase in the 

volume of the mass present inside the skull as a result of 

swelling of the nerve cells and/or an increase in the amount of 

fluid between the nerve cells. In both cases edema behaves like 

an injury that fills space inside the skull and causes a state of 

brain suffering. The main drugs that can determine reduction of 

brain edema are glycerol, mannitol and cortisone; 

 The limitation of damage caused by ischaemia. Cerebral 

ischaemia is the result of a critical imbalance between the 

metabolic needs of brain tissue (supply of oxygen and glucose) 

and the ability of the cardiovascular system to meet these needs 

through adequate blood flow. Accordingly, interventions may 

consist of: a) reduction of the metabolic needs of the tissue (e.g. 

hypothermia); b) improving or restoring blood flow. 
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Improvements in blood flow may be achieved by raising 

systemic pressure. 

The overall objective of rehabilitation is to contribute to the reduction of 

disability caused by the patology. The aim of motor rehabilitation is mainly 

to induce an improvement in the motility levels of the paretic limbs. 

Numerous studies have highlighted the role of motor rehabilitation at an 

early stage of the post-ictal course. The first objective is to avoid the most 

frightening consequences of stroke, i.e. the occurrence of contractures. The 

second objective consists in facilitating voluntary movements and inhibiting 

spasticity.  

Cognitive rehabilitation aims at the recovery of cognitive functions 

compromised by stroke. This involves a careful neuropsychological 

evaluation of the patient by means of a set of tests that explore as extensively 

as possible the different cognitive functions (language, memory, attentional 

functions). The aim is to describe a functional profile that allows 

compromised and conserved abilities to be identified. Rehabilitation 

techniques can aim at the restoration of the compromised function or at the 

setting up of strategies that allow to compensate the functional deficit by 

using saved functions. Particularly encouraging results are being achieved in 

the application of information technology to cognitive rehabilitation. 

1.5 Electromagnetic fields and cortical neurons 

The electric field distribution produced by a postsynaptic potential 

depends on the geometry of the cells, their organization within the cortex 

and the characteristics of the conductive volume around the active area. As 

described above, pyramidal neurons are arranged parallel to each other and 

perpendicularly to the cerebral cortex. Therefore, the simultaneous activation 

of several pyramidal neurons produces current flows (electric and magnetic 

fields) which, given their similar orientation, can be added together. The 
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electric fields generated by pyramidal cells are open fields and therefore, if 

synchronous, they can accumulate and be registered by means of electrodes 

placed on the scalp. On the other hand, neuronal structures with elements 

arranged radially or arranged in random orientations generate closed fields, 

where intra and extra cellular currents do not produce electric and magnetic 

fields directed outwards. So, the random orientation of non-pyramidal 

neurons means that the fields of individual neurons do not add up. In 

summary, due to their cortical organization and intrinsic structure, the main 

generators of EEG signals are pyramidal neurons. Electromagnetic fields 

generated by these neurons are similar to those produced by an 

electromagnetic dipole, this allows us to describe and model the 

electromagnetic activity produced by an active cortical area by means of an 

equivalent dipole. 

1.6 From neuronal sources to EEG signal 

Generating an EEG signal large enough to be detected requires 

thousands of cortical neurons activated simultaneously because the 

contribution of each neuron is extraordinarily small and the signal has to 

cross several layers of non-neural tissue. Therefore, the amplitude of the 

recorded signal depends on how synchronized the activity of the involved 

neurons is. An increase in neuronal activity may occur in different areas of 

the cortex, and different foci of activity correspond to different distributions 

of magnetic potential and magnetic flow. The cerebral cortex forms sulci and 

gyri, and according to the orientation of the active segment (which can be 

perpendicular or parallel to the scalp) the distribution will be radial or 

tangent. The dispersion of the potential distribution on the scalp led to the 

belief that few source points of the brain generate spontaneous EEG 

phenomena or evoked potentials, and that in practice many EEG spatial 

patterns could correspond to a few equivalent dipoles (or even just one). But 
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at the same time, each equivalent dipole could reflect the ‘center of mass’ of 

an activity pattern distributed through a region of the skull. The doubts that 

have arisen have made to face the problem of the spatial focus of the 

recorded EEG data through the calculation of the surface Laplacian of the 

potentials, before moving on to the study of the localization of the sources. 

Laplacian estimation allows a marked reduction in the effects due to the 

conductive volume and, above all, increases spatial resolution and allows 

reliable assumptions on brain sources of EEG data (associated with spatial 

sampling using usually 64-128 electrodes). The idea that only a few sites in 

the brain are active in generating both evoked and spontaneous EEG 

potentials has addressed the problem of EEG localization by developing 

methods that improve spatial resolution without making assumptions about 

the amount or the distribution of sources in the brain. The potential at the 

scalp level, due to a single source of current in the brain, is determined by 

volume conduction of electric fields in a non-homogenous stratified 

medium. A cortical macro-column (i.e. a hypothetical cylindrical portion of 

neocortex of longitudinal extension equal to that of the axons remaining 

within the cortex) of about 3-4 mm diameter contains approximately 10
6
 

neurons and 10
10

 synapses. The polarization of this volume of tissue is the 

sum of the micro-sources at the level of the synaptic membranes and other 

more remote membrane surfaces, and can be approximated as the dipole 

moment per unit volume. On this spatial scale the cortical tissue seems to 

show homogeneous statistical properties, but this scale is below the spatial 

resolution limit of the EEG. The distributed activity through the entire cortex 

can be represented by many thousands of these dipolar sources, oriented 

perpendicularly to the cortical surface. The sources in the gyri are mostly 

radially oriented, while the sources in the sulci are tangentially oriented. The 

scalp potentials due to radial or tangential dipoles at different depths are 

represented in Figure 1.4. 
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Fig. 1.4 – Trend of scalp potentials due to tangential dipoles (left) and radial dipoles 

(right). 

It is important to underline that the definition of spatial resolution does 

not coincide with the accuracy of the dipole localization. Spatial resolution is 

defined as the ability to distinguish two separate dipoles. The resolution is 

therefore the limit distance, typically the order of magnitude of the distance 

from the sensor (depth) at which the two dipoles are no longer seen as 

separate sources. EEG obviously tends to be more sensitive to cortical 

sources than to deeper sources (which are more distant from the sensors). In 

addition, the cortical anatomy further amplifies the ability to detect cortical 

sources since large pyramidal cells are all aligned perpendicularly to the 

cortical surface. In this way, the measured fields are large because they are 

produced by the superposition of coherent sources. Deep sources can also be 

detected, usually by the averaging of many recordings, increasing the signal-

to-noise ratio. Note that the EEG is also insensitive to dipoles that are 

oriented in the opposite direction to the gyri and to random dipoles too (the 

radial and tangential components elude each other). 

1.7 General features of the EEG signal 

The EEG is oscillatory in nature. Generally, in the normal human the 

amplitude of the electric potentials recorded on the scalp varies from 20 to 
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100 mV. EEG oscillations have frequencies ranging from 1 to 60 Hz. About 

90% of the EEG signal seems highly random. These segments often cannot 

be traced back to particular mental states, are difficult to predict and are 

usually defined as background activities. The brain is in continuous activity, 

able to interact and change with the environment, with the other organs of 

the body and with itself. The EEG traces present a generalized background 

activity. Small voltage fluctuations of a few tens of microvolts are always 

present. This spontaneous activity can reveal different mental states, 

different levels of consciousness or some pathological disorders. This 

activity is intrinsic to the cerebral matter and its behaviour is an important 

index of the integrity of the structures and their functionality. Particular 

waveforms can be good indicators of pathologies, lesions or simply a state of 

relaxation of the subject. The absence of spontaneous activity is an 

indication of brain death. Rhythms are categorized basing on the frequency 

range within which they vary. The various mental and pathological states are 

often related to oscillations in certain frequency bands, called EEG rhythms, 

each of which is identified by a letter of the Greek alphabet. The EEG 

rhythms considered in the basic EEG signal, i.e. detected in the total absence 

of any exogenous or endogenous stimulus, are classified as described. 

Delta rhythms (δ) are oscillations at frequencies below 4 Hz, often of 

large amplitude, and are a characteristic element of deep sleep and 

pathological conditions (such as coma states or tumor forms). The theta 

rhythms (θ) are oscillations in the 4-7 Hz band; in adults they are usually 

recorded during some states of sleep. Alpha (α) rhythms are included in the 

8-13 Hz band and are associated with relaxed wakefulness (best recorded by 

the parietal and occipital lobes). The desynchronization of the α rhythm, i.e. 

the decrease in the amplitude of EEG waves in the α band, seems to be 

related to a greater availability of cortical networks to sensory input or motor 

control. The rhythms α disappear with the eyes opening. Beta (β) and gamma 
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(γ) rhythms include all frequencies greater than about 14 Hz (range 14-30 Hz 

and frequencies greater than 30 Hz, respectively) and are indicative of a state 

of activation of the cortex (they are usually observed at the level of the 

frontal areas, but they can also be recorded from other cortical regions). 

They show the minimum values of their amplitude during intense mental 

activity. In general, low-frequency and large-amplitude rhythms are 

associated with sleep phases without dreams or pathological states, while 

high-frequency and low-amplitude rhythms are associated with alertness and 

wakefulness or sleep phases with dreams. This is due to the fact that, during 

deep sleep, cortical neurons are not involved in the processing of 

information and a large number of them are rhythmically excited by a 

common, slow and phasic input: in this case the synchrony is high, so the 

amplitude of EEG potentials is also high. When, on the other hand, the 

cortex is strongly engaged in processing information, whether it is generated 

by sensory inputs or internal processes, the level of activity of neurons in 

large areas of the cortex is relatively high, but this activity is also relatively 

non-synchronized. In other words, each neuron (or very small group of 

neurons) is strongly involved in a particular aspect, slightly different from 

that of the neurons closest to it; the cell, therefore, discharges rapidly, but 

asynchronously with respect to most of the neighbouring neurons. This poor 

synchronization results in EEG potentials with modest amplitudes. The 

various bands show a certain variability individually and with age, it would 

therefore be preferable to refer to the peak of the α band and define the other 

bands starting from this peak. 

An event, defined as a sensory stimulus or a motor act, can be detected 

by the analysis of EEG signals, since it mainly creates two types of 

variations: 

- it creates a phase realignment of the signal with respect to the event;  

- it creates variations in signal power at different frequencies. 
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Variations in the EEG are dynamic and of limited duration. The two 

processes can therefore take place simultaneously and represent only two 

aspects of the same physiological phenomenon, or they can take place at 

different times. What interests us is to distinguish physiological phenomena, 

not the two types of variations. On the other hand, the differentiation in two 

types of responses depends on the method of analysis used; often they tend 

to be considered as separate events that are methodologically distinct, but 

physiologically represent the same phenomenon from two points of view. 

The best approach to studying brain responses is therefore to study variations 

in the instants just before or just after the event of interest. 

1.8 Electroencephalography 

Primary currents, which are sustained by the sum of post-synaptic 

potentials on the same neuron, affect the synaptic membranes and induce a 

similar flow of charges in extracellular space: the secondary currents (or 

volume currents). The latter, flowing through various tissues, reach the 

surface of the head generating the potential differences measurable by the 

electrodes placed on the scalp, although strongly attenuated by the low 

conductivity of these tissues. Most electrodes consist of metal or synthetic 

ceramic discs or cups. EEG potentials must be measured simultaneously at 

different points on the scalp. The most commonly used system is the 

international 10-20 system, in which some anatomical markers (the nasion, 

the inion and the pre-auricular points A1 and A2) are taken as reference 

points and 19 electrodes are placed at reciprocal distances equal to 10% and 

20% of the distances between these points (Figure. 1.5). 
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Figure 1.5 - 10-20 system: lateral and upper view. 

 

Since these are potential measurements, one or more reference 

electrodes must be fixed. The two methods commonly used for this purpose 

are: 

- The common reference method, which measures the potentials of all 

electrodes against that of a single common electrode, usually placed at the 

earlobe. The disadvantage of this method is that an activity close to the 

reference electrode can distort the recording, since it is subtracted from the 

signals of the other electrodes; 

- The average reference method, which refers the value of each 

channel to the average of all channels. This solves the above problem, but 

the spatial patterns are smeared. 

The study of cortical activity through the analysis of EEG potentials 

therefore presents a limitation depending on the reference used. Possible 

variations of the electric potential adopted as reference for the recording of 

the potentials on the scalp, in fact, can attenuate or obscure some cortical 

generators, acting, therefore, as a spatio-temporal disturbance factor. 

Moreover, the potentials recorded on the scalp are not only attenuated, but 

also distorted and diffused due to the different electrical conductivity of the 

tissues crossed by the currents. As a result of the spatial distortion 

phenomena induced by the anatomical structures of the head, the distribution 
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of potential on the scalp presents a low spatial resolution, which does not 

allow a reliable localization of the cortical generators of the potentials. 

Because of these volume conduction effects, the EEG signal is typically a 

potential that results from overlapping signals from different cortical and 

subcortical regions. The potential recorded by a certain electrode site, 

therefore, is not necessarily generated by the underlying cortex: the potential 

measured on the scalp and generated by bilateral cortical sources may be 

maximum at the vertex, although this may be far from such sources. It has 

been quantified, through simulations, that sources distributed within a radius 

of 3 cm below the electrode position contribute only 50% to the power 

measured by the electrode itself, while 90% is reached considering sources 

up to 6 cm away. All in all, the distortion phenomena illustrated produce an 

increase in the low spatial frequencies of the potentials measured on the 

scalp (spatial blurring). For all the above reasons, the analysis of 

spontaneous EEG activity or event-related potentials, performed by means of 

20÷30 sensors, generally offers a spatial resolution of about 6÷7 cm, which 

is at least one order of magnitude worse than those allowed by other 

commonly used investigation techniques, such as Positron Emission 

Tomography (PET) or functional Magnetic Resonance Imaging (fMRI). On 

the other hand, the increase in spatial resolution in the study of EEG 

potentials cannot be achieved by simply increasing the number of sensors 

placed on the scalp. In fact, adequate electrodic sampling of the potential on 

the scalp protects against spatial aliasing phenomena during data acquisition, 

but does not solve the problem of distortion and attenuation of potential 

distributions caused by anatomical structures with lower conductivity. 

A significant increase in the spatial resolution of the recorded EEG 

potentials can be obtained by means of the high spatial resolution 

electroencephalography (HR-EEG): in this case, recordings are made using a 

network of 64÷128 sensors placed on the scalp and subsequently these data 
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are processed by special algorithms that remove the attenuation effects 

induced by low conductivity structures on the head. This last processing 

step, called spatial deblurring, greatly improves performances when realistic 

models of conductive volume (obtained by MRI images of the head of the 

subject under examination) are used. 
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II 

Causality and Influence between Brain Regions  

 

2.1 Introduction 

2.2  The multivariate auto-regressive model (MVAR) 

2.3 Selection of the model order 

2.3.1 Final Prediction Error 

2.3.2 Akaike Information Criteria 

2.3.3 Visual inspection 

2.4 Partial Directed Coherence 

2.5 Validation of connectivity estimates 

2.5.1 Shuffling phases 

2.5.2 The Asymptotic statistics procedure 

2.6 Methods of analysis of complex networks 

2.6.1 Graph definition 

2.6.2 Extracting the Adjacency Matrix 

2.6.3 Graph properties 

2.6.4 Graph theory indices 

2.5.5  Random and regular graphs 

_________________________________________________________________________ ................  

2.1 Introduction 

The estimation of the information flow from one area of the cerebral 

cortex to another is of fundamental importance both in neurological studies 

and in clinical applications, as it accounts for the propagation of the signal 
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through the various brain areas during the analyzed experimental task. Since 

EEG signals are usually characterized by their spectral properties, interest 

arises in both the direction of the information flow and its spectral content. 

In order to estimate this flow from the experimental data recorded on the 

scalp, different methodologies have been used over the years: among others, 

the Lehmann maps (1987), the Gevins cross-covariance function (1989) or 

the coherence comparisons as function of the distances between the various 

electrodes (Thatcher, 1986). Most of these methods, however, have the limit 

of processing bivariate time series, that is to analyze the relationships 

between signals taking into account a pair of channels at a time and not the 

totality of the multi-channel structure. Looking at more than two channels, 

the complexity of the problem is growing rapidly, which adds to the risk of 

reaching erroneous conclusions as a result of having partially analyzed the 

information available. The Partial Directed Coherence method (Baccalá e 

Sameshima 2001) is a multivariate spectral measurement that can be used to 

determine the intensity and direction of the information flow between any 

pair of channels from a single multivariate auto-regressive model (MVAR) 

estimated over the entire signal set. 

2.2  The multivariate auto-regressive model (MVAR) 

There are still conflicting opinions in the literature about the linearity 

and stationarity (in the broad sense) of electroencephalographic signals. 

Nevertheless, in the following these hypotheses have been assumed to be 

valid. In particular, it is assumed that an EEG signal, generated by biological 

events inseparably linked by cause-effect relations, can be modelled through 

a quasi-stationary process. Furthermore, the analysis of the spectral 

characteristics of these processes is carried out by means of parametric 

models. 



 

26 

 

The model estimation problem is formulated starting from hypotheses 

that can be imposed on the non-observed part of the realizations, if some 

characteristics of the signal are ‘a priori’ known. The parametric spectral 

estimation is based on two steps: 

- definition of a model (i.e. choice of the family of functions with 

which to characterize the frequency response); 

- determination of the parameters of the model. 

Once the model has been established, the parameters are determined on 

the basis of the hypothesis that the observation, represented by N samples of 

the sequence {x(n)}, was generated by a white sequence {u(n)} (i.e. with 

impulse autocorrelation). At this point, p coefficients a1, a2, ..., ap 

characterizing the chosen model, are determined. Based on these, a signal 

model is generated (which, at this point, can also have an infinite length, or 

can be large at will), of which the power density spectrum can be calculated. 

The procedure described above is also illustrated in Figure 2.1. 

 

Fig. 2.1 - Parametric spectral estimation. 

 

On the basis of an autoregressive (AR) model, the sample x(n), at the 

current time n, can be predicted after the parameters a(k) have been 

estimated, on the basis of its samples extracted at the previous instants x(n - 

1), x(n - 2), ..., x(n - p). In bivariate models this principle is applied to two 

time series. In this way sample x1(n), extracted from signal x1(t), can be 

predicted by including samples extracted, in the previous p samples, from 

another signal, x2(t). Similarly, the generic sample x2(n) can also be 

predicted on the basis of samples extracted from x1(t) in the previous p 
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samples. This may be extended to the case where the estimate of x1(n) takes 

into account not only the previous p samples of x2(t), but also the previous p 

samples of M - 1 signals x2(t), x3(t), ..., xM(t) (Figure 2.2). 

The auto-regressive multivariate (MVAR) model of p order, just 

described, is given by the following equations: 
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                                                  (2.1) 

 

where aij is the auto-regressive parameter relative to the signal pair (i,j), 

while ei is the residual (prediction error) relative to the i-th signal. 

 

 

Fig. 2.2 - Connectivity (multivariate case). 
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The system equations can be represented in the form: 

1 1

1 0

2 2

1 0

1 0

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

pM

m m

m k

pM

m m

m k

pM

Mm m M

m k

a k x n k e n

a k x n k e n

a k x n k e n

 

 

 

 

 

 







1 0 0

0 1 0
(0)

0 0 1

a

 
 
 
 
 
                              (2.2) 

For the properties of the Z-transform 𝜉(𝑚 − 𝑚0) ⇒ 𝛯(𝑧)𝑧−𝑚0, by 

applying the Z-transform to both members we obtain: 
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In order to move on to the frequency domain f, we remember that 

𝑧 = 𝑒𝑗𝜔 = 𝑒𝑗2𝜋𝑓/𝑓𝑠, being fs the rhythm at which the χ(n) samples are 

extracted from the χ(t) waveform. In matrix notation: 

( ) ( ) ( )A f X f E f                                                                          (2.4) 

where 
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The matrix element (i,j) of Ᾱ(f) is the transfer function between the i-th 

input and the j-th output of the MVAR linear predictor. Generally Aij(f) ≠ 

Aji(f). 

The (2.4) can be reformulated as follows: 

1( ) ( ) ( ) ( ) ( )X f A f E f H f E f                                                              (2.6) 

where �̅�(𝑓) is the AR filter transfer matrix, and is defined as 
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                                                                      (2.7) 

The element (i,j) of the matrix is the transfer function between the i-th input 

and the j-th output of the MVAR linear predictor. In general 𝐻𝑖𝑗 ≠  𝐻𝑗𝑖. 

Figure 2.3 shows compact representations of the generator filter and the 

predictor MVAR. 

 

Fig. 2.3 – MVAR  a) filter generator and b) linear predictor. 
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2.3 Selection of the model order 

The choice of the auto-regression order in the multivariate models 

requires a balancing; in fact, if we estimate a too low order MVAR model 

we risk to neglect relevant information; on the contrary, if we estimate an 

excessive order model we have a major possibility of prediction error. The 

order p of the MVAR model is a very important parameter in spectral 

modelling, because it determines the spectral resolution capacity of the 

chosen model. In general, a higher order allows for higher spectral 

resolution, but this may cause the presence of spurious peaks or the splitting 

of individual peaks in the estimated spectrum. Normally the p order is not 

known and has to be determined with some criteria. If no knowledge is 

available a priori, taking into account the equation: 

 2 2 2
11 | |k kk ka    

                                                                         (2.8) 

one can gradually increase the p order until the variance 𝑘
2  of the 

excitation process (decreasing with p), is not decreasing in a way judged 

negligible (ideally tending to zero). 

However, for p values greater than the true order (unknown), there is 

always a decrease / oscillation of the estimated variance of the excitation 

process, due to errors in correlation values estimated from the data. In any 

case, this variance is limited inferiorly by the variance of the real 

information process of input. Therefore, for a real signal, the choice of the 

model order is a compromise between spectral resolution and estimation 

accuracy: a low order means not having a good spectral resolution and an 

adequate signal description; a high order can improve the resolution, but it 

increases the variance of the parameter estimation inducing an increase of 

variance also in the spectrum, with the appearance of spurious peaks (it 

increases the number of parameters that must be estimated from the same 

data set). There are criteria for choosing the order of the model, but these 
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generally tend to underestimate the p order in case of real signals (that are 

not pure AR processes), but could be well represented with a proper order. 

2.3.1 Final Prediction Error 

An objective criterion that can be adopted is called the Final Prediction 

Error (PPF); starting from the prediction error: 
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defines the parameter: 
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where m is the number of available samples. In the equation, the variance of 

the prediction error 𝑃
2  decreases with the increasing of p, while the 

fractional coefficient shows an opposite behavior; it follows that the 

resulting function has an absolute minimum point. 

 

 

2.3.2 Akaike Information Criteria 

Another  index is that provided by the Akaike Information Criteria 

(Aic): 

pNpAic p 2)ln()(  
                                                                    (2.11) 

This criterion defines the optimal value of the p order of the model as 

the one corresponding to the minimum of this index. 

2.3.3 Visual inspection 

This method is based on the visualization of the trend in the frequency 

range of the power density spectrum obtained by the non-parametric method 

and of the trends obtained by using the parametric methods based on the 

MVAR model for different values of the p order: the comparison by visual 
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inspection between these trends makes it possible to assess at which value of 

p the power density spectrum most closely follows the spectrum obtained by 

the non-parametric method. 

2.4 Partial Directed Coherence 

Partial Directed Coherence (Baccalá and Sameshima 2001) is a 

multivariate spectral measurement used to compute the causal influence 

between signal pairs in a multivariate data set. It has been demonstrated that 

this estimator is the frequency domain expression of Granger's concept of 

Causality (Granger, 1969) according to which a time series x[n] influences a 

second time series y[n] if the knowledge of the ‘past’ samples of x 

significantly reduces the prediction error in the estimation of y. 

PDC is defined as follows: 

2
( ) ( )ij ijf A f 

                                                                         (2.12) 

It refers to the MVAR model used as a linear predictor.  

However, a normalized version, defined by the following expression, is 

frequently used: 
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                                                                       (2.13) 

which can only assume values in the range [0,1]; if ij(f)=0, a causal 

(direct or indirect) influence of xj on xi at frequency f can be excluded. We 

can consider πij(f) as the fraction of the information flowing from node j to 

node i. The PDC describes the effect of the direct path (i.e. not mediated by 

any intermediate channel) between j and i. The direct PDC from j to i is 

related to the fraction of the temporal evolution of the signal i due to the 

signal j. In the particular case in which j=i, it represents the part of the 

evolution of the signal relative to the i-th channel that can be explained 
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exclusively starting from its past, i.e. it represents the auto-regressive part of 

this signal. 

The formulation of the PDC derives directly from the information 

theory but has been adapted in order to improve the physiological 

interpretation of the results obtained from electrophysiological data. In 

particular, a new type of normalization has been introduced, already in use 

for other connectivity estimators such as the Directed Transfer Function 

(DTF) (Kaminski and Blinowska, 1991) which consists of dividing each 

estimated PDC value by the square root of the sum of all elements of the 

corresponding row (row normalization). The definition becomes as follows: 
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                                                      (2.14) 

In this case the PDC values are between [0;1] too, but obviously the 

normalization condition changes. Finally, a squared version of the PDC has 

been introduced (Astolfi et al. 2006) for both types of normalizations. The 

main difference with the original formulation is, as stated, in the 

interpretation of these estimators. The quadratic PDC can be related to the 

power density of the signals and therefore as a fraction of the power density 

of the i-th signal associated with the j-th measurement. Several simulation 

studies have highlighted the high performance of this estimator, compared to 

that of the simple PDC. 

2.5 Validation of connectivity estimates 

One of the main challenges in the study of brain connectivity based on 

MVAR modelling is the need to assess the statistical significance of the 

results obtained. After having obtained the PDC patterns as described in 

paragraph 2.4 (one for each direction and for each pair of channels), it is 
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necessary to establish whether the values obtained are statistically 

significant, i.e. whether they represent the existence of a functional link 

between the signals or are a purely random values achievable by random 

oscillations of the signals themselves. This requires a statistical description 

of the distribution of the PDC values with which to compare the PDC 

obtained over the relevant period. However, since PDC derives from a 

strongly non-linear relationship with the time series of the data, its 

theoretical probability density distribution is unknown. Three methods are 

used for the statistical validation of connectivity patterns: 

- Spectral Causality Criterion; 

- Shuffling phases; 

- Asymptotic statistics. 

The first method consists of applying a threshold value, constant for all 

frequencies, identified as a white noise threshold, which by definition is 

considered to be fully uncorrelated. The other two methods are based on 

building an empirical distribution from surrogate data. These data must 

verify the hypothesis of null connectivity to allow the construction of a 

distribution in the case of absence of functional connection. Statistical tests 

of significance can then be performed on this distribution. 

2.5.1 Shuffling phases 

The process for constructing the empirical distribution, in the case of 

shuffling, is as follows: a surrogate data set is generated, dividing the time 

series of each channel in short periods, and then mixing them randomly and 

independently, in order to destroy the temporal order. A new model is fitted 

to the surrogate data, which allows the PDC functions to be computed. 

Iterating the process, each time on a different set of surrogate data, an 

empirical distribution of the measures corresponding to null connectivity is 

created, on the basis of which it is possible to establish a threshold of 
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significance at the desired level (for example 1%) with which to evaluate the 

results obtained on the real data. Since the shuffling procedure destroys the 

temporal structure of the data, for these signals there is no interaction 

between the channels that can be measured according to the Granger theory 

(which is based on the temporal order between the signals). The empirical 

distribution obtained represents the variability of the PDC function under the 

assumption of no causal relationship. 

2.5.2 The Asymptotic statistics procedure 

The procedure of asymptotic statistics is based on a recently introduced 

method (Takahashi et al., 2007), according to which the PDC estimator, in 

the non-zero case, is consistent and asymptotically normal, while in the null 

case it tends asymptotically to a χ-square distribution. Therefore, in order to 

build the empirical distribution, the data collected are forced onto a χ-square 

distribution using the Monte Carlo method, and the percentile relative to the 

chosen level of significance is calculated on it. In practice, for the period of 

interest, the value of the probability distribution is taken; from this 

distribution is extracted the value corresponding to a percentile of the desired 

value (i.e. 0.99 for a significance of 0.01), corresponding to the value of the 

PDC for which the greater values of it have only a 1% probability of 

occurrence in the case of no connection. This procedure shall be repeated for 

each frequency sample or frequency band. 

2.6 Methods of analysis of complex networks 

The information provided by a complex estimator such as the PDC is 

very extensive: we will have a PDC value for each pair of signals, for each 

frequency and for each condition. In recent years there has been a need to 

use indicators to synthetize all this information and make it more accessible. 

This is why this chapter will be dedicated to graph theory. It was created as a 
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branch of mathematics and then adapted to the field of neuroscience by 

defining appropriate indices able to describe a neural network from a local 

and a global point of view. 

The extraordinary brilliance of graphs lies in their simplicity, as they are 

dots and dashes that unite these dots. But what is really amazing is the power 

that reflection on these schemes can have.  

From the estimation of connectivity patterns associated with EEG 

activity, brain networks are obtained and their properties can be 

characterized by graph theory. In fact, the application of this technique 

makes it possible in general to quantify how communication takes place 

within complex systems made up of several elements. 

2.6.1 Graph definition 

A network is a mathematical representation of complex real systems and 

is defined by a set of nodes (vertices) and arcs (connections).  

Different types of graphs can be identified. Graphs in which a unit 

weight is assigned to each arc (i.e. graphs in which only the existence or 

absence of connections between different nodes is assessed) are said to be 

binary or unweighted. A graph is instead defined as weighted when each 

connection is given a real number representing for example the intensity, 

length or importance of the arc.  

A further classification of graphs can be made on the basis of the 

directionality property of the arcs. If the arcs indicate only the presence of a 

relation between two nodes, the graph is defined as undirected; when the 

arcs also indicate the direction of the influence, highlighting that the activity 

of one node can depend on the other or vice versa, we refer to it as directed 

graph. 
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2.6.2 Extracting the Adjacency Matrix 

In the field of neuroscience, graph theory can be used in order to have a 

better understanding of the organization of the brain network: it is important 

to define a strategy that allows us to represent neuroanatomic and 

neurophysiological data in the form of graphs. We can represent the nervous 

system as a graph considering individual neurons, groups of neurons or 

specific brain areas as vertices and connections between these elements as 

arcs. After having represented a cerebral network (or more generally a real 

network) with a graph, a further step of abstraction can be made by 

associating a matrix to the graph under examination. In the graph theory, this 

matrix is defined as an adjacency matrix: it has dimensions N x N (N 

number of nodes) and the generic element aij is different from zero if there is 

a link between nodes i and j. Figure 2.4 shows an example of extraction of 

the adjacent matrix A from a directional binary graph: the presence of an arc 

implies elements with a unit weight, while the absence is indicated with null 

elements (aij=0). If the graph is undirected the adjacent matrix is 

symmetrical, while it is asymmetrical for the directed graphs. 

 
Figure 2.4 - Example of a directed graph with 6 nodes and relative adjacency 

matrix. 

 

In this study the graph theory is used because it provides an adequate 

representation of brain networks; in fact the nodes are representative of the 

electrodes through which the biological signals are acquired, and the arcs 
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identify the casual relations between the electrodes previously estimated 

with the theory of connectivity. The method used to obtain the adjacency 

matrix was to define a threshold value using asymptotic statistics, as 

described in paragraph 2.5.2 of this chapter. The estimator used for the 

analysis is based on a multivariate approach, therefore the graph obtained is 

of a weighted and directed type. 

2.6.3 Graph properties 

Once the data has been represented with a graph (and its equivalent 

adjacency matrix), various measures of the graph theory can be performed. 

A large number of measurements have been developed and can be 

implemented to characterize complex networks, each of them aimed at 

describing different network properties. These indices can be grouped into 

three main categories: measures of centrality, segregation and integration. 

The centrality measures the structural and functional importance of each 

node with respect to the whole network, therefore it concerns measures on 

the importance of the single node. It is one of the main measures for 

identifying hubs, nodes that interact with multiple regions. The main 

centrality measurements are, for example, degree, density and betweenness 

centrality. Segregation refers to the possibility of the presence of sub-

networks and may refer to the existence of specialized areas in the brain 

where specific processes occur, such as those of response to sensory inputs. 

An important segregation measure is the clustering ratio. A third category 

concerns measures which are sensitive to the level of integration of the 

network. Integration refers to the ability to combine processes distributed in 

different brain areas, thus the ability of the network as a whole to be 

interconnected and exchange information. Integration measures include the 

shortest path or efficiency. 
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2.6.4 Graph theory indices 

The indices are defined from the adjacency matrix derived from a graph. 

These indices are required to extract synthetic and qualitative information on 

the network's properties. The following are the simplest, most important and 

used indices in the field of neuroscience. 

2.6.4.1 Network density 

The density of a network measures the general connectivity level of the 

system and is defined as the number of effective arcs L divided by the 

theoretical maximum number of possible arcs in the graph (Figure 2.5).        

 𝐾 = 𝐿
𝐿𝑡𝑜𝑡

⁄ = 2 ∗ 𝐿
𝑁(𝑁 − 1)⁄                                                    (2.15)       

where N is the number of nodes and Ltot the total number of possible 

arcs. Density ranges from 0 to 1, the sparser is a graph, the lower is its value. 

 

Fig. 2.5 - Example of connection density computation. At the left of the figure, the 

graph consists of N=8 nodes and L=15 edges. At the right of the figure, the 

respective adjacency matrix is shown. 

2.6.4.2 Node degree 

The degree is defined as the total number of arcs connected to a node. In 

directed networks it is possible to distinguish between in-degree, number of 

incoming arcs, and out-degree, number of outgoing arcs: 
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- In-degree, provides the number of connections entering each 

node: 

         𝑖𝑑𝑖 = ∑ 𝑎𝑗𝑖𝑗                             (2.16) 

where aji is the adjacent matrix element that identifies the connection 

between node i and node j with i,j = 1, ... , N being N the number of vertices 

of the graph.  

- Out-degree, provides the number of outgoing connections from 

each node: 

             𝑜𝑑𝑖 = ∑ 𝑎𝑖𝑗𝑗                                                                    (2.17)     

The total degree of node i is therefore given by the following equation:              

𝑑𝑒𝑔𝑖 = 𝑖𝑑𝑖 +  𝑜𝑑𝑖                                                                             (2.18) 

 

The mean degree of a graph is the mean value of the degree of all the 

vertices. In the case in which the degree of the node i is null it is defined as 

isolated node because it is not connected to any vertex of the network. High 

out-degree values indicate that the node under consideration is a center of 

emission of information while high in-degree values that the node is 

common target for most of the other vertexes. 

The three indices described above therefore provide us with local 

network information, node by node. In a weighted graph, the natural 

generalization of the degree of a node i is the node strength or node weight. 

2.6.4.3 Network structure 

In a network one is interested in having as much information as possible 

about the way in which the information transfer takes place; in this context, 

the geodesic distance between two distinct nodes plays an important role: 

this quantity identifies the shortest route between the two nodes, i.e. it 

provides the best path if one wants to make the fastest connection.  
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The shortest paths of a graph G can be represented through a matrix D 

whose generic element dij represents the geodesic distance between nodes i 

and j. The element of maximum value of this matrix is called diameter of the 

graph. 

Through the D matrix it is possible to define the average length of the 

shortest paths called path length; this parameter provides a global 

information of the network and is defined as follows: 

𝑃𝐿 =
1

𝑁(𝑁−1)
∑ 𝑑𝑖𝑗𝑖,𝑗     with i ≠ j                                                  (2.19) 

where N is the number of nodes. 

The path is therefore a unique sequence of arcs connecting two nodes, 

and its length is given by the required number of steps (in a binary graph) or 

by the sum of the lengths of the individual arcs (in a weighed graph). Short 

Path lengths favour functional integration as they allow communication with 

a few intermediate steps, minimizing noise effects or information 

degradation. 

It can be noted that in a graph not all nodes are connected to each other 

and in this case the distance between the two is infinite: in this case the sum 

of equation 2.19 diverges and it is impossible to obtain a measure for the 

average geodesic length of the network. To avoid this inconvenience, it is 

possible to exclude the disconnected node pairs from the calculation or to 

use an alternative definition which, instead of using the arithmetic mean, 

calculates the harmonic mean of the geodesic distances. 

This second solution has made it possible to define an index known as 

the global efficiency index Eg, which measures how ‘efficient’ 

communication is between all the elements of a network: 

𝐸𝑔 =
1

𝑁(𝑁−1)
∑

1

𝑑𝑖𝑗
𝑖,𝑗        with i ≠ j                                      (2.20) 
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It can be noticed how using the reciprocal geodesics dij the divergence 

problem is avoided because the pairs of disconnected nodes give a null 

contribution. 

As the characteristic distance PL, the overall efficiency provides us with 

a global information of the network being an indicator of the traffic capacity 

of the same. 

Often, however, we are also interested in analyzing the local properties 

of a graph which can be investigated by considering subgraphs: in fact, for 

each node i the efficiency of the subgraph can be studied, consisting only of 

the nodes adjacent to it (two nodes are said to be adjacent if connected by an 

arc). 

A new parameter called local efficiency El is therefore introduced, 

defined as the average of the global efficiencies of all the subgraphs Gi to 

which the node i does not belong: 

𝐸𝑙 =  
1

𝑁
∑ 𝐸𝑔(𝐺𝑖)𝑖                  (2.21) 

This index provides a measure of the system tolerance level for each 

node when the generic i node is removed, thus showing how efficient 

communication is between the nodes closest to it. 

The clustering coefficient shows the presence of triangles (complete 

subgraphs of three vertices) in the networks and measures the degree to 

which the nodes of a graph tend to agglomerate; it is defined as the fraction 

of triangles around a node compared to the total number of possible 

triangles, therefore the part of neighbours of a node that are also close to 

each other. Triangles are important because they are directly linked to the 

strength of the network. 

The clustering coefficient describes the intensity of the interconnections 

between neighbours of a node. For directed and non-directed graphs we can 

define, respectively 



 

43 

 

     𝐶 =
1

𝑁
∑

𝑡𝑖

(𝑜𝑑𝑖+ 𝑖𝑑𝑖)(𝑜𝑑𝑖+𝑖𝑑𝑖−1)−2 ∑ 𝑎𝑖𝑗𝑎𝑗𝑖𝑗𝜖𝑉
𝑖𝜖𝑉                                         (2.22) 

    𝐶 =
1

𝑁
∑

2𝑡𝑖

𝑑𝑒𝑔𝑖(𝑑𝑒𝑔𝑖−1)𝑖𝜖𝑉                                                                        (2.23) 

where ti represents the number of triangles related to node i, idi and odi 

are the in-degree and out-degree of node i and aij the element (i,j) of the 

adjacency matrix. 

By extension, also in the weighed networks it is possible to define the 

corresponding weighted clustering coefficient, which expresses the relative 

weight of the neighbours of a node. There are different definitions of this 

parameter (Saramaki et al. 2007, Barrat et al. 2004, Onnela et al , Zhang and 

Horvath 2005). 

Some parameters, such as clustering coefficients or path lengths, are 

often normalized by random networks generated with the same number of 

nodes, arcs, and degrees. 

2.6.4.4 Smallworldness 

This measure is used to describe the trade-off between local and global 

integration of a network. A G network is defined as small-world network if 

PLG ~ PLrand and CG >> Crand, where PLG and CG represent respectively the 

path length and the clustering coefficient of the network, while PLrand and 

Crand the analogous measures in a random graph (Watts and Strogatz 1998). 

Based on this definition we can express the smallworldness measure of a 

network like this: 

  𝑆 =
𝐶𝐺

𝐶𝑟𝑎𝑛𝑑
⁄

𝑃𝐿𝐺
𝑃𝐿𝑟𝑎𝑛𝑑

⁄
                                                                                 (2.24) 

A network is defined as small-world if S>1 (Humphries and Gurney 

2008). 
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2.5.5  Random and regular graphs 

In graph theory there are two structures that are referenced when 

studying a real network: random graphs and regular graphs (Figure 2.6). 

 

Fig. 2.6 - Examples of random graph (left) and regular graph (right). 

These two types of graphs present opposite characteristics: in random 

graphs the connections between nodes follow a perfectly casual law (high 

global efficiency and low local efficiency), therefore groups that 

communicate exclusively with each other and have few connections with the 

rest of the network are rarely created. In the case of regular graphs each node 

only communicates with a small number of network vertices that are in its 

vicinity, so the communication between nodes at a long distance is impaired 

(low global efficiency and high local efficiency). 

Between these two opposite network models, the networks defined as 

small-world are placed. This measure is used to describe the trade-off 

between local and global integration of a network. A small-world network is 

characterized by a shorter path length than a regular network (characterized 

by high values of clustering and path length) but a greater local 

interconnectivity than a random network (low values of clustering and path 

length). Brain networks are characterized by high clustering values and low 

path length values; this pattern is typical of small-world architecture. 
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Resting state brain connectivity analysis for the 

characterization of post-stroke patients 
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3.8 Results 
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___________________________________________________________________________________________________________________________________________________________________ 

3.1 Introduction 

Stroke is a pathological cerebral vascular event that causes an acute 

disturbance of brain function. In Western countries, this disease is the third 

most common cause of death, after cardiovascular diseases and cancers, and 

the first absolute cause of disability. Recent epidemiological studies 

estimate, for the Italian population alone, an incidence of stroke equal to 

196,000 new cases every year. About a quarter of stroke sufferers survive 

with a degree of motor or cognitive disability, sometimes to an extent that 

makes them unable. At the expense of the acute phase (hospitalization) of 
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stroke is much higher the cost caused by disability, for the need for 

hospitalization in care facilities, for the commitment of the family. 

Estimation of brain connectivity is a powerful tool for understanding 

mechanisms underlying integration of activity in different areas of the brain. 

In recent years, scientific evidence has been presented in cognitive 

neuroscience regarding the possibility of extracting relevant information 

about the cognitive state and potential performance of the brain from the 

mere analysis of activity recorded during the resting state, i.e. when it is not 

engaged in performing motor or cognitive tasks. In this state, ideally, the 

only electrical activity in the brain is a spontaneous activity, which can be 

characterized efficiently by measuring the electroencephalogram at the scalp 

level. Spontaneous EEG is widely used to assess the general condition of the 

brain, particularly through the study of the alpha rhythm, which is an index 

of the level of relaxation of the subject (Greicius et al. 2003). A distinctive 

property of spontaneous EEG is the 1/f distribution in the spectral domain, 

so that there is an increase in power towards lower frequencies.  

The exigency to study a circumstance in which a subject does not 

perform any specific task arises from the strong relationship that exists 

between the spontaneous cerebral activity and the functional connectivity 

integrity. Most of the studies related to resting state have been conducted in 

the field of functional Magnetic Resonance Imaging (fMRI). The use of 

functional magnetic resonance techniques in resting state has in fact 

provided the possibility of identifying the areas that are activated during the 

resting state. These include motor and visual networks, two lateral networks 

(the upper and upper frontal parietal region), the default mode network 

(formed by the precuneum, frontal medial, lower temporal and lower parietal 

regions) and a network comprising the insula and anterior cingulate cortex. 

In particular, among these areas, the default mode network is of great 

interest, given its strong level of activation during the rest state when 
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compared to with that observed during task experiments. This suggests the 

existence of a default state of the brain.  

fMRI methodology is characterized by a high spatial resolution, which 

allows to extract accurate information on the location of the areas involved 

in the recorded activity, but by a low temporal resolution, which limits the 

information in the frequency domain and forcing the subject to undergo long 

acquisition sessions. It is also an expensive examination, not available in all 

hospitals and not executable on all patients. Methods and equipment are 

therefore needed to study the spatio-temporal resting state, which can be 

available in most hospitals and performed on various categories of patients.  

The scientific literature relating to the study of resting state in 

pathological subjects has been increasing greatly in recent years, but in 

stroke patients it is extremely recent and limited. Most studies in the 

literature apply graph theory to brain functional networks in order to 

describe general aspects of communication within these networks (Rubinov 

and Sporns 2010). In particular, a decrease in local efficiency and an 

increase in global efficiency compared to the population of healthy are 

evaluated; another aspect of particular interest concerns alterations in the 

level of interhemispheric connections in stroke patients (i.e. a decrease in 

communication between the hemispheres).  

Despite the enormous potential, the information provided by these 

analyses is still not used efficiently in the clinical field because of the 

difficulty in extracting stable and synthetic indices. Developments aimed at 

overcoming such limitation could lead to the definition of descriptors that 

may be related to clinical parameters of interest for the diagnosis, 

understanding and evaluation of the effects of neuro-rehabilitation therapies.  

In such a context, the present study, whose aim is to describe the 

topographic reorganization after a stroke event of the brain connectivity 

network related to the resting state condition by various stable and accurate 
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indexes in a population of stroke patients. Differences in brain network 

organization are investigated with respect to a healthy population and 

between different subgroups of patients (subgroups which differ in the side 

of the lesion) in order to: 

- evaluate the deviation from the healthy condition; 

- characterize and classify patients on the basis of their clinical 

features. 

3.2 Experimental subjects 

The study was conducted on two different populations: twenty-two 

healthy subjects (mean age 46.1 ± 5.5 years) and forty-two post-stroke 

patients with mono-lateral lesion (mean age 60.2 ± 12.2 years). For each 

subject, EEG at resting state was acquired for 120 seconds with closed eyes.  

The information available for pathophysiological characterization of 

clinical features of stroke patients refer to: 

- the side of the lesion (i.e. right or left hemisphere lesion); 

- severity of injury; 

- time since event. 

According to the Fugl-Meyer motor scale (FM) patients are classified as 

severe if FM < 35 and as moderate if FM > 35. Screening was carried out 

with thirty-six patients in sub-acute phase (within 6 months of the adverse 

event), and the remaining six in chronic phase (over 6 months). Given the 

small sample of chronic patients, the study focused on 36 sub-acute subjects: 

this choice was made in order to ensure greater sample uniformity and 

eliminate any independent disturbance variable (intervening variable). A first 

subdivision of the patients group can be made according to one of the 

parameters describing the pathological state (left/right compared to the 

injury side).  
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Given the experimental groups described above, the objectives to be 

achieved in the present work are: 

- to evaluate possible differences between a healthy and a pathological 

population in the brain networks estimated during resting; 

- to characterize the population of stroke patients by assessing the 

different sub-divisions of patients with respect to the side of the lesion. 

To achieve these goals, the analysis was carried out based on a 

methodological approach oriented to assess and quantify the deviation of 

patients from the population of healthy (considered as baseline) and any 

differences between different subgroups. 

3.3 Experimental design 

For the acquisition of the scalp EEG signal, subjects were required to 

wear a 64 electrode cuff, which allows them to measure the electrical signals 

coming from the cortex. Electrode impedances have been kept below 5 

KOhms. The software tool that allows the signal to be displayed is the 

Vision Recorder® which also allows impedance values to be monitored 

when positioning the electrodes. Out of the 64 channels acquired, 61 

represent the acquisition channels, two are the reference channels (relative to 

the electrodes placed on the earlobes) and one is the ground reference: the 

acquired signal is therefore the potential difference between each electrode 

and the reference placed on one of the two lobes. 

3.4 Signal processing 

After preprocessing – band pass filtering (1-45 Hz), down-sampling at 

100 Hz, artifact rejection – the signals were split into one second segments, 

resulting in 120 trials. In order to reduce the high computational cost of 

estimating functional connectivity by PDC, the next step in processing was 

to select a reduced set of channels from which to assess connectivity; the 
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number of channels was then reduced from 61 to 51. The channels deleted 

(omitting the most peripheral electrode leads) are Fpz, Af8, Ft8, Tp8, Po8, 

Oz, Po7, Tp7, Ft7, Af7. 

Connectivity estimation has been evaluated using the squared version of 

the PDC: 
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As previously described in chapter 2 paragraph 2.3, squared PDC can be 

put in relationship with the power density of the investigated signals and can 

be interpreted as the fraction of i-th signal power density due to the j-th 

measure. 

Once the connectivity between the considered electrodes had been 

estimated, it was necessary to apply a statistical validation method in order 

to distinguish the real connections from those due to random signal 

fluctuations and measurement errors. Among the methods for the statistical 

validation of the PDC values described in chapter 2, the asymptotic statistics 

method was used, which, based on Monte Carlo simulations, makes it 

possible to obtain a threshold of significance for each pair of channels and 

each frequency. The validation operation was carried out considering the 

level of significance 0.05. Since statistical validation was carried out 

simultaneously on all electrode pairs (N(N-1)) and on all frequencies, it was 

necessary to consider statistical correction techniques for multiple 

comparisons in order to avoid the onset of first type errors. In particular, the 

False Discovery Rate (Benjamini and Yekutieli, 2001) correction was 

chosen.  

Frequency bands of interest were Theta, Alpha, lower Beta, upper Beta 

and Gamma. To determine the different frequency ranges the Individual 

Alpha Frequency (IAF) was used, the frequency for which the spectrum in 
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parieto-occipital electrodes reveals a peak in the Alpha band (Klimesch, 

2001). IAF varies both between different subjects and within the same 

individual as age changes. 

The five bands identified for each subject according to the IAF are 

defined as follows: 

- Theta: [IAF-6; IAF-3]; 

- Alpha: [IAF-2; IAF+2]; 

- lower Beta: [IAF+3; IAF+11]; 

- upper Beta: [IAF+12; IAF+20]; 

- Gamma: [IAF+21; IAF+35]. 

The population of healthy subjects is characterized by an IAF mean 

value of 10.25 ± 0.86; the patient population is characterized by an IAF 

mean value of 9.9 ± 0.74. Statistical comparisons (Student t-tests) were 

made between the IAF values for the various patient subgroups 

(regarding the side and/or severity of the injury). No statistically 

significant differences were found between the various groups, i.e. it can 

be considered that any observed deviations are due solely to the 

sampling process. 

3.5 Graph theory analysis 

Once the connectivity pattern associated with the basic EEG activity of 

the subjects studied was identified, the brain network of each subject was 

characterized. For every subject, synthetic indexes were extracted from 

achieved connectivity patterns; some of them are typical graph-theoretical 

indices which allow us to describe the general structural complexity of the 

networks (e.g. clustering, path length), the others were defined and 

computed in order to underline specific topographic properties (Inter-

Hemispheric Connections (IHC) density, asymmetry and influence between 

hemispheres). These indexes were chosen for the specific pathology in 
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exam: it’s known by literature that stroke alters the communication between 

hemispheres (van Meer et al. 2012). 

3.6 Indexes definition 

The application of graph theory indices may have limitations in the case 

of brain network applications. In this case, in fact, one may be interested in 

aspects that the measures described in chapter 2 cannot describe. However, 

this limitation can be overcome by defining new indices that capture the 

properties to be investigated. The following indices are able to evaluate 

connectivity between and within two sub-areas of a network. These indices 

are of general impact because they can be applied to any real network by 

computing them from the matrix of adjacency. 

Inter-Hemisferic Connections (IHC) 

To evaluate the density of connections between the two hemispheres the 

implemented index is the Inter-Hemisferic Connections (IHC), defined as: 

  𝐼𝐻𝐶 =
𝐿𝑆𝐷− 𝐿𝐷𝑆

𝐿
                                                                                 (3.2) 

 

where LSD and LDS represent respectively the arcs that from the left 

hemisphere are directed toward the right one and vice versa; L represents the 

total number of existing arcs. 

Asymmetry between hemispheres 

In order to obtain a measure of a hemispheric imbalance, the H_SxDx index 

was defined as follows : 

𝐻_𝑆𝑥𝐷𝑥 = (
𝑛_𝑐𝑜𝑛𝑛𝑆𝑥

𝑛𝑇𝑜𝑡_𝑐𝑜𝑛𝑛𝑆𝑥
)  − (

𝑛_𝑐𝑜𝑛𝑛𝐷𝑥

𝑛𝑇𝑜𝑡_𝑐𝑜𝑛𝑛𝐷𝑥
)                                     (3.3) 

where: 

- n_connSx is the number of connections in the left hemisphere; 

- n_connDx is the number of connections in the right hemisphere; 
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- nTot_connSx and nTot_connDx represent the total number of 

possible connections in the left and right hemispheres 

respectively. 

From equation 3.3 it can be seen that the values obtained for H_SxDx 

vary in the range [-1; 1]. In particular if: 

- H_SxDx =1 there are connections only in the left hemisphere 

(n_connDx = 0) and it is completely connected because the 

number of existing connections is equal to the total number of 

possible connections; 

- H_SxDx = -1 the situation is the opposite of the one described 

in the previous point, therefore the imbalance is in favour of the 

right hemisphere; 

- H_SxDx =0, the hemispheres are in symmetry. 

Influence between the hemispheres 

To evaluate if one of the hemispheres has an effect on the other, the 

parameter described by the following equation was implemented: 

𝐼_𝑆𝑥𝐷𝑥 = (
𝑛_𝑐𝑜𝑛𝑛𝑆𝑥𝐷𝑥  −𝑛_𝑐𝑜𝑛𝑛𝐷𝑥 𝑆𝑥

𝑛𝑇𝑜𝑡_𝑐𝑜𝑛𝑛𝑆𝑥𝐷𝑥 
)                                       (3.4) 

where: 

- n_connSxDx is the number of connections that depart from the 

right hemisphere and terminate in the left hemisphere,  

- n_connDxSx are the reverse connections that depart from the 

left hemisphere and terminate in the right hemisphere 

- nTot_connSxDx represents the total number of possible 

connections connecting one hemisphere to the other. 

All indices described here have been calculated for each band, for each 

subject. 
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3.7 Statistical analysis 

To achieve the proposed objectives, two steps of statistical analysis 

were performed:  one-way ANOVAs performed on each graph indexes with 

between factor ‘subjects’ group;  a statistical comparison (two-tailed t-tests) 

between patients’ subgroups with indexes measuring asymmetries and 

influences between the hemispheres. Where the ANOVA was significant, 

post-hoc tests were performed for multiple comparisons.  The post-hoc test 

used in this study uses the Duncan method. 

3.8 Results 

Figure 3.3 shows the results of ANOVA performed to investigate the 

effects of Clustering and IHC indices variations with respect to the factor 

‘Side of the lesion’, in Alpha band. Results demonstrate that, compared with 

the healthy condition, the values of the two indices decreases significantly in 

the presence of lesion. There is a statistically significant difference in the 

density of interhemispheric connections  (IHC) between patients with lesion 

in the left hemisphere and those with lesion in the opposite one; it is worth 

remembering that all patients are right-handed so their dominant hemisphere 

is the left one. The left-side lesion group presented worse performance in 

IHC density: the decrease in interhemispheric density leads to a reduction in 

post-stroke cerebral plasticity and therefore a lower degree of spontaneous 

recovery and the need for enhanced rehabilitation training. 
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Fig. 3.3 - one-way ANOVA for a) Clustering index and b) Inter-Hemispheric 

Connections (IHC) density, in Alpha band; “↔“ highlights a significant difference 

(p<0.05) 

In figure 3.4 unpaired two tails t-test for Asymmetry and Influence 

indexes, in the five frequency bands, are shown. In patients an asymmetry 

between the two hemispheres is observed in the Theta, Alpha and lower Beta 

bands: the density of connections in the affected hemisphere is greater than 

in the healthy hemisphere, independently of the side of the lesion. A 

deviation between the connection densities between the two hemispheres is 

also observed in terms of Influence in the Alpha and lower Beta bands; 

furthermore, the connection densities in the affected hemisphere are 

significantly greater. 

A correlation test (Pearson’s correlation, significance level 0.05) was 

performed between the neurophysiological indices that were significantly 

different between patients with left and right lesions (Figure 3.5a). In order 

to verify the solidity of the obtained results and to evaluate whether the 

properties detected by the tests can also be identified at the level of a single 

subject, a Fisher linear discriminant analysis was used for the classification 

(Figure 3.5b). The known advantages of the linear discriminant are 

computational simplicity and easy generalisation (it introduces neither bias 

nor overfitting, unlike more complex classifiers). As a disadvantage, 

however, the data must necessarily be separable linearly (not always true in 

reality), otherwise Fisher's classifier does not come to any result. The leave-
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one-out method was used for the classifier training, where the data is divided 

into training sets (all data minus one) and validation sets (one data, i.e. one 

patient only). To increase the robustness of the analysis, each subject was 

classified a number of times using a different training set for each iteration. 

The variability of the training set was obtained using a smaller number than 

the available number of subjects in order to obtain a certain number of 

random combinations. With this procedure, a percentage of iteration 

classification is obtained for each subject. At the end of these tests, an 

average of the subjects of the accuracy of the classification shall be made, 

resulting in an estimate of the degree of data separation. 

 

Fig. 3.4 - unpaired two tails t-test for a) Asymmetry and b) Influence indexes, in 

Theta, Alpha, lower Beta, upper Beta and Gamma bands; “*“ highlights a significant 

difference (p<0.05). 

Index pairs have been used as features (i.e. features space is two in size). 

For each band, the classification was made among the patient groups divided 

on the basis of the site of the lesion. 
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Figure 3.5 - a) Correlation scatter plot and b) Classification accuracy between 

Asymmetry and Influence indexes for patients, in Alpha band. 

3.9 Conclusions 

This study was conducted in order to characterize a population of post-

stroke patients both in terms of deviation from the condition of the healthy 

and in terms of statistical differences between sub-groups obtained by 

determining the side of the injury. This analysis was carried out with an 

appropriate processing of the EEG data recorded during resting state by 

advanced signal analysis techniques. After the estimate of the cerebral 

connectivity made on acquired data, for each subject some synthetic indexes 

have been computed: some of these indexes are typical of the graph theory 

and allow to summarize the general properties of the estimated networks, 

while others have been defined in order to capture particular topographical 

properties (density of the interhemispheric connections, asymmetries and 

influences between the hemispheres). The choice of the latter was motivated 

by the specific pathology as it is known that the stroke causes a reduction in 

communication between the hemispheres. The obtained results showed that 

the brain networks of stroke patients at rest are different compared to those 

of healthy subjects and that the lesion side influence the reorganization after 

the stroke event. The present study confirms that the protocol used is an 

adequate tool not only to better understand the pathophysiological 
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mechanisms of the brain, but it’s a potentially helpful supplement for 

diagnostic evaluation and lesions treatments, preparing the ground for future 

studies aimed to assess the effects of rehabilitative training and to the 

determination of predictors of recovery after a rehabilitation therapy. 
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IV 

Brain patterns induced by training based on  

motor imagination assisted by Brain Computer Interface 

 

4.1 Introduction 

4.2 Experimental subjects 

4.3 Spectral analysis 

4.3.1 Definition of spectral indices 

4.3.2 Results 

4.4 Connectivity analysis 

4.4.1 Results 

4.5 Conclusions 

___________________________________________________________________________________________________________________________________________________________________ 

4.1 Introduction 

Rehabilitation can be defined as an educational approach aimed at 

improving the activity and involvement of the subject in the presence of an 

impairment of functioning due the presence of disabilities, minimizing 

functional deficits and taking into account environmental and personal 

factors and existing limitations. Rehabilitation in the hemiplegic patient is 

aimed at the recovery of the impairment and the optimization of the residual 

abilities, improving the quality of life through the physical, cognitive, 

psychological, functional recovery and social relations within the needs of 

the individual and his family. 
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Post-stroke functional recovery is sustained by very complex 

mechanisms that have not yet been fully clarified, but recent studies indicate 

that rehabilitation interventions can be involved in brain re-organization 

processes. Among the new technologies applied to rehabilitation, in recent 

years  have been emerging therapies that exploit the possibility of a 

rehabilitative approach based on the interaction between man and machine, 

with the possibility of extrapolating precise data useful both for evaluating 

the tasks performed and for understanding the recovery processes. 

Identifying the best rehabilitative treatment in this wide context is difficult 

(Ernst 1990), but rather suggesting an integrated approach with important 

emerging evidence such as the need to start rehabilitative treatment already 

in the acute phase, in order to influence the potential of neuroplasticity 

present in the central nervous system.  

Numerous research studies in the literature have shown that the motor 

imagination of a limb can induce a significant increase in the excitability of 

the motor cortex and, based on this result, numerous innovative 

rehabilitation methods have been developed to obtain a specific post-stroke 

rehabilitation. Mental exercise in the form of motor imaging (Motor 

Imagery, MI) has long been seen as a cognitive strategy aimed at improving 

mobility after a stroke (Malouin and Richards 2010). Considerable efforts 

have been made to improve the nervous mechanisms underlying MI and its 

relationship with the improvement of sensory-motor regeneration (De Vico 

Fallani et al. 2013; Kaiser et al. 2012; Sharma and Baron 2013). The reason 

for using MI in stroke treatment is that the brain's mental practice with a 

motor content affects those areas of the brain that control movement 

(Cicinelli et al. 2006; Sharma and Baron 2013). This recurring involvement 

of motor areas aims to improve brain plasticity and regeneration (Cramer et 

al. 2011; Dimyan and Cohen 2011). However, the clinical benefits of MI 

remains doubtful. 
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The work described in this chapter concerns a study conducted on the 

electroencephalographic tracks of a group of stroke patients undergoing 

motor imaging training supported by a Brain Computer Interface (BCI). The 

objective of the analysis was the data acquired in the second and second-last 

training session in which the patient performed tasks of motor imagination of 

the limb whose function had been impaired by stroke. Through advanced, 

accurate and stable techniques of electroencephalographic signal processing, 

the study aims to prove and characterize the amount of recovery of patients 

undergoing rehabilitation training based on motor imagery. During the 

sessions, the patient's EEG signals were taken and the traces obtained were 

then processed off-line, until spectral maps of brain activation were 

obtained. A further contribution is provided by the connectivity estimation 

through the spectral estimator Partial Directed Coherence (PDC), based on 

MVAR modelling of acquired electroencephalographic tracks, which has 

proved to be a powerful tool for the understanding of brain mechanisms 

based on the integration of activity in different areas of the brain. In this field 

the graph theory has been widely used to evaluate how the brain 

communicates between its different regions. Using its many properties, this 

theory allows the definition of indices that provide useful information on 

topological properties of complex networks, such as neuronal networks. 

In particular, several analyses have been carried out to achieve this 

objective: 1) to understand if the subjects involved have common cerebral 

activations, in certain frequency bands, during the performance of the task of 

motor imagination (closure and extension of the hand); 2) to evaluate a 

possible improvement, due to training in the motor imagination of the 

affected limb, using the definition of appropriate spectral indices; 3) to 

evaluate, through a connectivity study in resting state conditions, whether 

the organization of the brain affected by the injury presents differences from 

the organization of the healthy brain hemisphere. 
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Before starting to describe the rehabilitative approaches used in this 

work for the rehabilitation of the upper limb, it is important to mention what 

are the pathophysiological mechanisms that are established as a consequence 

of a cerebrovascular accident. The two cerebral hemispheres are normally 

functionally connected through transcallosal connections and are balanced 

by a mutual interhemispheric inhibition that is altered following a brain 

injury. Specifically, in the stabilized phase of the disorder, thanks to 

functional imaging studies, it was possible to investigate the alterations of 

cortical excitability after stroke by observing a reduced activity of the 

injured motor cortex, associated with an increased excitability of the intact 

motor cortex when the patient is asked to move his paretic hand. This 

condition reflects an over-inhibition of the controlesional hemisphere on the 

affected hemisphere and may be responsible for an impairment of motor 

function (Pascual-Leone et al. 2005; Gomez Palacio Schjetnan et al. 2013). 

It has been shown that this increased activation of the controlesional 

hemisphere is predominant in patients with poor motor recovery and long-

term studies have shown that this hyper-activation decreases over time in 

relation to functional recovery, so that patients with better motor recovery 

show a lower activation of the controlesional cortex (Stagg and Johansen-

Berg 2013). 

The reduced inhibitory activity of the affected hemisphere on the 

healthy one is justified by the brain lesion and the increased inhibitory 

activity of the healthy hemisphere can therefore induce an important 

functional impact as the damaged hemisphere is penalized twice: by the 

same vascular lesion that damaged it and by the exaggerated transcallosal 

inhibition. This concept, today widely recognized, goes under the name of 

‘interhemispheric competition’. The new rehabilitative strategies, therefore, 

address the recovery of the balance between the two hemispheres in favor of 
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the affected one, relying on the hypothesis that restoring this 

disadvantageous condition, can promote the efficiency of motor function. 

The meaning of the increased excitability of the healthy hemisphere is 

still not entirely clear: according to some it represents a direct manifestation 

of the brain's ability to adapt to an injury and thus to have a role in functional 

recovery; according to others, it is considered a determining factor in the 

pathophysiology of the impairment; beyond the reasons given, this excessive 

inhibition condition is considered decisive in the processes of motor 

recovery.  

4.2 Experimental subjects 

The present work aims to study the brain patterns induced in subjects 

engaged in the execution of a task of motor imagination assisted by Brain 

Computer Interface (BCI). The task of motor imagination involved the upper 

limbs, right or left, of subjects with motor difficulties resulting from stroke. 

Several findings in the literature describe the benefits induced by motor 

imagination on brain plasticity, and in particular on the responsiveness of the 

motor cortex (F. Pichiorri et al. 2011). Further studies have shown that the 

BCI system can perform instantaneous measurements of brain functions 

modulated by the motor imagination and provide visual feedback to patients, 

thus resulting in an effective support for post-stroke motor rehabilitation 

(Floriana Pichiorri et al. 2015). 

In this study a group of eighteen subjects was considered. The subjects 

under examination are post-stroke patients in the sub-acute phase, i.e. within 

six months of the adverse event, with an average age of 62.6 ± 8.4 years; all 

subjects present mono-lateral hemispheric lesion (nine with lesion in the 

right hemisphere and nine with lesion in the left hemisphere). Patients 

underwent motor imaging training using BCI. 
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The training protocol includes the recording of EEG tracks during which 

the patient is required to perform imaginative tasks. The training lasted four 

weeks, with three sessions per week. Each of the twelve sessions is 

composed of different runs. Each run involves the recording of a sequence of 

twenty tasks, in which the subject imagines the movement of the limb 

corresponding to the affected hemisphere, each alternating with a baseline 

recording, in which the subject is at rest (resting state). During the task 

phase, the subject may be asked to imagine a grasping or an extension 

movement of the hand (Figure 4.1). 

 

Fig. 4.1 - Rehabilitative protocol. 

During BCI training the subject, sitting in a comfortably position in a 

chair or wheelchair, is covered both forearms with a white cloth. Virtual 

forearms are projected onto this sheet, designed using an appropriate 

software (Figure 4.2). 

The patient is supported by a therapist, who has a screen in front of him 

that allows him to continuously monitor the electroencephalographic activity 

of the patient. The therapist also has a screen showing a cursor and the target 

zone to be reached. If the patient successfully performs the imagination task, 

the therapist will see the cursor reach the target and simultaneously the 

patient will see the virtual hands close or open (feedback to patients in 

successful trials) depending on the requested task. 



 

65 

 

 

Fig. 4.2 - Prototype setting for the BCI training session. 

Each trial begins with a four-second time interval (baseline), during 

which the patient waits for the command to start the imaginative task. At the 

end of the baseline, an acoustic signal warns about the beginning of the 

‘task’ phase during which the patient has ten seconds to carry out the 

imaginative work requested; each run includes twenty trials, each consisting 

of the baseline and task steps. 

For the acquisition of the scalp EEG signal, subjects were required to 

wear a 64 electrode cuff, which allows them to measure the electrical signals 

coming from the cortex. Electrode impedances have been kept below 5 

KOhms. The software tool that allows the signal to be displayed is the 

Vision Recorder® which also allows impedance values to be monitored 

when positioning the electrodes. 

In order to assess the BCI training effects, 2 training sessions were 

analyzed for each subject: an EARLY session, namely the second session for 

all subjects and a LATE session corresponding to a session in the last week 

of training, selected according to patient’s performance rate. The choice of 

considering this time interval between training sessions allows statistical 

comparisons to highlight differences between spectral activations at the start 
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and end of the training. This allows you to evaluate any improvements made 

to BCI training.  

4.3 Spectral analysis 

Spectral analysis was limited to the signals recorded by 31 of the 61 

acquisition scalp channels. The 31 selected channels focus on the central 

area of the scalp (front-central, central, centre-parietal and parietal lines), 

which is the area of greatest interest in the study of imaginative and motor 

execution tasks. 

After pre-processing - 100 Hz sampling, bandwidth filtering (1-45 Hz), 

artifact rejection, Common Average Reference (CAR) spatial filtering - the 

power spectral density (PSD) of the tasks and the underlying EEG signals 

were calculated using the Welch method (Welch 1967) and averaged over 

five frequency bands defined according to the individual alpha frequency 

(IAF):  

- Theta (IAF-6; IAF-2); 

- Alpha (IAF-2; IAF+2); 

- Beta 1 (IAF+2; IAF+11); 

- Beta 2 (IAF+11; IAF+20); 

- Gamma (IAF+20; IAF+35). 

Subjects with lesions in the right hemisphere were flipped in the 

Left/Right direction in order to consider that the uninjured hemisphere was 

the right one for all subjects. 

In order to highlight the spectral activities associated with the task 

execution, it was necessary to make a statistical comparison between the 

power density spectra relative to the baseline data and the tasks associated 

with each of the thirty-one acquisition channels. The comparison used was 

the Student T test with a level of significance of 5%. In the case of multiple 

comparisons, a False Discovery Rate (FDR) correction was chosen. The tests 
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return negative values of t in the case of desynchronization (i.e. a decrease in 

power) and positive values of t in the case of synchronization (i.e. an 

increase in power). In order to obtain an evaluation of the effect of the 

rehabilitation intervention based on the use of BCI, the second and second to 

last sessions, respectively EARLY and POST, were considered. 

Comparisons between EARLY and LATE training sessions were made with 

a statistical comparison (paired-sample t-test, significance level of 0.05) 

between negative t-values (associated to the desynchronizations) in the five 

frequency bands; the significant desynchronizations were obtained from 

previous statistical comparisons between the task and rest trials. 

In the present work specific spectral indices have been used in order to 

highlight and characterize the activation of the neuroelectric areas involved 

in a cognitive task and, therefore, to synthesize the results obtained.  

4.3.1 Definition of spectral indices 

The Global Power Index is defined as the sum of the significant 

desynchronizations (corresponding to the negative t obtained from the 

Student test performed between the task and baseline PSDs) detected by the 

electrodes belonging to the ROI under examination. 

𝐺𝑙𝑜𝑏𝑎𝑙𝑃𝑜𝑤𝑒𝑟 =  ∑ 𝑡𝑖
−𝑛𝐷

𝑖=1       (4.1) 

where  

nD is the number of desynchronisations; 

ti
-
 is the i-th desynchronization value. 

As expressed in the literature, the choice of negative values of t 

(desynchronizations), is a good indicator of brain activity elicited by the task 

of motor imagination to which patients are subjected. 

The Mean Power index allows the average brain activation by 

calculating the average value of all the significant desynchronizations 
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obtained from the Student T test performed on the Task and Baseline PSDs 

of an area of interest. 

𝑀𝑒𝑎𝑛𝑃𝑜𝑤𝑒𝑟 =  ∑
𝑡𝑖

−

𝑛𝐷
𝑛𝐷
𝑖=1       (4.2) 

Global and Mean power indices were applied to data obtained from 

stroke patients in EARLY and LATE sessions to quantitatively determine 

the desynchronization increase achieved during the MI task. There were 

calculated for each subject on thirtyone electrodes, every frequency band and  

session. Then, a statistical comparison (sample pair test, significance level 

0.05) was computed. 

 4.3.2 Results 

Figure 4.3 shows the statistical graphs (MI vs. baseline) of a 

representative patient in the lower beta and alpha bands for the LATE vs 

EARLY sessions. The color of the pixel codes for the corresponding t-

values: green for minor differences, red and blue ranges for significant 

synchronization or desynchronization. In the EARLY session the pattern in 

both ranges is two-sided and the t-values are just above the threshold. At a 

subsequent session, there was greater participation of the affected 

hemisphere (HA), especially in the lower Beta band. In both frequency 

bands, spectral desynchronization increased (absolute values were greater 

than 10), especially in the affected hemisphere. 
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Fig. 4.3 - Statistical scalp maps of a stroke patient: MI vs baseline in Alpha and 

lower Beta bands for the EARLY and LATE training sessions. Unaffected and 

Affected Hemisphere (UH; AH) are represented on the right and left of each scalp 

map, respectively. Color bars code for t-values. 

Figure 4.4 shows the results obtained in the group analysis: significant 

differences were found associated with increased desynchronization only in 

the Alpha and lower Beta bands. The Alpha band statistical map showed 

significant activations in FC5, CP5, POz, P2, P4 and PO4, while the lower 

Beta map showed a large number of statistical differences, especially over 

the hemisphere where the lesion is: these results show that the 

desynchronizations associated with the LATE training session are stronger 

than those associated with the EARLY training session especially in the 

lower Beta band.  
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Fig. 4.4 - Maps of p values achieved from the statistical comparison LATE vs 

EARLY training sessions for BCI patients. The scalp model seen from above with 

the nose pointing to the upper part of the page, affected hemisphere (ah) is shown on 

the left side of the. The color of each pixel codes for the correspondent p-value: 

gray-red for not significant differences, whereas white-yellow for p-values below the 

threshold. 

The results for the Global and Mean power indices for lower Beta band 

are shown in Figure 4.5: a significant difference has been achieved for both. 

The other bands behaved the same way. This result revealed a greater 

commitment to performing the MI at the end of the training session (LATE 

session). 

 

 

Figure 4.5 – Student t-test for a) Global Power and b) Mean Power, in lower Beta 

band; “↔“ highlights a significant difference (p<0.05) 
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4.4 Connectivity analysis 

In order to highlight changes in the general organization of brain 

networks between the pre- and post-training phases in resting state  a 

functional connectivity analysis was performed. The study of brain 

connectivity was performed using the spectral estimator Partial Directed 

Coherence (PDC) based on MVAR modelling of the 

electroencephalographic tracks acquired in the baseline phases. In order to 

reduce the high computational load, the first step required to select a reduced 

set of channels from which to assess connectivity; the number of channels 

decreased from 61 to 51. The channels deleted are Fpz, Tp8, Af8, Ft8, Po8, 

Oz, Tp7, Ft7, Af7, Po7. After preprocessing – band pass filtering (1-45 Hz), 

down-sampling at 100 Hz, artifact rejection – the signals were split into one 

second segments. Connectivity estimation has been evaluated using the 

squared version of the PDC: 
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The asymptotic statistics method was used as statistical validation 

method. Frequency bands of interest were Theta, Alpha, lower Beta, upper 

Beta and Gamma. 

For the resting state of each subject, both for the Pre and Post phases, a 

distribution of PDCs was obtained. The distributions have been achieved 

through the resampling technique, which consists of considering each time a 

different sample of one-second trial from which a single PDC is estimated. 

Once the PDC structures   with the dimensions (channels x channels x bands 

x N resampling) had been obtained, it was possible to perform a statistical 

comparison, for each subject, between the Pre and Post phases, in order to 

highlight the significantly different connections.  
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Fig. 4.6 - Steps sequence of resampling technique. 

The following parameters have been calculated on the obtained adjacency 

matrices, obtained for each subject: 

- ConnAhUh: describes the number of connections from the lesioned 

hemisphere to the healthy hemisphere (Ah→Uh); 

- ConnUhAh: describes the number of connections from the healthy 

hemisphere to the lesioned hemisphere (Uh→Ah). 

These measures were subjected to an independent two-sample t-test 

(significance level of 0.05), for each frequency band. 

4.4.1 Results 

The results of the connectivity analysis are reported in Figure 4.7. 

Statistical comparisons were made on the indices defined by the structures 

obtained from the PDC spectral estimator.  A significant difference in the 

ConnAhUh index in the lower Beta band was highlighted: in patients with 

lesion in the dominant hemisphere, the number of connections from the 

affected hemisphere (Ah) to the healthy hemisphere (Uh) is significantly 

higher than in patients with lesion in the right hemisphere. 
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Fig. 4.7 - Student t-test for a) ConnAhUh Index and b) ConnUhAh Index, in lower 

Beta band; “*“ highlights a significant difference (p<0.05) 

4.5 Conclusions 

The present study on brain-induced patterns in subjects undergoing 

training of motor imagination supported by brain computer interface, was 

performed to evaluate the effectiveness of this rehabilitative technique on 

patients affected by stroke. This analysis was carried out with an appropriate 

processing of the EEG data recorded during the performance of an 

experimental task; in particular, the subject was required to imagine a 

grasping or an extension movement of the hand. The first objective of this 

study was to understand if the subjects involved have common brain 

activations in certain frequency bands, during the performance of the motor 

imagination task. Spectral analysis of EEG signals recorded during the 

execution of the task with the affected limb showed a higher degree of 

desynchronization in the LATE session than in the EARLY session. This 

result, obtained in particular in the Alpha and Lower Beta bands and in 

specific locations (statistical differences especially above the affected 

hemisphere), has highlighted an improvement in the execution of the task of 

motor imagination due to training. 

This result was also confirmed by the analysis carried out with 

appropriate spectral indices. It was shown that subjects with lesion in the 
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dominant (left) hemisphere generated a greater number of connections from 

the affected hemisphere to the unaffected hemisphere than subjects with 

lesion in the non-dominant (right) hemisphere. This is further confirmation 

of the importance of the dominant hemisphere during motor rehabilitation 

training. Results of the connectivity analysis were obtained in the lower Beta 

band which, as reported in the literature, is confirmed to be of considerable 

importance in the tasks of motor imagination. The results obtained have 

therefore confirmed not only that the BCI training protocol is an adequate 

and innovative tool, but have also shown that the methodology developed 

and applied for the evaluation of this rehabilitative technique is able to 

provide a measure of the changes induced by the training in communication 

between the brain areas involved in the execution of the task under 

investigation.  

All the analyses described above lead to similar results and conclusions: 

increased involvement of the affected hemisphere was observed through 

training, possibly through the reconstruction of a motor cortex functionality 

closer to the healthy, as confirmed by the EEG patterns provided by MI 

under the BCI. It should be explained how this increased motor activity of 

the brain can affect the functional motor regeneration of patients with 

subacute disease. Neuroimaging functional brain maps show where cortical 

activations occur during the task: more interesting results can be obtained by 

studying how the brain areas involved in the task interact and how this 

communication is modulated by rehabilitation treatment to investigate 

plasticity phenomena. 
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V 

An EEG index of sensorimotor interhemispheric 

coupling after unilateral stroke 

 

5.1 Introduction 

5.2 Methods 

5.2.1 Patients and corticospinal tract integrity assessment 

5.2.2 EEG data acquisition and analysis 

5.2.3 Statistical analysis 

5.3 Results 

5.4 Discussion 

___________________________________________________________________________________________________________________________________________________________________ 

5.1 Introduction 

In the physiological conditions, activation of the primary motor cortex 

(M1) leads to inhibitory effects on the contralater M1, a phenomenon known 

as interclinical inhibition and reported in detail as altered following a 

unilateral stroke (Perez and Cohen 2009). As already discussed in section 

3.1, the neuroanatomical structure of the interhemispheric inhibition is 

located in the corpus callosum, the largest brain matter structure whose 

topographic organization has been widely described (Huang et al. 2005) to 

reflect the corresponding interconnected cortical areas. Structural and 

functional changes in interhemispheric coupling after stroke  are related to 

the severity of damage in the corticospinal tract (CST) and therefore to the 

extent of the motor impairment (Li et al. 2015). 
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The clinical implications of a stroke are not only related to the effect of 

the focal lesion, but also to the disruption of connections with other areas 

(Silasi and Murphy 2014). On the other hand, the interconnected areas 

contribute to the recovery processes, with both positive and negative effects. 

Because of these reasons, brain connectivity seems to be a powerful tool for 

improving the understanding of post-stroke recovery (Grefkes and Fink 

2014), as well as to evaluate the extent of damage and the effectiveness of 

rehabilitation interventions. 

Recent studies have shown that interhemispheric connectivity (IHC) in 

patients with subacute stroke is modulated by several rehabilitation 

procedures: in particular, a Brain Computer Interface (BCI) motor imagery 

training of the paretic upper limb in which ipsilesional 

electroencephalographic sensorimotor rhythms were reinforced, and 

specifically in the EEG frequency ranges engaged in the training (Pichiorri et 

al. 2015). 

In this study, the aim was to provide an EEG derived IHC index related 

to the CST integrity and to the severity of the clinical compromise. Motor 

Evoked Potential (MEP) as evaluated by transcranial magnetic stimulation 

(TMS) was applied as an indicator of CST integrity and excitability, as an 

already established predictor of clinical outcome after stroke (Bembenek et 

al. 2012). To validate the clinical relevance of the identified index, 

correlations between the index and the motor impairment rate in a population 

of patients with subacute stroke undergoing rehabilitation have been 

examined. 
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5.2 Methods 

5.2.1 Patients and corticospinal tract integrity assessment 

Thirty stroke patients were consecutively recruited among those 

hospitalized in our rehabilitation hospital at the Santa Lucia Foundation, 

IRCCS. The following inclusion criteria were applied: age between 50 and 

80 years; first time one-sided stroke (cortical, subcortical or mixed) occurred 

no more than 6 months prior to inclusion and causing hemiparesis or 

hemiplegia. At the time of recruitment, patients were evaluated using the 

European Stroke Scale (ESS; (Hantson et al. 1994)) and the upper limb 

section of the Fugl-Meyer Assessment (FMA; (Gladstone, Danells, and 

Black 2002)). The FMA is a functional scale for assessing motor function of 

the limb; the upper limb section (motor domain) is often used separately and 

varies from 0 (most affected) to 66 (least affected; (Gladstone, Danells, and 

Black 2002)). The ESS is a scale of 14 points for evaluating stroke-derived 

neurological deficits (including motor and non-motor functions), ranging 

from 0 (most affected) to 100 (least affected; (Lyden and Hantson 1998)). 

Transcranial magnetic stimulation (TMS) is a non-invasive and well 

tolerated technique, widely used in the investigation of the characteristics of 

excitability and integrity of the central motor tracts in normal subjects and 

patients with various neurological disorders. Brain stimulation with TMS is 

achieved by sending pulsing electromagnetic fields from the outside of the 

head, which induces an electric field onto the brain, causing the neurons to 

excite. This excitation is obtained by a current pulse transmitted in a coil 

located on the head of the subject. The waveform of the current that flows in 

the coil is a sinusoidal pulse, which lasts about 300 milliseconds and has a 

peak value of 5-10 kA. These pulses cause a coherent neurons activation in 

the stimulated area, as it happens after the activation related to a synaptic 

input. The effects that are normally observed after exciting a part of the 
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cortex with TMS are contracted muscles or phosphenes. In motor cortex 

stimulation, peripheral effects can be observed by surface electromyography 

(EMG). In this case the intensity of stimulation used will be that which can 

activate in the muscles, in a condition of muscle relaxation, a motor evoked 

potential (MEP) of an amplitude corresponding to that established, according 

to standard international criteria, for the motor excitability threshold (MT).  

The integrity and excitability of the corticospinal tract was determined 

bilaterally by means of TMS in the following manner. Single-pulse magnetic 

stimuli were delivered through a round coil on the motor cortex in the 

optimal position to elicit MEPs in the First Dorsal Interosseus (FDI) muscle. 

The electromyographic activity (EMG) of FDI was recorded through 

Ag/AgCl surface electrodes in in a belly-tendon montage. 

The raw EMG signal, amplified and bandpass-filtered (0.1 Hz to 2 kHz), 

was digitized at a sampling frequency of 20 kHz and stored for offline 

analysis. The integrity of the corticospinal tract was tested at 100% of output 

stimulator intensity. The presence/absence of an MEP of at least 50 mV was 

derived from the average of 10 EMG traces. If the MEP was not inducible at 

rest, the patients were instructed to attempt voluntary contraction. 

The presence or absence of MEP relative to the injured side has allowed 

to divide the sample into two groups, labelled YES and NO respectively. 

The motor threshold at rest (RMT) was defined as the lowest intensity that 

produced MEPs greater than 50 mV in at least 5 on 10 consecutive trials in 

the FDI muscle and was determined bilaterally (affected side, AS and 

unaffected side, US) in the YES patients and on the unaffected size US only 

in NO patients. Ten patients had inducible MEPs on the affected FDI muscle 

(YES).  

Statistical comparisons were performed to evaluate differences between 

YES and NO groups in demographical and clinical characteristics (age, time 

from event, ESS, FMA), RMT on US (unpaired two-tailed Welch test, 
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significance level of 0.05). Differences in RMT between AS and US were 

tested in YES patients (paired t-test, significance level of 0.05). No 

significant between-group differences were observed for age and time from 

the stroke event. As expected, the NO group had significantly lower ESS and 

FMA scores than the YES group (P < 10
-6

 for both ESS and FMA). As for 

the TMS data analysis, no significant differences in RMT values were 

observed between groups on US, neither between AS and US in the YES 

group. 

5.2.2 EEG data acquisition and analysis 

EEG data were acquired in a separate session (within 1 week from 

clinical evaluation and TMS assessment). During the EEG data  acquisition, 

patients were comfortably seated in an armchair in a dimly lit room with 

their upper limbs resting on a desk. Scalp EEG was acquired from 61 

standard positions (according to the extended 10–20 International System) 

band pass–filtered between 0.1 and 70 Hz, digitized at 200 Hz, and amplified 

by a commercial EEG system. 

Five minutes of EEG recordings at rest (eyes closed and relaxed) were 

acquired. EEG data were down-sampled at 100 Hz and band-pass filtered (1-

45 Hz). Artifacts were rejected using a semi-automatic procedure, based on 

the definition of a voltage threshold (±80 mV). The EEG traces were then 

segmented into 1 s-epochs and, after relation with the Common Average 

Reference (CAR), a spectral analysis was performed for all 61 electrodes: at 

least 100 artefact-free segments were used for each subject for Fast Fourier 

Transform and power spectral analysis (PSD) in all five frequencies bands of 

interest. Frequency bands of interest were Theta, Alpha, lower Beta, upper 

Beta and Gamma whose band limits were defined according to Individual 

Alpha Frequency (IAF; (Klimesch 1999)). The band filtering parameters 

were Theta (IAF-6/IAF-2), Alpha (IAF-2/IAF+2), lower Beta 
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(IAF+2/IAF+11), upper Beta (IAF+11/IAF+20) and Gamma 

(IAF+20/IAF+35). The IAF range in patients was 9.45 ± 0.54 Hz. To allow a 

statistical group analysis across all participants, EEG signals were flipped in 

the Left / Right direction in order to ensure that the lesioned hemisphere was 

on the left side for all subjects.  

To investigate the brain network properties under resting conditions, we 

estimated the statistical dependencies between EEG data (preprocessed as 

described above, except for CAR), applying the full multivariate spectral 

measure Partial Directed Coherence in order to estimate causality in the 

statistical sense in each patient. The patterns significance against the null 

case was assessed by means of an asymptotic statistic method (Kaminski et 

al. 2016) and the obtained estimations were averaged within the five 

frequency bands as described above. 

The neuronal connectivity patterns were analyzed by means of a 

theoretical graph approach. A new index, called normalized Inter-

Hemispheric Strength (nIHS), was defined ad hoc in order to underline the 

distinctive topographic property of alteration of the communication between 

hemispheres. It was defined as the sum of weights of interhemispheric links 

(ihwi) normalized by the total weight of the network (wTOT): 

𝑛𝐼𝐻𝑆 =  
∑ 𝑤𝑖

𝑁𝐼𝐻𝐶
𝑖=1

𝑤𝑇𝑂𝑇
                                                                                (5.1) 

where 

𝑤𝑇𝑂𝑇 = ∑ 𝑤𝑖
𝑁
𝑖=1                                                                                   (5.2) 

nIHS in (5.1) is the number of non-null interhemispheric links, wi is the 

weight of i-th connection and N the total number of connections in the 

network. 

For each patient, nIHS was computed and extracted from the 

interhemispheric connectivity patterns involving the whole scalp (global 

nIHS – 44 electrodes) and for those focused in three different subareas (12 
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electrodes each): a central zone (corresponding to motor and premotor 

cortices) and occipital and frontal zones, used as control areas (Figure 5.1 for 

the complete list of electrodes). This subdivision was performed to 

investigate the possibility to isolate sensorimotor interhemispheric coupling 

from anterior and posterior areas on the scalp; that is to investigate the 

macroscopic topographical specificity of the proposed index. 

5.2.3 Statistical analysis 

To evaluate between-group (YES/NO) differences in the spectral 

activity at rest, an unpaired two-tailed Welch t-tests between PSD values for 

each electrode and frequency band was performed. For brain network 

characteristics, unpaired two-tailed Welch t-tests was computed to identify 

differences between YES/NO subgroups in the nIHS index for the entire 

scalp (global) and for each specific area (sensorimotor, frontal and occipital) 

and EEG frequency band. 

A correlation analysis (two-tailed Spearman correlation) between nIHS 

and clinical scales (ESS and FMA) was performed to further investigate the 

potential of the proposed effective connectivity index as a 

neurophysiological descriptor of stroke-derived impairment. In all analysis 

performed, significance level was set at P < 0.05 and False Discovery Rate 

correction for multiple comparisons was applied to avoid the occurrence of 

type I errors (Benjamini and Yekutieli 2001). 

5.3 Results 

No significant differences were observed in the PSD at rest between 

YES and NO groups, except for the whole scalp PSD in the Theta range of 

frequency which showed significantly higher value in the NO group (with a 

prevalence of the affected hemisphere and midline).  
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The index global nIHS  was significantly higher in the YES group in 

lower beta, higher beta and gamma bands (Figure 5.1a). The same index 

estimated for the three scalp areas showed significant differences between 

the YES and NO groups only in the sensorimotor area, in the lower beta 

band (Figure 5.1b). 
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Figure 5.1 – a) Welch t-test for global nIHS statistical comparison between YES 

and NO groups in the five frequency bands; scalp EEG electrodes used to assess 

normalized interhemispheric strength in the whole head (global): Fp1-2, Af3-4, F1-

2, F3-4, F5-6, F7-8, Fc1-2, Fc3-4, Fc5-6, C1-2, C3-4, C5-6, T7-8, Cp1-2, Cp3-4, 

Cp5-6, P1-2, P3-4, P5-6, P7-8, Po3-4, O1-2. b) Welch t-test for subgroups nIHS 

statistical comparison between YES and NO groups in the five frequency bands; 

scalp EEG electrodes used to assess normalized interhemispheric strength in the 

three areas: frontal – F1-2, F3-4, F5-6, Fc1-2, Fc3-4, Fc5-6; sensorimotor – C1-2, 

C3-4, C5-6, Cp1-2, Cp3-4, Cp5-6; occipital – P1-2, P3-4, P5-6, P7-8, Po3-4, O1-2 

(colour-coded: green, red and violet, respectively). Statistical significance (p<0.05) 

is marked by *.  
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5.4 Discussion 

In this study, it was found that CST integrity defined as the 

presence/absence of MEP induced by TMS in a group of patients with 

subacute stroke was associated with a significant difference in a defined 

interhemispheric index derived from EEG analysis. This difference, in favor 

of the YES group, was specific both from a topographic and a spectral point 

of view, i.e. it involved scalp electrodes related exclusively to the 

sensorimotor area and occurred in a range of EEG frequencies associated 

with movement (lower Beta band). 

It was also found that an increase in density of the interhemispheric 

connections in the YES group affects the overall high frequency EEG 

spectrum (Beta and Gamma band) when considering the global NIHS index. 

This phenomenon is mainly due to the contribution of non-homologous 

interhemispheric connections in the estimate of the global index. These 

transversal interconnections are by definition excluded from the calculation 

of the same index in the three sub-areas of the scalp. Homogeneous networks 

in the Beta and Gamma frequency bands are in fact an intrinsic part of the 

entire functional connectivity of the brain at rest (Neuner et al. 2014). 

Furthermore, the specificity of the IHC value in favour of the YES group is 

confirmed by the fact that no significant differences were found between the 

baseline PSD values of the groups in the frequency bands relevant for the 

IHC differences. In fact, increased power was found only in the slower EEG 

band (Theta) during resting state in the NO group (especially over the 

injured hemisphere), a predictable finding in patients with more severe 

stroke. 

The topographical and spectral specificity of NIHS differences as a 

function of CST integrity makes it plausible that the observed phenomenon 

reflects a variation at the motor system level. Consistent with previous 
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findings on hemodynamic neuroimaging (Radlinska et al. 2012), the NIHS 

index was higher in patients with CST integrity. This index is supposed to 

reflect and quantify interhemispheric inhibition, which is known to be 

altered after a stroke at CST level (Perez and Cohen 2009). This hypothesis, 

however, remains speculative, pending further studies in which observation 

is not limited to the resting state and includes an extensive 

neurophysiological evaluations (e.g. TMS measures of intracortical 

inhibition and facilitation) with stratification of patients according to the size 

of the stroke lesion (as already done in animal models; (van Meer et al. 

2012)). 

Compared to other techniques currently used to assess post-stroke 

connectivity, EEG has some advantages: it is non-invasive, inexpensive, 

portable and has a high temporal resolution. These advantages are already 

relevant if we consider connectivity as a possible neurophysiological marker 

of recovery outcome. However, they become even more precious if one 

considers the recent approaches in which connectivity itself can be used to 

guide a neurophysiological design of neurorehabilitation interventions (Silasi 

and Murphy 2014). 

Regardless of the theoretical interpretation of the neurophysiological of 

the nIHS index, its correlation with the clinical impairment is significant. In 

the lower beta band the neurosensory nIHS index was positively correlated 

with the scales of general and upper limb motor impairment, i.e. the higher 

the nIHS index on the neurosensory areas in the lower Beta band is, the 

better the clinical and functional motor states measured by the ESS and 

FMA are. 

Objective measures of post-stroke impairment and subsequent recovery 

are extremely up-to-date in the context of evidence-based neurorehabilitation 

(Dimyan, Dobkin, and Cohen 2008). Although with caution, we can 

conclude that our study provides initial evidence for an EEG-based index 
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which is a measure of the interhemispheric cross-talking and correlates with 

functional motor impairment in subacute stroke patients. The identified 

index could be employed to evaluate the effects of training aimed at re-

establishing interhemispheric balance and eventually drive the design of 

future connectivity-driven rehabilitation interventions.  

In the context of neurorehabilitation, objective measures of deterioration 

and post-stroke recovery are evidence-based (Dimyan et al., 2008). We can 

conclude that this study provides initial evidence for an EEG-based index 

that is a measure of interhemispheric cross-talking and correlates with 

functional motor impairment in patients with subacute stroke. The identified 

index could be used to assess the effects of training to restore 

interhemispheric balance and ultimately to drive the design of future 

rehabilitation interventions based on connectivity. 
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6.1 Introduction 

In the past two decades, there have been major advances in medical 

imaging, with the development of hard-field imaging methods, such as 

functional Magnetic Resonance Imaging (fMRI), X-ray Computer 

Tomography (CT) and Positron Emission Tomography (PET). In spite of 

their benefits, these methods are all non-portable, expensive and able to 

image slow metabolic changes over time. The temporal responses of the 

physiological processes being measured are poor as compared to those of the 
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electrical signals that define neuronal communication, and recorded signals 

are only an indirect measure of neural activity. The neural mechanisms at the 

basis of cerebral dynamics (occurring at faster time-scales) cannot be 

accurately assessed using these techniques, therefore the resulting mapping 

of brain functions lacks temporal information about neural activity. 

Electromagnetic imaging of the brain is the only functional imaging 

modality that is liable to offer excellent time resolution, recording at the 

same temporal scale of the dynamic of neural activity. In principle, one 

could be able to obtain functional images of the brain electrical activity up to 

every millisecond (which corresponds to the data sampling rate). 

Electroencephalography (EEG) offers a continuous, real-time, non-invasive 

measure of brain functioning. This imaging technique is portable, safe, rapid, 

inexpensive and has an excellent temporal resolution, of the order of 

milliseconds. For these reasons, although it has a much poorer spatial 

resolution than the other methods mentioned above, electroencephalography 

is one of the few techniques allowing to non-invasively study neural activity 

with a timing that matches the one of the processes under investigation. 

EEG measurements are mostly used for diagnostic purposes by direct 

analysis of signal patterns, but scalp-recorded EEG signals can be also used 

to calculate the locations of electrical sources in the brain (Michel et al. 

2004). Different approaches to localize the sources in the brain have been 

developed. In basic neuroscience research these tools are used to investigate 

the functional organization of the human brain and the temporal dynamics of 

information processing.  

It is important to know if a certain change in scalp EEG can be ascribed 

to the functioning of the brain or if volume conduction effects can cause the 

observed deviation. Neglecting any of the basic premises underpinning EEG 

source imaging may result in a localization error or even in the failure of the 

localization procedure. The localization of brain sources from non-invasive 
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measurements of electrical or magnetical brain activity is important for both 

clinical applications and basic brain research. The estimation of the brain 

sources by means of electroencephalography requires the assumption of (1) a 

model of possible source positions, (2) an electric forward volume conductor 

model implementing the electrical and geometrical properties of the solution 

space, and (3) an inverse source localization method. 

Many studies have been performed to quantify the accuracy of the 

source location via EEG (Akalin Acar and Makeig 2013), even in the 

presence of brain damage (Bénar and Gotman 2002; Brodbeck et al. 2009; 

Irimia et al. 2013). In most of these studies, the effects of injuries were 

assessed by introducing electromagnetic in-homogeneities into the head 

model and by means of artificial data, i.e. modelling of focal cortical 

sources. In these simulations: (1) a focal brain activity is simulated in the 

solution space; (2) the forward solution is calculated to determine the 

associated EEG distribution; (3) underlying source reconstruction from the 

potentials in the electrode positions is estimated; (4) localization accuracy is 

quantified by comparing the simulated and estimated focal source position. 

However, a number of problems arise for experimental applications to 

achieve realistic models that include lesions. The lesions have very variable 

geometric and electrical properties, therefore individual Magnetic Resonance 

Images (MRI) and manual segmentation procedures would be required to 

characterize the pathological tissue, resulting in an additional work that 

should be justified by a legitimate need and strictly limited to what is 

necessary. In addition, the electrical properties of brain lesions are variable 

and often unknown, due to the limited information available. A further 

divergence of simulation studies from clinical applications is simulated 

source activity, which is typically composed of one or a few spatially 

restricted sources, while humans can involve extensive networks of more or 

less synchronously activated brain areas. EEG data are a superposition of 
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many effectively independent sources interacting with rhythmic sources of 

various physiological content. Furthermore, we have to consider that, even 

applying distributed source imaging, an optimal solution for focal sources 

could be far from optimality when neurophysiological generators are 

involved. In fact, the localization error of individual sources cannot predict 

the performance of an inverse solution in the presence of multiple 

simultaneously active sources. 

As for today, the great deal of uncertainties about the effects of these in-

homogeneities for accurate neural source reconstruction preclude the 

adoption of EEG functional mapping for basic research and clinical 

applications on patients with brain lesions.   

To increase the confidence in source localization procedures and extend 

their application in pathological subjects, it is important to quantify how the 

presence of brain lesions affects the distribution of scalp EEG and how to 

discriminate changes that can be ascribed specifically to the functioning of 

the brain. 

The purpose of this study was to investigate the capability of a 

distributed source localization method based on the Minimum Norm 

approach to retrieve extensive sources of activated cortex estimated from 

actual EEG data by introducing cortical lesions into the generation model. 

This study was performed in order to specifically quantify the conditions in 

which source analysis can be performed when anatomical images are not 

available, and lesion properties cannot be embedded in the head. 

For this purpose, the estimated source activity obtained from real data 

recorded from the scalp potentials was used to simulate different potentials 

of the scalp EEG (forward problem) and an inverse problem solution was re-

computed. The same approach was applied to investigate the effects of the 

lesion estimation, including ‘silent’ areas of different sizes in the estimated 

source activity, but without taking into account any changes in local 



 

91 

 

conductivities caused by brain injury. The effects of the inclusion of lesions 

of different sizes and the use of different spatial samplings on the scalp were 

investigated through statistical analysis, by comparing the error obtained 

under different conditions. 

6.2 Methods 

6.2.1 Subjects and Data recording 

To generate the simulated data, the first step was to collect real EEG 

data from 10 healthy subjects (average age 26 ± 2 years; 6 males; all right-

handed). All subjects gave their informed consent prior to participation. The 

high-density EEG recordings were performed by a 61-channel montage 

(according to an extension of the International 10-20 System) and filtered 

bandwidth between 0.1 and 70 Hz, digitized at 200 Hz, and amplified by a 

commercial EEG system. When acquiring EEG data, subjects were 

comfortably seated on an armchair in a dimly lit room. Five minutes of EEG 

recordings at rest (relaxed, eyes closed) were acquired. EEG data was 

filtered bandwidth (1-45 Hz). Artifact rejection was performed using a semi-

automatic procedure, based on the definition of a voltage threshold (± 

80μV). 

6.2.2 Estimation of current densities 

The electrical neuronal activity that can be measured at the surface of 

the scalp with the EEG originates mainly from pyramidal cells, located in the 

grey matter and organized in parallel macro-columns, with an orientation 

approximately normal to the cortex. These populations can be modeled by a 

grid of dipole sources located on the cortical surface. The electromagnetic 

activity produced by an active cortical area is well described and modeled by 

a single equivalent dipole, thus the electrical and magnetic potentials 
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generated can be computed at any point in the surrounding space on the 

condition that a model of the conductive volume is available. 

The convoluted anatomy of the cortex was represented using a realistic 

cortical surface mesh obtained from the anatomical model ICBM152 (Figure 

6.1), based on the average of many normal MRI scans (Collins et al. 1999; 

Fonov et al. 2009). The surface of the cortex was down-sampled to 15,000 

vertices. After defining the positions of the dipoles, the orientations were 

forced to be perpendicular with respect to the cortical surface. 

 
Fig. 6.1 – The Montreal Neurological Institute (MNI) defined a standard brain that 

is considered representative of the population. MNI152 template is obtained by the 

average of 152 normal MRI scans. 

The forward problem consists in providing the distribution of the 

electrical potential (or magnetic potential) on a surface that envelops a 

conductive volume generated by an electromagnetic source localized in the 

conductive volume itself. In this specific case, the electromagnetic source is 

represented by the activated cerebral mass, the conductive volume is 

represented by the head and its structures and the surface that encloses the 

conductive volume is represented by the scalp. The equations that regulate 

this problem are the Maxwell equations. The conduction is linear, so the 

potential on the scalp level due to multiple sources is simply given by the 

sum of the potentials, each of which originates from each individual source. 
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The EEG inverse problem is an ill-posed problem since, for all the 

admissible output voltages, the solution is not univocal (the number of 

dipoles >> the number of measurements) and unstable (the solution is highly 

sensitive to the variations of the noisy data). A variety of methods have been 

described for estimating sources of scalp-recorded electromagnetic activity 

(Becker et al. 2014; Grech et al. 2008). In this study, the Minimum Norm 

(MN) solution with Tikhonov regularization was used (Silva et al. 2004). 

MN solutions are based on the pre assumption that, among all possible 

source configurations, the source distribution with minimal energy is the 

most likely. 

Given the forward problem 

𝑿 = 𝑮𝑺 + 𝒀                                                                                        (6.1) 

where 𝑺 is the current source, 𝑮 ∈ 𝑅𝑁𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒𝑠 𝑥 𝑁𝑑𝑖𝑝𝑜𝑙𝑒𝑠 is the lead field 

matrix that describes the propagation in the volume conductor and 𝒀 is the 

instrumentation noise, the solution of the optimization problem is: 

𝑎𝑟𝑔𝑚𝑖𝑛{‖𝑮𝑺 − 𝑿‖2 + 𝜕‖𝑿‖2}                                                         (6.2) 

and 𝑸 = 𝑮𝑇(𝑮𝑮𝑇 + 𝜕𝑰)−1  is the Tikhonov regularized inverse matrix of 𝑮, 

where 𝑰 denotes the identity matrix. In this study the regularization 

parameter 𝜕 was estimated by means of the L-curve method (Hansen 2000). 

In Tikhonov regularization, for the minimization of the least square 

functional of the reconstruction problem, the regularization consists in 

adding a penalization function, multiplied by a positive parameter, called 

regularization parameter 𝜕, so that the modified function is less sensitive to 

the noise effect. For small values of the regularization parameter we have a 

solution that is very sensitive to noise but well reproduces the data; on the 

contrary, for large values of the regularization parameter we have a solution 

that is much stable but that badly reproduces the data. In order to find the 

optimum 𝜕 value to ensure the best compromise between solution stability 

and data representation, the criterion of the L-curve was used, consisting of a 
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parametric curve whose coordinates are the norm of the regularized solution 

and the corresponding norm residual, obtained for different μ values. 

The estimated cortical distributions were used as a basis to generate 

simulated data with and without the presence of lesions. 

6.2.3 Simulation of scalp potentials from cortical activity in 

absence of lesions 

The estimated source activities obtained from each subject were used to 

simulate the potentials of the EEG scalp (forward problem) in the position of 

32 and 64 electrodes uniformly distributed on the surface of the scalp. The 

equivalent distributed source for the simulated EEG distributions were then 

calculated using the inverse problem, as the baseline for the study of the 

simulated lesions. 

6.2.4 Simulation of scalp potentials from cortical activity in 

presence of lesions 

The same procedure was performed by including silent lesion areas in 

the estimated source activity. Before applying forward and inverse problem, 

the cortical activity of a specific area was reset to zero. We included lesions 

of two possible dimensions, involving 200 and 1000 dipoles, respectively 

(Figure 6.2). 

 

Fig. 6.2 - Cortical model with lesions: a) lesioned area including 200 dipoles; b) 

lesioned area including 1000 dipoles 
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6.2.5 Localization errors 

For every subject, the cortical activity was estimated from simulated 

EEG recordings from 32 and 64 electrodes and for the three different 

conditions of lesion-free, 200-dipoles lesion and 1000-dipoles lesion (Figure 

6.3).  

For each condition, the error committed in the cortical reconstruction 

was computed as the difference between the estimated cortical activity and 

the imposed ones. In particular, to quantify the global accuracy in the whole 

cortex and the accuracy in the non-lesioned area, we used the normalized 

Root Norm Square Error (RNSE): 

𝑅𝑁𝑆𝐸 =
√

1

𝑁
√∑ ‖𝑥𝑖 − 𝑦𝑖‖2𝑁

𝑖=1

√∑ ‖𝑥𝑖‖2𝑁
𝑖=1

⁄ ∗ 100                          (6.3) 

where N is the number of dipoles of the whole cortex or of the lesion-free 

area, xi and yi are the activity of dipole i=1,…, N estimated from real and 

simulated EEG data. 
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Fig. 6.3 - Cortical activity maps at 2500 ms time point for one subject related to 

(first column) estimated reference data, (second column) activity reconstructed from 

64 electrodes and (third column) from 32 electrodes. The first row is related to the 

absence of lesions (lesion size=0), the second to a lesion size equal to 200 and the 

third to a lesion size equal to 1000. 

6.3 Statistical Analysis 

A statistical analysis of variance (ANOVA) was performed considering 

as within factors the number of electrodes (two levels: 32 and 64) and lesion 

size (three levels: 0, 200 and 1000) and as dependent variables the RNSE 

computed on the whole cortex and on the non-lesioned areas. Significance 

level was set at p<0.05. 

6.4 Results 

Figure 6.3 shows the activation maps at 2500 ms time point related to 

simulated reference data (first column), activity reconstructed from 64 

electrodes (second column) and from 32 electrodes (third column). The first 

row is related to the absence of lesions (lesion size=0), the second to a lesion 
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size equal to 200 and the third to a lesion size equal to 1000. It can be 

appreciated how the reconstruction is quite accurate when 64 channels are 

used and deteriorates significantly when we use only 32 channels (He and 

Musha 1989). The dimension of the lesion also affects the accuracy of the 

reconstruction.  

As for the ANOVA results, Figure 6.4 show the plot of mean for the 

RNSE error computed on the whole cortex (F(2,18)=1,8684; p=0.002) and 

on the non-lesioned areas (F(2,18)=2,7124, p=0.004), respectively. Our 

results show that both errors are significantly higher, for all lesion 

dimensions, in the 32 electrodes condition with respect to the 64 electrodes 

condition. Considering the effect of the lesion dimension, Duncan post-hoc 

tests returned no significant increase from the lesion-free condition to the 

200 dipoles lesion, while a significant increase is reported with respect to the 

1000 dipoles lesion. The differences are more evident for the 64 electrodes 

condition with respect to the 32 electrodes one. 

 
Fig. 6.4 - RNSE error for a) the whole cortex and b) the non-lesioned area. The green 

arrows indicate a statistically significant difference. 

6.5 Conclusion 

The aim of this work was to quantify the accuracy of a distributed 

source localization method in recovering extended sources of activated 

cortex when cortical lesions of different dimensions are introduced in 
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simulated data. Methods to reconstruct the neuroelectrical activity in the 

brain source space can be used to improve the spatial resolution of scalp-

recorded EEG and to estimate the locations of electrical sources in the brain. 

This procedure can improve the investigation of the functional organization 

of the human brain, exploiting the high temporal resolution of EEG to follow 

the temporal dynamics of information processing. As for today, the 

uncertainties about the effects of in-homogeneities due to brain lesions 

preclude the adoption of EEG functional mapping on patients with lesioned 

brain.  

EEG source-distributed activity estimated from real data was modified 

including silent lesion areas. Then, for each simulated lesion, forward and 

inverse calculations were carried out to localize the produced scalp activity 

and the reconstructed cortical activity. Finally, the error induced in the 

reconstruction by the presence of the lesion was computed and analyzed in 

relation to the electrode sampling and to the size of the simulated lesion.  

Results returned values of global error in the whole cortex and of error 

in the non-lesioned area which are strongly dependent from the number of 

recorded scalp sensors, as they increase when a lower spatial sampling is 

performed on the scalp (64 versus 32 EEG channels). For increasing sizes of 

the lesion, statistical analysis showed that only a lesion involving 1000 

dipoles induces significantly higher errors level with respect to the lesion-

free condition. 

The number of sensors of the scalp recorded effect on the accuracy of 

the reconstruction of the source is a well-known aspect, and explains the 

reduction of the error due to the increase in the number of electrodes (He and 

Musha 1989).  Due to the generally poorer reconstruction accuracy, the 

sensitivity of the reconstruction method to the presence of an injury is less 

evident with 32 electrodes, while when we use 64 electrodes, the accuracy is 

more influenced by the presence of an injury. 
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Given the levels adopted in this study, only an injury involving 1000 

dipoles induces a significantly higher level of error than the no injury 

condition. 

This study is a preliminary step towards the analysis of the effects of 

brain injury on the reconstruction of cortical activity distributed by non-

invasive scalp data from EEG. The limited experimental sample available 

here limited statistical analysis to a few factors and levels. Future studies 

will increase the sample to allow investigation of more factors and levels, 

such as more electrodes and different lesion positions, in order to quantify 

the effects of different shape modeling errors in the volume conductor 

model. This will provide guidelines on the conditions under which a source 

analysis can be performed without the need to build time/resources 

consuming cortical injury patterns and those under which such a step is 

strictly necessary. 
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Conclusion 

Stroke is a very heterogeneous disease, with individuals showing 

differences in initial clinical condition, in the degree of the spontaneous 

recovery, and in response to intervention and therapeutic treatment. Indices 

and predictors for stroke rehabilitation would provide the ability to 

significantly improve stroke care and management, guiding clinical decision-

making, and maximizing opportunities for recovery. Although examinations 

are conducted using behavioral scales, measurements obtained from 

neuroimaging of brain function may provide a better characterization of an 

individual's ability to reorganize neurons than behavioral assessments. As a 

safe, non-invasive, easy-to-use and inexpensive neuroimage methodology, 

electroencephalography (EEG) is particularly suitable for measuring and 

monitoring brain function, particularly in traditionally difficult clinical 

settings such as stroke. In addition, the EEG provides an excellent temporal 

resolution for measuring brain activity on a temporal scale close to that of 

neuronal activity.  

This thesis aims to determine the usefulness of EEG measurements in 

measuring inter-individual differences in brain function, with particular 

attention to the condition of resting state. 

In order to characterize the neuronal properties of patients and to 

properly evaluate the validity of therapeutic methods, it is necessary to 

develop indices that express and incorporate the information taken from the 

recorded signals. Specific characteristics of EEG have been shown to 

correlate with functional recovery after stroke. In any case, the signal 

characteristics traditionally used for these purposes are not sufficiently 

specific and the search for more suitable elements is necessary. In addition to 

spectral analysis of EEG signals and statistical scalp maps, in this study the 
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frequency domain Partial Directed Coherence (PDC) technique was used. 

Since most brain functions involve the coordination of multiple neural areas, 

measurements that quantify functional connectivity are more advantageous 

for this purpose than traditional signal analysis techniques. Stroke affects 

areas of the brain that are distant from the injured ones, but functionally 

related to them.  

Graph theory analysis is increasingly used in the study of structural and 

functional connectivity of the brain. These factors present a very powerful 

strategy for understanding the topology and pathology of brain networks due 

to the high reproducibility and stability of structurally and functionally 

correlated graphic metrics. However, the confluence of these methods has 

not yet been fully established. By combining these techniques, this study 

condensed elaborate matrices of connectivity information into a concise set 

of clinically useful indices. The physiological interpretations of the measures 

selected by the graph theory are multiple and quantify the characteristics of 

different basic mechanisms of motor recovery. We can consider the phases 

of information processing as increasing levels of abstraction, from measured 

electrical activity to functional connectivity and network topology 

measurements. Obviously, the inference of meaning at the level of 

neurological processes by these graph metrics is essentially an inverse 

inference, and should be done with great care. On the other hand, differently 

from behavioural scales, the changes highlighted by these indices may be 

directly related to changes in functional connectivity measures and in the 

underlying neuronal activity. Therefore, we focus on their specific 

association with functional recovery and possible clinical applications. 

The first aim of this dissertation was to establish methodology for 

acquiring and analyzing High Density EEG data. Using a 2 minutes EEG 

scan acquired at resting state, the first study, after defining indices computed 

ad hoc to underline specific topographic properties, showed that the brain 
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networks of stroke patients at rest are different compared to those of healthy 

subjects and that the lesion side influences the reorganization after the stroke 

event. In the second study (Chapter 4), prediction of motor improvement 

with training was found to demonstrate specificity for motor task content. 

Therefore, these first two studies have shown how interhemispheric 

connectivity measurements obtained from EEG collected at rest are not only 

able to characterize the pathology, but also demonstrate the potential of the 

method to differentiate individuals in order to maximize the response to 

motor training. In Chapter 5, an EEG-based index related to the CST 

integrity was defined in order to assess the effects of training to restore 

interhemispheric balance and ultimately to drive the design of future 

rehabilitation interventions based on connectivity. The study described in 

Chapter 6 is a preliminary step in the direction of enabling the adoption of 

EEG functional mapping after neural source reconstruction also on patients 

with brain lesions. During my PhD research activity, I implemented a 

realistic symmetrical finite element head model that allows the presence of 

four compartments (scalp, skull, brain, lesion). Investigating alterations in 

the propagation and in the source localization of a simulated realistic 

lesioned neural activity will increase the confidence in source localization 

procedures and extend functional connectivity application in pathological 

subjects. 

In summary, the results reported in this dissertation suggest that EEG 

measures of brain function can be robust predictors of potential 

reorganization in motor recovery after stroke. Overall, the EEG measures of 

connectivity have shown particular utility in this respect, overcoming the 

basic behavioural state and several other clinical measures. The EEG 

confirms to be a legitimate candidate method for assessing brain function 

after stroke. 
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